• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/arm/lithium-codegen-arm.h"
6 
7 #include "src/base/bits.h"
8 #include "src/code-factory.h"
9 #include "src/code-stubs.h"
10 #include "src/crankshaft/arm/lithium-gap-resolver-arm.h"
11 #include "src/crankshaft/hydrogen-osr.h"
12 #include "src/ic/ic.h"
13 #include "src/ic/stub-cache.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 
19 class SafepointGenerator final : public CallWrapper {
20  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)21   SafepointGenerator(LCodeGen* codegen,
22                      LPointerMap* pointers,
23                      Safepoint::DeoptMode mode)
24       : codegen_(codegen),
25         pointers_(pointers),
26         deopt_mode_(mode) { }
~SafepointGenerator()27   virtual ~SafepointGenerator() {}
28 
BeforeCall(int call_size) const29   void BeforeCall(int call_size) const override {}
30 
AfterCall() const31   void AfterCall() const override {
32     codegen_->RecordSafepoint(pointers_, deopt_mode_);
33   }
34 
35  private:
36   LCodeGen* codegen_;
37   LPointerMap* pointers_;
38   Safepoint::DeoptMode deopt_mode_;
39 };
40 
41 
42 #define __ masm()->
43 
GenerateCode()44 bool LCodeGen::GenerateCode() {
45   LPhase phase("Z_Code generation", chunk());
46   DCHECK(is_unused());
47   status_ = GENERATING;
48 
49   // Open a frame scope to indicate that there is a frame on the stack.  The
50   // NONE indicates that the scope shouldn't actually generate code to set up
51   // the frame (that is done in GeneratePrologue).
52   FrameScope frame_scope(masm_, StackFrame::NONE);
53 
54   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
55          GenerateJumpTable() && GenerateSafepointTable();
56 }
57 
58 
FinishCode(Handle<Code> code)59 void LCodeGen::FinishCode(Handle<Code> code) {
60   DCHECK(is_done());
61   code->set_stack_slots(GetTotalFrameSlotCount());
62   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
63   PopulateDeoptimizationData(code);
64 }
65 
66 
SaveCallerDoubles()67 void LCodeGen::SaveCallerDoubles() {
68   DCHECK(info()->saves_caller_doubles());
69   DCHECK(NeedsEagerFrame());
70   Comment(";;; Save clobbered callee double registers");
71   int count = 0;
72   BitVector* doubles = chunk()->allocated_double_registers();
73   BitVector::Iterator save_iterator(doubles);
74   while (!save_iterator.Done()) {
75     __ vstr(DoubleRegister::from_code(save_iterator.Current()),
76             MemOperand(sp, count * kDoubleSize));
77     save_iterator.Advance();
78     count++;
79   }
80 }
81 
82 
RestoreCallerDoubles()83 void LCodeGen::RestoreCallerDoubles() {
84   DCHECK(info()->saves_caller_doubles());
85   DCHECK(NeedsEagerFrame());
86   Comment(";;; Restore clobbered callee double registers");
87   BitVector* doubles = chunk()->allocated_double_registers();
88   BitVector::Iterator save_iterator(doubles);
89   int count = 0;
90   while (!save_iterator.Done()) {
91     __ vldr(DoubleRegister::from_code(save_iterator.Current()),
92             MemOperand(sp, count * kDoubleSize));
93     save_iterator.Advance();
94     count++;
95   }
96 }
97 
98 
GeneratePrologue()99 bool LCodeGen::GeneratePrologue() {
100   DCHECK(is_generating());
101 
102   if (info()->IsOptimizing()) {
103     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
104 
105     // r1: Callee's JS function.
106     // cp: Callee's context.
107     // pp: Callee's constant pool pointer (if enabled)
108     // fp: Caller's frame pointer.
109     // lr: Caller's pc.
110   }
111 
112   info()->set_prologue_offset(masm_->pc_offset());
113   if (NeedsEagerFrame()) {
114     if (info()->IsStub()) {
115       __ StubPrologue(StackFrame::STUB);
116     } else {
117       __ Prologue(info()->GeneratePreagedPrologue());
118     }
119     frame_is_built_ = true;
120   }
121 
122   // Reserve space for the stack slots needed by the code.
123   int slots = GetStackSlotCount();
124   if (slots > 0) {
125     if (FLAG_debug_code) {
126       __ sub(sp,  sp, Operand(slots * kPointerSize));
127       __ push(r0);
128       __ push(r1);
129       __ add(r0, sp, Operand(slots *  kPointerSize));
130       __ mov(r1, Operand(kSlotsZapValue));
131       Label loop;
132       __ bind(&loop);
133       __ sub(r0, r0, Operand(kPointerSize));
134       __ str(r1, MemOperand(r0, 2 * kPointerSize));
135       __ cmp(r0, sp);
136       __ b(ne, &loop);
137       __ pop(r1);
138       __ pop(r0);
139     } else {
140       __ sub(sp,  sp, Operand(slots * kPointerSize));
141     }
142   }
143 
144   if (info()->saves_caller_doubles()) {
145     SaveCallerDoubles();
146   }
147   return !is_aborted();
148 }
149 
150 
DoPrologue(LPrologue * instr)151 void LCodeGen::DoPrologue(LPrologue* instr) {
152   Comment(";;; Prologue begin");
153 
154   // Possibly allocate a local context.
155   if (info()->scope()->NeedsContext()) {
156     Comment(";;; Allocate local context");
157     bool need_write_barrier = true;
158     // Argument to NewContext is the function, which is in r1.
159     int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
160     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
161     if (info()->scope()->is_script_scope()) {
162       __ push(r1);
163       __ Push(info()->scope()->scope_info());
164       __ CallRuntime(Runtime::kNewScriptContext);
165       deopt_mode = Safepoint::kLazyDeopt;
166     } else {
167       if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
168         FastNewFunctionContextStub stub(isolate());
169         __ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
170                Operand(slots));
171         __ CallStub(&stub);
172         // Result of FastNewFunctionContextStub is always in new space.
173         need_write_barrier = false;
174       } else {
175         __ push(r1);
176         __ CallRuntime(Runtime::kNewFunctionContext);
177       }
178     }
179     RecordSafepoint(deopt_mode);
180 
181     // Context is returned in both r0 and cp.  It replaces the context
182     // passed to us.  It's saved in the stack and kept live in cp.
183     __ mov(cp, r0);
184     __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
185     // Copy any necessary parameters into the context.
186     int num_parameters = info()->scope()->num_parameters();
187     int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
188     for (int i = first_parameter; i < num_parameters; i++) {
189       Variable* var = (i == -1) ? info()->scope()->receiver()
190                                 : info()->scope()->parameter(i);
191       if (var->IsContextSlot()) {
192         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
193             (num_parameters - 1 - i) * kPointerSize;
194         // Load parameter from stack.
195         __ ldr(r0, MemOperand(fp, parameter_offset));
196         // Store it in the context.
197         MemOperand target = ContextMemOperand(cp, var->index());
198         __ str(r0, target);
199         // Update the write barrier. This clobbers r3 and r0.
200         if (need_write_barrier) {
201           __ RecordWriteContextSlot(
202               cp,
203               target.offset(),
204               r0,
205               r3,
206               GetLinkRegisterState(),
207               kSaveFPRegs);
208         } else if (FLAG_debug_code) {
209           Label done;
210           __ JumpIfInNewSpace(cp, r0, &done);
211           __ Abort(kExpectedNewSpaceObject);
212           __ bind(&done);
213         }
214       }
215     }
216     Comment(";;; End allocate local context");
217   }
218 
219   Comment(";;; Prologue end");
220 }
221 
222 
GenerateOsrPrologue()223 void LCodeGen::GenerateOsrPrologue() {
224   // Generate the OSR entry prologue at the first unknown OSR value, or if there
225   // are none, at the OSR entrypoint instruction.
226   if (osr_pc_offset_ >= 0) return;
227 
228   osr_pc_offset_ = masm()->pc_offset();
229 
230   // Adjust the frame size, subsuming the unoptimized frame into the
231   // optimized frame.
232   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
233   DCHECK(slots >= 0);
234   __ sub(sp, sp, Operand(slots * kPointerSize));
235 }
236 
237 
GenerateBodyInstructionPre(LInstruction * instr)238 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
239   if (instr->IsCall()) {
240     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
241   }
242   if (!instr->IsLazyBailout() && !instr->IsGap()) {
243     safepoints_.BumpLastLazySafepointIndex();
244   }
245 }
246 
247 
GenerateDeferredCode()248 bool LCodeGen::GenerateDeferredCode() {
249   DCHECK(is_generating());
250   if (deferred_.length() > 0) {
251     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
252       LDeferredCode* code = deferred_[i];
253 
254       HValue* value =
255           instructions_->at(code->instruction_index())->hydrogen_value();
256       RecordAndWritePosition(value->position());
257 
258       Comment(";;; <@%d,#%d> "
259               "-------------------- Deferred %s --------------------",
260               code->instruction_index(),
261               code->instr()->hydrogen_value()->id(),
262               code->instr()->Mnemonic());
263       __ bind(code->entry());
264       if (NeedsDeferredFrame()) {
265         Comment(";;; Build frame");
266         DCHECK(!frame_is_built_);
267         DCHECK(info()->IsStub());
268         frame_is_built_ = true;
269         __ Move(scratch0(), Smi::FromInt(StackFrame::STUB));
270         __ PushCommonFrame(scratch0());
271         Comment(";;; Deferred code");
272       }
273       code->Generate();
274       if (NeedsDeferredFrame()) {
275         Comment(";;; Destroy frame");
276         DCHECK(frame_is_built_);
277         __ PopCommonFrame(scratch0());
278         frame_is_built_ = false;
279       }
280       __ jmp(code->exit());
281     }
282   }
283 
284   // Force constant pool emission at the end of the deferred code to make
285   // sure that no constant pools are emitted after.
286   masm()->CheckConstPool(true, false);
287 
288   return !is_aborted();
289 }
290 
291 
GenerateJumpTable()292 bool LCodeGen::GenerateJumpTable() {
293   // Check that the jump table is accessible from everywhere in the function
294   // code, i.e. that offsets to the table can be encoded in the 24bit signed
295   // immediate of a branch instruction.
296   // To simplify we consider the code size from the first instruction to the
297   // end of the jump table. We also don't consider the pc load delta.
298   // Each entry in the jump table generates one instruction and inlines one
299   // 32bit data after it.
300   if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
301                 jump_table_.length() * 7)) {
302     Abort(kGeneratedCodeIsTooLarge);
303   }
304 
305   if (jump_table_.length() > 0) {
306     Label needs_frame, call_deopt_entry;
307 
308     Comment(";;; -------------------- Jump table --------------------");
309     Address base = jump_table_[0].address;
310 
311     Register entry_offset = scratch0();
312 
313     int length = jump_table_.length();
314     for (int i = 0; i < length; i++) {
315       Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
316       __ bind(&table_entry->label);
317 
318       DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
319       Address entry = table_entry->address;
320       DeoptComment(table_entry->deopt_info);
321 
322       // Second-level deopt table entries are contiguous and small, so instead
323       // of loading the full, absolute address of each one, load an immediate
324       // offset which will be added to the base address later.
325       __ mov(entry_offset, Operand(entry - base));
326 
327       if (table_entry->needs_frame) {
328         DCHECK(!info()->saves_caller_doubles());
329         Comment(";;; call deopt with frame");
330         __ PushCommonFrame();
331         __ bl(&needs_frame);
332       } else {
333         __ bl(&call_deopt_entry);
334       }
335       masm()->CheckConstPool(false, false);
336     }
337 
338     if (needs_frame.is_linked()) {
339       __ bind(&needs_frame);
340       // This variant of deopt can only be used with stubs. Since we don't
341       // have a function pointer to install in the stack frame that we're
342       // building, install a special marker there instead.
343       __ mov(ip, Operand(Smi::FromInt(StackFrame::STUB)));
344       __ push(ip);
345       DCHECK(info()->IsStub());
346     }
347 
348     Comment(";;; call deopt");
349     __ bind(&call_deopt_entry);
350 
351     if (info()->saves_caller_doubles()) {
352       DCHECK(info()->IsStub());
353       RestoreCallerDoubles();
354     }
355 
356     // Add the base address to the offset previously loaded in entry_offset.
357     __ add(entry_offset, entry_offset,
358            Operand(ExternalReference::ForDeoptEntry(base)));
359     __ bx(entry_offset);
360   }
361 
362   // Force constant pool emission at the end of the deopt jump table to make
363   // sure that no constant pools are emitted after.
364   masm()->CheckConstPool(true, false);
365 
366   // The deoptimization jump table is the last part of the instruction
367   // sequence. Mark the generated code as done unless we bailed out.
368   if (!is_aborted()) status_ = DONE;
369   return !is_aborted();
370 }
371 
372 
GenerateSafepointTable()373 bool LCodeGen::GenerateSafepointTable() {
374   DCHECK(is_done());
375   safepoints_.Emit(masm(), GetTotalFrameSlotCount());
376   return !is_aborted();
377 }
378 
379 
ToRegister(int code) const380 Register LCodeGen::ToRegister(int code) const {
381   return Register::from_code(code);
382 }
383 
384 
ToDoubleRegister(int code) const385 DwVfpRegister LCodeGen::ToDoubleRegister(int code) const {
386   return DwVfpRegister::from_code(code);
387 }
388 
389 
ToRegister(LOperand * op) const390 Register LCodeGen::ToRegister(LOperand* op) const {
391   DCHECK(op->IsRegister());
392   return ToRegister(op->index());
393 }
394 
395 
EmitLoadRegister(LOperand * op,Register scratch)396 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
397   if (op->IsRegister()) {
398     return ToRegister(op->index());
399   } else if (op->IsConstantOperand()) {
400     LConstantOperand* const_op = LConstantOperand::cast(op);
401     HConstant* constant = chunk_->LookupConstant(const_op);
402     Handle<Object> literal = constant->handle(isolate());
403     Representation r = chunk_->LookupLiteralRepresentation(const_op);
404     if (r.IsInteger32()) {
405       AllowDeferredHandleDereference get_number;
406       DCHECK(literal->IsNumber());
407       __ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
408     } else if (r.IsDouble()) {
409       Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
410     } else {
411       DCHECK(r.IsSmiOrTagged());
412       __ Move(scratch, literal);
413     }
414     return scratch;
415   } else if (op->IsStackSlot()) {
416     __ ldr(scratch, ToMemOperand(op));
417     return scratch;
418   }
419   UNREACHABLE();
420   return scratch;
421 }
422 
423 
ToDoubleRegister(LOperand * op) const424 DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
425   DCHECK(op->IsDoubleRegister());
426   return ToDoubleRegister(op->index());
427 }
428 
429 
EmitLoadDoubleRegister(LOperand * op,SwVfpRegister flt_scratch,DwVfpRegister dbl_scratch)430 DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
431                                                SwVfpRegister flt_scratch,
432                                                DwVfpRegister dbl_scratch) {
433   if (op->IsDoubleRegister()) {
434     return ToDoubleRegister(op->index());
435   } else if (op->IsConstantOperand()) {
436     LConstantOperand* const_op = LConstantOperand::cast(op);
437     HConstant* constant = chunk_->LookupConstant(const_op);
438     Handle<Object> literal = constant->handle(isolate());
439     Representation r = chunk_->LookupLiteralRepresentation(const_op);
440     if (r.IsInteger32()) {
441       DCHECK(literal->IsNumber());
442       __ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
443       __ vmov(flt_scratch, ip);
444       __ vcvt_f64_s32(dbl_scratch, flt_scratch);
445       return dbl_scratch;
446     } else if (r.IsDouble()) {
447       Abort(kUnsupportedDoubleImmediate);
448     } else if (r.IsTagged()) {
449       Abort(kUnsupportedTaggedImmediate);
450     }
451   } else if (op->IsStackSlot()) {
452     // TODO(regis): Why is vldr not taking a MemOperand?
453     // __ vldr(dbl_scratch, ToMemOperand(op));
454     MemOperand mem_op = ToMemOperand(op);
455     __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
456     return dbl_scratch;
457   }
458   UNREACHABLE();
459   return dbl_scratch;
460 }
461 
462 
ToHandle(LConstantOperand * op) const463 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
464   HConstant* constant = chunk_->LookupConstant(op);
465   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
466   return constant->handle(isolate());
467 }
468 
469 
IsInteger32(LConstantOperand * op) const470 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
471   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
472 }
473 
474 
IsSmi(LConstantOperand * op) const475 bool LCodeGen::IsSmi(LConstantOperand* op) const {
476   return chunk_->LookupLiteralRepresentation(op).IsSmi();
477 }
478 
479 
ToInteger32(LConstantOperand * op) const480 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
481   return ToRepresentation(op, Representation::Integer32());
482 }
483 
484 
ToRepresentation(LConstantOperand * op,const Representation & r) const485 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
486                                    const Representation& r) const {
487   HConstant* constant = chunk_->LookupConstant(op);
488   int32_t value = constant->Integer32Value();
489   if (r.IsInteger32()) return value;
490   DCHECK(r.IsSmiOrTagged());
491   return reinterpret_cast<int32_t>(Smi::FromInt(value));
492 }
493 
494 
ToSmi(LConstantOperand * op) const495 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
496   HConstant* constant = chunk_->LookupConstant(op);
497   return Smi::FromInt(constant->Integer32Value());
498 }
499 
500 
ToDouble(LConstantOperand * op) const501 double LCodeGen::ToDouble(LConstantOperand* op) const {
502   HConstant* constant = chunk_->LookupConstant(op);
503   DCHECK(constant->HasDoubleValue());
504   return constant->DoubleValue();
505 }
506 
507 
ToOperand(LOperand * op)508 Operand LCodeGen::ToOperand(LOperand* op) {
509   if (op->IsConstantOperand()) {
510     LConstantOperand* const_op = LConstantOperand::cast(op);
511     HConstant* constant = chunk()->LookupConstant(const_op);
512     Representation r = chunk_->LookupLiteralRepresentation(const_op);
513     if (r.IsSmi()) {
514       DCHECK(constant->HasSmiValue());
515       return Operand(Smi::FromInt(constant->Integer32Value()));
516     } else if (r.IsInteger32()) {
517       DCHECK(constant->HasInteger32Value());
518       return Operand(constant->Integer32Value());
519     } else if (r.IsDouble()) {
520       Abort(kToOperandUnsupportedDoubleImmediate);
521     }
522     DCHECK(r.IsTagged());
523     return Operand(constant->handle(isolate()));
524   } else if (op->IsRegister()) {
525     return Operand(ToRegister(op));
526   } else if (op->IsDoubleRegister()) {
527     Abort(kToOperandIsDoubleRegisterUnimplemented);
528     return Operand::Zero();
529   }
530   // Stack slots not implemented, use ToMemOperand instead.
531   UNREACHABLE();
532   return Operand::Zero();
533 }
534 
535 
ArgumentsOffsetWithoutFrame(int index)536 static int ArgumentsOffsetWithoutFrame(int index) {
537   DCHECK(index < 0);
538   return -(index + 1) * kPointerSize;
539 }
540 
541 
ToMemOperand(LOperand * op) const542 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
543   DCHECK(!op->IsRegister());
544   DCHECK(!op->IsDoubleRegister());
545   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
546   if (NeedsEagerFrame()) {
547     return MemOperand(fp, FrameSlotToFPOffset(op->index()));
548   } else {
549     // Retrieve parameter without eager stack-frame relative to the
550     // stack-pointer.
551     return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
552   }
553 }
554 
555 
ToHighMemOperand(LOperand * op) const556 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
557   DCHECK(op->IsDoubleStackSlot());
558   if (NeedsEagerFrame()) {
559     return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
560   } else {
561     // Retrieve parameter without eager stack-frame relative to the
562     // stack-pointer.
563     return MemOperand(
564         sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
565   }
566 }
567 
568 
WriteTranslation(LEnvironment * environment,Translation * translation)569 void LCodeGen::WriteTranslation(LEnvironment* environment,
570                                 Translation* translation) {
571   if (environment == NULL) return;
572 
573   // The translation includes one command per value in the environment.
574   int translation_size = environment->translation_size();
575 
576   WriteTranslation(environment->outer(), translation);
577   WriteTranslationFrame(environment, translation);
578 
579   int object_index = 0;
580   int dematerialized_index = 0;
581   for (int i = 0; i < translation_size; ++i) {
582     LOperand* value = environment->values()->at(i);
583     AddToTranslation(
584         environment, translation, value, environment->HasTaggedValueAt(i),
585         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
586   }
587 }
588 
589 
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)590 void LCodeGen::AddToTranslation(LEnvironment* environment,
591                                 Translation* translation,
592                                 LOperand* op,
593                                 bool is_tagged,
594                                 bool is_uint32,
595                                 int* object_index_pointer,
596                                 int* dematerialized_index_pointer) {
597   if (op == LEnvironment::materialization_marker()) {
598     int object_index = (*object_index_pointer)++;
599     if (environment->ObjectIsDuplicateAt(object_index)) {
600       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
601       translation->DuplicateObject(dupe_of);
602       return;
603     }
604     int object_length = environment->ObjectLengthAt(object_index);
605     if (environment->ObjectIsArgumentsAt(object_index)) {
606       translation->BeginArgumentsObject(object_length);
607     } else {
608       translation->BeginCapturedObject(object_length);
609     }
610     int dematerialized_index = *dematerialized_index_pointer;
611     int env_offset = environment->translation_size() + dematerialized_index;
612     *dematerialized_index_pointer += object_length;
613     for (int i = 0; i < object_length; ++i) {
614       LOperand* value = environment->values()->at(env_offset + i);
615       AddToTranslation(environment,
616                        translation,
617                        value,
618                        environment->HasTaggedValueAt(env_offset + i),
619                        environment->HasUint32ValueAt(env_offset + i),
620                        object_index_pointer,
621                        dematerialized_index_pointer);
622     }
623     return;
624   }
625 
626   if (op->IsStackSlot()) {
627     int index = op->index();
628     if (is_tagged) {
629       translation->StoreStackSlot(index);
630     } else if (is_uint32) {
631       translation->StoreUint32StackSlot(index);
632     } else {
633       translation->StoreInt32StackSlot(index);
634     }
635   } else if (op->IsDoubleStackSlot()) {
636     int index = op->index();
637     translation->StoreDoubleStackSlot(index);
638   } else if (op->IsRegister()) {
639     Register reg = ToRegister(op);
640     if (is_tagged) {
641       translation->StoreRegister(reg);
642     } else if (is_uint32) {
643       translation->StoreUint32Register(reg);
644     } else {
645       translation->StoreInt32Register(reg);
646     }
647   } else if (op->IsDoubleRegister()) {
648     DoubleRegister reg = ToDoubleRegister(op);
649     translation->StoreDoubleRegister(reg);
650   } else if (op->IsConstantOperand()) {
651     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
652     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
653     translation->StoreLiteral(src_index);
654   } else {
655     UNREACHABLE();
656   }
657 }
658 
659 
CallCodeSize(Handle<Code> code,RelocInfo::Mode mode)660 int LCodeGen::CallCodeSize(Handle<Code> code, RelocInfo::Mode mode) {
661   int size = masm()->CallSize(code, mode);
662   if (code->kind() == Code::BINARY_OP_IC ||
663       code->kind() == Code::COMPARE_IC) {
664     size += Assembler::kInstrSize;  // extra nop() added in CallCodeGeneric.
