• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kReturnRegister2 = {Register::kCode_edi};
20 const Register kJSFunctionRegister = {Register::kCode_edi};
21 const Register kContextRegister = {Register::kCode_esi};
22 const Register kAllocateSizeRegister = {Register::kCode_edx};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
31 
32 // Convenience for platform-independent signatures.  We do not normally
33 // distinguish memory operands from other operands on ia32.
34 typedef Operand MemOperand;
35 
36 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
37 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
38 enum PointersToHereCheck {
39   kPointersToHereMaybeInteresting,
40   kPointersToHereAreAlwaysInteresting
41 };
42 
43 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
44 
45 enum class ReturnAddressState { kOnStack, kNotOnStack };
46 
47 #ifdef DEBUG
48 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
49                 Register reg4 = no_reg, Register reg5 = no_reg,
50                 Register reg6 = no_reg, Register reg7 = no_reg,
51                 Register reg8 = no_reg);
52 #endif
53 
54 // MacroAssembler implements a collection of frequently used macros.
55 class MacroAssembler: public Assembler {
56  public:
57   MacroAssembler(Isolate* isolate, void* buffer, int size,
58                  CodeObjectRequired create_code_object);
59 
60   void Load(Register dst, const Operand& src, Representation r);
61   void Store(Register src, const Operand& dst, Representation r);
62 
63   // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)64   void Set(Register dst, int32_t x) {
65     if (x == 0) {
66       xor_(dst, dst);
67     } else {
68       mov(dst, Immediate(x));
69     }
70   }
Set(const Operand & dst,int32_t x)71   void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
72 
73   // Operations on roots in the root-array.
74   void LoadRoot(Register destination, Heap::RootListIndex index);
75   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
76   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
77   // These methods can only be used with constant roots (i.e. non-writable
78   // and not in new space).
79   void CompareRoot(Register with, Heap::RootListIndex index);
80   void CompareRoot(const Operand& with, Heap::RootListIndex index);
81   void PushRoot(Heap::RootListIndex index);
82 
83   // Compare the object in a register to a value and jump if they are equal.
84   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
85                   Label::Distance if_equal_distance = Label::kFar) {
86     CompareRoot(with, index);
87     j(equal, if_equal, if_equal_distance);
88   }
89   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
90                   Label* if_equal,
91                   Label::Distance if_equal_distance = Label::kFar) {
92     CompareRoot(with, index);
93     j(equal, if_equal, if_equal_distance);
94   }
95 
96   // Compare the object in a register to a value and jump if they are not equal.
97   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
98                      Label* if_not_equal,
99                      Label::Distance if_not_equal_distance = Label::kFar) {
100     CompareRoot(with, index);
101     j(not_equal, if_not_equal, if_not_equal_distance);
102   }
103   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
104                      Label* if_not_equal,
105                      Label::Distance if_not_equal_distance = Label::kFar) {
106     CompareRoot(with, index);
107     j(not_equal, if_not_equal, if_not_equal_distance);
108   }
109 
110   // These functions do not arrange the registers in any particular order so
111   // they are not useful for calls that can cause a GC.  The caller can
112   // exclude up to 3 registers that do not need to be saved and restored.
113   void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
114                        Register exclusion2 = no_reg,
115                        Register exclusion3 = no_reg);
116   void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
117                       Register exclusion2 = no_reg,
118                       Register exclusion3 = no_reg);
119 
120   // ---------------------------------------------------------------------------
121   // GC Support
122   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
123 
124   // Record in the remembered set the fact that we have a pointer to new space
125   // at the address pointed to by the addr register.  Only works if addr is not
126   // in new space.
127   void RememberedSetHelper(Register object,  // Used for debug code.
128                            Register addr, Register scratch,
129                            SaveFPRegsMode save_fp,
130                            RememberedSetFinalAction and_then);
131 
132   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
133                      Label* condition_met,
134                      Label::Distance condition_met_distance = Label::kFar);
135 
136   void CheckPageFlagForMap(
137       Handle<Map> map, int mask, Condition cc, Label* condition_met,
138       Label::Distance condition_met_distance = Label::kFar);
139 
140   // Check if object is in new space.  Jumps if the object is not in new space.
141   // The register scratch can be object itself, but scratch will be clobbered.
142   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
143                            Label::Distance distance = Label::kFar) {
144     InNewSpace(object, scratch, zero, branch, distance);
145   }
146 
147   // Check if object is in new space.  Jumps if the object is in new space.
148   // The register scratch can be object itself, but it will be clobbered.
149   void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
150                         Label::Distance distance = Label::kFar) {
151     InNewSpace(object, scratch, not_zero, branch, distance);
152   }
153 
154   // Check if an object has a given incremental marking color.  Also uses ecx!
155   void HasColor(Register object, Register scratch0, Register scratch1,
156                 Label* has_color, Label::Distance has_color_distance,
157                 int first_bit, int second_bit);
158 
159   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
160                    Label* on_black,
161                    Label::Distance on_black_distance = Label::kFar);
162 
163   // Checks the color of an object.  If the object is white we jump to the
164   // incremental marker.
