1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12
13 namespace v8 {
14 namespace internal {
15
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kReturnRegister2 = {Register::kCode_edi};
20 const Register kJSFunctionRegister = {Register::kCode_edi};
21 const Register kContextRegister = {Register::kCode_esi};
22 const Register kAllocateSizeRegister = {Register::kCode_edx};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
31
32 // Convenience for platform-independent signatures. We do not normally
33 // distinguish memory operands from other operands on ia32.
34 typedef Operand MemOperand;
35
36 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
37 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
38 enum PointersToHereCheck {
39 kPointersToHereMaybeInteresting,
40 kPointersToHereAreAlwaysInteresting
41 };
42
43 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
44
45 enum class ReturnAddressState { kOnStack, kNotOnStack };
46
47 #ifdef DEBUG
48 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
49 Register reg4 = no_reg, Register reg5 = no_reg,
50 Register reg6 = no_reg, Register reg7 = no_reg,
51 Register reg8 = no_reg);
52 #endif
53
54 // MacroAssembler implements a collection of frequently used macros.
55 class MacroAssembler: public Assembler {
56 public:
57 MacroAssembler(Isolate* isolate, void* buffer, int size,
58 CodeObjectRequired create_code_object);
59
60 void Load(Register dst, const Operand& src, Representation r);
61 void Store(Register src, const Operand& dst, Representation r);
62
63 // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)64 void Set(Register dst, int32_t x) {
65 if (x == 0) {
66 xor_(dst, dst);
67 } else {
68 mov(dst, Immediate(x));
69 }
70 }
Set(const Operand & dst,int32_t x)71 void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
72
73 // Operations on roots in the root-array.
74 void LoadRoot(Register destination, Heap::RootListIndex index);
75 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
76 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
77 // These methods can only be used with constant roots (i.e. non-writable
78 // and not in new space).
79 void CompareRoot(Register with, Heap::RootListIndex index);
80 void CompareRoot(const Operand& with, Heap::RootListIndex index);
81 void PushRoot(Heap::RootListIndex index);
82
83 // Compare the object in a register to a value and jump if they are equal.
84 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
85 Label::Distance if_equal_distance = Label::kFar) {
86 CompareRoot(with, index);
87 j(equal, if_equal, if_equal_distance);
88 }
89 void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
90 Label* if_equal,
91 Label::Distance if_equal_distance = Label::kFar) {
92 CompareRoot(with, index);
93 j(equal, if_equal, if_equal_distance);
94 }
95
96 // Compare the object in a register to a value and jump if they are not equal.
97 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
98 Label* if_not_equal,
99 Label::Distance if_not_equal_distance = Label::kFar) {
100 CompareRoot(with, index);
101 j(not_equal, if_not_equal, if_not_equal_distance);
102 }
103 void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
104 Label* if_not_equal,
105 Label::Distance if_not_equal_distance = Label::kFar) {
106 CompareRoot(with, index);
107 j(not_equal, if_not_equal, if_not_equal_distance);
108 }
109
110 // These functions do not arrange the registers in any particular order so
111 // they are not useful for calls that can cause a GC. The caller can
112 // exclude up to 3 registers that do not need to be saved and restored.
113 void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
114 Register exclusion2 = no_reg,
115 Register exclusion3 = no_reg);
116 void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
117 Register exclusion2 = no_reg,
118 Register exclusion3 = no_reg);
119
120 // ---------------------------------------------------------------------------
121 // GC Support
122 enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
123
124 // Record in the remembered set the fact that we have a pointer to new space
125 // at the address pointed to by the addr register. Only works if addr is not
126 // in new space.
127 void RememberedSetHelper(Register object, // Used for debug code.
128 Register addr, Register scratch,
129 SaveFPRegsMode save_fp,
130 RememberedSetFinalAction and_then);
131
132 void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
133 Label* condition_met,
134 Label::Distance condition_met_distance = Label::kFar);
135
136 void CheckPageFlagForMap(
137 Handle<Map> map, int mask, Condition cc, Label* condition_met,
138 Label::Distance condition_met_distance = Label::kFar);
139
140 // Check if object is in new space. Jumps if the object is not in new space.
141 // The register scratch can be object itself, but scratch will be clobbered.