665   }
666   return size;
667 }
668 
669 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,TargetAddressStorageMode storage_mode)670 void LCodeGen::CallCode(Handle<Code> code,
671                         RelocInfo::Mode mode,
672                         LInstruction* instr,
673                         TargetAddressStorageMode storage_mode) {
674   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
675 }
676 
677 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode,TargetAddressStorageMode storage_mode)678 void LCodeGen::CallCodeGeneric(Handle<Code> code,
679                                RelocInfo::Mode mode,
680                                LInstruction* instr,
681                                SafepointMode safepoint_mode,
682                                TargetAddressStorageMode storage_mode) {
683   DCHECK(instr != NULL);
684   // Block literal pool emission to ensure nop indicating no inlined smi code
685   // is in the correct position.
686   Assembler::BlockConstPoolScope block_const_pool(masm());
687   __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
688   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
689 
690   // Signal that we don't inline smi code before these stubs in the
691   // optimizing code generator.
692   if (code->kind() == Code::BINARY_OP_IC ||
693       code->kind() == Code::COMPARE_IC) {
694     __ nop();
695   }
696 }
697 
698 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)699 void LCodeGen::CallRuntime(const Runtime::Function* function,
700                            int num_arguments,
701                            LInstruction* instr,
702                            SaveFPRegsMode save_doubles) {
703   DCHECK(instr != NULL);
704 
705   __ CallRuntime(function, num_arguments, save_doubles);
706 
707   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
708 }
709 
710 
LoadContextFromDeferred(LOperand * context)711 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
712   if (context->IsRegister()) {
713     __ Move(cp, ToRegister(context));
714   } else if (context->IsStackSlot()) {
715     __ ldr(cp, ToMemOperand(context));
716   } else if (context->IsConstantOperand()) {
717     HConstant* constant =
718         chunk_->LookupConstant(LConstantOperand::cast(context));
719     __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
720   } else {
721     UNREACHABLE();
722   }
723 }
724 
725 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)726 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
727                                        int argc,
728                                        LInstruction* instr,
729                                        LOperand* context) {
730   LoadContextFromDeferred(context);
731   __ CallRuntimeSaveDoubles(id);
732   RecordSafepointWithRegisters(
733       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
734 }
735 
736 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)737 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
738                                                     Safepoint::DeoptMode mode) {
739   environment->set_has_been_used();
740   if (!environment->HasBeenRegistered()) {
741     // Physical stack frame layout:
742     // -x ............. -4  0 ..................................... y
743     // [incoming arguments] [spill slots] [pushed outgoing arguments]
744 
745     // Layout of the environment:
746     // 0 ..................................................... size-1
747     // [parameters] [locals] [expression stack including arguments]
748 
749     // Layout of the translation:
750     // 0 ........................................................ size - 1 + 4
751     // [expression stack including arguments] [locals] [4 words] [parameters]
752     // |>------------  translation_size ------------<|
753 
754     int frame_count = 0;
755     int jsframe_count = 0;
756     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
757       ++frame_count;
758       if (e->frame_type() == JS_FUNCTION) {
759         ++jsframe_count;
760       }
761     }
762     Translation translation(&translations_, frame_count, jsframe_count, zone());
763     WriteTranslation(environment, &translation);
764     int deoptimization_index = deoptimizations_.length();
765     int pc_offset = masm()->pc_offset();
766     environment->Register(deoptimization_index,
767                           translation.index(),
768                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
769     deoptimizations_.Add(environment, zone());
770   }
771 }
772 
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType bailout_type)773 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
774                             DeoptimizeReason deopt_reason,
775                             Deoptimizer::BailoutType bailout_type) {
776   LEnvironment* environment = instr->environment();
777   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
778   DCHECK(environment->HasBeenRegistered());
779   int id = environment->deoptimization_index();
780   Address entry =
781       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
782   if (entry == NULL) {
783     Abort(kBailoutWasNotPrepared);
784     return;
785   }
786 
787   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
788     Register scratch = scratch0();
789     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
790 
791     // Store the condition on the stack if necessary
792     if (condition != al) {
793       __ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition));
794       __ mov(scratch, Operand(1), LeaveCC, condition);
795       __ push(scratch);
796     }
797 
798     __ push(r1);
799     __ mov(scratch, Operand(count));
800     __ ldr(r1, MemOperand(scratch));
801     __ sub(r1, r1, Operand(1), SetCC);
802     __ mov(r1, Operand(FLAG_deopt_every_n_times), LeaveCC, eq);
803     __ str(r1, MemOperand(scratch));
804     __ pop(r1);
805 
806     if (condition != al) {
807       // Clean up the stack before the deoptimizer call
808       __ pop(scratch);
809     }
810 
811     __ Call(entry, RelocInfo::RUNTIME_ENTRY, eq);
812 
813     // 'Restore' the condition in a slightly hacky way. (It would be better
814     // to use 'msr' and 'mrs' instructions here, but they are not supported by
815     // our ARM simulator).
816     if (condition != al) {
817       condition = ne;
818       __ cmp(scratch, Operand::Zero());
819     }
820   }
821 
822   if (info()->ShouldTrapOnDeopt()) {
823     __ stop("trap_on_deopt", condition);
824   }
825 
826   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
827 
828   DCHECK(info()->IsStub() || frame_is_built_);
829   // Go through jump table if we need to handle condition, build frame, or
830   // restore caller doubles.
831   if (condition == al && frame_is_built_ &&
832       !info()->saves_caller_doubles()) {
833     DeoptComment(deopt_info);
834     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
835   } else {
836     Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
837                                             !frame_is_built_);
838     // We often have several deopts to the same entry, reuse the last
839     // jump entry if this is the case.
840     if (FLAG_trace_deopt || isolate()->is_profiling() ||
841         jump_table_.is_empty() ||
842         !table_entry.IsEquivalentTo(jump_table_.last())) {
843       jump_table_.Add(table_entry, zone());
844     }
845     __ b(condition, &jump_table_.last().label);
846   }
847 }
848 
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason)849 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
850                             DeoptimizeReason deopt_reason) {
851   Deoptimizer::BailoutType bailout_type = info()->IsStub()
852       ? Deoptimizer::LAZY
853       : Deoptimizer::EAGER;
854   DeoptimizeIf(condition, instr, deopt_reason, bailout_type);
855 }
856 
857 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)858 void LCodeGen::RecordSafepointWithLazyDeopt(
859     LInstruction* instr, SafepointMode safepoint_mode) {
860   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
861     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
862   } else {
863     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
864     RecordSafepointWithRegisters(
865         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
866   }
867 }
868 
869 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)870 void LCodeGen::RecordSafepoint(
871     LPointerMap* pointers,
872     Safepoint::Kind kind,
873     int arguments,
874     Safepoint::DeoptMode deopt_mode) {
875   DCHECK(expected_safepoint_kind_ == kind);
876 
877   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
878   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
879       kind, arguments, deopt_mode);
880   for (int i = 0; i < operands->length(); i++) {
881     LOperand* pointer = operands->at(i);
882     if (pointer->IsStackSlot()) {
883       safepoint.DefinePointerSlot(pointer->index(), zone());
884     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
885       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
886     }
887   }
888 }
889 
890 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)891 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
892                                Safepoint::DeoptMode deopt_mode) {
893   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
894 }
895 
896 
RecordSafepoint(Safepoint::DeoptMode deopt_mode)897 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
898   LPointerMap empty_pointers(zone());
899   RecordSafepoint(&empty_pointers, deopt_mode);
900 }
901 
902 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)903 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
904                                             int arguments,
905                                             Safepoint::DeoptMode deopt_mode) {
906   RecordSafepoint(
907       pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
908 }
909 
910 
LabelType(LLabel * label)911 static const char* LabelType(LLabel* label) {
912   if (label->is_loop_header()) return " (loop header)";
913   if (label->is_osr_entry()) return " (OSR entry)";
914   return "";
915 }
916 
917 
DoLabel(LLabel * label)918 void LCodeGen::DoLabel(LLabel* label) {
919   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
920           current_instruction_,
921           label->hydrogen_value()->id(),
922           label->block_id(),
923           LabelType(label));
924   __ bind(label->label());
925   current_block_ = label->block_id();
926   DoGap(label);
927 }
928 
929 
DoParallelMove(LParallelMove * move)930 void LCodeGen::DoParallelMove(LParallelMove* move) {
931   resolver_.Resolve(move);
932 }
933 
934 
DoGap(LGap * gap)935 void LCodeGen::DoGap(LGap* gap) {
936   for (int i = LGap::FIRST_INNER_POSITION;
937        i <= LGap::LAST_INNER_POSITION;
938        i++) {
939     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
940     LParallelMove* move = gap->GetParallelMove(inner_pos);
941     if (move != NULL) DoParallelMove(move);
942   }
943 }
944 
945 
DoInstructionGap(LInstructionGap * instr)946 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
947   DoGap(instr);
948 }
949 
950 
DoParameter(LParameter * instr)951 void LCodeGen::DoParameter(LParameter* instr) {
952   // Nothing to do.
953 }
954 
955 
DoUnknownOSRValue(LUnknownOSRValue * instr)956 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
957   GenerateOsrPrologue();
958 }
959 
960 
DoModByPowerOf2I(LModByPowerOf2I * instr)961 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
962   Register dividend = ToRegister(instr->dividend());
963   int32_t divisor = instr->divisor();
964   DCHECK(dividend.is(ToRegister(instr->result())));
965 
966   // Theoretically, a variation of the branch-free code for integer division by
967   // a power of 2 (calculating the remainder via an additional multiplication
968   // (which gets simplified to an 'and') and subtraction) should be faster, and
969   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
970   // indicate that positive dividends are heavily favored, so the branching
971   // version performs better.
972   HMod* hmod = instr->hydrogen();
973   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
974   Label dividend_is_not_negative, done;
975   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
976     __ cmp(dividend, Operand::Zero());
977     __ b(pl, &dividend_is_not_negative);
978     // Note that this is correct even for kMinInt operands.
979     __ rsb(dividend, dividend, Operand::Zero());
980     __ and_(dividend, dividend, Operand(mask));
981     __ rsb(dividend, dividend, Operand::Zero(), SetCC);
982     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
983       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
984     }
985     __ b(&done);
986   }
987 
988   __ bind(&dividend_is_not_negative);
989   __ and_(dividend, dividend, Operand(mask));
990   __ bind(&done);
991 }
992 
993 
DoModByConstI(LModByConstI * instr)994 void LCodeGen::DoModByConstI(LModByConstI* instr) {
995   Register dividend = ToRegister(instr->dividend());
996   int32_t divisor = instr->divisor();
997   Register result = ToRegister(instr->result());
998   DCHECK(!dividend.is(result));
999 
1000   if (divisor == 0) {
1001     DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1002     return;
1003   }
1004 
1005   __ TruncatingDiv(result, dividend, Abs(divisor));
1006   __ mov(ip, Operand(Abs(divisor)));
1007   __ smull(result, ip, result, ip);
1008   __ sub(result, dividend, result, SetCC);
1009 
1010   // Check for negative zero.
1011   HMod* hmod = instr->hydrogen();
1012   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1013     Label remainder_not_zero;
1014     __ b(ne, &remainder_not_zero);
1015     __ cmp(dividend, Operand::Zero());
1016     DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1017     __ bind(&remainder_not_zero);
1018   }
1019 }
1020 
1021 
DoModI(LModI * instr)1022 void LCodeGen::DoModI(LModI* instr) {
1023   HMod* hmod = instr->hydrogen();
1024   if (CpuFeatures::IsSupported(SUDIV)) {
1025     CpuFeatureScope scope(masm(), SUDIV);
1026 
1027     Register left_reg = ToRegister(instr->left());
1028     Register right_reg = ToRegister(instr->right());
1029     Register result_reg = ToRegister(instr->result());
1030 
1031     Label done;
1032     // Check for x % 0, sdiv might signal an exception. We have to deopt in this
1033     // case because we can't return a NaN.
1034     if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1035       __ cmp(right_reg, Operand::Zero());
1036       DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1037     }
1038 
1039     // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we
1040     // want. We have to deopt if we care about -0, because we can't return that.
1041     if (hmod->CheckFlag(HValue::kCanOverflow)) {
1042       Label no_overflow_possible;
1043       __ cmp(left_reg, Operand(kMinInt));
1044       __ b(ne, &no_overflow_possible);
1045       __ cmp(right_reg, Operand(-1));
1046       if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1047         DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1048       } else {
1049         __ b(ne, &no_overflow_possible);
1050         __ mov(result_reg, Operand::Zero());
1051         __ jmp(&done);
1052       }
1053       __ bind(&no_overflow_possible);
1054     }
1055 
1056     // For 'r3 = r1 % r2' we can have the following ARM code:
1057     //   sdiv r3, r1, r2
1058     //   mls r3, r3, r2, r1
1059 
1060     __ sdiv(result_reg, left_reg, right_reg);
1061     __ Mls(result_reg, result_reg, right_reg, left_reg);
1062 
1063     // If we care about -0, test if the dividend is <0 and the result is 0.
1064     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1065       __ cmp(result_reg, Operand::Zero());
1066       __ b(ne, &done);
1067       __ cmp(left_reg, Operand::Zero());
1068       DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1069     }
1070     __ bind(&done);
1071 
1072   } else {
1073     // General case, without any SDIV support.
1074     Register left_reg = ToRegister(instr->left());
1075     Register right_reg = ToRegister(instr->right());
1076     Register result_reg = ToRegister(instr->result());
1077     Register scratch = scratch0();
1078     DCHECK(!scratch.is(left_reg));
1079     DCHECK(!scratch.is(right_reg));
1080     DCHECK(!scratch.is(result_reg));
1081     DwVfpRegister dividend = ToDoubleRegister(instr->temp());
1082     DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
1083     DCHECK(!divisor.is(dividend));
1084     LowDwVfpRegister quotient = double_scratch0();
1085     DCHECK(!quotient.is(dividend));
1086     DCHECK(!quotient.is(divisor));
1087 
1088     Label done;
1089     // Check for x % 0, we have to deopt in this case because we can't return a
1090     // NaN.
1091     if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1092       __ cmp(right_reg, Operand::Zero());
1093       DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1094     }
1095 
1096     __ Move(result_reg, left_reg);
1097     // Load the arguments in VFP registers. The divisor value is preloaded
1098     // before. Be careful that 'right_reg' is only live on entry.
1099     // TODO(svenpanne) The last comments seems to be wrong nowadays.
1100     __ vmov(double_scratch0().low(), left_reg);
1101     __ vcvt_f64_s32(dividend, double_scratch0().low());
1102     __ vmov(double_scratch0().low(), right_reg);
1103     __ vcvt_f64_s32(divisor, double_scratch0().low());
1104 
1105     // We do not care about the sign of the divisor. Note that we still handle
1106     // the kMinInt % -1 case correctly, though.
1107     __ vabs(divisor, divisor);
1108     // Compute the quotient and round it to a 32bit integer.
1109     __ vdiv(quotient, dividend, divisor);
1110     __ vcvt_s32_f64(quotient.low(), quotient);
1111     __ vcvt_f64_s32(quotient, quotient.low());
1112 
1113     // Compute the remainder in result.
1114     __ vmul(double_scratch0(), divisor, quotient);
1115     __ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
1116     __ vmov(scratch, double_scratch0().low());
1117     __ sub(result_reg, left_reg, scratch, SetCC);
1118 
1119     // If we care about -0, test if the dividend is <0 and the result is 0.
1120     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1121       __ b(ne, &done);
1122       __ cmp(left_reg, Operand::Zero());
1123       DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
1124     }
1125     __ bind(&done);
1126   }
1127 }
1128 
1129 
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1130 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1131   Register dividend = ToRegister(instr->dividend());
1132   int32_t divisor = instr->divisor();
1133   Register result = ToRegister(instr->result());
1134   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1135   DCHECK(!result.is(dividend));
1136 
1137   // Check for (0 / -x) that will produce negative zero.
1138   HDiv* hdiv = instr->hydrogen();
1139   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1140     __ cmp(dividend, Operand::Zero());
1141     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1142   }
1143   // Check for (kMinInt / -1).
1144   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1145     __ cmp(dividend, Operand(kMinInt));
1146     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1147   }
1148   // Deoptimize if remainder will not be 0.
1149   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1150       divisor != 1 && divisor != -1) {
1151     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1152     __ tst(dividend, Operand(mask));
1153     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1154   }
1155 
1156   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
1157     __ rsb(result, dividend, Operand(0));
1158     return;
1159   }
1160   int32_t shift = WhichPowerOf2Abs(divisor);
1161   if (shift == 0) {
1162     __ mov(result, dividend);
1163   } else if (shift == 1) {
1164     __ add(result, dividend, Operand(dividend, LSR, 31));
1165   } else {
1166     __ mov(result, Operand(dividend, ASR, 31));
1167     __ add(result, dividend, Operand(result, LSR, 32 - shift));
1168   }
1169   if (shift > 0) __ mov(result, Operand(result, ASR, shift));
1170   if (divisor < 0) __ rsb(result, result, Operand(0));
1171 }
1172 
1173 
DoDivByConstI(LDivByConstI * instr)1174 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1175   Register dividend = ToRegister(instr->dividend());
1176   int32_t divisor = instr->divisor();
1177   Register result = ToRegister(instr->result());
1178   DCHECK(!dividend.is(result));
1179 
1180   if (divisor == 0) {
1181     DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1182     return;
1183   }
1184 
1185   // Check for (0 / -x) that will produce negative zero.
1186   HDiv* hdiv = instr->hydrogen();
1187   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1188     __ cmp(dividend, Operand::Zero());
1189     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1190   }
1191 
1192   __ TruncatingDiv(result, dividend, Abs(divisor));
1193   if (divisor < 0) __ rsb(result, result, Operand::Zero());
1194 
1195   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1196     __ mov(ip, Operand(divisor));
1197     __ smull(scratch0(), ip, result, ip);
1198     __ sub(scratch0(), scratch0(), dividend, SetCC);
1199     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1200   }
1201 }
1202 
1203 
1204 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1205 void LCodeGen::DoDivI(LDivI* instr) {
1206   HBinaryOperation* hdiv = instr->hydrogen();
1207   Register dividend = ToRegister(instr->dividend());
1208   Register divisor = ToRegister(instr->divisor());
1209   Register result = ToRegister(instr->result());
1210 
1211   // Check for x / 0.
1212   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1213     __ cmp(divisor, Operand::Zero());
1214     DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1215   }
1216 
1217   // Check for (0 / -x) that will produce negative zero.
1218   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1219     Label positive;
1220     if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
1221       // Do the test only if it hadn't be done above.
1222       __ cmp(divisor, Operand::Zero());
1223     }
1224     __ b(pl, &positive);
1225     __ cmp(dividend, Operand::Zero());
1226     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1227     __ bind(&positive);
1228   }
1229 
1230   // Check for (kMinInt / -1).
1231   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1232       (!CpuFeatures::IsSupported(SUDIV) ||
1233        !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
1234     // We don't need to check for overflow when truncating with sdiv
1235     // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
1236     __ cmp(dividend, Operand(kMinInt));
1237     __ cmp(divisor, Operand(-1), eq);
1238     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1239   }
1240 
1241   if (CpuFeatures::IsSupported(SUDIV)) {
1242     CpuFeatureScope scope(masm(), SUDIV);
1243     __ sdiv(result, dividend, divisor);
1244   } else {
1245     DoubleRegister vleft = ToDoubleRegister(instr->temp());
1246     DoubleRegister vright = double_scratch0();
1247     __ vmov(double_scratch0().low(), dividend);
1248     __ vcvt_f64_s32(vleft, double_scratch0().low());
1249     __ vmov(double_scratch0().low(), divisor);
1250     __ vcvt_f64_s32(vright, double_scratch0().low());
1251     __ vdiv(vleft, vleft, vright);  // vleft now contains the result.
1252     __ vcvt_s32_f64(double_scratch0().low(), vleft);
1253     __ vmov(result, double_scratch0().low());
1254   }
1255 
1256   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1257     // Compute remainder and deopt if it's not zero.
1258     Register remainder = scratch0();
1259     __ Mls(remainder, result, divisor, dividend);
1260     __ cmp(remainder, Operand::Zero());
1261     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1262   }
1263 }
1264 
1265 
DoMultiplyAddD(LMultiplyAddD * instr)1266 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1267   DwVfpRegister addend = ToDoubleRegister(instr->addend());
1268   DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1269   DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1270 
1271   // This is computed in-place.
1272   DCHECK(addend.is(ToDoubleRegister(instr->result())));
1273 
1274   __ vmla(addend, multiplier, multiplicand);
1275 }
1276 
1277 
DoMultiplySubD(LMultiplySubD * instr)1278 void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1279   DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
1280   DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1281   DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1282 
1283   // This is computed in-place.
1284   DCHECK(minuend.is(ToDoubleRegister(instr->result())));
1285 
1286   __ vmls(minuend, multiplier, multiplicand);
1287 }
1288 
1289 
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1290 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1291   Register dividend = ToRegister(instr->dividend());
1292   Register result = ToRegister(instr->result());
1293   int32_t divisor = instr->divisor();
1294 
1295   // If the divisor is 1, return the dividend.
1296   if (divisor == 1) {
1297     __ Move(result, dividend);
1298     return;
1299   }
1300 
1301   // If the divisor is positive, things are easy: There can be no deopts and we
1302   // can simply do an arithmetic right shift.
1303   int32_t shift = WhichPowerOf2Abs(divisor);
1304   if (divisor > 1) {
1305     __ mov(result, Operand(dividend, ASR, shift));
1306     return;
1307   }
1308 
1309   // If the divisor is negative, we have to negate and handle edge cases.
1310   __ rsb(result, dividend, Operand::Zero(), SetCC);
1311   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1312     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1313   }
1314 
1315   // Dividing by -1 is basically negation, unless we overflow.
1316   if (divisor == -1) {
1317     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1318       DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1319     }
1320     return;
1321   }
1322 
1323   // If the negation could not overflow, simply shifting is OK.
1324   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1325     __ mov(result, Operand(result, ASR, shift));
1326     return;
1327   }
1328 
1329   __ mov(result, Operand(kMinInt / divisor), LeaveCC, vs);
1330   __ mov(result, Operand(result, ASR, shift), LeaveCC, vc);
1331 }
1332 
1333 
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1334 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1335   Register dividend = ToRegister(instr->dividend());
1336   int32_t divisor = instr->divisor();
1337   Register result = ToRegister(instr->result());
1338   DCHECK(!dividend.is(result));
1339 
1340   if (divisor == 0) {
1341     DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1342     return;
1343   }
1344 
1345   // Check for (0 / -x) that will produce negative zero.
1346   HMathFloorOfDiv* hdiv = instr->hydrogen();
1347   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1348     __ cmp(dividend, Operand::Zero());
1349     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1350   }
1351 
1352   // Easy case: We need no dynamic check for the dividend and the flooring
1353   // division is the same as the truncating division.