165   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
166                    Label* value_is_white, Label::Distance distance);
167 
168   // Notify the garbage collector that we wrote a pointer into an object.
169   // |object| is the object being stored into, |value| is the object being
170   // stored.  value and scratch registers are clobbered by the operation.
171   // The offset is the offset from the start of the object, not the offset from
172   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
173   void RecordWriteField(
174       Register object, int offset, Register value, Register scratch,
175       SaveFPRegsMode save_fp,
176       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
177       SmiCheck smi_check = INLINE_SMI_CHECK,
178       PointersToHereCheck pointers_to_here_check_for_value =
179           kPointersToHereMaybeInteresting);
180 
181   // As above, but the offset has the tag presubtracted.  For use with
182   // Operand(reg, off).
183   void RecordWriteContextSlot(
184       Register context, int offset, Register value, Register scratch,
185       SaveFPRegsMode save_fp,
186       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
187       SmiCheck smi_check = INLINE_SMI_CHECK,
188       PointersToHereCheck pointers_to_here_check_for_value =
189           kPointersToHereMaybeInteresting) {
190     RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
191                      remembered_set_action, smi_check,
192                      pointers_to_here_check_for_value);
193   }
194 
195   // Notify the garbage collector that we wrote a pointer into a fixed array.
196   // |array| is the array being stored into, |value| is the
197   // object being stored.  |index| is the array index represented as a
198   // Smi. All registers are clobbered by the operation RecordWriteArray
199   // filters out smis so it does not update the write barrier if the
200   // value is a smi.
201   void RecordWriteArray(
202       Register array, Register value, Register index, SaveFPRegsMode save_fp,
203       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
204       SmiCheck smi_check = INLINE_SMI_CHECK,
205       PointersToHereCheck pointers_to_here_check_for_value =
206           kPointersToHereMaybeInteresting);
207 
208   // For page containing |object| mark region covering |address|
209   // dirty. |object| is the object being stored into, |value| is the
210   // object being stored. The address and value registers are clobbered by the
211   // operation. RecordWrite filters out smis so it does not update the
212   // write barrier if the value is a smi.
213   void RecordWrite(
214       Register object, Register address, Register value, SaveFPRegsMode save_fp,
215       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
216       SmiCheck smi_check = INLINE_SMI_CHECK,
217       PointersToHereCheck pointers_to_here_check_for_value =
218           kPointersToHereMaybeInteresting);
219 
220   // Notify the garbage collector that we wrote a code entry into a
221   // JSFunction. Only scratch is clobbered by the operation.
222   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
223                                  Register scratch);
224 
225   // For page containing |object| mark the region covering the object's map
226   // dirty. |object| is the object being stored into, |map| is the Map object
227   // that was stored.
228   void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
229                          Register scratch2, SaveFPRegsMode save_fp);
230 
231   // ---------------------------------------------------------------------------
232   // Debugger Support
233 
234   void DebugBreak();
235 
236   // Generates function and stub prologue code.
237   void StubPrologue(StackFrame::Type type);
238   void Prologue(bool code_pre_aging);
239 
240   // Enter specific kind of exit frame. Expects the number of
241   // arguments in register eax and sets up the number of arguments in
242   // register edi and the pointer to the first argument in register
243   // esi.
244   void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type);
245 
246   void EnterApiExitFrame(int argc);
247 
248   // Leave the current exit frame. Expects the return value in
249   // register eax:edx (untouched) and the pointer to the first
250   // argument in register esi (if pop_arguments == true).
251   void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
252 
253   // Leave the current exit frame. Expects the return value in
254   // register eax (untouched).
255   void LeaveApiExitFrame(bool restore_context);
256 
257   // Find the function context up the context chain.
258   void LoadContext(Register dst, int context_chain_length);
259 
260   // Load the global proxy from the current context.
261   void LoadGlobalProxy(Register dst);
262 
263   // Conditionally load the cached Array transitioned map of type
264   // transitioned_kind from the native context if the map in register
265   // map_in_out is the cached Array map in the native context of
266   // expected_kind.
267   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
268                                            ElementsKind transitioned_kind,
269                                            Register map_in_out,
270                                            Register scratch,
271                                            Label* no_map_match);
272 
273   // Load the global function with the given index.
274   void LoadGlobalFunction(int index, Register function);
275 
276   // Load the initial map from the global function. The registers
277   // function and map can be the same.
278   void LoadGlobalFunctionInitialMap(Register function, Register map);
279 
280   // Push and pop the registers that can hold pointers.
PushSafepointRegisters()281   void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()282   void PopSafepointRegisters() { popad(); }
283   // Store the value in register/immediate src in the safepoint
284   // register stack slot for register dst.
285   void StoreToSafepointRegisterSlot(Register dst, Register src);
286   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
287   void LoadFromSafepointRegisterSlot(Register dst, Register src);
288 
289   // Nop, because ia32 does not have a root register.