142 void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
143 Label::Distance distance = Label::kFar) {
144 InNewSpace(object, scratch, zero, branch, distance);
145 }
146
147 // Check if object is in new space. Jumps if the object is in new space.
148 // The register scratch can be object itself, but it will be clobbered.
149 void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
150 Label::Distance distance = Label::kFar) {
151 InNewSpace(object, scratch, not_zero, branch, distance);
152 }
153
154 // Check if an object has a given incremental marking color. Also uses ecx!
155 void HasColor(Register object, Register scratch0, Register scratch1,
156 Label* has_color, Label::Distance has_color_distance,
157 int first_bit, int second_bit);
158
159 void JumpIfBlack(Register object, Register scratch0, Register scratch1,
160 Label* on_black,
161 Label::Distance on_black_distance = Label::kFar);
162
163 // Checks the color of an object. If the object is white we jump to the
164 // incremental marker.
165 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
166 Label* value_is_white, Label::Distance distance);
167
168 // Notify the garbage collector that we wrote a pointer into an object.
169 // |object| is the object being stored into, |value| is the object being
170 // stored. value and scratch registers are clobbered by the operation.
171 // The offset is the offset from the start of the object, not the offset from
172 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
173 void RecordWriteField(
174 Register object, int offset, Register value, Register scratch,
175 SaveFPRegsMode save_fp,
176 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
177 SmiCheck smi_check = INLINE_SMI_CHECK,
178 PointersToHereCheck pointers_to_here_check_for_value =
179 kPointersToHereMaybeInteresting);
180
181 // As above, but the offset has the tag presubtracted. For use with
182 // Operand(reg, off).
183 void RecordWriteContextSlot(
184 Register context, int offset, Register value, Register scratch,
185 SaveFPRegsMode save_fp,
186 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
187 SmiCheck smi_check = INLINE_SMI_CHECK,
188 PointersToHereCheck pointers_to_here_check_for_value =
189 kPointersToHereMaybeInteresting) {
190 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
191 remembered_set_action, smi_check,
192 pointers_to_here_check_for_value);
193 }
194
195 // Notify the garbage collector that we wrote a pointer into a fixed array.
196 // |array| is the array being stored into, |value| is the
197 // object being stored. |index| is the array index represented as a
198 // Smi. All registers are clobbered by the operation RecordWriteArray
199 // filters out smis so it does not update the write barrier if the
200 // value is a smi.
201 void RecordWriteArray(
202 Register array, Register value, Register index, SaveFPRegsMode save_fp,
203 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
204 SmiCheck smi_check = INLINE_SMI_CHECK,
205 PointersToHereCheck pointers_to_here_check_for_value =
206 kPointersToHereMaybeInteresting);
207
208 // For page containing |object| mark region covering |address|
209 // dirty. |object| is the object being stored into, |value| is the
210 // object being stored. The address and value registers are clobbered by the
211 // operation. RecordWrite filters out smis so it does not update the
212 // write barrier if the value is a smi.
213 void RecordWrite(
214 Register object, Register address, Register value, SaveFPRegsMode save_fp,
215 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
216 SmiCheck smi_check = INLINE_SMI_CHECK,
217 PointersToHereCheck pointers_to_here_check_for_value =
218 kPointersToHereMaybeInteresting);
219
220 // Notify the garbage collector that we wrote a code entry into a
221 // JSFunction. Only scratch is clobbered by the operation.
222 void RecordWriteCodeEntryField(Register js_function, Register code_entry,
223 Register scratch);
224
225 // For page containing |object| mark the region covering the object's map
226 // dirty. |object| is the object being stored into, |map| is the Map object
227 // that was stored.
228 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
229 Register scratch2, SaveFPRegsMode save_fp);
230
231 // ---------------------------------------------------------------------------
232 // Debugger Support
233
234 void DebugBreak();
235
236 // Generates function and stub prologue code.
237 void StubPrologue(StackFrame::Type type);
238 void Prologue(bool code_pre_aging);
239
240 // Enter specific kind of exit frame. Expects the number of
241 // arguments in register eax and sets up the number of arguments in
242 // register edi and the pointer to the first argument in register
243 // esi.