1354   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1355       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1356     __ TruncatingDiv(result, dividend, Abs(divisor));
1357     if (divisor < 0) __ rsb(result, result, Operand::Zero());
1358     return;
1359   }
1360 
1361   // In the general case we may need to adjust before and after the truncating
1362   // division to get a flooring division.
1363   Register temp = ToRegister(instr->temp());
1364   DCHECK(!temp.is(dividend) && !temp.is(result));
1365   Label needs_adjustment, done;
1366   __ cmp(dividend, Operand::Zero());
1367   __ b(divisor > 0 ? lt : gt, &needs_adjustment);
1368   __ TruncatingDiv(result, dividend, Abs(divisor));
1369   if (divisor < 0) __ rsb(result, result, Operand::Zero());
1370   __ jmp(&done);
1371   __ bind(&needs_adjustment);
1372   __ add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1373   __ TruncatingDiv(result, temp, Abs(divisor));
1374   if (divisor < 0) __ rsb(result, result, Operand::Zero());
1375   __ sub(result, result, Operand(1));
1376   __ bind(&done);
1377 }
1378 
1379 
1380 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1381 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1382   HBinaryOperation* hdiv = instr->hydrogen();
1383   Register left = ToRegister(instr->dividend());
1384   Register right = ToRegister(instr->divisor());
1385   Register result = ToRegister(instr->result());
1386 
1387   // Check for x / 0.
1388   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1389     __ cmp(right, Operand::Zero());
1390     DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1391   }
1392 
1393   // Check for (0 / -x) that will produce negative zero.
1394   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1395     Label positive;
1396     if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
1397       // Do the test only if it hadn't be done above.
1398       __ cmp(right, Operand::Zero());
1399     }
1400     __ b(pl, &positive);
1401     __ cmp(left, Operand::Zero());
1402     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1403     __ bind(&positive);
1404   }
1405 
1406   // Check for (kMinInt / -1).
1407   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1408       (!CpuFeatures::IsSupported(SUDIV) ||
1409        !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
1410     // We don't need to check for overflow when truncating with sdiv
1411     // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
1412     __ cmp(left, Operand(kMinInt));
1413     __ cmp(right, Operand(-1), eq);
1414     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1415   }
1416 
1417   if (CpuFeatures::IsSupported(SUDIV)) {
1418     CpuFeatureScope scope(masm(), SUDIV);
1419     __ sdiv(result, left, right);
1420   } else {
1421     DoubleRegister vleft = ToDoubleRegister(instr->temp());
1422     DoubleRegister vright = double_scratch0();
1423     __ vmov(double_scratch0().low(), left);
1424     __ vcvt_f64_s32(vleft, double_scratch0().low());
1425     __ vmov(double_scratch0().low(), right);
1426     __ vcvt_f64_s32(vright, double_scratch0().low());
1427     __ vdiv(vleft, vleft, vright);  // vleft now contains the result.
1428     __ vcvt_s32_f64(double_scratch0().low(), vleft);
1429     __ vmov(result, double_scratch0().low());
1430   }
1431 
1432   Label done;
1433   Register remainder = scratch0();
1434   __ Mls(remainder, result, right, left);
1435   __ cmp(remainder, Operand::Zero());
1436   __ b(eq, &done);
1437   __ eor(remainder, remainder, Operand(right));
1438   __ add(result, result, Operand(remainder, ASR, 31));
1439   __ bind(&done);
1440 }
1441 
1442 
DoMulI(LMulI * instr)1443 void LCodeGen::DoMulI(LMulI* instr) {
1444   Register result = ToRegister(instr->result());
1445   // Note that result may alias left.
1446   Register left = ToRegister(instr->left());
1447   LOperand* right_op = instr->right();
1448 
1449   bool bailout_on_minus_zero =
1450     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1451   bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1452 
1453   if (right_op->IsConstantOperand()) {
1454     int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1455 
1456     if (bailout_on_minus_zero && (constant < 0)) {
1457       // The case of a null constant will be handled separately.
1458       // If constant is negative and left is null, the result should be -0.
1459       __ cmp(left, Operand::Zero());
1460       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1461     }
1462 
1463     switch (constant) {
1464       case -1:
1465         if (overflow) {
1466           __ rsb(result, left, Operand::Zero(), SetCC);
1467           DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1468         } else {
1469           __ rsb(result, left, Operand::Zero());
1470         }
1471         break;
1472       case 0:
1473         if (bailout_on_minus_zero) {
1474           // If left is strictly negative and the constant is null, the
1475           // result is -0. Deoptimize if required, otherwise return 0.
1476           __ cmp(left, Operand::Zero());
1477           DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
1478         }
1479         __ mov(result, Operand::Zero());
1480         break;
1481       case 1:
1482         __ Move(result, left);
1483         break;
1484       default:
1485         // Multiplying by powers of two and powers of two plus or minus
1486         // one can be done faster with shifted operands.
1487         // For other constants we emit standard code.
1488         int32_t mask = constant >> 31;
1489         uint32_t constant_abs = (constant + mask) ^ mask;
1490 
1491         if (base::bits::IsPowerOfTwo32(constant_abs)) {
1492           int32_t shift = WhichPowerOf2(constant_abs);
1493           __ mov(result, Operand(left, LSL, shift));
1494           // Correct the sign of the result is the constant is negative.
1495           if (constant < 0)  __ rsb(result, result, Operand::Zero());
1496         } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1497           int32_t shift = WhichPowerOf2(constant_abs - 1);
1498           __ add(result, left, Operand(left, LSL, shift));
1499           // Correct the sign of the result is the constant is negative.
1500           if (constant < 0)  __ rsb(result, result, Operand::Zero());
1501         } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1502           int32_t shift = WhichPowerOf2(constant_abs + 1);
1503           __ rsb(result, left, Operand(left, LSL, shift));
1504           // Correct the sign of the result is the constant is negative.
1505           if (constant < 0)  __ rsb(result, result, Operand::Zero());
1506         } else {
1507           // Generate standard code.
1508           __ mov(ip, Operand(constant));
1509           __ mul(result, left, ip);
1510         }
1511     }
1512 
1513   } else {
1514     DCHECK(right_op->IsRegister());
1515     Register right = ToRegister(right_op);
1516 
1517     if (overflow) {
1518       Register scratch = scratch0();
1519       // scratch:result = left * right.
1520       if (instr->hydrogen()->representation().IsSmi()) {
1521         __ SmiUntag(result, left);
1522         __ smull(result, scratch, result, right);
1523       } else {
1524         __ smull(result, scratch, left, right);
1525       }
1526       __ cmp(scratch, Operand(result, ASR, 31));
1527       DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1528     } else {
1529       if (instr->hydrogen()->representation().IsSmi()) {
1530         __ SmiUntag(result, left);
1531         __ mul(result, result, right);
1532       } else {
1533         __ mul(result, left, right);
1534       }
1535     }
1536 
1537     if (bailout_on_minus_zero) {
1538       Label done;
1539       __ teq(left, Operand(right));
1540       __ b(pl, &done);
1541       // Bail out if the result is minus zero.
1542       __ cmp(result, Operand::Zero());
1543       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1544       __ bind(&done);
1545     }
1546   }
1547 }
1548 
1549 
DoBitI(LBitI * instr)1550 void LCodeGen::DoBitI(LBitI* instr) {
1551   LOperand* left_op = instr->left();
1552   LOperand* right_op = instr->right();
1553   DCHECK(left_op->IsRegister());
1554   Register left = ToRegister(left_op);
1555   Register result = ToRegister(instr->result());
1556   Operand right(no_reg);
1557 
1558   if (right_op->IsStackSlot()) {
1559     right = Operand(EmitLoadRegister(right_op, ip));
1560   } else {
1561     DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1562     right = ToOperand(right_op);
1563   }
1564 
1565   switch (instr->op()) {
1566     case Token::BIT_AND:
1567       __ and_(result, left, right);
1568       break;
1569     case Token::BIT_OR:
1570       __ orr(result, left, right);
1571       break;
1572     case Token::BIT_XOR:
1573       if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1574         __ mvn(result, Operand(left));
1575       } else {
1576         __ eor(result, left, right);
1577       }
1578       break;
1579     default:
1580       UNREACHABLE();
1581       break;
1582   }
1583 }
1584 
1585 
DoShiftI(LShiftI * instr)1586 void LCodeGen::DoShiftI(LShiftI* instr) {
1587   // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1588   // result may alias either of them.
1589   LOperand* right_op = instr->right();
1590   Register left = ToRegister(instr->left());
1591   Register result = ToRegister(instr->result());
1592   Register scratch = scratch0();
1593   if (right_op->IsRegister()) {
1594     // Mask the right_op operand.
1595     __ and_(scratch, ToRegister(right_op), Operand(0x1F));
1596     switch (instr->op()) {
1597       case Token::ROR:
1598         __ mov(result, Operand(left, ROR, scratch));
1599         break;
1600       case Token::SAR:
1601         __ mov(result, Operand(left, ASR, scratch));
1602         break;
1603       case Token::SHR:
1604         if (instr->can_deopt()) {
1605           __ mov(result, Operand(left, LSR, scratch), SetCC);
1606           DeoptimizeIf(mi, instr, DeoptimizeReason::kNegativeValue);
1607         } else {
1608           __ mov(result, Operand(left, LSR, scratch));
1609         }
1610         break;
1611       case Token::SHL:
1612         __ mov(result, Operand(left, LSL, scratch));
1613         break;
1614       default:
1615         UNREACHABLE();
1616         break;
1617     }
1618   } else {
1619     // Mask the right_op operand.
1620     int value = ToInteger32(LConstantOperand::cast(right_op));
1621     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1622     switch (instr->op()) {
1623       case Token::ROR:
1624           if (shift_count != 0) {
1625           __ mov(result, Operand(left, ROR, shift_count));
1626         } else {
1627           __ Move(result, left);
1628         }
1629         break;
1630       case Token::SAR:
1631         if (shift_count != 0) {
1632           __ mov(result, Operand(left, ASR, shift_count));
1633         } else {
1634           __ Move(result, left);
1635         }
1636         break;
1637       case Token::SHR:
1638         if (shift_count != 0) {
1639           __ mov(result, Operand(left, LSR, shift_count));
1640         } else {
1641           if (instr->can_deopt()) {
1642             __ tst(left, Operand(0x80000000));
1643             DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue);
1644           }
1645           __ Move(result, left);
1646         }
1647         break;
1648       case Token::SHL:
1649         if (shift_count != 0) {
1650           if (instr->hydrogen_value()->representation().IsSmi() &&
1651               instr->can_deopt()) {
1652             if (shift_count != 1) {
1653               __ mov(result, Operand(left, LSL, shift_count - 1));
1654               __ SmiTag(result, result, SetCC);
1655             } else {
1656               __ SmiTag(result, left, SetCC);
1657             }
1658             DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1659           } else {
1660             __ mov(result, Operand(left, LSL, shift_count));
1661           }
1662         } else {
1663           __ Move(result, left);
1664         }
1665         break;
1666       default:
1667         UNREACHABLE();
1668         break;
1669     }
1670   }
1671 }
1672 
1673 
DoSubI(LSubI * instr)1674 void LCodeGen::DoSubI(LSubI* instr) {
1675   LOperand* left = instr->left();
1676   LOperand* right = instr->right();
1677   LOperand* result = instr->result();
1678   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1679   SBit set_cond = can_overflow ? SetCC : LeaveCC;
1680 
1681   if (right->IsStackSlot()) {
1682     Register right_reg = EmitLoadRegister(right, ip);
1683     __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1684   } else {
1685     DCHECK(right->IsRegister() || right->IsConstantOperand());
1686     __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1687   }
1688 
1689   if (can_overflow) {
1690     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1691   }
1692 }
1693 
1694 
DoRSubI(LRSubI * instr)1695 void LCodeGen::DoRSubI(LRSubI* instr) {
1696   LOperand* left = instr->left();
1697   LOperand* right = instr->right();
1698   LOperand* result = instr->result();
1699   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1700   SBit set_cond = can_overflow ? SetCC : LeaveCC;
1701 
1702   if (right->IsStackSlot()) {
1703     Register right_reg = EmitLoadRegister(right, ip);
1704     __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1705   } else {
1706     DCHECK(right->IsRegister() || right->IsConstantOperand());
1707     __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1708   }
1709 
1710   if (can_overflow) {
1711     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1712   }
1713 }
1714 
1715 
DoConstantI(LConstantI * instr)1716 void LCodeGen::DoConstantI(LConstantI* instr) {
1717   __ mov(ToRegister(instr->result()), Operand(instr->value()));
1718 }
1719 
1720 
DoConstantS(LConstantS * instr)1721 void LCodeGen::DoConstantS(LConstantS* instr) {
1722   __ mov(ToRegister(instr->result()), Operand(instr->value()));
1723 }
1724 
1725 
DoConstantD(LConstantD * instr)1726 void LCodeGen::DoConstantD(LConstantD* instr) {
1727   DCHECK(instr->result()->IsDoubleRegister());
1728   DwVfpRegister result = ToDoubleRegister(instr->result());
1729 #if V8_HOST_ARCH_IA32
1730   // Need some crappy work-around for x87 sNaN -> qNaN breakage in simulator
1731   // builds.
1732   uint64_t bits = instr->bits();
1733   if ((bits & V8_UINT64_C(0x7FF8000000000000)) ==
1734       V8_UINT64_C(0x7FF0000000000000)) {
1735     uint32_t lo = static_cast<uint32_t>(bits);
1736     uint32_t hi = static_cast<uint32_t>(bits >> 32);
1737     __ mov(ip, Operand(lo));
1738     __ mov(scratch0(), Operand(hi));
1739     __ vmov(result, ip, scratch0());
1740     return;
1741   }
1742 #endif
1743   double v = instr->value();
1744   __ Vmov(result, v, scratch0());
1745 }
1746 
1747 
DoConstantE(LConstantE * instr)1748 void LCodeGen::DoConstantE(LConstantE* instr) {
1749   __ mov(ToRegister(instr->result()), Operand(instr->value()));
1750 }
1751 
1752 
DoConstantT(LConstantT * instr)1753 void LCodeGen::DoConstantT(LConstantT* instr) {
1754   Handle<Object> object = instr->value(isolate());
1755   AllowDeferredHandleDereference smi_check;
1756   __ Move(ToRegister(instr->result()), object);
1757 }
1758 
1759 
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1760 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1761                                            LOperand* index,
1762                                            String::Encoding encoding) {
1763   if (index->IsConstantOperand()) {
1764     int offset = ToInteger32(LConstantOperand::cast(index));
1765     if (encoding == String::TWO_BYTE_ENCODING) {
1766       offset *= kUC16Size;
1767     }
1768     STATIC_ASSERT(kCharSize == 1);
1769     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1770   }
1771   Register scratch = scratch0();
1772   DCHECK(!scratch.is(string));
1773   DCHECK(!scratch.is(ToRegister(index)));
1774   if (encoding == String::ONE_BYTE_ENCODING) {
1775     __ add(scratch, string, Operand(ToRegister(index)));
1776   } else {
1777     STATIC_ASSERT(kUC16Size == 2);
1778     __ add(scratch, string, Operand(ToRegister(index), LSL, 1));
1779   }
1780   return FieldMemOperand(scratch, SeqString::kHeaderSize);
1781 }
1782 
1783 
DoSeqStringGetChar(LSeqStringGetChar * instr)1784 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1785   String::Encoding encoding = instr->hydrogen()->encoding();
1786   Register string = ToRegister(instr->string());
1787   Register result = ToRegister(instr->result());
1788 
1789   if (FLAG_debug_code) {
1790     Register scratch = scratch0();
1791     __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1792     __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1793 
1794     __ and_(scratch, scratch,
1795             Operand(kStringRepresentationMask | kStringEncodingMask));
1796     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1797     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1798     __ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1799                             ? one_byte_seq_type : two_byte_seq_type));
1800     __ Check(eq, kUnexpectedStringType);
1801   }
1802 
1803   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1804   if (encoding == String::ONE_BYTE_ENCODING) {
1805     __ ldrb(result, operand);
1806   } else {
1807     __ ldrh(result, operand);
1808   }
1809 }
1810 
1811 
DoSeqStringSetChar(LSeqStringSetChar * instr)1812 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1813   String::Encoding encoding = instr->hydrogen()->encoding();
1814   Register string = ToRegister(instr->string());
1815   Register value = ToRegister(instr->value());
1816 
1817   if (FLAG_debug_code) {
1818     Register index = ToRegister(instr->index());
1819     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1820     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1821     int encoding_mask =
1822         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1823         ? one_byte_seq_type : two_byte_seq_type;
1824     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1825   }
1826 
1827   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1828   if (encoding == String::ONE_BYTE_ENCODING) {
1829     __ strb(value, operand);
1830   } else {
1831     __ strh(value, operand);
1832   }
1833 }
1834 
1835 
DoAddI(LAddI * instr)1836 void LCodeGen::DoAddI(LAddI* instr) {
1837   LOperand* left = instr->left();
1838   LOperand* right = instr->right();
1839   LOperand* result = instr->result();
1840   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1841   SBit set_cond = can_overflow ? SetCC : LeaveCC;
1842 
1843   if (right->IsStackSlot()) {
1844     Register right_reg = EmitLoadRegister(right, ip);
1845     __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1846   } else {
1847     DCHECK(right->IsRegister() || right->IsConstantOperand());
1848     __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1849   }
1850 
1851   if (can_overflow) {
1852     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1853   }
1854 }
1855 
1856 
DoMathMinMax(LMathMinMax * instr)1857 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1858   LOperand* left = instr->left();
1859   LOperand* right = instr->right();
1860   HMathMinMax::Operation operation = instr->hydrogen()->operation();
1861   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1862     Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1863     Register left_reg = ToRegister(left);
1864     Operand right_op = (right->IsRegister() || right->IsConstantOperand())
1865         ? ToOperand(right)
1866         : Operand(EmitLoadRegister(right, ip));
1867     Register result_reg = ToRegister(instr->result());
1868     __ cmp(left_reg, right_op);
1869     __ Move(result_reg, left_reg, condition);
1870     __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
1871   } else {
1872     DCHECK(instr->hydrogen()->representation().IsDouble());
1873     DwVfpRegister left_reg = ToDoubleRegister(left);
1874     DwVfpRegister right_reg = ToDoubleRegister(right);
1875     DwVfpRegister result_reg = ToDoubleRegister(instr->result());
1876     Label result_is_nan, return_left, return_right, check_zero, done;
1877     __ VFPCompareAndSetFlags(left_reg, right_reg);
1878     if (operation == HMathMinMax::kMathMin) {
1879       __ b(mi, &return_left);
1880       __ b(gt, &return_right);
1881     } else {
1882       __ b(mi, &return_right);
1883       __ b(gt, &return_left);
1884     }
1885     __ b(vs, &result_is_nan);
1886     // Left equals right => check for -0.
1887     __ VFPCompareAndSetFlags(left_reg, 0.0);
1888     if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
1889       __ b(ne, &done);  // left == right != 0.
1890     } else {
1891       __ b(ne, &return_left);  // left == right != 0.
1892     }
1893     // At this point, both left and right are either 0 or -0.
1894     if (operation == HMathMinMax::kMathMin) {
1895       // We could use a single 'vorr' instruction here if we had NEON support.
1896       // The algorithm is: -((-L) + (-R)), which in case of L and R being
1897       // different registers is most efficiently expressed as -((-L) - R).
1898       __ vneg(left_reg, left_reg);
1899       if (left_reg.is(right_reg)) {
1900         __ vadd(result_reg, left_reg, right_reg);
1901       } else {
1902         __ vsub(result_reg, left_reg, right_reg);
1903       }
1904       __ vneg(result_reg, result_reg);
1905     } else {
1906       // Since we operate on +0 and/or -0, vadd and vand have the same effect;
1907       // the decision for vadd is easy because vand is a NEON instruction.
1908       __ vadd(result_reg, left_reg, right_reg);
1909     }
1910     __ b(&done);
1911 
1912     __ bind(&result_is_nan);
1913     __ vadd(result_reg, left_reg, right_reg);
1914     __ b(&done);
1915 
1916     __ bind(&return_right);
1917     __ Move(result_reg, right_reg);
1918     if (!left_reg.is(result_reg)) {
1919       __ b(&done);
1920     }
1921 
1922     __ bind(&return_left);
1923     __ Move(result_reg, left_reg);
1924 
1925     __ bind(&done);
1926   }
1927 }
1928 
1929 
DoArithmeticD(LArithmeticD * instr)1930 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1931   DwVfpRegister left = ToDoubleRegister(instr->left());
1932   DwVfpRegister right = ToDoubleRegister(instr->right());
1933   DwVfpRegister result = ToDoubleRegister(instr->result());
1934   switch (instr->op()) {
1935     case Token::ADD:
1936       __ vadd(result, left, right);
1937       break;
1938     case Token::SUB:
1939       __ vsub(result, left, right);
1940       break;
1941     case Token::MUL:
1942       __ vmul(result, left, right);
1943       break;
1944     case Token::DIV:
1945       __ vdiv(result, left, right);
1946       break;
1947     case Token::MOD: {
1948       __ PrepareCallCFunction(0, 2, scratch0());
1949       __ MovToFloatParameters(left, right);
1950       __ CallCFunction(
1951           ExternalReference::mod_two_doubles_operation(isolate()),
1952           0, 2);
1953       // Move the result in the double result register.
1954       __ MovFromFloatResult(result);
1955       break;
1956     }
1957     default:
1958       UNREACHABLE();
1959       break;
1960   }
1961 }
1962 
1963 
DoArithmeticT(LArithmeticT * instr)1964 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1965   DCHECK(ToRegister(instr->context()).is(cp));
1966   DCHECK(ToRegister(instr->left()).is(r1));
1967   DCHECK(ToRegister(instr->right()).is(r0));
1968   DCHECK(ToRegister(instr->result()).is(r0));
1969 
1970   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1971   // Block literal pool emission to ensure nop indicating no inlined smi code
1972   // is in the correct position.
1973   Assembler::BlockConstPoolScope block_const_pool(masm());
1974   CallCode(code, RelocInfo::CODE_TARGET, instr);
1975 }
1976 
1977 
1978 template<class InstrType>
EmitBranch(InstrType instr,Condition condition)1979 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1980   int left_block = instr->TrueDestination(chunk_);
1981   int right_block = instr->FalseDestination(chunk_);
1982 
1983   int next_block = GetNextEmittedBlock();
1984 
1985   if (right_block == left_block || condition == al) {
1986     EmitGoto(left_block);
1987   } else if (left_block == next_block) {
1988     __ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block));
1989   } else if (right_block == next_block) {
1990     __ b(condition, chunk_->GetAssemblyLabel(left_block));
1991   } else {
1992     __ b(condition, chunk_->GetAssemblyLabel(left_block));
1993     __ b(chunk_->GetAssemblyLabel(right_block));
1994   }
1995 }
1996 
1997 
1998 template <class InstrType>
EmitTrueBranch(InstrType instr,Condition condition)1999 void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition) {
2000   int true_block = instr->TrueDestination(chunk_);
2001   __ b(condition, chunk_->GetAssemblyLabel(true_block));
2002 }
2003 
2004 
2005 template <class InstrType>
EmitFalseBranch(InstrType instr,Condition condition)2006 void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) {
2007   int false_block = instr->FalseDestination(chunk_);
2008   __ b(condition, chunk_->GetAssemblyLabel(false_block));
2009 }
2010 
2011 
DoDebugBreak(LDebugBreak * instr)2012 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
2013   __ stop("LBreak");
2014 }
2015 
2016 
DoBranch(LBranch * instr)2017 void LCodeGen::DoBranch(LBranch* instr) {
2018   Representation r = instr->hydrogen()->value()->representation();
2019   if (r.IsInteger32() || r.IsSmi()) {
2020     DCHECK(!info()->IsStub());
2021     Register reg = ToRegister(instr->value());
2022     __ cmp(reg, Operand::Zero());
2023     EmitBranch(instr, ne);
2024   } else if (r.IsDouble()) {
2025     DCHECK(!info()->IsStub());
2026     DwVfpRegister reg = ToDoubleRegister(instr->value());
2027     // Test the double value. Zero and NaN are false.