InitializeRootRegister()290   void InitializeRootRegister() {}
291 
292   void LoadHeapObject(Register result, Handle<HeapObject> object);
293   void CmpHeapObject(Register reg, Handle<HeapObject> object);
294   void PushHeapObject(Handle<HeapObject> object);
295 
LoadObject(Register result,Handle<Object> object)296   void LoadObject(Register result, Handle<Object> object) {
297     AllowDeferredHandleDereference heap_object_check;
298     if (object->IsHeapObject()) {
299       LoadHeapObject(result, Handle<HeapObject>::cast(object));
300     } else {
301       Move(result, Immediate(object));
302     }
303   }
304 
CmpObject(Register reg,Handle<Object> object)305   void CmpObject(Register reg, Handle<Object> object) {
306     AllowDeferredHandleDereference heap_object_check;
307     if (object->IsHeapObject()) {
308       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
309     } else {
310       cmp(reg, Immediate(object));
311     }
312   }
313 
314   // Compare the given value and the value of weak cell.
315   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
316 
317   void GetWeakValue(Register value, Handle<WeakCell> cell);
318 
319   // Load the value of the weak cell in the value register. Branch to the given
320   // miss label if the weak cell was cleared.
321   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
322 
323   // ---------------------------------------------------------------------------
324   // JavaScript invokes
325 
326   // Removes current frame and its arguments from the stack preserving
327   // the arguments and a return address pushed to the stack for the next call.
328   // |ra_state| defines whether return address is already pushed to stack or
329   // not. Both |callee_args_count| and |caller_args_count_reg| do not include
330   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
331   // is trashed. |number_of_temp_values_after_return_address| specifies
332   // the number of words pushed to the stack after the return address. This is
333   // to allow "allocation" of scratch registers that this function requires
334   // by saving their values on the stack.
335   void PrepareForTailCall(const ParameterCount& callee_args_count,
336                           Register caller_args_count_reg, Register scratch0,
337                           Register scratch1, ReturnAddressState ra_state,
338                           int number_of_temp_values_after_return_address);
339 
340   // Invoke the JavaScript function code by either calling or jumping.
341 
342   void InvokeFunctionCode(Register function, Register new_target,
343                           const ParameterCount& expected,
344                           const ParameterCount& actual, InvokeFlag flag,
345                           const CallWrapper& call_wrapper);
346 
347   void FloodFunctionIfStepping(Register fun, Register new_target,
348                                const ParameterCount& expected,
349                                const ParameterCount& actual);
350 
351   // Invoke the JavaScript function in the given register. Changes the
352   // current context to the context in the function before invoking.
353   void InvokeFunction(Register function, Register new_target,
354                       const ParameterCount& actual, InvokeFlag flag,
355                       const CallWrapper& call_wrapper);
356 
357   void InvokeFunction(Register function, const ParameterCount& expected,
358                       const ParameterCount& actual, InvokeFlag flag,
359                       const CallWrapper& call_wrapper);
360 
361   void InvokeFunction(Handle<JSFunction> function,
362                       const ParameterCount& expected,
363                       const ParameterCount& actual, InvokeFlag flag,
364                       const CallWrapper& call_wrapper);
365 
366   // Expression support
367   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
368   // hinders register renaming and makes dependence chains longer. So we use
369   // xorps to clear the dst register before cvtsi2sd to solve this issue.
Cvtsi2sd(XMMRegister dst,Register src)370   void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
371   void Cvtsi2sd(XMMRegister dst, const Operand& src);
372 
373   void Cvtui2ss(XMMRegister dst, Register src, Register tmp);
374 
375   void ShlPair(Register high, Register low, uint8_t imm8);
376   void ShlPair_cl(Register high, Register low);
377   void ShrPair(Register high, Register low, uint8_t imm8);
378   void ShrPair_cl(Register high, Register src);
379   void SarPair(Register high, Register low, uint8_t imm8);
380   void SarPair_cl(Register high, Register low);
381 
382   // Support for constant splitting.
383   bool IsUnsafeImmediate(const Immediate& x);
384   void SafeMove(Register dst, const Immediate& x);
385   void SafePush(const Immediate& x);
386 
387   // Compare object type for heap object.
388   // Incoming register is heap_object and outgoing register is map.
389   void CmpObjectType(Register heap_object, InstanceType type, Register map);
390 
391   // Compare instance type for map.
392   void CmpInstanceType(Register map, InstanceType type);
393 
394   // Check if a map for a JSObject indicates that the object can have both smi
395   // and HeapObject elements.  Jump to the specified label if it does not.
396   void CheckFastObjectElements(Register map, Label* fail,
397                                Label::Distance distance = Label::kFar);
398 
399   // Check if a map for a JSObject indicates that the object has fast smi only
400   // elements.  Jump to the specified label if it does not.
401   void CheckFastSmiElements(Register map, Label* fail,
402                             Label::Distance distance = Label::kFar);
403 
404   // Check to see if maybe_number can be stored as a double in
405   // FastDoubleElements. If it can, store it at the index specified by key in
406   // the FastDoubleElements array elements, otherwise jump to fail.