244 void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type);
245
246 void EnterApiExitFrame(int argc);
247
248 // Leave the current exit frame. Expects the return value in
249 // register eax:edx (untouched) and the pointer to the first
250 // argument in register esi (if pop_arguments == true).
251 void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
252
253 // Leave the current exit frame. Expects the return value in
254 // register eax (untouched).
255 void LeaveApiExitFrame(bool restore_context);
256
257 // Find the function context up the context chain.
258 void LoadContext(Register dst, int context_chain_length);
259
260 // Load the global proxy from the current context.
261 void LoadGlobalProxy(Register dst);
262
263 // Conditionally load the cached Array transitioned map of type
264 // transitioned_kind from the native context if the map in register
265 // map_in_out is the cached Array map in the native context of
266 // expected_kind.
267 void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
268 ElementsKind transitioned_kind,
269 Register map_in_out,
270 Register scratch,
271 Label* no_map_match);
272
273 // Load the global function with the given index.
274 void LoadGlobalFunction(int index, Register function);
275
276 // Load the initial map from the global function. The registers
277 // function and map can be the same.
278 void LoadGlobalFunctionInitialMap(Register function, Register map);
279
280 // Push and pop the registers that can hold pointers.
PushSafepointRegisters()281 void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()282 void PopSafepointRegisters() { popad(); }
283 // Store the value in register/immediate src in the safepoint
284 // register stack slot for register dst.
285 void StoreToSafepointRegisterSlot(Register dst, Register src);
286 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
287 void LoadFromSafepointRegisterSlot(Register dst, Register src);
288
289 // Nop, because ia32 does not have a root register.
InitializeRootRegister()290 void InitializeRootRegister() {}
291
292 void LoadHeapObject(Register result, Handle<HeapObject> object);
293 void CmpHeapObject(Register reg, Handle<HeapObject> object);
294 void PushHeapObject(Handle<HeapObject> object);
295
LoadObject(Register result,Handle<Object> object)296 void LoadObject(Register result, Handle<Object> object) {
297 AllowDeferredHandleDereference heap_object_check;
298 if (object->IsHeapObject()) {
299 LoadHeapObject(result, Handle<HeapObject>::cast(object));
300 } else {
301 Move(result, Immediate(object));
302 }
303 }
304
CmpObject(Register reg,Handle<Object> object)305 void CmpObject(Register reg, Handle<Object> object) {
306 AllowDeferredHandleDereference heap_object_check;
307 if (object->IsHeapObject()) {
308 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
309 } else {
310 cmp(reg, Immediate(object));
311 }
312 }
313
314 // Compare the given value and the value of weak cell.
315 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
316
317 void GetWeakValue(Register value, Handle<WeakCell> cell);
318
319 // Load the value of the weak cell in the value register. Branch to the given
320 // miss label if the weak cell was cleared.
321 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
322
323 // ---------------------------------------------------------------------------
324 // JavaScript invokes
325
326 // Removes current frame and its arguments from the stack preserving
327 // the arguments and a return address pushed to the stack for the next call.
328 // |ra_state| defines whether return address is already pushed to stack or
329 // not. Both |callee_args_count| and |caller_args_count_reg| do not include
330 // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
331 // is trashed. |number_of_temp_values_after_return_address| specifies
332 // the number of words pushed to the stack after the return address. This is
333 // to allow "allocation" of scratch registers that this function requires
334 // by saving their values on the stack.
335 void PrepareForTailCall(const ParameterCount& callee_args_count,
336 Register caller_args_count_reg, Register scratch0,
337 Register scratch1, ReturnAddressState ra_state,
338 int number_of_temp_values_after_return_address);
339
340 // Invoke the JavaScript function code by either calling or jumping.
341
342 void InvokeFunctionCode(Register function, Register new_target,
343 const ParameterCount& expected,
344 const ParameterCount& actual, InvokeFlag flag,
345 const CallWrapper& call_wrapper);
346
347 void FloodFunctionIfStepping(Register fun, Register new_target,
348 const ParameterCount& expected,
349 const ParameterCount& actual);
350
351 // Invoke the JavaScript function in the given register. Changes the
352 // current context to the context in the function before invoking.