2028     __ VFPCompareAndSetFlags(reg, 0.0);
2029     __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN -> false)
2030     EmitBranch(instr, ne);
2031   } else {
2032     DCHECK(r.IsTagged());
2033     Register reg = ToRegister(instr->value());
2034     HType type = instr->hydrogen()->value()->type();
2035     if (type.IsBoolean()) {
2036       DCHECK(!info()->IsStub());
2037       __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2038       EmitBranch(instr, eq);
2039     } else if (type.IsSmi()) {
2040       DCHECK(!info()->IsStub());
2041       __ cmp(reg, Operand::Zero());
2042       EmitBranch(instr, ne);
2043     } else if (type.IsJSArray()) {
2044       DCHECK(!info()->IsStub());
2045       EmitBranch(instr, al);
2046     } else if (type.IsHeapNumber()) {
2047       DCHECK(!info()->IsStub());
2048       DwVfpRegister dbl_scratch = double_scratch0();
2049       __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2050       // Test the double value. Zero and NaN are false.
2051       __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
2052       __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN)
2053       EmitBranch(instr, ne);
2054     } else if (type.IsString()) {
2055       DCHECK(!info()->IsStub());
2056       __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
2057       __ cmp(ip, Operand::Zero());
2058       EmitBranch(instr, ne);
2059     } else {
2060       ToBooleanHints expected = instr->hydrogen()->expected_input_types();
2061       // Avoid deopts in the case where we've never executed this path before.
2062       if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
2063 
2064       if (expected & ToBooleanHint::kUndefined) {
2065         // undefined -> false.
2066         __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2067         __ b(eq, instr->FalseLabel(chunk_));
2068       }
2069       if (expected & ToBooleanHint::kBoolean) {
2070         // Boolean -> its value.
2071         __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2072         __ b(eq, instr->TrueLabel(chunk_));
2073         __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2074         __ b(eq, instr->FalseLabel(chunk_));
2075       }
2076       if (expected & ToBooleanHint::kNull) {
2077         // 'null' -> false.
2078         __ CompareRoot(reg, Heap::kNullValueRootIndex);
2079         __ b(eq, instr->FalseLabel(chunk_));
2080       }
2081 
2082       if (expected & ToBooleanHint::kSmallInteger) {
2083         // Smis: 0 -> false, all other -> true.
2084         __ cmp(reg, Operand::Zero());
2085         __ b(eq, instr->FalseLabel(chunk_));
2086         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2087       } else if (expected & ToBooleanHint::kNeedsMap) {
2088         // If we need a map later and have a Smi -> deopt.
2089         __ SmiTst(reg);
2090         DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
2091       }
2092 
2093       const Register map = scratch0();
2094       if (expected & ToBooleanHint::kNeedsMap) {
2095         __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2096 
2097         if (expected & ToBooleanHint::kCanBeUndetectable) {
2098           // Undetectable -> false.
2099           __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
2100           __ tst(ip, Operand(1 << Map::kIsUndetectable));
2101           __ b(ne, instr->FalseLabel(chunk_));
2102         }
2103       }
2104 
2105       if (expected & ToBooleanHint::kReceiver) {
2106         // spec object -> true.
2107         __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
2108         __ b(ge, instr->TrueLabel(chunk_));
2109       }
2110 
2111       if (expected & ToBooleanHint::kString) {
2112         // String value -> false iff empty.
2113         Label not_string;
2114         __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
2115         __ b(ge, &not_string);
2116         __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
2117         __ cmp(ip, Operand::Zero());
2118         __ b(ne, instr->TrueLabel(chunk_));
2119         __ b(instr->FalseLabel(chunk_));
2120         __ bind(&not_string);
2121       }
2122 
2123       if (expected & ToBooleanHint::kSymbol) {
2124         // Symbol value -> true.
2125         __ CompareInstanceType(map, ip, SYMBOL_TYPE);
2126         __ b(eq, instr->TrueLabel(chunk_));
2127       }
2128 
2129       if (expected & ToBooleanHint::kSimdValue) {
2130         // SIMD value -> true.
2131         __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
2132         __ b(eq, instr->TrueLabel(chunk_));
2133       }
2134 
2135       if (expected & ToBooleanHint::kHeapNumber) {
2136         // heap number -> false iff +0, -0, or NaN.
2137         DwVfpRegister dbl_scratch = double_scratch0();
2138         Label not_heap_number;
2139         __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2140         __ b(ne, &not_heap_number);
2141         __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2142         __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
2143         __ cmp(r0, r0, vs);  // NaN -> false.
2144         __ b(eq, instr->FalseLabel(chunk_));  // +0, -0 -> false.
2145         __ b(instr->TrueLabel(chunk_));
2146         __ bind(&not_heap_number);
2147       }
2148 
2149       if (expected != ToBooleanHint::kAny) {
2150         // We've seen something for the first time -> deopt.
2151         // This can only happen if we are not generic already.
2152         DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject);
2153       }
2154     }
2155   }
2156 }
2157 
2158 
EmitGoto(int block)2159 void LCodeGen::EmitGoto(int block) {
2160   if (!IsNextEmittedBlock(block)) {
2161     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2162   }
2163 }
2164 
2165 
DoGoto(LGoto * instr)2166 void LCodeGen::DoGoto(LGoto* instr) {
2167   EmitGoto(instr->block_id());
2168 }
2169 
2170 
TokenToCondition(Token::Value op,bool is_unsigned)2171 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2172   Condition cond = kNoCondition;
2173   switch (op) {
2174     case Token::EQ:
2175     case Token::EQ_STRICT:
2176       cond = eq;
2177       break;
2178     case Token::NE:
2179     case Token::NE_STRICT:
2180       cond = ne;
2181       break;
2182     case Token::LT:
2183       cond = is_unsigned ? lo : lt;
2184       break;
2185     case Token::GT:
2186       cond = is_unsigned ? hi : gt;
2187       break;
2188     case Token::LTE:
2189       cond = is_unsigned ? ls : le;
2190       break;
2191     case Token::GTE:
2192       cond = is_unsigned ? hs : ge;
2193       break;
2194     case Token::IN:
2195     case Token::INSTANCEOF:
2196     default:
2197       UNREACHABLE();
2198   }
2199   return cond;
2200 }
2201 
2202 
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2203 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2204   LOperand* left = instr->left();
2205   LOperand* right = instr->right();
2206   bool is_unsigned =
2207       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2208       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2209   Condition cond = TokenToCondition(instr->op(), is_unsigned);
2210 
2211   if (left->IsConstantOperand() && right->IsConstantOperand()) {
2212     // We can statically evaluate the comparison.
2213     double left_val = ToDouble(LConstantOperand::cast(left));
2214     double right_val = ToDouble(LConstantOperand::cast(right));
2215     int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2216                          ? instr->TrueDestination(chunk_)
2217                          : instr->FalseDestination(chunk_);
2218     EmitGoto(next_block);
2219   } else {
2220     if (instr->is_double()) {
2221       // Compare left and right operands as doubles and load the
2222       // resulting flags into the normal status register.
2223       __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
2224       // If a NaN is involved, i.e. the result is unordered (V set),
2225       // jump to false block label.
2226       __ b(vs, instr->FalseLabel(chunk_));
2227     } else {
2228       if (right->IsConstantOperand()) {
2229         int32_t value = ToInteger32(LConstantOperand::cast(right));
2230         if (instr->hydrogen_value()->representation().IsSmi()) {
2231           __ cmp(ToRegister(left), Operand(Smi::FromInt(value)));
2232         } else {
2233           __ cmp(ToRegister(left), Operand(value));
2234         }
2235       } else if (left->IsConstantOperand()) {
2236         int32_t value = ToInteger32(LConstantOperand::cast(left));
2237         if (instr->hydrogen_value()->representation().IsSmi()) {
2238           __ cmp(ToRegister(right), Operand(Smi::FromInt(value)));
2239         } else {
2240           __ cmp(ToRegister(right), Operand(value));
2241         }
2242         // We commuted the operands, so commute the condition.
2243         cond = CommuteCondition(cond);
2244       } else {
2245         __ cmp(ToRegister(left), ToRegister(right));
2246       }
2247     }
2248     EmitBranch(instr, cond);
2249   }
2250 }
2251 
2252 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2253 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2254   Register left = ToRegister(instr->left());
2255   Register right = ToRegister(instr->right());
2256 
2257   __ cmp(left, Operand(right));
2258   EmitBranch(instr, eq);
2259 }
2260 
2261 
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2262 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2263   if (instr->hydrogen()->representation().IsTagged()) {
2264     Register input_reg = ToRegister(instr->object());
2265     __ mov(ip, Operand(factory()->the_hole_value()));
2266     __ cmp(input_reg, ip);
2267     EmitBranch(instr, eq);
2268     return;
2269   }
2270 
2271   DwVfpRegister input_reg = ToDoubleRegister(instr->object());
2272   __ VFPCompareAndSetFlags(input_reg, input_reg);
2273   EmitFalseBranch(instr, vc);
2274 
2275   Register scratch = scratch0();
2276   __ VmovHigh(scratch, input_reg);
2277   __ cmp(scratch, Operand(kHoleNanUpper32));
2278   EmitBranch(instr, eq);
2279 }
2280 
2281 
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2282 Condition LCodeGen::EmitIsString(Register input,
2283                                  Register temp1,
2284                                  Label* is_not_string,
2285                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
2286   if (check_needed == INLINE_SMI_CHECK) {
2287     __ JumpIfSmi(input, is_not_string);
2288   }
2289   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2290 
2291   return lt;
2292 }
2293 
2294 
DoIsStringAndBranch(LIsStringAndBranch * instr)2295 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2296   Register reg = ToRegister(instr->value());
2297   Register temp1 = ToRegister(instr->temp());
2298 
2299   SmiCheck check_needed =
2300       instr->hydrogen()->value()->type().IsHeapObject()
2301           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2302   Condition true_cond =
2303       EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2304 
2305   EmitBranch(instr, true_cond);
2306 }
2307 
2308 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2309 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2310   Register input_reg = EmitLoadRegister(instr->value(), ip);
2311   __ SmiTst(input_reg);
2312   EmitBranch(instr, eq);
2313 }
2314 
2315 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2316 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2317   Register input = ToRegister(instr->value());
2318   Register temp = ToRegister(instr->temp());
2319 
2320   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2321     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2322   }
2323   __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2324   __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2325   __ tst(temp, Operand(1 << Map::kIsUndetectable));
2326   EmitBranch(instr, ne);
2327 }
2328 
2329 
ComputeCompareCondition(Token::Value op)2330 static Condition ComputeCompareCondition(Token::Value op) {
2331   switch (op) {
2332     case Token::EQ_STRICT:
2333     case Token::EQ:
2334       return eq;
2335     case Token::LT:
2336       return lt;
2337     case Token::GT:
2338       return gt;
2339     case Token::LTE:
2340       return le;
2341     case Token::GTE:
2342       return ge;
2343     default:
2344       UNREACHABLE();
2345       return kNoCondition;
2346   }
2347 }
2348 
2349 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2350 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2351   DCHECK(ToRegister(instr->context()).is(cp));
2352   DCHECK(ToRegister(instr->left()).is(r1));
2353   DCHECK(ToRegister(instr->right()).is(r0));
2354 
2355   Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2356   CallCode(code, RelocInfo::CODE_TARGET, instr);
2357   __ CompareRoot(r0, Heap::kTrueValueRootIndex);
2358   EmitBranch(instr, eq);
2359 }
2360 
2361 
TestType(HHasInstanceTypeAndBranch * instr)2362 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2363   InstanceType from = instr->from();
2364   InstanceType to = instr->to();
2365   if (from == FIRST_TYPE) return to;
2366   DCHECK(from == to || to == LAST_TYPE);
2367   return from;
2368 }
2369 
2370 
BranchCondition(HHasInstanceTypeAndBranch * instr)2371 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2372   InstanceType from = instr->from();
2373   InstanceType to = instr->to();
2374   if (from == to) return eq;
2375   if (to == LAST_TYPE) return hs;
2376   if (from == FIRST_TYPE) return ls;
2377   UNREACHABLE();
2378   return eq;
2379 }
2380 
2381 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2382 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2383   Register scratch = scratch0();
2384   Register input = ToRegister(instr->value());
2385 
2386   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2387     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2388   }
2389 
2390   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2391   EmitBranch(instr, BranchCondition(instr->hydrogen()));
2392 }
2393 
2394 // Branches to a label or falls through with the answer in flags.  Trashes
2395 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2396 void LCodeGen::EmitClassOfTest(Label* is_true,
2397                                Label* is_false,
2398                                Handle<String>class_name,
2399                                Register input,
2400                                Register temp,
2401                                Register temp2) {
2402   DCHECK(!input.is(temp));
2403   DCHECK(!input.is(temp2));
2404   DCHECK(!temp.is(temp2));
2405 
2406   __ JumpIfSmi(input, is_false);
2407 
2408   __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
2409   STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2410   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2411     __ b(hs, is_true);
2412   } else {
2413     __ b(hs, is_false);
2414   }
2415 
2416   // Check if the constructor in the map is a function.
2417   Register instance_type = ip;
2418   __ GetMapConstructor(temp, temp, temp2, instance_type);
2419 
2420   // Objects with a non-function constructor have class 'Object'.
2421   __ cmp(instance_type, Operand(JS_FUNCTION_TYPE));
2422   if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
2423     __ b(ne, is_true);
2424   } else {
2425     __ b(ne, is_false);
2426   }
2427 
2428   // temp now contains the constructor function. Grab the
2429   // instance class name from there.
2430   __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2431   __ ldr(temp, FieldMemOperand(temp,
2432                                SharedFunctionInfo::kInstanceClassNameOffset));
2433   // The class name we are testing against is internalized since it's a literal.
2434   // The name in the constructor is internalized because of the way the context
2435   // is booted.  This routine isn't expected to work for random API-created
2436   // classes and it doesn't have to because you can't access it with natives
2437   // syntax.  Since both sides are internalized it is sufficient to use an
2438   // identity comparison.
2439   __ cmp(temp, Operand(class_name));
2440   // End with the answer in flags.
2441 }
2442 
2443 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2444 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2445   Register input = ToRegister(instr->value());
2446   Register temp = scratch0();
2447   Register temp2 = ToRegister(instr->temp());
2448   Handle<String> class_name = instr->hydrogen()->class_name();
2449 
2450   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2451       class_name, input, temp, temp2);
2452 
2453   EmitBranch(instr, eq);
2454 }
2455 
2456 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2457 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2458   Register reg = ToRegister(instr->value());
2459   Register temp = ToRegister(instr->temp());
2460 
2461   __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2462   __ cmp(temp, Operand(instr->map()));
2463   EmitBranch(instr, eq);
2464 }
2465 
2466 
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2467 void LCodeGen::DoHasInPrototypeChainAndBranch(
2468     LHasInPrototypeChainAndBranch* instr) {
2469   Register const object = ToRegister(instr->object());
2470   Register const object_map = scratch0();
2471   Register const object_instance_type = ip;
2472   Register const object_prototype = object_map;
2473   Register const prototype = ToRegister(instr->prototype());
2474 
2475   // The {object} must be a spec object.  It's sufficient to know that {object}
2476   // is not a smi, since all other non-spec objects have {null} prototypes and
2477   // will be ruled out below.
2478   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2479     __ SmiTst(object);
2480     EmitFalseBranch(instr, eq);
2481   }
2482 
2483   // Loop through the {object}s prototype chain looking for the {prototype}.
2484   __ ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2485   Label loop;
2486   __ bind(&loop);
2487 
2488   // Deoptimize if the object needs to be access checked.
2489   __ ldrb(object_instance_type,
2490           FieldMemOperand(object_map, Map::kBitFieldOffset));
2491   __ tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
2492   DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck);
2493   // Deoptimize for proxies.
2494   __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2495   DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy);
2496 
2497   __ ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2498   __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2499   EmitFalseBranch(instr, eq);
2500   __ cmp(object_prototype, prototype);
2501   EmitTrueBranch(instr, eq);
2502   __ ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2503   __ b(&loop);
2504 }
2505 
2506 
DoCmpT(LCmpT * instr)2507 void LCodeGen::DoCmpT(LCmpT* instr) {
2508   DCHECK(ToRegister(instr->context()).is(cp));
2509   Token::Value op = instr->op();
2510 
2511   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2512   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2513   // This instruction also signals no smi code inlined.
2514   __ cmp(r0, Operand::Zero());
2515 
2516   Condition condition = ComputeCompareCondition(op);
2517   __ LoadRoot(ToRegister(instr->result()),
2518               Heap::kTrueValueRootIndex,
2519               condition);
2520   __ LoadRoot(ToRegister(instr->result()),
2521               Heap::kFalseValueRootIndex,
2522               NegateCondition(condition));
2523 }
2524 
2525 
DoReturn(LReturn * instr)2526 void LCodeGen::DoReturn(LReturn* instr) {
2527   if (FLAG_trace && info()->IsOptimizing()) {
2528     // Push the return value on the stack as the parameter.
2529     // Runtime::TraceExit returns its parameter in r0.  We're leaving the code
2530     // managed by the register allocator and tearing down the frame, it's
2531     // safe to write to the context register.
2532     __ push(r0);
2533     __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2534     __ CallRuntime(Runtime::kTraceExit);
2535   }
2536   if (info()->saves_caller_doubles()) {
2537     RestoreCallerDoubles();
2538   }
2539   if (NeedsEagerFrame()) {
2540     masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
2541   }
2542   { ConstantPoolUnavailableScope constant_pool_unavailable(masm());
2543     if (instr->has_constant_parameter_count()) {
2544       int parameter_count = ToInteger32(instr->constant_parameter_count());
2545       int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2546       if (sp_delta != 0) {
2547         __ add(sp, sp, Operand(sp_delta));
2548       }
2549     } else {
2550       DCHECK(info()->IsStub());  // Functions would need to drop one more value.
2551       Register reg = ToRegister(instr->parameter_count());
2552       // The argument count parameter is a smi
2553       __ SmiUntag(reg);
2554       __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2));
2555     }
2556 
2557     __ Jump(lr);
2558   }
2559 }
2560 
2561 
DoLoadContextSlot(LLoadContextSlot * instr)2562 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2563   Register context = ToRegister(instr->context());
2564   Register result = ToRegister(instr->result());
2565   __ ldr(result, ContextMemOperand(context, instr->slot_index()));
2566   if (instr->hydrogen()->RequiresHoleCheck()) {
2567     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2568     __ cmp(result, ip);
2569     if (instr->hydrogen()->DeoptimizesOnHole()) {
2570       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2571     } else {
2572       __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq);
2573     }
2574   }
2575 }
2576 
2577 
DoStoreContextSlot(LStoreContextSlot * instr)2578 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2579   Register context = ToRegister(instr->context());
2580   Register value = ToRegister(instr->value());
2581   Register scratch = scratch0();
2582   MemOperand target = ContextMemOperand(context, instr->slot_index());
2583 
2584   Label skip_assignment;
2585 
2586   if (instr->hydrogen()->RequiresHoleCheck()) {
2587     __ ldr(scratch, target);
2588     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2589     __ cmp(scratch, ip);
2590     if (instr->hydrogen()->DeoptimizesOnHole()) {
2591       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2592     } else {
2593       __ b(ne, &skip_assignment);
2594     }
2595   }
2596 
2597   __ str(value, target);
2598   if (instr->hydrogen()->NeedsWriteBarrier()) {
2599     SmiCheck check_needed =
2600         instr->hydrogen()->value()->type().IsHeapObject()
2601             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2602     __ RecordWriteContextSlot(context,
2603                               target.offset(),
2604                               value,
2605                               scratch,
2606                               GetLinkRegisterState(),
2607                               kSaveFPRegs,
2608                               EMIT_REMEMBERED_SET,
2609                               check_needed);
2610   }
2611 
2612   __ bind(&skip_assignment);
2613 }
2614 
2615 
DoLoadNamedField(LLoadNamedField * instr)2616 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2617   HObjectAccess access = instr->hydrogen()->access();
2618   int offset = access.offset();
2619   Register object = ToRegister(instr->object());
2620 
2621   if (access.IsExternalMemory()) {
2622     Register result = ToRegister(instr->result());
2623     MemOperand operand = MemOperand(object, offset);
2624     __ Load(result, operand, access.representation());
2625     return;
2626   }
2627 
2628   if (instr->hydrogen()->representation().IsDouble()) {
2629     DwVfpRegister result = ToDoubleRegister(instr->result());
2630     __ vldr(result, FieldMemOperand(object, offset));
2631     return;
2632   }
2633 
2634   Register result = ToRegister(instr->result());
2635   if (!access.IsInobject()) {
2636     __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2637     object = result;
2638   }
2639   MemOperand operand = FieldMemOperand(object, offset);
2640   __ Load(result, operand, access.representation());
2641 }
2642 
2643 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2644 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2645   Register scratch = scratch0();
2646   Register function = ToRegister(instr->function());
2647   Register result = ToRegister(instr->result());
2648 
2649   // Get the prototype or initial map from the function.
2650   __ ldr(result,
2651          FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2652 
2653   // Check that the function has a prototype or an initial map.
2654   __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2655   __ cmp(result, ip);
2656   DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2657 
2658   // If the function does not have an initial map, we're done.
2659   Label done;
2660   __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2661   __ b(ne, &done);
2662 
2663   // Get the prototype from the initial map.
2664   __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
2665 
2666   // All done.
2667   __ bind(&done);
2668 }
2669 
2670 
DoLoadRoot(LLoadRoot * instr)2671 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2672   Register result = ToRegister(instr->result());
2673   __ LoadRoot(result, instr->index());
2674 }
2675 
2676 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2677 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2678   Register arguments = ToRegister(instr->arguments());
2679   Register result = ToRegister(instr->result());
2680   // There are two words between the frame pointer and the last argument.
2681   // Subtracting from length accounts for one of them add one more.