407   void StoreNumberToDoubleElements(Register maybe_number, Register elements,
408                                    Register key, Register scratch1,
409                                    XMMRegister scratch2, Label* fail,
410                                    int offset = 0);
411 
412   // Compare an object's map with the specified map.
413   void CompareMap(Register obj, Handle<Map> map);
414 
415   // Check if the map of an object is equal to a specified map and branch to
416   // label if not. Skip the smi check if not required (object is known to be a
417   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
418   // against maps that are ElementsKind transition maps of the specified map.
419   void CheckMap(Register obj, Handle<Map> map, Label* fail,
420                 SmiCheckType smi_check_type);
421 
422   // Check if the map of an object is equal to a specified weak map and branch
423   // to a specified target if equal. Skip the smi check if not required
424   // (object is known to be a heap object)
425   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
426                        Handle<WeakCell> cell, Handle<Code> success,
427                        SmiCheckType smi_check_type);
428 
429   // Check if the object in register heap_object is a string. Afterwards the
430   // register map contains the object map and the register instance_type
431   // contains the instance_type. The registers map and instance_type can be the
432   // same in which case it contains the instance type afterwards. Either of the
433   // registers map and instance_type can be the same as heap_object.
434   Condition IsObjectStringType(Register heap_object, Register map,
435                                Register instance_type);
436 
437   // Check if the object in register heap_object is a name. Afterwards the
438   // register map contains the object map and the register instance_type
439   // contains the instance_type. The registers map and instance_type can be the
440   // same in which case it contains the instance type afterwards. Either of the
441   // registers map and instance_type can be the same as heap_object.
442   Condition IsObjectNameType(Register heap_object, Register map,
443                              Register instance_type);
444 
445   // FCmp is similar to integer cmp, but requires unsigned
446   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
447   void FCmp();
448 
449   void ClampUint8(Register reg);
450 
451   void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
452                           Register result_reg);
453 
454   void SlowTruncateToI(Register result_reg, Register input_reg,
455       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
456 
457   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
458   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
459 
460   void DoubleToI(Register result_reg, XMMRegister input_reg,
461                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
462                  Label* lost_precision, Label* is_nan, Label* minus_zero,
463                  Label::Distance dst = Label::kFar);
464 
465   // Smi tagging support.
SmiTag(Register reg)466   void SmiTag(Register reg) {
467     STATIC_ASSERT(kSmiTag == 0);
468     STATIC_ASSERT(kSmiTagSize == 1);
469     add(reg, reg);
470   }
SmiUntag(Register reg)471   void SmiUntag(Register reg) {
472     sar(reg, kSmiTagSize);
473   }
474 
475   // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)476   void SmiUntag(Register reg, Label* is_smi) {
477     STATIC_ASSERT(kSmiTagSize == 1);
478     sar(reg, kSmiTagSize);
479     STATIC_ASSERT(kSmiTag == 0);
480     j(not_carry, is_smi);
481   }
482 
LoadUint32(XMMRegister dst,Register src)483   void LoadUint32(XMMRegister dst, Register src) {
484     LoadUint32(dst, Operand(src));
485   }
486   void LoadUint32(XMMRegister dst, const Operand& src);
487 
488   // Jump the register contains a smi.
489   inline void JumpIfSmi(Register value, Label* smi_label,
490                         Label::Distance distance = Label::kFar) {
491     test(value, Immediate(kSmiTagMask));
492     j(zero, smi_label, distance);
493   }
494   // Jump if the operand is a smi.
495   inline void JumpIfSmi(Operand value, Label* smi_label,
496                         Label::Distance distance = Label::kFar) {
497     test(value, Immediate(kSmiTagMask));
498     j(zero, smi_label, distance);
499   }
500   // Jump if register contain a non-smi.
501   inline void JumpIfNotSmi(Register value, Label* not_smi_label,
502                            Label::Distance distance = Label::kFar) {
503     test(value, Immediate(kSmiTagMask));
504     j(not_zero, not_smi_label, distance);
505   }
506 
507   // Jump if the value cannot be represented by a smi.
508   inline void JumpIfNotValidSmiValue(Register value, Register scratch,
509                                      Label* on_invalid,
510                                      Label::Distance distance = Label::kFar) {
511     mov(scratch, value);
512     add(scratch, Immediate(0x40000000U));
513     j(sign, on_invalid, distance);
514   }
515 
516   // Jump if the unsigned integer value cannot be represented by a smi.