353 void InvokeFunction(Register function, Register new_target,
354 const ParameterCount& actual, InvokeFlag flag,
355 const CallWrapper& call_wrapper);
356
357 void InvokeFunction(Register function, const ParameterCount& expected,
358 const ParameterCount& actual, InvokeFlag flag,
359 const CallWrapper& call_wrapper);
360
361 void InvokeFunction(Handle<JSFunction> function,
362 const ParameterCount& expected,
363 const ParameterCount& actual, InvokeFlag flag,
364 const CallWrapper& call_wrapper);
365
366 // Expression support
367 // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
368 // hinders register renaming and makes dependence chains longer. So we use
369 // xorps to clear the dst register before cvtsi2sd to solve this issue.
Cvtsi2sd(XMMRegister dst,Register src)370 void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
371 void Cvtsi2sd(XMMRegister dst, const Operand& src);
372
373 void Cvtui2ss(XMMRegister dst, Register src, Register tmp);
374
375 void ShlPair(Register high, Register low, uint8_t imm8);
376 void ShlPair_cl(Register high, Register low);
377 void ShrPair(Register high, Register low, uint8_t imm8);
378 void ShrPair_cl(Register high, Register src);
379 void SarPair(Register high, Register low, uint8_t imm8);
380 void SarPair_cl(Register high, Register low);
381
382 // Support for constant splitting.
383 bool IsUnsafeImmediate(const Immediate& x);
384 void SafeMove(Register dst, const Immediate& x);
385 void SafePush(const Immediate& x);
386
387 // Compare object type for heap object.
388 // Incoming register is heap_object and outgoing register is map.
389 void CmpObjectType(Register heap_object, InstanceType type, Register map);
390
391 // Compare instance type for map.
392 void CmpInstanceType(Register map, InstanceType type);
393
394 // Check if a map for a JSObject indicates that the object can have both smi
395 // and HeapObject elements. Jump to the specified label if it does not.
396 void CheckFastObjectElements(Register map, Label* fail,
397 Label::Distance distance = Label::kFar);
398
399 // Check if a map for a JSObject indicates that the object has fast smi only
400 // elements. Jump to the specified label if it does not.
401 void CheckFastSmiElements(Register map, Label* fail,
402 Label::Distance distance = Label::kFar);
403
404 // Check to see if maybe_number can be stored as a double in
405 // FastDoubleElements. If it can, store it at the index specified by key in
406 // the FastDoubleElements array elements, otherwise jump to fail.
407 void StoreNumberToDoubleElements(Register maybe_number, Register elements,
408 Register key, Register scratch1,
409 XMMRegister scratch2, Label* fail,
410 int offset = 0);
411
412 // Compare an object's map with the specified map.
413 void CompareMap(Register obj, Handle<Map> map);
414
415 // Check if the map of an object is equal to a specified map and branch to
416 // label if not. Skip the smi check if not required (object is known to be a
417 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
418 // against maps that are ElementsKind transition maps of the specified map.
419 void CheckMap(Register obj, Handle<Map> map, Label* fail,
420 SmiCheckType smi_check_type);
421
422 // Check if the map of an object is equal to a specified weak map and branch
423 // to a specified target if equal. Skip the smi check if not required
424 // (object is known to be a heap object)
425 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
426 Handle<WeakCell> cell, Handle<Code> success,
427 SmiCheckType smi_check_type);
428
429 // Check if the object in register heap_object is a string. Afterwards the
430 // register map contains the object map and the register instance_type
431 // contains the instance_type. The registers map and instance_type can be the
432 // same in which case it contains the instance type afterwards. Either of the
433 // registers map and instance_type can be the same as heap_object.
434 Condition IsObjectStringType(Register heap_object, Register map,
435 Register instance_type);
436
437 // Check if the object in register heap_object is a name. Afterwards the
438 // register map contains the object map and the register instance_type
439 // contains the instance_type. The registers map and instance_type can be the
440 // same in which case it contains the instance type afterwards. Either of the
441 // registers map and instance_type can be the same as heap_object.
442 Condition IsObjectNameType(Register heap_object, Register map,
443 Register instance_type);
444
445 // FCmp is similar to integer cmp, but requires unsigned
446 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
447 void FCmp();
448
449 void ClampUint8(Register reg);
450
451 void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
452 Register result_reg);
453
454 void SlowTruncateToI(Register result_reg, Register input_reg,
455 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
456
457 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
458 void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
459
460 void DoubleToI(Register result_reg, XMMRegister input_reg,
461 XMMRegister scratch, MinusZeroMode minus_zero_mode,
462 Label* lost_precision, Label* is_nan, Label* minus_zero,
463 Label::Distance dst = Label::kFar);
464
465 // Smi tagging support.