2682   if (instr->length()->IsConstantOperand()) {
2683     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2684     if (instr->index()->IsConstantOperand()) {
2685       int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2686       int index = (const_length - const_index) + 1;
2687       __ ldr(result, MemOperand(arguments, index * kPointerSize));
2688     } else {
2689       Register index = ToRegister(instr->index());
2690       __ rsb(result, index, Operand(const_length + 1));
2691       __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2692     }
2693   } else if (instr->index()->IsConstantOperand()) {
2694       Register length = ToRegister(instr->length());
2695       int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2696       int loc = const_index - 1;
2697       if (loc != 0) {
2698         __ sub(result, length, Operand(loc));
2699         __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2700       } else {
2701         __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
2702       }
2703     } else {
2704     Register length = ToRegister(instr->length());
2705     Register index = ToRegister(instr->index());
2706     __ sub(result, length, index);
2707     __ add(result, result, Operand(1));
2708     __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2709   }
2710 }
2711 
2712 
DoLoadKeyedExternalArray(LLoadKeyed * instr)2713 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2714   Register external_pointer = ToRegister(instr->elements());
2715   Register key = no_reg;
2716   ElementsKind elements_kind = instr->elements_kind();
2717   bool key_is_constant = instr->key()->IsConstantOperand();
2718   int constant_key = 0;
2719   if (key_is_constant) {
2720     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2721     if (constant_key & 0xF0000000) {
2722       Abort(kArrayIndexConstantValueTooBig);
2723     }
2724   } else {
2725     key = ToRegister(instr->key());
2726   }
2727   int element_size_shift = ElementsKindToShiftSize(elements_kind);
2728   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2729       ? (element_size_shift - kSmiTagSize) : element_size_shift;
2730   int base_offset = instr->base_offset();
2731 
2732   if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2733     DwVfpRegister result = ToDoubleRegister(instr->result());
2734     Operand operand = key_is_constant
2735         ? Operand(constant_key << element_size_shift)
2736         : Operand(key, LSL, shift_size);
2737     __ add(scratch0(), external_pointer, operand);
2738     if (elements_kind == FLOAT32_ELEMENTS) {
2739       __ vldr(double_scratch0().low(), scratch0(), base_offset);
2740       __ vcvt_f64_f32(result, double_scratch0().low());
2741     } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2742       __ vldr(result, scratch0(), base_offset);
2743     }
2744   } else {
2745     Register result = ToRegister(instr->result());
2746     MemOperand mem_operand = PrepareKeyedOperand(
2747         key, external_pointer, key_is_constant, constant_key,
2748         element_size_shift, shift_size, base_offset);
2749     switch (elements_kind) {
2750       case INT8_ELEMENTS:
2751         __ ldrsb(result, mem_operand);
2752         break;
2753       case UINT8_ELEMENTS:
2754       case UINT8_CLAMPED_ELEMENTS:
2755         __ ldrb(result, mem_operand);
2756         break;
2757       case INT16_ELEMENTS:
2758         __ ldrsh(result, mem_operand);
2759         break;
2760       case UINT16_ELEMENTS:
2761         __ ldrh(result, mem_operand);
2762         break;
2763       case INT32_ELEMENTS:
2764         __ ldr(result, mem_operand);
2765         break;
2766       case UINT32_ELEMENTS:
2767         __ ldr(result, mem_operand);
2768         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2769           __ cmp(result, Operand(0x80000000));
2770           DeoptimizeIf(cs, instr, DeoptimizeReason::kNegativeValue);
2771         }
2772         break;
2773       case FLOAT32_ELEMENTS:
2774       case FLOAT64_ELEMENTS:
2775       case FAST_HOLEY_DOUBLE_ELEMENTS:
2776       case FAST_HOLEY_ELEMENTS:
2777       case FAST_HOLEY_SMI_ELEMENTS:
2778       case FAST_DOUBLE_ELEMENTS:
2779       case FAST_ELEMENTS:
2780       case FAST_SMI_ELEMENTS:
2781       case DICTIONARY_ELEMENTS:
2782       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2783       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2784       case FAST_STRING_WRAPPER_ELEMENTS:
2785       case SLOW_STRING_WRAPPER_ELEMENTS:
2786       case NO_ELEMENTS:
2787         UNREACHABLE();
2788         break;
2789     }
2790   }
2791 }
2792 
2793 
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)2794 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2795   Register elements = ToRegister(instr->elements());
2796   bool key_is_constant = instr->key()->IsConstantOperand();
2797   Register key = no_reg;
2798   DwVfpRegister result = ToDoubleRegister(instr->result());
2799   Register scratch = scratch0();
2800 
2801   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2802 
2803   int base_offset = instr->base_offset();
2804   if (key_is_constant) {
2805     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2806     if (constant_key & 0xF0000000) {
2807       Abort(kArrayIndexConstantValueTooBig);
2808     }
2809     base_offset += constant_key * kDoubleSize;
2810   }
2811   __ add(scratch, elements, Operand(base_offset));
2812 
2813   if (!key_is_constant) {
2814     key = ToRegister(instr->key());
2815     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2816         ? (element_size_shift - kSmiTagSize) : element_size_shift;
2817     __ add(scratch, scratch, Operand(key, LSL, shift_size));
2818   }
2819 
2820   __ vldr(result, scratch, 0);
2821 
2822   if (instr->hydrogen()->RequiresHoleCheck()) {
2823     __ ldr(scratch, MemOperand(scratch, sizeof(kHoleNanLower32)));
2824     __ cmp(scratch, Operand(kHoleNanUpper32));
2825     DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2826   }
2827 }
2828 
2829 
DoLoadKeyedFixedArray(LLoadKeyed * instr)2830 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2831   Register elements = ToRegister(instr->elements());
2832   Register result = ToRegister(instr->result());
2833   Register scratch = scratch0();
2834   Register store_base = scratch;
2835   int offset = instr->base_offset();
2836 
2837   if (instr->key()->IsConstantOperand()) {
2838     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
2839     offset += ToInteger32(const_operand) * kPointerSize;
2840     store_base = elements;
2841   } else {
2842     Register key = ToRegister(instr->key());
2843     // Even though the HLoadKeyed instruction forces the input
2844     // representation for the key to be an integer, the input gets replaced
2845     // during bound check elimination with the index argument to the bounds
2846     // check, which can be tagged, so that case must be handled here, too.
2847     if (instr->hydrogen()->key()->representation().IsSmi()) {
2848       __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
2849     } else {
2850       __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
2851     }
2852   }
2853   __ ldr(result, MemOperand(store_base, offset));
2854 
2855   // Check for the hole value.
2856   if (instr->hydrogen()->RequiresHoleCheck()) {
2857     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
2858       __ SmiTst(result);
2859       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi);
2860     } else {
2861       __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2862       __ cmp(result, scratch);
2863       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2864     }
2865   } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2866     DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
2867     Label done;
2868     __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2869     __ cmp(result, scratch);
2870     __ b(ne, &done);
2871     if (info()->IsStub()) {
2872       // A stub can safely convert the hole to undefined only if the array
2873       // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
2874       // it needs to bail out.
2875       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2876       __ ldr(result, FieldMemOperand(result, Cell::kValueOffset));
2877       __ cmp(result, Operand(Smi::FromInt(Isolate::kProtectorValid)));
2878       DeoptimizeIf(ne, instr, DeoptimizeReason::kHole);
2879     }
2880     __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2881     __ bind(&done);
2882   }
2883 }
2884 
2885 
DoLoadKeyed(LLoadKeyed * instr)2886 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2887   if (instr->is_fixed_typed_array()) {
2888     DoLoadKeyedExternalArray(instr);
2889   } else if (instr->hydrogen()->representation().IsDouble()) {
2890     DoLoadKeyedFixedDoubleArray(instr);
2891   } else {
2892     DoLoadKeyedFixedArray(instr);
2893   }
2894 }
2895 
2896 
PrepareKeyedOperand(Register key,Register base,bool key_is_constant,int constant_key,int element_size,int shift_size,int base_offset)2897 MemOperand LCodeGen::PrepareKeyedOperand(Register key,
2898                                          Register base,
2899                                          bool key_is_constant,
2900                                          int constant_key,
2901                                          int element_size,
2902                                          int shift_size,
2903                                          int base_offset) {
2904   if (key_is_constant) {
2905     return MemOperand(base, (constant_key << element_size) + base_offset);
2906   }
2907 
2908   if (base_offset == 0) {
2909     if (shift_size >= 0) {
2910       return MemOperand(base, key, LSL, shift_size);
2911     } else {
2912       DCHECK_EQ(-1, shift_size);
2913       return MemOperand(base, key, LSR, 1);
2914     }
2915   }
2916 
2917   if (shift_size >= 0) {
2918     __ add(scratch0(), base, Operand(key, LSL, shift_size));
2919     return MemOperand(scratch0(), base_offset);
2920   } else {
2921     DCHECK_EQ(-1, shift_size);
2922     __ add(scratch0(), base, Operand(key, ASR, 1));
2923     return MemOperand(scratch0(), base_offset);
2924   }
2925 }
2926 
2927 
DoArgumentsElements(LArgumentsElements * instr)2928 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2929   Register scratch = scratch0();
2930   Register result = ToRegister(instr->result());
2931 
2932   if (instr->hydrogen()->from_inlined()) {
2933     __ sub(result, sp, Operand(2 * kPointerSize));
2934   } else if (instr->hydrogen()->arguments_adaptor()) {
2935     // Check if the calling frame is an arguments adaptor frame.
2936     Label done, adapted;
2937     __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2938     __ ldr(result, MemOperand(scratch,
2939                               CommonFrameConstants::kContextOrFrameTypeOffset));
2940     __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2941 
2942     // Result is the frame pointer for the frame if not adapted and for the real
2943     // frame below the adaptor frame if adapted.
2944     __ mov(result, fp, LeaveCC, ne);
2945     __ mov(result, scratch, LeaveCC, eq);
2946   } else {
2947     __ mov(result, fp);
2948   }
2949 }
2950 
2951 
DoArgumentsLength(LArgumentsLength * instr)2952 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2953   Register elem = ToRegister(instr->elements());
2954   Register result = ToRegister(instr->result());
2955 
2956   Label done;
2957 
2958   // If no arguments adaptor frame the number of arguments is fixed.
2959   __ cmp(fp, elem);
2960   __ mov(result, Operand(scope()->num_parameters()));
2961   __ b(eq, &done);
2962 
2963   // Arguments adaptor frame present. Get argument length from there.
2964   __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2965   __ ldr(result,
2966          MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
2967   __ SmiUntag(result);
2968 
2969   // Argument length is in result register.
2970   __ bind(&done);
2971 }
2972 
2973 
DoWrapReceiver(LWrapReceiver * instr)2974 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
2975   Register receiver = ToRegister(instr->receiver());
2976   Register function = ToRegister(instr->function());
2977   Register result = ToRegister(instr->result());
2978   Register scratch = scratch0();
2979 
2980   // If the receiver is null or undefined, we have to pass the global
2981   // object as a receiver to normal functions. Values have to be
2982   // passed unchanged to builtins and strict-mode functions.
2983   Label global_object, result_in_receiver;
2984 
2985   if (!instr->hydrogen()->known_function()) {
2986     // Do not transform the receiver to object for strict mode
2987     // functions.
2988     __ ldr(scratch,
2989            FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2990     __ ldr(scratch,
2991            FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2992     int mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
2993     __ tst(scratch, Operand(mask));
2994     __ b(ne, &result_in_receiver);
2995 
2996     // Do not transform the receiver to object for builtins.
2997     __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
2998     __ b(ne, &result_in_receiver);
2999   }
3000 
3001   // Normal function. Replace undefined or null with global receiver.
3002   __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3003   __ cmp(receiver, scratch);
3004   __ b(eq, &global_object);
3005   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3006   __ cmp(receiver, scratch);
3007   __ b(eq, &global_object);
3008 
3009   // Deoptimize if the receiver is not a JS object.
3010   __ SmiTst(receiver);
3011   DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
3012   __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
3013   DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject);
3014 
3015   __ b(&result_in_receiver);
3016   __ bind(&global_object);
3017   __ ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
3018   __ ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3019   __ ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3020 
3021   if (result.is(receiver)) {
3022     __ bind(&result_in_receiver);
3023   } else {
3024     Label result_ok;
3025     __ b(&result_ok);
3026     __ bind(&result_in_receiver);
3027     __ mov(result, receiver);
3028     __ bind(&result_ok);
3029   }
3030 }
3031 
3032 
DoApplyArguments(LApplyArguments * instr)3033 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3034   Register receiver = ToRegister(instr->receiver());
3035   Register function = ToRegister(instr->function());
3036   Register length = ToRegister(instr->length());
3037   Register elements = ToRegister(instr->elements());
3038   Register scratch = scratch0();
3039   DCHECK(receiver.is(r0));  // Used for parameter count.
3040   DCHECK(function.is(r1));  // Required by InvokeFunction.
3041   DCHECK(ToRegister(instr->result()).is(r0));
3042 
3043   // Copy the arguments to this function possibly from the
3044   // adaptor frame below it.
3045   const uint32_t kArgumentsLimit = 1 * KB;
3046   __ cmp(length, Operand(kArgumentsLimit));
3047   DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments);
3048 
3049   // Push the receiver and use the register to keep the original
3050   // number of arguments.
3051   __ push(receiver);
3052   __ mov(receiver, length);
3053   // The arguments are at a one pointer size offset from elements.
3054   __ add(elements, elements, Operand(1 * kPointerSize));
3055 
3056   // Loop through the arguments pushing them onto the execution
3057   // stack.
3058   Label invoke, loop;
3059   // length is a small non-negative integer, due to the test above.
3060   __ cmp(length, Operand::Zero());
3061   __ b(eq, &invoke);
3062   __ bind(&loop);
3063   __ ldr(scratch, MemOperand(elements, length, LSL, 2));
3064   __ push(scratch);
3065   __ sub(length, length, Operand(1), SetCC);
3066   __ b(ne, &loop);
3067 
3068   __ bind(&invoke);
3069 
3070   InvokeFlag flag = CALL_FUNCTION;
3071   if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3072     DCHECK(!info()->saves_caller_doubles());
3073     // TODO(ishell): drop current frame before pushing arguments to the stack.
3074     flag = JUMP_FUNCTION;
3075     ParameterCount actual(r0);
3076     // It is safe to use r3, r4 and r5 as scratch registers here given that
3077     // 1) we are not going to return to caller function anyway,
3078     // 2) r3 (new.target) will be initialized below.
3079     PrepareForTailCall(actual, r3, r4, r5);
3080   }
3081 
3082   DCHECK(instr->HasPointerMap());
3083   LPointerMap* pointers = instr->pointer_map();
3084   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3085   // The number of arguments is stored in receiver which is r0, as expected
3086   // by InvokeFunction.
3087   ParameterCount actual(receiver);
3088   __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3089 }
3090 
3091 
DoPushArgument(LPushArgument * instr)3092 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3093   LOperand* argument = instr->value();
3094   if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3095     Abort(kDoPushArgumentNotImplementedForDoubleType);
3096   } else {
3097     Register argument_reg = EmitLoadRegister(argument, ip);
3098     __ push(argument_reg);
3099   }
3100 }
3101 
3102 
DoDrop(LDrop * instr)3103 void LCodeGen::DoDrop(LDrop* instr) {
3104   __ Drop(instr->count());
3105 }
3106 
3107 
DoThisFunction(LThisFunction * instr)3108 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3109   Register result = ToRegister(instr->result());
3110   __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3111 }
3112 
3113 
DoContext(LContext * instr)3114 void LCodeGen::DoContext(LContext* instr) {
3115   // If there is a non-return use, the context must be moved to a register.
3116   Register result = ToRegister(instr->result());
3117   if (info()->IsOptimizing()) {
3118     __ ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3119   } else {
3120     // If there is no frame, the context must be in cp.
3121     DCHECK(result.is(cp));
3122   }
3123 }
3124 
3125 
DoDeclareGlobals(LDeclareGlobals * instr)3126 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3127   DCHECK(ToRegister(instr->context()).is(cp));
3128   __ Move(scratch0(), instr->hydrogen()->pairs());
3129   __ push(scratch0());
3130   __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3131   __ push(scratch0());
3132   __ Move(scratch0(), instr->hydrogen()->feedback_vector());
3133   __ push(scratch0());
3134   CallRuntime(Runtime::kDeclareGlobals, instr);
3135 }
3136 
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)3137 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3138                                  int formal_parameter_count, int arity,
3139                                  bool is_tail_call, LInstruction* instr) {
3140   bool dont_adapt_arguments =
3141       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3142   bool can_invoke_directly =
3143       dont_adapt_arguments || formal_parameter_count == arity;
3144 
3145   Register function_reg = r1;
3146 
3147   LPointerMap* pointers = instr->pointer_map();
3148 
3149   if (can_invoke_directly) {
3150     // Change context.
3151     __ ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3152 
3153     // Always initialize new target and number of actual arguments.
3154     __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
3155     __ mov(r0, Operand(arity));
3156 
3157     bool is_self_call = function.is_identical_to(info()->closure());
3158 
3159     // Invoke function.
3160     if (is_self_call) {
3161       Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3162       if (is_tail_call) {
3163         __ Jump(self, RelocInfo::CODE_TARGET);
3164       } else {
3165         __ Call(self, RelocInfo::CODE_TARGET);
3166       }
3167     } else {
3168       __ ldr(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3169       if (is_tail_call) {
3170         __ Jump(ip);
3171       } else {
3172         __ Call(ip);
3173       }
3174     }
3175 
3176     if (!is_tail_call) {
3177       // Set up deoptimization.
3178       RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3179     }
3180   } else {
3181     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3182     ParameterCount actual(arity);
3183     ParameterCount expected(formal_parameter_count);
3184     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3185     __ InvokeFunction(function_reg, expected, actual, flag, generator);
3186   }
3187 }
3188 
3189 
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3190 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3191   DCHECK(instr->context() != NULL);
3192   DCHECK(ToRegister(instr->context()).is(cp));
3193   Register input = ToRegister(instr->value());
3194   Register result = ToRegister(instr->result());
3195   Register scratch = scratch0();
3196 
3197   // Deoptimize if not a heap number.
3198   __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3199   __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3200   __ cmp(scratch, Operand(ip));
3201   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3202 
3203   Label done;
3204   Register exponent = scratch0();
3205   scratch = no_reg;
3206   __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3207   // Check the sign of the argument. If the argument is positive, just
3208   // return it.
3209   __ tst(exponent, Operand(HeapNumber::kSignMask));
3210   // Move the input to the result if necessary.
3211   __ Move(result, input);
3212   __ b(eq, &done);
3213 
3214   // Input is negative. Reverse its sign.
3215   // Preserve the value of all registers.
3216   {
3217     PushSafepointRegistersScope scope(this);
3218 
3219     // Registers were saved at the safepoint, so we can use
3220     // many scratch registers.
3221     Register tmp1 = input.is(r1) ? r0 : r1;
3222     Register tmp2 = input.is(r2) ? r0 : r2;
3223     Register tmp3 = input.is(r3) ? r0 : r3;
3224     Register tmp4 = input.is(r4) ? r0 : r4;
3225 
3226     // exponent: floating point exponent value.
3227 
3228     Label allocated, slow;
3229     __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3230     __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3231     __ b(&allocated);
3232 
3233     // Slow case: Call the runtime system to do the number allocation.
3234     __ bind(&slow);
3235 
3236     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3237                             instr->context());
3238     // Set the pointer to the new heap number in tmp.
3239     if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
3240     // Restore input_reg after call to runtime.
3241     __ LoadFromSafepointRegisterSlot(input, input);
3242     __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3243 
3244     __ bind(&allocated);
3245     // exponent: floating point exponent value.
3246     // tmp1: allocated heap number.
3247     __ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
3248     __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3249     __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3250     __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3251 
3252     __ StoreToSafepointRegisterSlot(tmp1, result);
3253   }
3254 
3255   __ bind(&done);
3256 }
3257 
3258 
EmitIntegerMathAbs(LMathAbs * instr)3259 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3260   Register input = ToRegister(instr->value());
3261   Register result = ToRegister(instr->result());
3262   __ cmp(input, Operand::Zero());
3263   __ Move(result, input, pl);
3264   // We can make rsb conditional because the previous cmp instruction
3265   // will clear the V (overflow) flag and rsb won't set this flag
3266   // if input is positive.
3267   __ rsb(result, input, Operand::Zero(), SetCC, mi);
3268   // Deoptimize on overflow.
3269   DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
3270 }
3271 
3272 
DoMathAbs(LMathAbs * instr)3273 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3274   // Class for deferred case.
3275   class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3276    public:
3277     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3278         : LDeferredCode(codegen), instr_(instr) { }
3279     void Generate() override {
3280       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3281     }
3282     LInstruction* instr() override { return instr_; }
3283 
3284    private:
3285     LMathAbs* instr_;
3286   };
3287 
3288   Representation r = instr->hydrogen()->value()->representation();
3289   if (r.IsDouble()) {
3290     DwVfpRegister input = ToDoubleRegister(instr->value());
3291     DwVfpRegister result = ToDoubleRegister(instr->result());
3292     __ vabs(result, input);
3293   } else if (r.IsSmiOrInteger32()) {
3294     EmitIntegerMathAbs(instr);
3295   } else {
3296     // Representation is tagged.
3297     DeferredMathAbsTaggedHeapNumber* deferred =
3298         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3299     Register input = ToRegister(instr->value());
3300     // Smi check.
3301     __ JumpIfNotSmi(input, deferred->entry());
3302     // If smi, handle it directly.
3303     EmitIntegerMathAbs(instr);
3304     __ bind(deferred->exit());
3305   }
3306 }
3307 
3308 
DoMathFloor(LMathFloor * instr)3309 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3310   DwVfpRegister input = ToDoubleRegister(instr->value());
3311   Register result = ToRegister(instr->result());
3312   Register input_high = scratch0();
3313   Label done, exact;
3314 
3315   __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact);
3316   DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3317 
3318   __ bind(&exact);
3319   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3320     // Test for -0.
3321     __ cmp(result, Operand::Zero());
3322     __ b(ne, &done);
3323     __ cmp(input_high, Operand::Zero());
3324     DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
3325   }
3326   __ bind(&done);
3327 }
3328 
3329 
DoMathRound(LMathRound * instr)3330 void LCodeGen::DoMathRound(LMathRound* instr) {
3331   DwVfpRegister input = ToDoubleRegister(instr->value());
3332   Register result = ToRegister(instr->result());
3333   DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp());
3334   DwVfpRegister input_plus_dot_five = double_scratch1;
3335   Register input_high = scratch0();
3336   DwVfpRegister dot_five = double_scratch0();
3337   Label convert, done;
3338 
3339   __ Vmov(dot_five, 0.5, scratch0());
3340   __ vabs(double_scratch1, input);
3341   __ VFPCompareAndSetFlags(double_scratch1, dot_five);
3342   // If input is in [-0.5, -0], the result is -0.
3343   // If input is in [+0, +0.5[, the result is +0.
3344   // If the input is +0.5, the result is 1.
3345   __ b(hi, &convert);  // Out of [-0.5, +0.5].
3346   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3347     __ VmovHigh(input_high, input);
3348     __ cmp(input_high, Operand::Zero());
3349     // [-0.5, -0].
3350     DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
3351   }
3352   __ VFPCompareAndSetFlags(input, dot_five);
3353   __ mov(result, Operand(1), LeaveCC, eq);  // +0.5.
3354   // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
3355   // flag kBailoutOnMinusZero.