517   inline void JumpIfUIntNotValidSmiValue(
518       Register value, Label* on_invalid,
519       Label::Distance distance = Label::kFar) {
520     cmp(value, Immediate(0x40000000U));
521     j(above_equal, on_invalid, distance);
522   }
523 
524   void LoadInstanceDescriptors(Register map, Register descriptors);
525   void EnumLength(Register dst, Register map);
526   void NumberOfOwnDescriptors(Register dst, Register map);
527   void LoadAccessor(Register dst, Register holder, int accessor_index,
528                     AccessorComponent accessor);
529 
530   template<typename Field>
DecodeField(Register reg)531   void DecodeField(Register reg) {
532     static const int shift = Field::kShift;
533     static const int mask = Field::kMask >> Field::kShift;
534     if (shift != 0) {
535       sar(reg, shift);
536     }
537     and_(reg, Immediate(mask));
538   }
539 
540   template<typename Field>
DecodeFieldToSmi(Register reg)541   void DecodeFieldToSmi(Register reg) {
542     static const int shift = Field::kShift;
543     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
544     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
545     STATIC_ASSERT(kSmiTag == 0);
546     if (shift < kSmiTagSize) {
547       shl(reg, kSmiTagSize - shift);
548     } else if (shift > kSmiTagSize) {
549       sar(reg, shift - kSmiTagSize);
550     }
551     and_(reg, Immediate(mask));
552   }
553 
554   void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
555 
556   // Abort execution if argument is not a number, enabled via --debug-code.
557   void AssertNumber(Register object);
558   void AssertNotNumber(Register object);
559 
560   // Abort execution if argument is not a smi, enabled via --debug-code.
561   void AssertSmi(Register object);
562 
563   // Abort execution if argument is a smi, enabled via --debug-code.
564   void AssertNotSmi(Register object);
565 
566   // Abort execution if argument is not a string, enabled via --debug-code.
567   void AssertString(Register object);
568 
569   // Abort execution if argument is not a name, enabled via --debug-code.
570   void AssertName(Register object);
571 
572   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
573   void AssertFunction(Register object);
574 
575   // Abort execution if argument is not a JSBoundFunction,
576   // enabled via --debug-code.
577   void AssertBoundFunction(Register object);
578 
579   // Abort execution if argument is not a JSGeneratorObject,
580   // enabled via --debug-code.
581   void AssertGeneratorObject(Register object);
582 
583   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
584   void AssertReceiver(Register object);
585 
586   // Abort execution if argument is not undefined or an AllocationSite, enabled
587   // via --debug-code.
588   void AssertUndefinedOrAllocationSite(Register object);
589 
590   // ---------------------------------------------------------------------------
591   // Exception handling
592 
593   // Push a new stack handler and link it into stack handler chain.
594   void PushStackHandler();
595 
596   // Unlink the stack handler on top of the stack from the stack handler chain.
597   void PopStackHandler();
598 
599   // ---------------------------------------------------------------------------
600   // Inline caching support
601 
602   void GetNumberHash(Register r0, Register scratch);
603 
604   // ---------------------------------------------------------------------------
605   // Allocation support
606 
607   // Allocate an object in new space or old space. If the given space
608   // is exhausted control continues at the gc_required label. The allocated
609   // object is returned in result and end of the new object is returned in
610   // result_end. The register scratch can be passed as no_reg in which case
611   // an additional object reference will be added to the reloc info. The
612   // returned pointers in result and result_end have not yet been tagged as
613   // heap objects. If result_contains_top_on_entry is true the content of
614   // result is known to be the allocation top on entry (could be result_end
615   // from a previous call). If result_contains_top_on_entry is true scratch
616   // should be no_reg as it is never used.
617   void Allocate(int object_size, Register result, Register result_end,
618                 Register scratch, Label* gc_required, AllocationFlags flags);
619 
620   void Allocate(int header_size, ScaleFactor element_size,
621                 Register element_count, RegisterValueType element_count_type,
622                 Register result, Register result_end, Register scratch,
623                 Label* gc_required, AllocationFlags flags);
624 
625   void Allocate(Register object_size, Register result, Register result_end,
626                 Register scratch, Label* gc_required, AllocationFlags flags);
627 
628   // FastAllocate is right now only used for folded allocations. It just
629   // increments the top pointer without checking against limit. This can only
630   // be done if it was proved earlier that the allocation will succeed.
631   void FastAllocate(int object_size, Register result, Register result_end,
632                     AllocationFlags flags);
633   void FastAllocate(Register object_size, Register result, Register result_end,
634                     AllocationFlags flags);
635 
636   // Allocate a heap number in new space with undefined value. The
637   // register scratch2 can be passed as no_reg; the others must be
638   // valid registers. Returns tagged pointer in result register, or
639   // jumps to gc_required if new space is full.
640   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
641                           Label* gc_required, MutableMode mode = IMMUTABLE);
642 
643   // Allocate a sequential string. All the header fields of the string object
644   // are initialized.
645   void AllocateTwoByteString(Register result, Register length,
646                              Register scratch1, Register scratch2,
647                              Register scratch3, Label* gc_required);
648   void AllocateOneByteString(Register result, Register length,
649                              Register scratch1, Register scratch2,
650                              Register scratch3, Label* gc_required);
651   void AllocateOneByteString(Register result, int length, Register scratch1,
652                              Register scratch2, Label* gc_required);
653 
654   // Allocate a raw cons string object. Only the map field of the result is
655   // initialized.
656   void AllocateTwoByteConsString(Register result, Register scratch1,
657                                  Register scratch2, Label* gc_required);
658   void AllocateOneByteConsString(Register result, Register scratch1,
659                                  Register scratch2, Label* gc_required);
660 
661   // Allocate a raw sliced string object. Only the map field of the result is
662   // initialized.