SmiTag(Register reg)466 void SmiTag(Register reg) {
467 STATIC_ASSERT(kSmiTag == 0);
468 STATIC_ASSERT(kSmiTagSize == 1);
469 add(reg, reg);
470 }
SmiUntag(Register reg)471 void SmiUntag(Register reg) {
472 sar(reg, kSmiTagSize);
473 }
474
475 // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)476 void SmiUntag(Register reg, Label* is_smi) {
477 STATIC_ASSERT(kSmiTagSize == 1);
478 sar(reg, kSmiTagSize);
479 STATIC_ASSERT(kSmiTag == 0);
480 j(not_carry, is_smi);
481 }
482
LoadUint32(XMMRegister dst,Register src)483 void LoadUint32(XMMRegister dst, Register src) {
484 LoadUint32(dst, Operand(src));
485 }
486 void LoadUint32(XMMRegister dst, const Operand& src);
487
488 // Jump the register contains a smi.
489 inline void JumpIfSmi(Register value, Label* smi_label,
490 Label::Distance distance = Label::kFar) {
491 test(value, Immediate(kSmiTagMask));
492 j(zero, smi_label, distance);
493 }
494 // Jump if the operand is a smi.
495 inline void JumpIfSmi(Operand value, Label* smi_label,
496 Label::Distance distance = Label::kFar) {
497 test(value, Immediate(kSmiTagMask));
498 j(zero, smi_label, distance);
499 }
500 // Jump if register contain a non-smi.
501 inline void JumpIfNotSmi(Register value, Label* not_smi_label,
502 Label::Distance distance = Label::kFar) {
503 test(value, Immediate(kSmiTagMask));
504 j(not_zero, not_smi_label, distance);
505 }
506
507 // Jump if the value cannot be represented by a smi.
508 inline void JumpIfNotValidSmiValue(Register value, Register scratch,
509 Label* on_invalid,
510 Label::Distance distance = Label::kFar) {
511 mov(scratch, value);
512 add(scratch, Immediate(0x40000000U));
513 j(sign, on_invalid, distance);
514 }
515
516 // Jump if the unsigned integer value cannot be represented by a smi.
517 inline void JumpIfUIntNotValidSmiValue(
518 Register value, Label* on_invalid,
519 Label::Distance distance = Label::kFar) {
520 cmp(value, Immediate(0x40000000U));
521 j(above_equal, on_invalid, distance);
522 }
523
524 void LoadInstanceDescriptors(Register map, Register descriptors);
525 void EnumLength(Register dst, Register map);
526 void NumberOfOwnDescriptors(Register dst, Register map);
527 void LoadAccessor(Register dst, Register holder, int accessor_index,
528 AccessorComponent accessor);
529
530 template<typename Field>
DecodeField(Register reg)531 void DecodeField(Register reg) {
532 static const int shift = Field::kShift;
533 static const int mask = Field::kMask >> Field::kShift;
534 if (shift != 0) {
535 sar(reg, shift);
536 }
537 and_(reg, Immediate(mask));
538 }
539
540 template<typename Field>
DecodeFieldToSmi(Register reg)541 void DecodeFieldToSmi(Register reg) {
542 static const int shift = Field::kShift;
543 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
544 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
545 STATIC_ASSERT(kSmiTag == 0);
546 if (shift < kSmiTagSize) {
547 shl(reg, kSmiTagSize - shift);
548 } else if (shift > kSmiTagSize) {
549 sar(reg, shift - kSmiTagSize);
550 }
551 and_(reg, Immediate(mask));
552 }
553
554 void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
555
556 // Abort execution if argument is not a number, enabled via --debug-code.
557 void AssertNumber(Register object);
558 void AssertNotNumber(Register object);
559
560 // Abort execution if argument is not a smi, enabled via --debug-code.
561 void AssertSmi(Register object);
562
563 // Abort execution if argument is a smi, enabled via --debug-code.