3356   __ mov(result, Operand::Zero(), LeaveCC, ne);
3357   __ b(&done);
3358 
3359   __ bind(&convert);
3360   __ vadd(input_plus_dot_five, input, dot_five);
3361   // Reuse dot_five (double_scratch0) as we no longer need this value.
3362   __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(),
3363                    &done, &done);
3364   DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3365   __ bind(&done);
3366 }
3367 
3368 
DoMathFround(LMathFround * instr)3369 void LCodeGen::DoMathFround(LMathFround* instr) {
3370   DwVfpRegister input_reg = ToDoubleRegister(instr->value());
3371   DwVfpRegister output_reg = ToDoubleRegister(instr->result());
3372   LowDwVfpRegister scratch = double_scratch0();
3373   __ vcvt_f32_f64(scratch.low(), input_reg);
3374   __ vcvt_f64_f32(output_reg, scratch.low());
3375 }
3376 
3377 
DoMathSqrt(LMathSqrt * instr)3378 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3379   DwVfpRegister input = ToDoubleRegister(instr->value());
3380   DwVfpRegister result = ToDoubleRegister(instr->result());
3381   __ vsqrt(result, input);
3382 }
3383 
3384 
DoMathPowHalf(LMathPowHalf * instr)3385 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3386   DwVfpRegister input = ToDoubleRegister(instr->value());
3387   DwVfpRegister result = ToDoubleRegister(instr->result());
3388   DwVfpRegister temp = double_scratch0();
3389 
3390   // Note that according to ECMA-262 15.8.2.13:
3391   // Math.pow(-Infinity, 0.5) == Infinity
3392   // Math.sqrt(-Infinity) == NaN
3393   Label done;
3394   __ vmov(temp, -V8_INFINITY, scratch0());
3395   __ VFPCompareAndSetFlags(input, temp);
3396   __ vneg(result, temp, eq);
3397   __ b(&done, eq);
3398 
3399   // Add +0 to convert -0 to +0.
3400   __ vadd(result, input, kDoubleRegZero);
3401   __ vsqrt(result, result);
3402   __ bind(&done);
3403 }
3404 
3405 
DoPower(LPower * instr)3406 void LCodeGen::DoPower(LPower* instr) {
3407   Representation exponent_type = instr->hydrogen()->right()->representation();
3408   // Having marked this as a call, we can use any registers.
3409   // Just make sure that the input/output registers are the expected ones.
3410   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3411   DCHECK(!instr->right()->IsDoubleRegister() ||
3412          ToDoubleRegister(instr->right()).is(d1));
3413   DCHECK(!instr->right()->IsRegister() ||
3414          ToRegister(instr->right()).is(tagged_exponent));
3415   DCHECK(ToDoubleRegister(instr->left()).is(d0));
3416   DCHECK(ToDoubleRegister(instr->result()).is(d2));
3417 
3418   if (exponent_type.IsSmi()) {
3419     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3420     __ CallStub(&stub);
3421   } else if (exponent_type.IsTagged()) {
3422     Label no_deopt;
3423     __ JumpIfSmi(tagged_exponent, &no_deopt);
3424     DCHECK(!r6.is(tagged_exponent));
3425     __ ldr(r6, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3426     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3427     __ cmp(r6, Operand(ip));
3428     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3429     __ bind(&no_deopt);
3430     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3431     __ CallStub(&stub);
3432   } else if (exponent_type.IsInteger32()) {
3433     MathPowStub stub(isolate(), MathPowStub::INTEGER);
3434     __ CallStub(&stub);
3435   } else {
3436     DCHECK(exponent_type.IsDouble());
3437     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3438     __ CallStub(&stub);
3439   }
3440 }
3441 
DoMathCos(LMathCos * instr)3442 void LCodeGen::DoMathCos(LMathCos* instr) {
3443   __ PrepareCallCFunction(0, 1, scratch0());
3444   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3445   __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3446   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3447 }
3448 
DoMathSin(LMathSin * instr)3449 void LCodeGen::DoMathSin(LMathSin* instr) {
3450   __ PrepareCallCFunction(0, 1, scratch0());
3451   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3452   __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3453   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3454 }
3455 
DoMathExp(LMathExp * instr)3456 void LCodeGen::DoMathExp(LMathExp* instr) {
3457   __ PrepareCallCFunction(0, 1, scratch0());
3458   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3459   __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3460   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3461 }
3462 
3463 
DoMathLog(LMathLog * instr)3464 void LCodeGen::DoMathLog(LMathLog* instr) {
3465   __ PrepareCallCFunction(0, 1, scratch0());
3466   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3467   __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3468   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3469 }
3470 
3471 
DoMathClz32(LMathClz32 * instr)3472 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3473   Register input = ToRegister(instr->value());
3474   Register result = ToRegister(instr->result());
3475   __ clz(result, input);
3476 }
3477 
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)3478 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3479                                   Register scratch1, Register scratch2,
3480                                   Register scratch3) {
3481 #if DEBUG
3482   if (actual.is_reg()) {
3483     DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3484   } else {
3485     DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3486   }
3487 #endif
3488   if (FLAG_code_comments) {
3489     if (actual.is_reg()) {
3490       Comment(";;; PrepareForTailCall, actual: %s {",
3491               RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3492                   actual.reg().code()));
3493     } else {
3494       Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3495     }
3496   }
3497 
3498   // Check if next frame is an arguments adaptor frame.
3499   Register caller_args_count_reg = scratch1;
3500   Label no_arguments_adaptor, formal_parameter_count_loaded;
3501   __ ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3502   __ ldr(scratch3,
3503          MemOperand(scratch2, StandardFrameConstants::kContextOffset));
3504   __ cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3505   __ b(ne, &no_arguments_adaptor);
3506 
3507   // Drop current frame and load arguments count from arguments adaptor frame.
3508   __ mov(fp, scratch2);
3509   __ ldr(caller_args_count_reg,
3510          MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3511   __ SmiUntag(caller_args_count_reg);
3512   __ b(&formal_parameter_count_loaded);
3513 
3514   __ bind(&no_arguments_adaptor);
3515   // Load caller's formal parameter count
3516   __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
3517 
3518   __ bind(&formal_parameter_count_loaded);
3519   __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
3520 
3521   Comment(";;; }");
3522 }
3523 
DoInvokeFunction(LInvokeFunction * instr)3524 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3525   HInvokeFunction* hinstr = instr->hydrogen();
3526   DCHECK(ToRegister(instr->context()).is(cp));
3527   DCHECK(ToRegister(instr->function()).is(r1));
3528   DCHECK(instr->HasPointerMap());
3529 
3530   bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3531 
3532   if (is_tail_call) {
3533     DCHECK(!info()->saves_caller_doubles());
3534     ParameterCount actual(instr->arity());
3535     // It is safe to use r3, r4 and r5 as scratch registers here given that
3536     // 1) we are not going to return to caller function anyway,
3537     // 2) r3 (new.target) will be initialized below.
3538     PrepareForTailCall(actual, r3, r4, r5);
3539   }
3540 
3541   Handle<JSFunction> known_function = hinstr->known_function();
3542   if (known_function.is_null()) {
3543     LPointerMap* pointers = instr->pointer_map();
3544     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3545     ParameterCount actual(instr->arity());
3546     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3547     __ InvokeFunction(r1, no_reg, actual, flag, generator);
3548   } else {
3549     CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3550                       instr->arity(), is_tail_call, instr);
3551   }
3552 }
3553 
3554 
DoCallWithDescriptor(LCallWithDescriptor * instr)3555 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3556   DCHECK(ToRegister(instr->result()).is(r0));
3557 
3558   if (instr->hydrogen()->IsTailCall()) {
3559     if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3560 
3561     if (instr->target()->IsConstantOperand()) {
3562       LConstantOperand* target = LConstantOperand::cast(instr->target());
3563       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3564       __ Jump(code, RelocInfo::CODE_TARGET);
3565     } else {
3566       DCHECK(instr->target()->IsRegister());
3567       Register target = ToRegister(instr->target());
3568       // Make sure we don't emit any additional entries in the constant pool
3569       // before the call to ensure that the CallCodeSize() calculated the
3570       // correct
3571       // number of instructions for the constant pool load.
3572       {
3573         ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
3574         __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3575       }
3576       __ Jump(target);
3577     }
3578   } else {
3579     LPointerMap* pointers = instr->pointer_map();
3580     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3581 
3582     if (instr->target()->IsConstantOperand()) {
3583       LConstantOperand* target = LConstantOperand::cast(instr->target());
3584       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3585       generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3586       PlatformInterfaceDescriptor* call_descriptor =
3587           instr->descriptor().platform_specific_descriptor();
3588       if (call_descriptor != NULL) {
3589         __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al,
3590                 call_descriptor->storage_mode());
3591       } else {
3592         __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al);
3593       }
3594     } else {
3595       DCHECK(instr->target()->IsRegister());
3596       Register target = ToRegister(instr->target());
3597       generator.BeforeCall(__ CallSize(target));
3598       // Make sure we don't emit any additional entries in the constant pool
3599       // before the call to ensure that the CallCodeSize() calculated the
3600       // correct
3601       // number of instructions for the constant pool load.
3602       {
3603         ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
3604         __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3605       }
3606       __ Call(target);
3607     }
3608     generator.AfterCall();
3609   }
3610 }
3611 
3612 
DoCallNewArray(LCallNewArray * instr)3613 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3614   DCHECK(ToRegister(instr->context()).is(cp));
3615   DCHECK(ToRegister(instr->constructor()).is(r1));
3616   DCHECK(ToRegister(instr->result()).is(r0));
3617 
3618   __ mov(r0, Operand(instr->arity()));
3619   __ Move(r2, instr->hydrogen()->site());
3620 
3621   ElementsKind kind = instr->hydrogen()->elements_kind();
3622   AllocationSiteOverrideMode override_mode =
3623       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3624           ? DISABLE_ALLOCATION_SITES
3625           : DONT_OVERRIDE;
3626 
3627   if (instr->arity() == 0) {
3628     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3629     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3630   } else if (instr->arity() == 1) {
3631     Label done;
3632     if (IsFastPackedElementsKind(kind)) {
3633       Label packed_case;
3634       // We might need a change here
3635       // look at the first argument
3636       __ ldr(r5, MemOperand(sp, 0));
3637       __ cmp(r5, Operand::Zero());
3638       __ b(eq, &packed_case);
3639 
3640       ElementsKind holey_kind = GetHoleyElementsKind(kind);
3641       ArraySingleArgumentConstructorStub stub(isolate(),
3642                                               holey_kind,
3643                                               override_mode);
3644       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3645       __ jmp(&done);
3646       __ bind(&packed_case);
3647     }
3648 
3649     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3650     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3651     __ bind(&done);
3652   } else {
3653     ArrayNArgumentsConstructorStub stub(isolate());
3654     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3655   }
3656 }
3657 
3658 
DoCallRuntime(LCallRuntime * instr)3659 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3660   CallRuntime(instr->function(), instr->arity(), instr);
3661 }
3662 
3663 
DoStoreCodeEntry(LStoreCodeEntry * instr)3664 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3665   Register function = ToRegister(instr->function());
3666   Register code_object = ToRegister(instr->code_object());
3667   __ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag));
3668   __ str(code_object,
3669          FieldMemOperand(function, JSFunction::kCodeEntryOffset));
3670 }
3671 
3672 
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3673 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3674   Register result = ToRegister(instr->result());
3675   Register base = ToRegister(instr->base_object());
3676   if (instr->offset()->IsConstantOperand()) {
3677     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3678     __ add(result, base, Operand(ToInteger32(offset)));
3679   } else {
3680     Register offset = ToRegister(instr->offset());
3681     __ add(result, base, offset);
3682   }
3683 }
3684 
3685 
DoStoreNamedField(LStoreNamedField * instr)3686 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3687   Representation representation = instr->representation();
3688 
3689   Register object = ToRegister(instr->object());
3690   Register scratch = scratch0();
3691   HObjectAccess access = instr->hydrogen()->access();
3692   int offset = access.offset();
3693 
3694   if (access.IsExternalMemory()) {
3695     Register value = ToRegister(instr->value());
3696     MemOperand operand = MemOperand(object, offset);
3697     __ Store(value, operand, representation);
3698     return;
3699   }
3700 
3701   __ AssertNotSmi(object);
3702 
3703   DCHECK(!representation.IsSmi() ||
3704          !instr->value()->IsConstantOperand() ||
3705          IsSmi(LConstantOperand::cast(instr->value())));
3706   if (representation.IsDouble()) {
3707     DCHECK(access.IsInobject());
3708     DCHECK(!instr->hydrogen()->has_transition());
3709     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3710     DwVfpRegister value = ToDoubleRegister(instr->value());
3711     __ vstr(value, FieldMemOperand(object, offset));
3712     return;
3713   }
3714 
3715   if (instr->hydrogen()->has_transition()) {
3716     Handle<Map> transition = instr->hydrogen()->transition_map();
3717     AddDeprecationDependency(transition);
3718     __ mov(scratch, Operand(transition));
3719     __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3720     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3721       Register temp = ToRegister(instr->temp());
3722       // Update the write barrier for the map field.
3723       __ RecordWriteForMap(object,
3724                            scratch,
3725                            temp,
3726                            GetLinkRegisterState(),
3727                            kSaveFPRegs);
3728     }
3729   }
3730 
3731   // Do the store.
3732   Register value = ToRegister(instr->value());
3733   if (access.IsInobject()) {
3734     MemOperand operand = FieldMemOperand(object, offset);
3735     __ Store(value, operand, representation);
3736     if (instr->hydrogen()->NeedsWriteBarrier()) {
3737       // Update the write barrier for the object for in-object properties.
3738       __ RecordWriteField(object,
3739                           offset,
3740                           value,
3741                           scratch,
3742                           GetLinkRegisterState(),
3743                           kSaveFPRegs,
3744                           EMIT_REMEMBERED_SET,
3745                           instr->hydrogen()->SmiCheckForWriteBarrier(),
3746                           instr->hydrogen()->PointersToHereCheckForValue());
3747     }
3748   } else {
3749     __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3750     MemOperand operand = FieldMemOperand(scratch, offset);
3751     __ Store(value, operand, representation);
3752     if (instr->hydrogen()->NeedsWriteBarrier()) {
3753       // Update the write barrier for the properties array.
3754       // object is used as a scratch register.
3755       __ RecordWriteField(scratch,
3756                           offset,
3757                           value,
3758                           object,
3759                           GetLinkRegisterState(),
3760                           kSaveFPRegs,
3761                           EMIT_REMEMBERED_SET,
3762                           instr->hydrogen()->SmiCheckForWriteBarrier(),
3763                           instr->hydrogen()->PointersToHereCheckForValue());
3764     }
3765   }
3766 }
3767 
3768 
DoBoundsCheck(LBoundsCheck * instr)3769 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3770   Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
3771   if (instr->index()->IsConstantOperand()) {
3772     Operand index = ToOperand(instr->index());
3773     Register length = ToRegister(instr->length());
3774     __ cmp(length, index);
3775     cc = CommuteCondition(cc);
3776   } else {
3777     Register index = ToRegister(instr->index());
3778     Operand length = ToOperand(instr->length());
3779     __ cmp(index, length);
3780   }
3781   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3782     Label done;
3783     __ b(NegateCondition(cc), &done);
3784     __ stop("eliminated bounds check failed");
3785     __ bind(&done);
3786   } else {
3787     DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
3788   }
3789 }
3790 
3791 
DoStoreKeyedExternalArray(LStoreKeyed * instr)3792 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3793   Register external_pointer = ToRegister(instr->elements());
3794   Register key = no_reg;
3795   ElementsKind elements_kind = instr->elements_kind();
3796   bool key_is_constant = instr->key()->IsConstantOperand();
3797   int constant_key = 0;
3798   if (key_is_constant) {
3799     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3800     if (constant_key & 0xF0000000) {
3801       Abort(kArrayIndexConstantValueTooBig);
3802     }
3803   } else {
3804     key = ToRegister(instr->key());
3805   }
3806   int element_size_shift = ElementsKindToShiftSize(elements_kind);
3807   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3808       ? (element_size_shift - kSmiTagSize) : element_size_shift;
3809   int base_offset = instr->base_offset();
3810 
3811   if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3812     Register address = scratch0();
3813     DwVfpRegister value(ToDoubleRegister(instr->value()));
3814     if (key_is_constant) {
3815       if (constant_key != 0) {
3816         __ add(address, external_pointer,
3817                Operand(constant_key << element_size_shift));
3818       } else {
3819         address = external_pointer;
3820       }
3821     } else {
3822       __ add(address, external_pointer, Operand(key, LSL, shift_size));
3823     }
3824     if (elements_kind == FLOAT32_ELEMENTS) {
3825       __ vcvt_f32_f64(double_scratch0().low(), value);
3826       __ vstr(double_scratch0().low(), address, base_offset);
3827     } else {  // Storing doubles, not floats.
3828       __ vstr(value, address, base_offset);
3829     }
3830   } else {
3831     Register value(ToRegister(instr->value()));
3832     MemOperand mem_operand = PrepareKeyedOperand(
3833         key, external_pointer, key_is_constant, constant_key,
3834         element_size_shift, shift_size,
3835         base_offset);
3836     switch (elements_kind) {
3837       case UINT8_ELEMENTS:
3838       case UINT8_CLAMPED_ELEMENTS:
3839       case INT8_ELEMENTS:
3840         __ strb(value, mem_operand);
3841         break;
3842       case INT16_ELEMENTS:
3843       case UINT16_ELEMENTS:
3844         __ strh(value, mem_operand);
3845         break;
3846       case INT32_ELEMENTS:
3847       case UINT32_ELEMENTS:
3848         __ str(value, mem_operand);
3849         break;
3850       case FLOAT32_ELEMENTS:
3851       case FLOAT64_ELEMENTS:
3852       case FAST_DOUBLE_ELEMENTS:
3853       case FAST_ELEMENTS:
3854       case FAST_SMI_ELEMENTS:
3855       case FAST_HOLEY_DOUBLE_ELEMENTS:
3856       case FAST_HOLEY_ELEMENTS:
3857       case FAST_HOLEY_SMI_ELEMENTS:
3858       case DICTIONARY_ELEMENTS:
3859       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3860       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3861       case FAST_STRING_WRAPPER_ELEMENTS:
3862       case SLOW_STRING_WRAPPER_ELEMENTS:
3863       case NO_ELEMENTS:
3864         UNREACHABLE();
3865         break;
3866     }
3867   }
3868 }
3869 
3870 
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)3871 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
3872   DwVfpRegister value = ToDoubleRegister(instr->value());
3873   Register elements = ToRegister(instr->elements());
3874   Register scratch = scratch0();
3875   DwVfpRegister double_scratch = double_scratch0();
3876   bool key_is_constant = instr->key()->IsConstantOperand();
3877   int base_offset = instr->base_offset();
3878 
3879   // Calculate the effective address of the slot in the array to store the
3880   // double value.
3881   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3882   if (key_is_constant) {
3883     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3884     if (constant_key & 0xF0000000) {
3885       Abort(kArrayIndexConstantValueTooBig);
3886     }
3887     __ add(scratch, elements,
3888            Operand((constant_key << element_size_shift) + base_offset));
3889   } else {
3890     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3891         ? (element_size_shift - kSmiTagSize) : element_size_shift;
3892     __ add(scratch, elements, Operand(base_offset));
3893     __ add(scratch, scratch,
3894            Operand(ToRegister(instr->key()), LSL, shift_size));
3895   }
3896 
3897   if (instr->NeedsCanonicalization()) {
3898     // Force a canonical NaN.
3899     __ VFPCanonicalizeNaN(double_scratch, value);
3900     __ vstr(double_scratch, scratch, 0);
3901   } else {
3902     __ vstr(value, scratch, 0);
3903   }
3904 }
3905 
3906 
DoStoreKeyedFixedArray(LStoreKeyed * instr)3907 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
3908   Register value = ToRegister(instr->value());
3909   Register elements = ToRegister(instr->elements());
3910   Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
3911       : no_reg;
3912   Register scratch = scratch0();
3913   Register store_base = scratch;
3914   int offset = instr->base_offset();
3915 
3916   // Do the store.
3917   if (instr->key()->IsConstantOperand()) {
3918     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3919     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3920     offset += ToInteger32(const_operand) * kPointerSize;
3921     store_base = elements;
3922   } else {
3923     // Even though the HLoadKeyed instruction forces the input
3924     // representation for the key to be an integer, the input gets replaced
3925     // during bound check elimination with the index argument to the bounds
3926     // check, which can be tagged, so that case must be handled here, too.
3927     if (instr->hydrogen()->key()->representation().IsSmi()) {
3928       __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
3929     } else {
3930       __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
3931     }
3932   }
3933   __ str(value, MemOperand(store_base, offset));
3934 
3935   if (instr->hydrogen()->NeedsWriteBarrier()) {
3936     SmiCheck check_needed =
3937         instr->hydrogen()->value()->type().IsHeapObject()
3938             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3939     // Compute address of modified element and store it into key register.
3940     __ add(key, store_base, Operand(offset));
3941     __ RecordWrite(elements,
3942                    key,
3943                    value,
3944                    GetLinkRegisterState(),
3945                    kSaveFPRegs,
3946                    EMIT_REMEMBERED_SET,
3947                    check_needed,
3948                    instr->hydrogen()->PointersToHereCheckForValue());
3949   }
3950 }
3951 
3952 
DoStoreKeyed(LStoreKeyed * instr)3953 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
3954   // By cases: external, fast double
3955   if (instr->is_fixed_typed_array()) {
3956     DoStoreKeyedExternalArray(instr);
3957   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
3958     DoStoreKeyedFixedDoubleArray(instr);
3959   } else {
3960     DoStoreKeyedFixedArray(instr);
3961   }
3962 }
3963 
3964 
DoMaybeGrowElements(LMaybeGrowElements * instr)3965 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
3966   class DeferredMaybeGrowElements final : public LDeferredCode {
3967    public:
3968     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
3969         : LDeferredCode(codegen), instr_(instr) {}
3970     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
3971     LInstruction* instr() override { return instr_; }
3972 
3973    private:
3974     LMaybeGrowElements* instr_;
3975   };
3976 
3977   Register result = r0;
3978   DeferredMaybeGrowElements* deferred =
3979       new (zone()) DeferredMaybeGrowElements(this, instr);
3980   LOperand* key = instr->key();
3981   LOperand* current_capacity = instr->current_capacity();
3982 
3983   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
3984   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
3985   DCHECK(key->IsConstantOperand() || key->IsRegister());
3986   DCHECK(current_capacity->IsConstantOperand() ||
3987          current_capacity->IsRegister());
3988 
3989   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
3990     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
3991     int32_t constant_capacity =
3992         ToInteger32(LConstantOperand::cast(current_capacity));
3993     if (constant_key >= constant_capacity) {
3994       // Deferred case.