663   void AllocateTwoByteSlicedString(Register result, Register scratch1,
664                                    Register scratch2, Label* gc_required);
665   void AllocateOneByteSlicedString(Register result, Register scratch1,
666                                    Register scratch2, Label* gc_required);
667 
668   // Allocate and initialize a JSValue wrapper with the specified {constructor}
669   // and {value}.
670   void AllocateJSValue(Register result, Register constructor, Register value,
671                        Register scratch, Label* gc_required);
672 
673   // Initialize fields with filler values.  Fields starting at |current_address|
674   // not including |end_address| are overwritten with the value in |filler|.  At
675   // the end the loop, |current_address| takes the value of |end_address|.
676   void InitializeFieldsWithFiller(Register current_address,
677                                   Register end_address, Register filler);
678 
679   // ---------------------------------------------------------------------------
680   // Support functions.
681 
682   // Check a boolean-bit of a Smi field.
683   void BooleanBitTest(Register object, int field_offset, int bit_index);
684 
685   // Check if result is zero and op is negative.
686   void NegativeZeroTest(Register result, Register op, Label* then_label);
687 
688   // Check if result is zero and any of op1 and op2 are negative.
689   // Register scratch is destroyed, and it must be different from op2.
690   void NegativeZeroTest(Register result, Register op1, Register op2,
691                         Register scratch, Label* then_label);
692 
693   // Machine code version of Map::GetConstructor().
694   // |temp| holds |result|'s map when done.
695   void GetMapConstructor(Register result, Register map, Register temp);
696 
697   // Try to get function prototype of a function and puts the value in
698   // the result register. Checks that the function really is a
699   // function and jumps to the miss label if the fast checks fail. The
700   // function register will be untouched; the other registers may be
701   // clobbered.
702   void TryGetFunctionPrototype(Register function, Register result,
703                                Register scratch, Label* miss);
704 
705   // ---------------------------------------------------------------------------
706   // Runtime calls
707 
708   // Call a code stub.  Generate the code if necessary.
709   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
710 
711   // Tail call a code stub (jump).  Generate the code if necessary.
712   void TailCallStub(CodeStub* stub);
713 
714   // Return from a code stub after popping its arguments.
715   void StubReturn(int argc);
716 
717   // Call a runtime routine.
718   void CallRuntime(const Runtime::Function* f, int num_arguments,
719                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)720   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
721     const Runtime::Function* function = Runtime::FunctionForId(fid);
722     CallRuntime(function, function->nargs, kSaveFPRegs);
723   }
724 
725   // Convenience function: Same as above, but takes the fid instead.
726   void CallRuntime(Runtime::FunctionId fid,
727                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
728     const Runtime::Function* function = Runtime::FunctionForId(fid);
729     CallRuntime(function, function->nargs, save_doubles);
730   }
731 
732   // Convenience function: Same as above, but takes the fid instead.
733   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
734                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
735     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
736   }
737 
738   // Convenience function: call an external reference.
739   void CallExternalReference(ExternalReference ref, int num_arguments);
740 
741   // Convenience function: tail call a runtime routine (jump).
742   void TailCallRuntime(Runtime::FunctionId fid);
743 
744   // Before calling a C-function from generated code, align arguments on stack.
745   // After aligning the frame, arguments must be stored in esp[0], esp[4],
746   // etc., not pushed. The argument count assumes all arguments are word sized.
747   // Some compilers/platforms require the stack to be aligned when calling
748   // C++ code.
749   // Needs a scratch register to do some arithmetic. This register will be
750   // trashed.
751   void PrepareCallCFunction(int num_arguments, Register scratch);
752 
753   // Calls a C function and cleans up the space for arguments allocated
754   // by PrepareCallCFunction. The called function is not allowed to trigger a
755   // garbage collection, since that might move the code and invalidate the
756   // return address (unless this is somehow accounted for by the called
757   // function).
758   void CallCFunction(ExternalReference function, int num_arguments);
759   void CallCFunction(Register function, int num_arguments);
760 
761   // Jump to a runtime routine.
762   void JumpToExternalReference(const ExternalReference& ext,
763                                bool builtin_exit_frame = false);
764 
765   // ---------------------------------------------------------------------------
766   // Utilities
767 
768   void Ret();
769 
770   // Return and drop arguments from stack, where the number of arguments
771   // may be bigger than 2^16 - 1.  Requires a scratch register.
772   void Ret(int bytes_dropped, Register scratch);
773 
774   // Emit code that loads |parameter_index|'th parameter from the stack to
775   // the register according to the CallInterfaceDescriptor definition.
776   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
777   // below the caller's sp (on ia32 it's at least return address).