564 void AssertNotSmi(Register object);
565
566 // Abort execution if argument is not a string, enabled via --debug-code.
567 void AssertString(Register object);
568
569 // Abort execution if argument is not a name, enabled via --debug-code.
570 void AssertName(Register object);
571
572 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
573 void AssertFunction(Register object);
574
575 // Abort execution if argument is not a JSBoundFunction,
576 // enabled via --debug-code.
577 void AssertBoundFunction(Register object);
578
579 // Abort execution if argument is not a JSGeneratorObject,
580 // enabled via --debug-code.
581 void AssertGeneratorObject(Register object);
582
583 // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
584 void AssertReceiver(Register object);
585
586 // Abort execution if argument is not undefined or an AllocationSite, enabled
587 // via --debug-code.
588 void AssertUndefinedOrAllocationSite(Register object);
589
590 // ---------------------------------------------------------------------------
591 // Exception handling
592
593 // Push a new stack handler and link it into stack handler chain.
594 void PushStackHandler();
595
596 // Unlink the stack handler on top of the stack from the stack handler chain.
597 void PopStackHandler();
598
599 // ---------------------------------------------------------------------------
600 // Inline caching support
601
602 void GetNumberHash(Register r0, Register scratch);
603
604 // ---------------------------------------------------------------------------
605 // Allocation support
606
607 // Allocate an object in new space or old space. If the given space
608 // is exhausted control continues at the gc_required label. The allocated
609 // object is returned in result and end of the new object is returned in
610 // result_end. The register scratch can be passed as no_reg in which case
611 // an additional object reference will be added to the reloc info. The
612 // returned pointers in result and result_end have not yet been tagged as
613 // heap objects. If result_contains_top_on_entry is true the content of
614 // result is known to be the allocation top on entry (could be result_end
615 // from a previous call). If result_contains_top_on_entry is true scratch
616 // should be no_reg as it is never used.
617 void Allocate(int object_size, Register result, Register result_end,
618 Register scratch, Label* gc_required, AllocationFlags flags);
619
620 void Allocate(int header_size, ScaleFactor element_size,
621 Register element_count, RegisterValueType element_count_type,
622 Register result, Register result_end, Register scratch,
623 Label* gc_required, AllocationFlags flags);
624
625 void Allocate(Register object_size, Register result, Register result_end,
626 Register scratch, Label* gc_required, AllocationFlags flags);
627
628 // FastAllocate is right now only used for folded allocations. It just
629 // increments the top pointer without checking against limit. This can only
630 // be done if it was proved earlier that the allocation will succeed.
631 void FastAllocate(int object_size, Register result, Register result_end,
632 AllocationFlags flags);
633 void FastAllocate(Register object_size, Register result, Register result_end,
634 AllocationFlags flags);
635
636 // Allocate a heap number in new space with undefined value. The
637 // register scratch2 can be passed as no_reg; the others must be
638 // valid registers. Returns tagged pointer in result register, or
639 // jumps to gc_required if new space is full.
640 void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
641 Label* gc_required, MutableMode mode = IMMUTABLE);
642
643 // Allocate a sequential string. All the header fields of the string object
644 // are initialized.
645 void AllocateTwoByteString(Register result, Register length,
646 Register scratch1, Register scratch2,
647 Register scratch3, Label* gc_required);
648 void AllocateOneByteString(Register result, Register length,
649 Register scratch1, Register scratch2,
650 Register scratch3, Label* gc_required);
651 void AllocateOneByteString(Register result, int length, Register scratch1,
652 Register scratch2, Label* gc_required);
653
654 // Allocate a raw cons string object. Only the map field of the result is
655 // initialized.
656 void AllocateTwoByteConsString(Register result, Register scratch1,
657 Register scratch2, Label* gc_required);
658 void AllocateOneByteConsString(Register result, Register scratch1,
659 Register scratch2, Label* gc_required);
660
661 // Allocate a raw sliced string object. Only the map field of the result is
662 // initialized.
663 void AllocateTwoByteSlicedString(Register result, Register scratch1,
664 Register scratch2, Label* gc_required);
665 void AllocateOneByteSlicedString(Register result, Register scratch1,
666 Register scratch2, Label* gc_required);
667
668 // Allocate and initialize a JSValue wrapper with the specified {constructor}
669 // and {value}.