3995       __ jmp(deferred->entry());
3996     }
3997   } else if (key->IsConstantOperand()) {
3998     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
3999     __ cmp(ToRegister(current_capacity), Operand(constant_key));
4000     __ b(le, deferred->entry());
4001   } else if (current_capacity->IsConstantOperand()) {
4002     int32_t constant_capacity =
4003         ToInteger32(LConstantOperand::cast(current_capacity));
4004     __ cmp(ToRegister(key), Operand(constant_capacity));
4005     __ b(ge, deferred->entry());
4006   } else {
4007     __ cmp(ToRegister(key), ToRegister(current_capacity));
4008     __ b(ge, deferred->entry());
4009   }
4010 
4011   if (instr->elements()->IsRegister()) {
4012     __ Move(result, ToRegister(instr->elements()));
4013   } else {
4014     __ ldr(result, ToMemOperand(instr->elements()));
4015   }
4016 
4017   __ bind(deferred->exit());
4018 }
4019 
4020 
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)4021 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4022   // TODO(3095996): Get rid of this. For now, we need to make the
4023   // result register contain a valid pointer because it is already
4024   // contained in the register pointer map.
4025   Register result = r0;
4026   __ mov(result, Operand::Zero());
4027 
4028   // We have to call a stub.
4029   {
4030     PushSafepointRegistersScope scope(this);
4031     if (instr->object()->IsRegister()) {
4032       __ Move(result, ToRegister(instr->object()));
4033     } else {
4034       __ ldr(result, ToMemOperand(instr->object()));
4035     }
4036 
4037     LOperand* key = instr->key();
4038     if (key->IsConstantOperand()) {
4039       LConstantOperand* constant_key = LConstantOperand::cast(key);
4040       int32_t int_key = ToInteger32(constant_key);
4041       if (Smi::IsValid(int_key)) {
4042         __ mov(r3, Operand(Smi::FromInt(int_key)));
4043       } else {
4044         // We should never get here at runtime because there is a smi check on
4045         // the key before this point.
4046         __ stop("expected smi");
4047       }
4048     } else {
4049       __ Move(r3, ToRegister(key));
4050       __ SmiTag(r3);
4051     }
4052 
4053     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4054     __ CallStub(&stub);
4055     RecordSafepointWithLazyDeopt(
4056         instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4057     __ StoreToSafepointRegisterSlot(result, result);
4058   }
4059 
4060   // Deopt on smi, which means the elements array changed to dictionary mode.
4061   __ SmiTst(result);
4062   DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
4063 }
4064 
4065 
DoTransitionElementsKind(LTransitionElementsKind * instr)4066 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4067   Register object_reg = ToRegister(instr->object());
4068   Register scratch = scratch0();
4069 
4070   Handle<Map> from_map = instr->original_map();
4071   Handle<Map> to_map = instr->transitioned_map();
4072   ElementsKind from_kind = instr->from_kind();
4073   ElementsKind to_kind = instr->to_kind();
4074 
4075   Label not_applicable;
4076   __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4077   __ cmp(scratch, Operand(from_map));
4078   __ b(ne, &not_applicable);
4079 
4080   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4081     Register new_map_reg = ToRegister(instr->new_map_temp());
4082     __ mov(new_map_reg, Operand(to_map));
4083     __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4084     // Write barrier.
4085     __ RecordWriteForMap(object_reg,
4086                          new_map_reg,
4087                          scratch,
4088                          GetLinkRegisterState(),
4089                          kDontSaveFPRegs);
4090   } else {
4091     DCHECK(ToRegister(instr->context()).is(cp));
4092     DCHECK(object_reg.is(r0));
4093     PushSafepointRegistersScope scope(this);
4094     __ Move(r1, to_map);
4095     TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4096     __ CallStub(&stub);
4097     RecordSafepointWithRegisters(
4098         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4099   }
4100   __ bind(&not_applicable);
4101 }
4102 
4103 
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4104 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4105   Register object = ToRegister(instr->object());
4106   Register temp = ToRegister(instr->temp());
4107   Label no_memento_found;
4108   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4109   DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound);
4110   __ bind(&no_memento_found);
4111 }
4112 
4113 
DoStringAdd(LStringAdd * instr)4114 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4115   DCHECK(ToRegister(instr->context()).is(cp));
4116   DCHECK(ToRegister(instr->left()).is(r1));
4117   DCHECK(ToRegister(instr->right()).is(r0));
4118   StringAddStub stub(isolate(),
4119                      instr->hydrogen()->flags(),
4120                      instr->hydrogen()->pretenure_flag());
4121   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4122 }
4123 
4124 
DoStringCharCodeAt(LStringCharCodeAt * instr)4125 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4126   class DeferredStringCharCodeAt final : public LDeferredCode {
4127    public:
4128     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4129         : LDeferredCode(codegen), instr_(instr) { }
4130     void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4131     LInstruction* instr() override { return instr_; }
4132 
4133    private:
4134     LStringCharCodeAt* instr_;
4135   };
4136 
4137   DeferredStringCharCodeAt* deferred =
4138       new(zone()) DeferredStringCharCodeAt(this, instr);
4139 
4140   StringCharLoadGenerator::Generate(masm(),
4141                                     ToRegister(instr->string()),
4142                                     ToRegister(instr->index()),
4143                                     ToRegister(instr->result()),
4144                                     deferred->entry());
4145   __ bind(deferred->exit());
4146 }
4147 
4148 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4149 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4150   Register string = ToRegister(instr->string());
4151   Register result = ToRegister(instr->result());
4152   Register scratch = scratch0();
4153 
4154   // TODO(3095996): Get rid of this. For now, we need to make the
4155   // result register contain a valid pointer because it is already
4156   // contained in the register pointer map.
4157   __ mov(result, Operand::Zero());
4158 
4159   PushSafepointRegistersScope scope(this);
4160   __ push(string);
4161   // Push the index as a smi. This is safe because of the checks in
4162   // DoStringCharCodeAt above.
4163   if (instr->index()->IsConstantOperand()) {
4164     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4165     __ mov(scratch, Operand(Smi::FromInt(const_index)));
4166     __ push(scratch);
4167   } else {
4168     Register index = ToRegister(instr->index());
4169     __ SmiTag(index);
4170     __ push(index);
4171   }
4172   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4173                           instr->context());
4174   __ AssertSmi(r0);
4175   __ SmiUntag(r0);
4176   __ StoreToSafepointRegisterSlot(r0, result);
4177 }
4178 
4179 
DoStringCharFromCode(LStringCharFromCode * instr)4180 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4181   class DeferredStringCharFromCode final : public LDeferredCode {
4182    public:
4183     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4184         : LDeferredCode(codegen), instr_(instr) { }
4185     void Generate() override {
4186       codegen()->DoDeferredStringCharFromCode(instr_);
4187     }
4188     LInstruction* instr() override { return instr_; }
4189 
4190    private:
4191     LStringCharFromCode* instr_;
4192   };
4193 
4194   DeferredStringCharFromCode* deferred =
4195       new(zone()) DeferredStringCharFromCode(this, instr);
4196 
4197   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4198   Register char_code = ToRegister(instr->char_code());
4199   Register result = ToRegister(instr->result());
4200   DCHECK(!char_code.is(result));
4201 
4202   __ cmp(char_code, Operand(String::kMaxOneByteCharCode));
4203   __ b(hi, deferred->entry());
4204   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4205   __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
4206   __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4207   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4208   __ cmp(result, ip);
4209   __ b(eq, deferred->entry());
4210   __ bind(deferred->exit());
4211 }
4212 
4213 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4214 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4215   Register char_code = ToRegister(instr->char_code());
4216   Register result = ToRegister(instr->result());
4217 
4218   // TODO(3095996): Get rid of this. For now, we need to make the
4219   // result register contain a valid pointer because it is already
4220   // contained in the register pointer map.
4221   __ mov(result, Operand::Zero());
4222 
4223   PushSafepointRegistersScope scope(this);
4224   __ SmiTag(char_code);
4225   __ push(char_code);
4226   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4227                           instr->context());
4228   __ StoreToSafepointRegisterSlot(r0, result);
4229 }
4230 
4231 
DoInteger32ToDouble(LInteger32ToDouble * instr)4232 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4233   LOperand* input = instr->value();
4234   DCHECK(input->IsRegister() || input->IsStackSlot());
4235   LOperand* output = instr->result();
4236   DCHECK(output->IsDoubleRegister());
4237   SwVfpRegister single_scratch = double_scratch0().low();
4238   if (input->IsStackSlot()) {
4239     Register scratch = scratch0();
4240     __ ldr(scratch, ToMemOperand(input));
4241     __ vmov(single_scratch, scratch);
4242   } else {
4243     __ vmov(single_scratch, ToRegister(input));
4244   }
4245   __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
4246 }
4247 
4248 
DoUint32ToDouble(LUint32ToDouble * instr)4249 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4250   LOperand* input = instr->value();
4251   LOperand* output = instr->result();
4252 
4253   SwVfpRegister flt_scratch = double_scratch0().low();
4254   __ vmov(flt_scratch, ToRegister(input));
4255   __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch);
4256 }
4257 
4258 
DoNumberTagI(LNumberTagI * instr)4259 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4260   class DeferredNumberTagI final : public LDeferredCode {
4261    public:
4262     DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4263         : LDeferredCode(codegen), instr_(instr) { }
4264     void Generate() override {
4265       codegen()->DoDeferredNumberTagIU(instr_,
4266                                        instr_->value(),
4267                                        instr_->temp1(),
4268                                        instr_->temp2(),
4269                                        SIGNED_INT32);
4270     }
4271     LInstruction* instr() override { return instr_; }
4272 
4273    private:
4274     LNumberTagI* instr_;
4275   };
4276 
4277   Register src = ToRegister(instr->value());
4278   Register dst = ToRegister(instr->result());
4279 
4280   DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4281   __ SmiTag(dst, src, SetCC);
4282   __ b(vs, deferred->entry());
4283   __ bind(deferred->exit());
4284 }
4285 
4286 
DoNumberTagU(LNumberTagU * instr)4287 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4288   class DeferredNumberTagU final : public LDeferredCode {
4289    public:
4290     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4291         : LDeferredCode(codegen), instr_(instr) { }
4292     void Generate() override {
4293       codegen()->DoDeferredNumberTagIU(instr_,
4294                                        instr_->value(),
4295                                        instr_->temp1(),
4296                                        instr_->temp2(),
4297                                        UNSIGNED_INT32);
4298     }
4299     LInstruction* instr() override { return instr_; }
4300 
4301    private:
4302     LNumberTagU* instr_;
4303   };
4304 
4305   Register input = ToRegister(instr->value());
4306   Register result = ToRegister(instr->result());
4307 
4308   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4309   __ cmp(input, Operand(Smi::kMaxValue));
4310   __ b(hi, deferred->entry());
4311   __ SmiTag(result, input);
4312   __ bind(deferred->exit());
4313 }
4314 
4315 
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2,IntegerSignedness signedness)4316 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4317                                      LOperand* value,
4318                                      LOperand* temp1,
4319                                      LOperand* temp2,
4320                                      IntegerSignedness signedness) {
4321   Label done, slow;
4322   Register src = ToRegister(value);
4323   Register dst = ToRegister(instr->result());
4324   Register tmp1 = scratch0();
4325   Register tmp2 = ToRegister(temp1);
4326   Register tmp3 = ToRegister(temp2);
4327   LowDwVfpRegister dbl_scratch = double_scratch0();
4328 
4329   if (signedness == SIGNED_INT32) {
4330     // There was overflow, so bits 30 and 31 of the original integer
4331     // disagree. Try to allocate a heap number in new space and store
4332     // the value in there. If that fails, call the runtime system.
4333     if (dst.is(src)) {
4334       __ SmiUntag(src, dst);
4335       __ eor(src, src, Operand(0x80000000));
4336     }
4337     __ vmov(dbl_scratch.low(), src);
4338     __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low());
4339   } else {
4340     __ vmov(dbl_scratch.low(), src);
4341     __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low());
4342   }
4343 
4344   if (FLAG_inline_new) {
4345     __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4346     __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4347     __ b(&done);
4348   }
4349 
4350   // Slow case: Call the runtime system to do the number allocation.
4351   __ bind(&slow);
4352   {
4353     // TODO(3095996): Put a valid pointer value in the stack slot where the
4354     // result register is stored, as this register is in the pointer map, but
4355     // contains an integer value.
4356     __ mov(dst, Operand::Zero());
4357 
4358     // Preserve the value of all registers.
4359     PushSafepointRegistersScope scope(this);
4360     // Reset the context register.
4361     if (!dst.is(cp)) {
4362       __ mov(cp, Operand::Zero());
4363     }
4364     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4365     RecordSafepointWithRegisters(
4366         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4367     __ StoreToSafepointRegisterSlot(r0, dst);
4368   }
4369 
4370   // Done. Put the value in dbl_scratch into the value of the allocated heap
4371   // number.
4372   __ bind(&done);
4373   __ vstr(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4374 }
4375 
4376 
DoNumberTagD(LNumberTagD * instr)4377 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4378   class DeferredNumberTagD final : public LDeferredCode {
4379    public:
4380     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4381         : LDeferredCode(codegen), instr_(instr) { }
4382     void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4383     LInstruction* instr() override { return instr_; }
4384 
4385    private:
4386     LNumberTagD* instr_;
4387   };
4388 
4389   DwVfpRegister input_reg = ToDoubleRegister(instr->value());
4390   Register scratch = scratch0();
4391   Register reg = ToRegister(instr->result());
4392   Register temp1 = ToRegister(instr->temp());
4393   Register temp2 = ToRegister(instr->temp2());
4394 
4395   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4396   if (FLAG_inline_new) {
4397     __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4398     __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4399   } else {
4400     __ jmp(deferred->entry());
4401   }
4402   __ bind(deferred->exit());
4403   __ vstr(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4404 }
4405 
4406 
DoDeferredNumberTagD(LNumberTagD * instr)4407 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4408   // TODO(3095996): Get rid of this. For now, we need to make the
4409   // result register contain a valid pointer because it is already
4410   // contained in the register pointer map.
4411   Register reg = ToRegister(instr->result());
4412   __ mov(reg, Operand::Zero());
4413 
4414   PushSafepointRegistersScope scope(this);
4415   // Reset the context register.
4416   if (!reg.is(cp)) {
4417     __ mov(cp, Operand::Zero());
4418   }
4419   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4420   RecordSafepointWithRegisters(
4421       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4422   __ StoreToSafepointRegisterSlot(r0, reg);
4423 }
4424 
4425 
DoSmiTag(LSmiTag * instr)4426 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4427   HChange* hchange = instr->hydrogen();
4428   Register input = ToRegister(instr->value());
4429   Register output = ToRegister(instr->result());
4430   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4431       hchange->value()->CheckFlag(HValue::kUint32)) {
4432     __ tst(input, Operand(0xc0000000));
4433     DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
4434   }
4435   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4436       !hchange->value()->CheckFlag(HValue::kUint32)) {
4437     __ SmiTag(output, input, SetCC);
4438     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
4439   } else {
4440     __ SmiTag(output, input);
4441   }
4442 }
4443 
4444 
DoSmiUntag(LSmiUntag * instr)4445 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4446   Register input = ToRegister(instr->value());
4447   Register result = ToRegister(instr->result());
4448   if (instr->needs_check()) {
4449     STATIC_ASSERT(kHeapObjectTag == 1);
4450     // If the input is a HeapObject, SmiUntag will set the carry flag.
4451     __ SmiUntag(result, input, SetCC);
4452     DeoptimizeIf(cs, instr, DeoptimizeReason::kNotASmi);
4453   } else {
4454     __ SmiUntag(result, input);
4455   }
4456 }
4457 
4458 
EmitNumberUntagD(LNumberUntagD * instr,Register input_reg,DwVfpRegister result_reg,NumberUntagDMode mode)4459 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4460                                 DwVfpRegister result_reg,
4461                                 NumberUntagDMode mode) {
4462   bool can_convert_undefined_to_nan = instr->truncating();
4463   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4464 
4465   Register scratch = scratch0();
4466   SwVfpRegister flt_scratch = double_scratch0().low();
4467   DCHECK(!result_reg.is(double_scratch0()));
4468   Label convert, load_smi, done;
4469   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4470     // Smi check.
4471     __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4472     // Heap number map check.
4473     __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4474     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4475     __ cmp(scratch, Operand(ip));
4476     if (can_convert_undefined_to_nan) {
4477       __ b(ne, &convert);
4478     } else {
4479       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4480     }
4481     // load heap number
4482     __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag);
4483     if (deoptimize_on_minus_zero) {
4484       __ VmovLow(scratch, result_reg);
4485       __ cmp(scratch, Operand::Zero());
4486       __ b(ne, &done);
4487       __ VmovHigh(scratch, result_reg);
4488       __ cmp(scratch, Operand(HeapNumber::kSignMask));
4489       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
4490     }
4491     __ jmp(&done);
4492     if (can_convert_undefined_to_nan) {
4493       __ bind(&convert);
4494       // Convert undefined (and hole) to NaN.
4495       __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4496       __ cmp(input_reg, Operand(ip));
4497       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
4498       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4499       __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag);
4500       __ jmp(&done);
4501     }
4502   } else {
4503     __ SmiUntag(scratch, input_reg);
4504     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4505   }
4506   // Smi to double register conversion
4507   __ bind(&load_smi);
4508   // scratch: untagged value of input_reg
4509   __ vmov(flt_scratch, scratch);
4510   __ vcvt_f64_s32(result_reg, flt_scratch);
4511   __ bind(&done);
4512 }
4513 
4514 
DoDeferredTaggedToI(LTaggedToI * instr)4515 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4516   Register input_reg = ToRegister(instr->value());
4517   Register scratch1 = scratch0();
4518   Register scratch2 = ToRegister(instr->temp());
4519   LowDwVfpRegister double_scratch = double_scratch0();
4520   DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4521 
4522   DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4523   DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4524 
4525   Label done;
4526 
4527   // The input was optimistically untagged; revert it.
4528   // The carry flag is set when we reach this deferred code as we just executed
4529   // SmiUntag(heap_object, SetCC)
4530   STATIC_ASSERT(kHeapObjectTag == 1);
4531   __ adc(scratch2, input_reg, Operand(input_reg));
4532 
4533   // Heap number map check.
4534   __ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4535   __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4536   __ cmp(scratch1, Operand(ip));
4537 
4538   if (instr->truncating()) {
4539     Label truncate;
4540     __ b(eq, &truncate);
4541     __ CompareInstanceType(scratch1, scratch1, ODDBALL_TYPE);
4542     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball);
4543     __ bind(&truncate);
4544     __ TruncateHeapNumberToI(input_reg, scratch2);
4545   } else {
4546     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4547 
4548     __ sub(ip, scratch2, Operand(kHeapObjectTag));
4549     __ vldr(double_scratch2, ip, HeapNumber::kValueOffset);
4550     __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch);
4551     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4552 
4553     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4554       __ cmp(input_reg, Operand::Zero());
4555       __ b(ne, &done);
4556       __ VmovHigh(scratch1, double_scratch2);
4557       __ tst(scratch1, Operand(HeapNumber::kSignMask));
4558       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero);
4559     }
4560   }
4561   __ bind(&done);
4562 }
4563 
4564 
DoTaggedToI(LTaggedToI * instr)4565 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4566   class DeferredTaggedToI final : public LDeferredCode {
4567    public:
4568     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4569         : LDeferredCode(codegen), instr_(instr) { }
4570     void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4571     LInstruction* instr() override { return instr_; }
4572 
4573    private:
4574     LTaggedToI* instr_;
4575   };
4576 
4577   LOperand* input = instr->value();
4578   DCHECK(input->IsRegister());
4579   DCHECK(input->Equals(instr->result()));
4580 
4581   Register input_reg = ToRegister(input);
4582 
4583   if (instr->hydrogen()->value()->representation().IsSmi()) {
4584     __ SmiUntag(input_reg);
4585   } else {
4586     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4587 
4588     // Optimistically untag the input.
4589     // If the input is a HeapObject, SmiUntag will set the carry flag.
4590     __ SmiUntag(input_reg, SetCC);
4591     // Branch to deferred code if the input was tagged.
4592     // The deferred code will take care of restoring the tag.
4593     __ b(cs, deferred->entry());
4594     __ bind(deferred->exit());
4595   }
4596 }
4597 
4598 
DoNumberUntagD(LNumberUntagD * instr)4599 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4600   LOperand* input = instr->value();
4601   DCHECK(input->IsRegister());
4602   LOperand* result = instr->result();
4603   DCHECK(result->IsDoubleRegister());
4604 
4605   Register input_reg = ToRegister(input);
4606   DwVfpRegister result_reg = ToDoubleRegister(result);
4607 
4608   HValue* value = instr->hydrogen()->value();
4609   NumberUntagDMode mode = value->representation().IsSmi()
4610       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4611 
4612   EmitNumberUntagD(instr, input_reg, result_reg, mode);
4613 }
4614 
4615 
DoDoubleToI(LDoubleToI * instr)4616 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4617   Register result_reg = ToRegister(instr->result());
4618   Register scratch1 = scratch0();
4619   DwVfpRegister double_input = ToDoubleRegister(instr->value());
4620   LowDwVfpRegister double_scratch = double_scratch0();
4621 
4622   if (instr->truncating()) {
4623     __ TruncateDoubleToI(result_reg, double_input);
4624   } else {
4625     __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
4626     // Deoptimize if the input wasn't a int32 (inside a double).
4627     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4628     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4629       Label done;
4630       __ cmp(result_reg, Operand::Zero());
4631       __ b(ne, &done);
4632       __ VmovHigh(scratch1, double_input);
4633       __ tst(scratch1, Operand(HeapNumber::kSignMask));
4634       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero);
4635       __ bind(&done);
4636     }
4637   }
4638 }
4639 
4640 
DoDoubleToSmi(LDoubleToSmi * instr)4641 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4642   Register result_reg = ToRegister(instr->result());
4643   Register scratch1 = scratch0();
4644   DwVfpRegister double_input = ToDoubleRegister(instr->value());
4645   LowDwVfpRegister double_scratch = double_scratch0();
4646 
4647   if (instr->truncating()) {
4648     __ TruncateDoubleToI(result_reg, double_input);
4649   } else {
4650     __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
4651     // Deoptimize if the input wasn't a int32 (inside a double).
4652     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4653     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4654       Label done;
4655       __ cmp(result_reg, Operand::Zero());
4656       __ b(ne, &done);
4657       __ VmovHigh(scratch1, double_input);
4658       __ tst(scratch1, Operand(HeapNumber::kSignMask));
4659       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero);
4660       __ bind(&done);
4661     }
4662   }
4663   __ SmiTag(result_reg, SetCC);
4664   DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
4665 }
4666 
4667 
DoCheckSmi(LCheckSmi * instr)4668 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4669   LOperand* input = instr->value();
4670   __ SmiTst(ToRegister(input));
4671   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi);
4672 }
4673 
4674 
DoCheckNonSmi(LCheckNonSmi * instr)4675 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4676   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4677     LOperand* input = instr->value();
4678     __ SmiTst(ToRegister(input));
4679     DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
4680   }
4681 }
4682 
4683 
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)4684 void LCodeGen::DoCheckArrayBufferNotNeutered(
4685     LCheckArrayBufferNotNeutered* instr) {
4686   Register view = ToRegister(instr->view());
4687   Register scratch = scratch0();
4688 
4689   __ ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
4690   __ ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
4691   __ tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
4692   DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds);
4693 }
4694 
4695 
DoCheckInstanceType(LCheckInstanceType * instr)4696 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4697   Register input = ToRegister(instr->value());
4698   Register scratch = scratch0();
4699 
4700   __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
4701   __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4702 
4703   if (instr->hydrogen()->is_interval_check()) {
4704     InstanceType first;
4705     InstanceType last;
4706     instr->hydrogen()->GetCheckInterval(&first, &last);
4707 
4708     __ cmp(scratch, Operand(first));
4709 
4710     // If there is only one type in the interval check for equality.