778   template <class Descriptor>
779   void LoadParameterFromStack(
780       Register reg, typename Descriptor::ParameterIndices parameter_index,
781       int sp_to_ra_offset_in_words = 1) {
782     DCHECK(Descriptor::kPassLastArgsOnStack);
783     DCHECK_LT(parameter_index, Descriptor::kParameterCount);
784     DCHECK_LE(Descriptor::kParameterCount - Descriptor::kStackArgumentsCount,
785               parameter_index);
786     int offset = (Descriptor::kParameterCount - parameter_index - 1 +
787                   sp_to_ra_offset_in_words) *
788                  kPointerSize;
789     mov(reg, Operand(esp, offset));
790   }
791 
792   // Emit code to discard a non-negative number of pointer-sized elements
793   // from the stack, clobbering only the esp register.
794   void Drop(int element_count);
795 
Call(Label * target)796   void Call(Label* target) { call(target); }
797   void Call(Handle<Code> target, RelocInfo::Mode rmode,
798             TypeFeedbackId id = TypeFeedbackId::None()) {
799     call(target, rmode, id);
800   }
Jump(Handle<Code> target,RelocInfo::Mode rmode)801   void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)802   void Push(Register src) { push(src); }
Push(const Operand & src)803   void Push(const Operand& src) { push(src); }
Push(Immediate value)804   void Push(Immediate value) { push(value); }
Pop(Register dst)805   void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)806   void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)807   void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)808   void PopReturnAddressTo(Register dst) { pop(dst); }
809 
810   // Non-SSE2 instructions.
811   void Pextrd(Register dst, XMMRegister src, int8_t imm8);
Pinsrd(XMMRegister dst,Register src,int8_t imm8)812   void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
813     Pinsrd(dst, Operand(src), imm8);
814   }
815   void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
816 
Lzcnt(Register dst,Register src)817   void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
818   void Lzcnt(Register dst, const Operand& src);
819 
Tzcnt(Register dst,Register src)820   void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
821   void Tzcnt(Register dst, const Operand& src);
822 
Popcnt(Register dst,Register src)823   void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
824   void Popcnt(Register dst, const Operand& src);
825 
826   // Move if the registers are not identical.
827   void Move(Register target, Register source);
828 
829   // Move a constant into a destination using the most efficient encoding.
830   void Move(Register dst, const Immediate& x);
831   void Move(const Operand& dst, const Immediate& x);
832 
833   // Move an immediate into an XMM register.
834   void Move(XMMRegister dst, uint32_t src);
835   void Move(XMMRegister dst, uint64_t src);
Move(XMMRegister dst,float src)836   void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
Move(XMMRegister dst,double src)837   void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
838 
Move(Register dst,Handle<Object> handle)839   void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
Move(Register dst,Smi * source)840   void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
841 
842   // Push a handle value.
Push(Handle<Object> handle)843   void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)844   void Push(Smi* smi) { Push(Immediate(smi)); }
845 
CodeObject()846   Handle<Object> CodeObject() {
847     DCHECK(!code_object_.is_null());
848     return code_object_;
849   }
850 
851   // Emit code for a truncating division by a constant. The dividend register is
852   // unchanged, the result is in edx, and eax gets clobbered.
853   void TruncatingDiv(Register dividend, int32_t divisor);
854 
855   // ---------------------------------------------------------------------------
856   // StatsCounter support
857 
858   void SetCounter(StatsCounter* counter, int value);
859   void IncrementCounter(StatsCounter* counter, int value);
860   void DecrementCounter(StatsCounter* counter, int value);
861   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
862   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
863 
864   // ---------------------------------------------------------------------------
865   // Debugging
866 
867   // Calls Abort(msg) if the condition cc is not satisfied.
868   // Use --debug_code to enable.
869   void Assert(Condition cc, BailoutReason reason);
870 
871   void AssertFastElements(Register elements);
872 
873   // Like Assert(), but always enabled.
874   void Check(Condition cc, BailoutReason reason);
875 
876   // Print a message to stdout and abort execution.
877   void Abort(BailoutReason reason);
878 
879   // Check that the stack is aligned.
880   void CheckStackAlignment();
881 
882   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)883   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()884   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)885   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()886   bool has_frame() { return has_frame_; }
887   inline bool AllowThisStubCall(CodeStub* stub);
888 
889   // ---------------------------------------------------------------------------
890   // String utilities.
891 
892   // Check whether the instance type represents a flat one-byte string. Jump to
893   // the label if not. If the instance type can be scratched specify same
894   // register for both instance type and scratch.
895   void JumpIfInstanceTypeIsNotSequentialOneByte(
896       Register instance_type, Register scratch,
897       Label* on_not_flat_one_byte_string);
898 
899   // Checks if both objects are sequential one-byte strings, and jumps to label
900   // if either is not.
901   void JumpIfNotBothSequentialOneByteStrings(
902       Register object1, Register object2, Register scratch1, Register scratch2,
903       Label* on_not_flat_one_byte_strings);
904 
905   // Checks if the given register or operand is a unique name
906   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
907                                        Label::Distance distance = Label::kFar) {
908     JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
909   }
910 
911   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
912                                        Label::Distance distance = Label::kFar);
913 
914   void EmitSeqStringSetCharCheck(Register string, Register index,
915                                  Register value, uint32_t encoding_mask);
916 
SafepointRegisterStackIndex(Register reg)917   static int SafepointRegisterStackIndex(Register reg) {
918     return SafepointRegisterStackIndex(reg.code());
919   }
920 
921   // Load the type feedback vector from a JavaScript frame.