670 void AllocateJSValue(Register result, Register constructor, Register value,
671 Register scratch, Label* gc_required);
672
673 // Initialize fields with filler values. Fields starting at |current_address|
674 // not including |end_address| are overwritten with the value in |filler|. At
675 // the end the loop, |current_address| takes the value of |end_address|.
676 void InitializeFieldsWithFiller(Register current_address,
677 Register end_address, Register filler);
678
679 // ---------------------------------------------------------------------------
680 // Support functions.
681
682 // Check a boolean-bit of a Smi field.
683 void BooleanBitTest(Register object, int field_offset, int bit_index);
684
685 // Check if result is zero and op is negative.
686 void NegativeZeroTest(Register result, Register op, Label* then_label);
687
688 // Check if result is zero and any of op1 and op2 are negative.
689 // Register scratch is destroyed, and it must be different from op2.
690 void NegativeZeroTest(Register result, Register op1, Register op2,
691 Register scratch, Label* then_label);
692
693 // Machine code version of Map::GetConstructor().
694 // |temp| holds |result|'s map when done.
695 void GetMapConstructor(Register result, Register map, Register temp);
696
697 // Try to get function prototype of a function and puts the value in
698 // the result register. Checks that the function really is a
699 // function and jumps to the miss label if the fast checks fail. The
700 // function register will be untouched; the other registers may be
701 // clobbered.
702 void TryGetFunctionPrototype(Register function, Register result,
703 Register scratch, Label* miss);
704
705 // ---------------------------------------------------------------------------
706 // Runtime calls
707
708 // Call a code stub. Generate the code if necessary.
709 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
710
711 // Tail call a code stub (jump). Generate the code if necessary.
712 void TailCallStub(CodeStub* stub);
713
714 // Return from a code stub after popping its arguments.
715 void StubReturn(int argc);
716
717 // Call a runtime routine.
718 void CallRuntime(const Runtime::Function* f, int num_arguments,
719 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)720 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
721 const Runtime::Function* function = Runtime::FunctionForId(fid);
722 CallRuntime(function, function->nargs, kSaveFPRegs);
723 }
724
725 // Convenience function: Same as above, but takes the fid instead.
726 void CallRuntime(Runtime::FunctionId fid,
727 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
728 const Runtime::Function* function = Runtime::FunctionForId(fid);
729 CallRuntime(function, function->nargs, save_doubles);
730 }
731
732 // Convenience function: Same as above, but takes the fid instead.
733 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
734 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
735 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
736 }
737
738 // Convenience function: call an external reference.
739 void CallExternalReference(ExternalReference ref, int num_arguments);
740
741 // Convenience function: tail call a runtime routine (jump).
742 void TailCallRuntime(Runtime::FunctionId fid);
743
744 // Before calling a C-function from generated code, align arguments on stack.
745 // After aligning the frame, arguments must be stored in esp[0], esp[4],
746 // etc., not pushed. The argument count assumes all arguments are word sized.
747 // Some compilers/platforms require the stack to be aligned when calling
748 // C++ code.
749 // Needs a scratch register to do some arithmetic. This register will be
750 // trashed.
751 void PrepareCallCFunction(int num_arguments, Register scratch);
752
753 // Calls a C function and cleans up the space for arguments allocated
754 // by PrepareCallCFunction. The called function is not allowed to trigger a
755 // garbage collection, since that might move the code and invalidate the
756 // return address (unless this is somehow accounted for by the called
757 // function).
758 void CallCFunction(ExternalReference function, int num_arguments);
759 void CallCFunction(Register function, int num_arguments);
760
761 // Jump to a runtime routine.
762 void JumpToExternalReference(const ExternalReference& ext,
763 bool builtin_exit_frame = false);
764
765 // ---------------------------------------------------------------------------
766 // Utilities
767
768 void Ret();
769
770 // Return and drop arguments from stack, where the number of arguments
771 // may be bigger than 2^16 - 1. Requires a scratch register.
772 void Ret(int bytes_dropped, Register scratch);
773
774 // Emit code that loads |parameter_index|'th parameter from the stack to
775 // the register according to the CallInterfaceDescriptor definition.
776 // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
777 // below the caller's sp (on ia32 it's at least return address).