4711     if (first == last) {
4712       DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4713     } else {
4714       DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType);
4715       // Omit check for the last type.
4716       if (last != LAST_TYPE) {
4717         __ cmp(scratch, Operand(last));
4718         DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType);
4719       }
4720     }
4721   } else {
4722     uint8_t mask;
4723     uint8_t tag;
4724     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4725 
4726     if (base::bits::IsPowerOfTwo32(mask)) {
4727       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4728       __ tst(scratch, Operand(mask));
4729       DeoptimizeIf(tag == 0 ? ne : eq, instr,
4730                    DeoptimizeReason::kWrongInstanceType);
4731     } else {
4732       __ and_(scratch, scratch, Operand(mask));
4733       __ cmp(scratch, Operand(tag));
4734       DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4735     }
4736   }
4737 }
4738 
4739 
DoCheckValue(LCheckValue * instr)4740 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4741   Register reg = ToRegister(instr->value());
4742   Handle<HeapObject> object = instr->hydrogen()->object().handle();
4743   AllowDeferredHandleDereference smi_check;
4744   if (isolate()->heap()->InNewSpace(*object)) {
4745     Register reg = ToRegister(instr->value());
4746     Handle<Cell> cell = isolate()->factory()->NewCell(object);
4747     __ mov(ip, Operand(cell));
4748     __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset));
4749     __ cmp(reg, ip);
4750   } else {
4751     __ cmp(reg, Operand(object));
4752   }
4753   DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch);
4754 }
4755 
4756 
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)4757 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4758   {
4759     PushSafepointRegistersScope scope(this);
4760     __ push(object);
4761     __ mov(cp, Operand::Zero());
4762     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4763     RecordSafepointWithRegisters(
4764         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4765     __ StoreToSafepointRegisterSlot(r0, scratch0());
4766   }
4767   __ tst(scratch0(), Operand(kSmiTagMask));
4768   DeoptimizeIf(eq, instr, DeoptimizeReason::kInstanceMigrationFailed);
4769 }
4770 
4771 
DoCheckMaps(LCheckMaps * instr)4772 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4773   class DeferredCheckMaps final : public LDeferredCode {
4774    public:
4775     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4776         : LDeferredCode(codegen), instr_(instr), object_(object) {
4777       SetExit(check_maps());
4778     }
4779     void Generate() override {
4780       codegen()->DoDeferredInstanceMigration(instr_, object_);
4781     }
4782     Label* check_maps() { return &check_maps_; }
4783     LInstruction* instr() override { return instr_; }
4784 
4785    private:
4786     LCheckMaps* instr_;
4787     Label check_maps_;
4788     Register object_;
4789   };
4790 
4791   if (instr->hydrogen()->IsStabilityCheck()) {
4792     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4793     for (int i = 0; i < maps->size(); ++i) {
4794       AddStabilityDependency(maps->at(i).handle());
4795     }
4796     return;
4797   }
4798 
4799   Register map_reg = scratch0();
4800 
4801   LOperand* input = instr->value();
4802   DCHECK(input->IsRegister());
4803   Register reg = ToRegister(input);
4804 
4805   __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
4806 
4807   DeferredCheckMaps* deferred = NULL;
4808   if (instr->hydrogen()->HasMigrationTarget()) {
4809     deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
4810     __ bind(deferred->check_maps());
4811   }
4812 
4813   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4814   Label success;
4815   for (int i = 0; i < maps->size() - 1; i++) {
4816     Handle<Map> map = maps->at(i).handle();
4817     __ CompareMap(map_reg, map, &success);
4818     __ b(eq, &success);
4819   }
4820 
4821   Handle<Map> map = maps->at(maps->size() - 1).handle();
4822   __ CompareMap(map_reg, map, &success);
4823   if (instr->hydrogen()->HasMigrationTarget()) {
4824     __ b(ne, deferred->entry());
4825   } else {
4826     DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
4827   }
4828 
4829   __ bind(&success);
4830 }
4831 
4832 
DoClampDToUint8(LClampDToUint8 * instr)4833 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4834   DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped());
4835   Register result_reg = ToRegister(instr->result());
4836   __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
4837 }
4838 
4839 
DoClampIToUint8(LClampIToUint8 * instr)4840 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4841   Register unclamped_reg = ToRegister(instr->unclamped());
4842   Register result_reg = ToRegister(instr->result());
4843   __ ClampUint8(result_reg, unclamped_reg);
4844 }
4845 
4846 
DoClampTToUint8(LClampTToUint8 * instr)4847 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
4848   Register scratch = scratch0();
4849   Register input_reg = ToRegister(instr->unclamped());
4850   Register result_reg = ToRegister(instr->result());
4851   DwVfpRegister temp_reg = ToDoubleRegister(instr->temp());
4852   Label is_smi, done, heap_number;
4853 
4854   // Both smi and heap number cases are handled.
4855   __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
4856 
4857   // Check for heap number
4858   __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4859   __ cmp(scratch, Operand(factory()->heap_number_map()));
4860   __ b(eq, &heap_number);
4861 
4862   // Check for undefined. Undefined is converted to zero for clamping
4863   // conversions.
4864   __ cmp(input_reg, Operand(factory()->undefined_value()));
4865   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
4866   __ mov(result_reg, Operand::Zero());
4867   __ jmp(&done);
4868 
4869   // Heap number
4870   __ bind(&heap_number);
4871   __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4872   __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
4873   __ jmp(&done);
4874 
4875   // smi
4876   __ bind(&is_smi);
4877   __ ClampUint8(result_reg, result_reg);
4878 
4879   __ bind(&done);
4880 }
4881 
4882 
DoAllocate(LAllocate * instr)4883 void LCodeGen::DoAllocate(LAllocate* instr) {
4884   class DeferredAllocate final : public LDeferredCode {
4885    public:
4886     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
4887         : LDeferredCode(codegen), instr_(instr) { }
4888     void Generate() override { codegen()->DoDeferredAllocate(instr_); }
4889     LInstruction* instr() override { return instr_; }
4890 
4891    private:
4892     LAllocate* instr_;
4893   };
4894 
4895   DeferredAllocate* deferred =
4896       new(zone()) DeferredAllocate(this, instr);
4897 
4898   Register result = ToRegister(instr->result());
4899   Register scratch = ToRegister(instr->temp1());
4900   Register scratch2 = ToRegister(instr->temp2());
4901 
4902   // Allocate memory for the object.
4903   AllocationFlags flags = NO_ALLOCATION_FLAGS;
4904   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
4905     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
4906   }
4907   if (instr->hydrogen()->IsOldSpaceAllocation()) {
4908     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4909     flags = static_cast<AllocationFlags>(flags | PRETENURE);
4910   }
4911 
4912   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
4913     flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
4914   }
4915   DCHECK(!instr->hydrogen()->IsAllocationFolded());
4916 
4917   if (instr->size()->IsConstantOperand()) {
4918     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4919     CHECK(size <= kMaxRegularHeapObjectSize);
4920     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
4921   } else {
4922     Register size = ToRegister(instr->size());
4923     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
4924   }
4925 
4926   __ bind(deferred->exit());
4927 
4928   if (instr->hydrogen()->MustPrefillWithFiller()) {
4929     STATIC_ASSERT(kHeapObjectTag == 1);
4930     if (instr->size()->IsConstantOperand()) {
4931       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4932       __ mov(scratch, Operand(size - kHeapObjectTag));
4933     } else {
4934       __ sub(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
4935     }
4936     __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
4937     Label loop;
4938     __ bind(&loop);
4939     __ sub(scratch, scratch, Operand(kPointerSize), SetCC);
4940     __ str(scratch2, MemOperand(result, scratch));
4941     __ b(ge, &loop);
4942   }
4943 }
4944 
4945 
DoDeferredAllocate(LAllocate * instr)4946 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
4947   Register result = ToRegister(instr->result());
4948 
4949   // TODO(3095996): Get rid of this. For now, we need to make the
4950   // result register contain a valid pointer because it is already
4951   // contained in the register pointer map.
4952   __ mov(result, Operand(Smi::kZero));
4953 
4954   PushSafepointRegistersScope scope(this);
4955   if (instr->size()->IsRegister()) {
4956     Register size = ToRegister(instr->size());
4957     DCHECK(!size.is(result));
4958     __ SmiTag(size);
4959     __ push(size);
4960   } else {
4961     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4962     if (size >= 0 && size <= Smi::kMaxValue) {
4963       __ Push(Smi::FromInt(size));
4964     } else {
4965       // We should never get here at runtime => abort
4966       __ stop("invalid allocation size");
4967       return;
4968     }
4969   }
4970 
4971   int flags = AllocateDoubleAlignFlag::encode(
4972       instr->hydrogen()->MustAllocateDoubleAligned());
4973   if (instr->hydrogen()->IsOldSpaceAllocation()) {
4974     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4975     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
4976   } else {
4977     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
4978   }
4979   __ Push(Smi::FromInt(flags));
4980 
4981   CallRuntimeFromDeferred(
4982       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
4983   __ StoreToSafepointRegisterSlot(r0, result);
4984 
4985   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
4986     AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
4987     if (instr->hydrogen()->IsOldSpaceAllocation()) {
4988       DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4989       allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
4990     }
4991     // If the allocation folding dominator allocate triggered a GC, allocation
4992     // happend in the runtime. We have to reset the top pointer to virtually
4993     // undo the allocation.
4994     ExternalReference allocation_top =
4995         AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
4996     Register top_address = scratch0();
4997     __ sub(r0, r0, Operand(kHeapObjectTag));
4998     __ mov(top_address, Operand(allocation_top));
4999     __ str(r0, MemOperand(top_address));
5000     __ add(r0, r0, Operand(kHeapObjectTag));
5001   }
5002 }
5003 
DoFastAllocate(LFastAllocate * instr)5004 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5005   DCHECK(instr->hydrogen()->IsAllocationFolded());
5006   DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5007   Register result = ToRegister(instr->result());
5008   Register scratch1 = ToRegister(instr->temp1());
5009   Register scratch2 = ToRegister(instr->temp2());
5010 
5011   AllocationFlags flags = ALLOCATION_FOLDED;
5012   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5013     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5014   }
5015   if (instr->hydrogen()->IsOldSpaceAllocation()) {
5016     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5017     flags = static_cast<AllocationFlags>(flags | PRETENURE);
5018   }
5019   if (instr->size()->IsConstantOperand()) {
5020     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5021     CHECK(size <= kMaxRegularHeapObjectSize);
5022     __ FastAllocate(size, result, scratch1, scratch2, flags);
5023   } else {
5024     Register size = ToRegister(instr->size());
5025     __ FastAllocate(size, result, scratch1, scratch2, flags);
5026   }
5027 }
5028 
5029 
DoTypeof(LTypeof * instr)5030 void LCodeGen::DoTypeof(LTypeof* instr) {
5031   DCHECK(ToRegister(instr->value()).is(r3));
5032   DCHECK(ToRegister(instr->result()).is(r0));
5033   Label end, do_call;
5034   Register value_register = ToRegister(instr->value());
5035   __ JumpIfNotSmi(value_register, &do_call);
5036   __ mov(r0, Operand(isolate()->factory()->number_string()));
5037   __ jmp(&end);
5038   __ bind(&do_call);
5039   Callable callable = CodeFactory::Typeof(isolate());
5040   CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5041   __ bind(&end);
5042 }
5043 
5044 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5045 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5046   Register input = ToRegister(instr->value());
5047 
5048   Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5049                                                   instr->FalseLabel(chunk_),
5050                                                   input,
5051                                                   instr->type_literal());
5052   if (final_branch_condition != kNoCondition) {
5053     EmitBranch(instr, final_branch_condition);
5054   }
5055 }
5056 
5057 
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name)5058 Condition LCodeGen::EmitTypeofIs(Label* true_label,
5059                                  Label* false_label,
5060                                  Register input,
5061                                  Handle<String> type_name) {
5062   Condition final_branch_condition = kNoCondition;
5063   Register scratch = scratch0();
5064   Factory* factory = isolate()->factory();
5065   if (String::Equals(type_name, factory->number_string())) {
5066     __ JumpIfSmi(input, true_label);
5067     __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5068     __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
5069     final_branch_condition = eq;
5070 
5071   } else if (String::Equals(type_name, factory->string_string())) {
5072     __ JumpIfSmi(input, false_label);
5073     __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
5074     final_branch_condition = lt;
5075 
5076   } else if (String::Equals(type_name, factory->symbol_string())) {
5077     __ JumpIfSmi(input, false_label);
5078     __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
5079     final_branch_condition = eq;
5080 
5081   } else if (String::Equals(type_name, factory->boolean_string())) {
5082     __ CompareRoot(input, Heap::kTrueValueRootIndex);
5083     __ b(eq, true_label);
5084     __ CompareRoot(input, Heap::kFalseValueRootIndex);
5085     final_branch_condition = eq;
5086 
5087   } else if (String::Equals(type_name, factory->undefined_string())) {
5088     __ CompareRoot(input, Heap::kNullValueRootIndex);
5089     __ b(eq, false_label);
5090     __ JumpIfSmi(input, false_label);
5091     // Check for undetectable objects => true.
5092     __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5093     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5094     __ tst(scratch, Operand(1 << Map::kIsUndetectable));
5095     final_branch_condition = ne;
5096 
5097   } else if (String::Equals(type_name, factory->function_string())) {
5098     __ JumpIfSmi(input, false_label);
5099     __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5100     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5101     __ and_(scratch, scratch,
5102             Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5103     __ cmp(scratch, Operand(1 << Map::kIsCallable));
5104     final_branch_condition = eq;
5105 
5106   } else if (String::Equals(type_name, factory->object_string())) {
5107     __ JumpIfSmi(input, false_label);
5108     __ CompareRoot(input, Heap::kNullValueRootIndex);
5109     __ b(eq, true_label);
5110     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5111     __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
5112     __ b(lt, false_label);
5113     // Check for callable or undetectable objects => false.
5114     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5115     __ tst(scratch,
5116            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5117     final_branch_condition = eq;
5118 
5119 // clang-format off
5120 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)        \
5121   } else if (String::Equals(type_name, factory->type##_string())) {  \
5122     __ JumpIfSmi(input, false_label);                                \
5123     __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
5124     __ CompareRoot(scratch, Heap::k##Type##MapRootIndex);            \
5125     final_branch_condition = eq;
5126   SIMD128_TYPES(SIMD128_TYPE)
5127 #undef SIMD128_TYPE
5128     // clang-format on
5129 
5130   } else {
5131     __ b(false_label);
5132   }
5133 
5134   return final_branch_condition;
5135 }
5136 
5137 
EnsureSpaceForLazyDeopt(int space_needed)5138 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5139   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5140     // Ensure that we have enough space after the previous lazy-bailout
5141     // instruction for patching the code here.
5142     int current_pc = masm()->pc_offset();
5143     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5144       // Block literal pool emission for duration of padding.
5145       Assembler::BlockConstPoolScope block_const_pool(masm());
5146       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5147       DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5148       while (padding_size > 0) {
5149         __ nop();
5150         padding_size -= Assembler::kInstrSize;
5151       }
5152     }
5153   }
5154   last_lazy_deopt_pc_ = masm()->pc_offset();
5155 }
5156 
5157 
DoLazyBailout(LLazyBailout * instr)5158 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5159   last_lazy_deopt_pc_ = masm()->pc_offset();
5160   DCHECK(instr->HasEnvironment());
5161   LEnvironment* env = instr->environment();
5162   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5163   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5164 }
5165 
5166 
DoDeoptimize(LDeoptimize * instr)5167 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5168   Deoptimizer::BailoutType type = instr->hydrogen()->type();
5169   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5170   // needed return address), even though the implementation of LAZY and EAGER is
5171   // now identical. When LAZY is eventually completely folded into EAGER, remove
5172   // the special case below.
5173   if (info()->IsStub() && type == Deoptimizer::EAGER) {
5174     type = Deoptimizer::LAZY;
5175   }
5176 
5177   DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
5178 }
5179 
5180 
DoDummy(LDummy * instr)5181 void LCodeGen::DoDummy(LDummy* instr) {
5182   // Nothing to see here, move on!
5183 }
5184 
5185 
DoDummyUse(LDummyUse * instr)5186 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5187   // Nothing to see here, move on!
5188 }
5189 
5190 
DoDeferredStackCheck(LStackCheck * instr)5191 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5192   PushSafepointRegistersScope scope(this);
5193   LoadContextFromDeferred(instr->context());
5194   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5195   RecordSafepointWithLazyDeopt(
5196       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5197   DCHECK(instr->HasEnvironment());
5198   LEnvironment* env = instr->environment();
5199   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5200 }
5201 
5202 
DoStackCheck(LStackCheck * instr)5203 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5204   class DeferredStackCheck final : public LDeferredCode {
5205    public:
5206     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5207         : LDeferredCode(codegen), instr_(instr) { }
5208     void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5209     LInstruction* instr() override { return instr_; }
5210 
5211    private:
5212     LStackCheck* instr_;
5213   };
5214 
5215   DCHECK(instr->HasEnvironment());
5216   LEnvironment* env = instr->environment();
5217   // There is no LLazyBailout instruction for stack-checks. We have to
5218   // prepare for lazy deoptimization explicitly here.
5219   if (instr->hydrogen()->is_function_entry()) {
5220     // Perform stack overflow check.
5221     Label done;
5222     __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5223     __ cmp(sp, Operand(ip));
5224     __ b(hs, &done);
5225     Handle<Code> stack_check = isolate()->builtins()->StackCheck();
5226     PredictableCodeSizeScope predictable(masm());
5227     predictable.ExpectSize(CallCodeSize(stack_check, RelocInfo::CODE_TARGET));
5228     DCHECK(instr->context()->IsRegister());
5229     DCHECK(ToRegister(instr->context()).is(cp));
5230     CallCode(stack_check, RelocInfo::CODE_TARGET, instr);
5231     __ bind(&done);
5232   } else {
5233     DCHECK(instr->hydrogen()->is_backwards_branch());
5234     // Perform stack overflow check if this goto needs it before jumping.
5235     DeferredStackCheck* deferred_stack_check =
5236         new(zone()) DeferredStackCheck(this, instr);
5237     __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5238     __ cmp(sp, Operand(ip));
5239     __ b(lo, deferred_stack_check->entry());
5240     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5241     __ bind(instr->done_label());
5242     deferred_stack_check->SetExit(instr->done_label());
5243     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5244     // Don't record a deoptimization index for the safepoint here.
5245     // This will be done explicitly when emitting call and the safepoint in
5246     // the deferred code.
5247   }
5248 }
5249 
5250 
DoOsrEntry(LOsrEntry * instr)5251 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5252   // This is a pseudo-instruction that ensures that the environment here is
5253   // properly registered for deoptimization and records the assembler's PC
5254   // offset.
5255   LEnvironment* environment = instr->environment();
5256 
5257   // If the environment were already registered, we would have no way of
5258   // backpatching it with the spill slot operands.
5259   DCHECK(!environment->HasBeenRegistered());
5260   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5261 
5262   GenerateOsrPrologue();
5263 }
5264 
5265 
DoForInPrepareMap(LForInPrepareMap * instr)5266 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5267   Label use_cache, call_runtime;
5268   __ CheckEnumCache(&call_runtime);
5269 
5270   __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
5271   __ b(&use_cache);
5272 
5273   // Get the set of properties to enumerate.
5274   __ bind(&call_runtime);
5275   __ push(r0);
5276   CallRuntime(Runtime::kForInEnumerate, instr);
5277   __ bind(&use_cache);
5278 }
5279 
5280 
DoForInCacheArray(LForInCacheArray * instr)5281 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5282   Register map = ToRegister(instr->map());
5283   Register result = ToRegister(instr->result());
5284   Label load_cache, done;
5285   __ EnumLength(result, map);
5286   __ cmp(result, Operand(Smi::kZero));
5287   __ b(ne, &load_cache);
5288   __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
5289   __ jmp(&done);
5290 
5291   __ bind(&load_cache);
5292   __ LoadInstanceDescriptors(map, result);
5293   __ ldr(result,
5294          FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5295   __ ldr(result,
5296          FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5297   __ cmp(result, Operand::Zero());
5298   DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache);
5299 
5300   __ bind(&done);
5301 }
5302 
5303 
DoCheckMapValue(LCheckMapValue * instr)5304 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5305   Register object = ToRegister(instr->value());
5306   Register map = ToRegister(instr->map());
5307   __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5308   __ cmp(map, scratch0());
5309   DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
5310 }
5311 
5312 
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5313 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5314                                            Register result,
5315                                            Register object,
5316                                            Register index) {
5317   PushSafepointRegistersScope scope(this);
5318   __ Push(object);
5319   __ Push(index);
5320   __ mov(cp, Operand::Zero());
5321   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5322   RecordSafepointWithRegisters(
5323       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5324   __ StoreToSafepointRegisterSlot(r0, result);
5325 }
5326 
5327 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5328 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5329   class DeferredLoadMutableDouble final : public LDeferredCode {
5330    public:
5331     DeferredLoadMutableDouble(LCodeGen* codegen,
5332                               LLoadFieldByIndex* instr,
5333                               Register result,
5334                               Register object,
5335                               Register index)
5336         : LDeferredCode(codegen),
5337           instr_(instr),
5338           result_(result),
5339           object_(object),
5340           index_(index) {
5341     }
5342     void Generate() override {
5343       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5344     }
5345     LInstruction* instr() override { return instr_; }
5346 
5347    private:
5348     LLoadFieldByIndex* instr_;
5349     Register result_;
5350     Register object_;
5351     Register index_;
5352   };
5353 
5354   Register object = ToRegister(instr->object());
5355   Register index = ToRegister(instr->index());
5356   Register result = ToRegister(instr->result());
5357   Register scratch = scratch0();
5358 
5359   DeferredLoadMutableDouble* deferred;
5360   deferred = new(zone()) DeferredLoadMutableDouble(
5361       this, instr, result, object, index);
5362 
5363   Label out_of_object, done;
5364 
5365   __ tst(index, Operand(Smi::FromInt(1)));
5366   __ b(ne, deferred->entry());
5367   __ mov(index, Operand(index, ASR, 1));
5368 
5369   __ cmp(index, Operand::Zero());
5370   __ b(lt, &out_of_object);
5371 
5372   __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index));
5373   __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5374 
5375   __ b(&done);
5376 
5377   __ bind(&out_of_object);
5378   __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5379   // Index is equal to negated out of object property index plus 1.
5380   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
5381   __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index));
5382   __ ldr(result, FieldMemOperand(scratch,
5383                                  FixedArray::kHeaderSize - kPointerSize));
5384   __ bind(deferred->exit());
5385   __ bind(&done);
5386 }
5387 
5388 #undef __
5389 
5390 }  // namespace internal
5391 }  // namespace v8
5392