922   void EmitLoadTypeFeedbackVector(Register vector);
923 
924   // Activation support.
925   void EnterFrame(StackFrame::Type type);
926   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
927   void LeaveFrame(StackFrame::Type type);
928 
929   void EnterBuiltinFrame(Register context, Register target, Register argc);
930   void LeaveBuiltinFrame(Register context, Register target, Register argc);
931 
932   // Expects object in eax and returns map with validated enum cache
933   // in eax.  Assumes that any other register can be used as a scratch.
934   void CheckEnumCache(Label* call_runtime);
935 
936   // AllocationMemento support. Arrays may have an associated
937   // AllocationMemento object that can be checked for in order to pretransition
938   // to another type.
939   // On entry, receiver_reg should point to the array object.
940   // scratch_reg gets clobbered.
941   // If allocation info is present, conditional code is set to equal.
942   void TestJSArrayForAllocationMemento(Register receiver_reg,
943                                        Register scratch_reg,
944                                        Label* no_memento_found);
945 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)946   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
947                                          Register scratch_reg,
948                                          Label* memento_found) {
949     Label no_memento_found;
950     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
951                                     &no_memento_found);
952     j(equal, memento_found);
953     bind(&no_memento_found);
954   }
955 
956   // Jumps to found label if a prototype map has dictionary elements.
957   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
958                                         Register scratch1, Label* found);
959 
960  private:
961   bool generating_stub_;
962   bool has_frame_;
963   // This handle will be patched with the code object on installation.
964   Handle<Object> code_object_;
965 
966   // Helper functions for generating invokes.
967   void InvokePrologue(const ParameterCount& expected,
968                       const ParameterCount& actual, Label* done,
969                       bool* definitely_mismatches, InvokeFlag flag,
970                       Label::Distance done_distance,
971                       const CallWrapper& call_wrapper);
972 
973   void EnterExitFramePrologue(StackFrame::Type frame_type);
974   void EnterExitFrameEpilogue(int argc, bool save_doubles);
975 
976   void LeaveExitFrameEpilogue(bool restore_context);
977 
978   // Allocation support helpers.
979   void LoadAllocationTopHelper(Register result, Register scratch,
980                                AllocationFlags flags);
981 
982   void UpdateAllocationTopHelper(Register result_end, Register scratch,
983                                  AllocationFlags flags);
984 
985   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
986   void InNewSpace(Register object, Register scratch, Condition cc,
987                   Label* condition_met,
988                   Label::Distance condition_met_distance = Label::kFar);
989 
990   // Helper for finding the mark bits for an address.  Afterwards, the
991   // bitmap register points at the word with the mark bits and the mask
992   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
993   // unchanged.
994   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
995                           Register mask_reg);
996 
997   // Compute memory operands for safepoint stack slots.
998   Operand SafepointRegisterSlot(Register reg);
999   static int SafepointRegisterStackIndex(int reg_code);
1000 
1001   // Needs access to SafepointRegisterStackIndex for compiled frame
1002   // traversal.
1003   friend class StandardFrame;
1004 };
1005 
1006 // The code patcher is used to patch (typically) small parts of code e.g. for
1007 // debugging and other types of instrumentation. When using the code patcher
1008 // the exact number of bytes specified must be emitted. Is not legal to emit
1009 // relocation information. If any of these constraints are violated it causes
1010 // an assertion.
1011 class CodePatcher {
1012  public:
1013   CodePatcher(Isolate* isolate, byte* address, int size);
1014   ~CodePatcher();
1015 
1016   // Macro assembler to emit code.
masm()1017   MacroAssembler* masm() { return &masm_; }
1018 
1019  private:
1020   byte* address_;        // The address of the code being patched.
1021   int size_;             // Number of bytes of the expected patch size.
1022   MacroAssembler masm_;  // Macro assembler used to generate the code.
1023 };
1024 
1025 // -----------------------------------------------------------------------------
1026 // Static helper functions.
1027 
1028 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1029 inline Operand FieldOperand(Register object, int offset) {
1030   return Operand(object, offset - kHeapObjectTag);
1031 }
1032 
1033 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1034 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
1035                             int offset) {
1036   return Operand(object, index, scale, offset - kHeapObjectTag);
1037 }
1038 
1039 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
1040                                         int additional_offset = 0) {
1041   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1042   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1043 }
1044 
ContextOperand(Register context,int index)1045 inline Operand ContextOperand(Register context, int index) {
1046   return Operand(context, Context::SlotOffset(index));
1047 }
1048 
ContextOperand(Register context,Register index)1049 inline Operand ContextOperand(Register context, Register index) {
1050   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
1051 }
1052 
NativeContextOperand()1053 inline Operand NativeContextOperand() {
1054   return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
1055 }
1056 
1057 #define ACCESS_MASM(masm) masm->
1058 
1059 }  // namespace internal
1060 }  // namespace v8
1061 
1062 #endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_
1063