778 template <class Descriptor>
779 void LoadParameterFromStack(
780 Register reg, typename Descriptor::ParameterIndices parameter_index,
781 int sp_to_ra_offset_in_words = 1) {
782 DCHECK(Descriptor::kPassLastArgsOnStack);
783 DCHECK_LT(parameter_index, Descriptor::kParameterCount);
784 DCHECK_LE(Descriptor::kParameterCount - Descriptor::kStackArgumentsCount,
785 parameter_index);
786 int offset = (Descriptor::kParameterCount - parameter_index - 1 +
787 sp_to_ra_offset_in_words) *
788 kPointerSize;
789 mov(reg, Operand(esp, offset));
790 }
791
792 // Emit code to discard a non-negative number of pointer-sized elements
793 // from the stack, clobbering only the esp register.
794 void Drop(int element_count);
795
Call(Label * target)796 void Call(Label* target) { call(target); }
797 void Call(Handle<Code> target, RelocInfo::Mode rmode,
798 TypeFeedbackId id = TypeFeedbackId::None()) {
799 call(target, rmode, id);
800 }
Jump(Handle<Code> target,RelocInfo::Mode rmode)801 void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)802 void Push(Register src) { push(src); }
Push(const Operand & src)803 void Push(const Operand& src) { push(src); }
Push(Immediate value)804 void Push(Immediate value) { push(value); }
Pop(Register dst)805 void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)806 void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)807 void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)808 void PopReturnAddressTo(Register dst) { pop(dst); }
809
810 // Non-SSE2 instructions.
811 void Pextrd(Register dst, XMMRegister src, int8_t imm8);
Pinsrd(XMMRegister dst,Register src,int8_t imm8)812 void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
813 Pinsrd(dst, Operand(src), imm8);
814 }
815 void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
816
Lzcnt(Register dst,Register src)817 void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
818 void Lzcnt(Register dst, const Operand& src);
819
Tzcnt(Register dst,Register src)820 void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
821 void Tzcnt(Register dst, const Operand& src);
822
Popcnt(Register dst,Register src)823 void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
824 void Popcnt(Register dst, const Operand& src);
825
826 // Move if the registers are not identical.
827 void Move(Register target, Register source);
828
829 // Move a constant into a destination using the most efficient encoding.
830 void Move(Register dst, const Immediate& x);
831 void Move(const Operand& dst, const Immediate& x);
832
833 // Move an immediate into an XMM register.
834 void Move(XMMRegister dst, uint32_t src);
835 void Move(XMMRegister dst, uint64_t src);
Move(XMMRegister dst,float src)836 void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
Move(XMMRegister dst,double src)837 void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
838
Move(Register dst,Handle<Object> handle)839 void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
Move(Register dst,Smi * source)840 void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
841
842 // Push a handle value.
Push(Handle<Object> handle)843 void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)844 void Push(Smi* smi) { Push(Immediate(smi)); }
845
CodeObject()846 Handle<Object> CodeObject() {
847 DCHECK(!code_object_.is_null());
848 return code_object_;
849 }
850
851 // Emit code for a truncating division by a constant. The dividend register is
852 // unchanged, the result is in edx, and eax gets clobbered.
853 void TruncatingDiv(Register dividend, int32_t divisor);
854
855 // ---------------------------------------------------------------------------
856 // StatsCounter support
857
858 void SetCounter(StatsCounter* counter, int value);
859 void IncrementCounter(StatsCounter* counter, int value);
860 void DecrementCounter(StatsCounter* counter, int value);
861 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
862 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
863
864 // ---------------------------------------------------------------------------
865 // Debugging
866
867 // Calls Abort(msg) if the condition cc is not satisfied.
868 // Use --debug_code to enable.
869 void Assert(Condition cc, BailoutReason reason);
870
871 void AssertFastElements(Register elements);
872
873 // Like Assert(), but always enabled.
874 void Check(Condition cc, BailoutReason reason);
875
876 // Print a message to stdout and abort execution.
877 void Abort(BailoutReason reason);
878
879 // Check that the stack is aligned.
880 void CheckStackAlignment();
881
882 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)883 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()884 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)885 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()886 bool has_frame() { return has_frame_; }
887 inline bool AllowThisStubCall(CodeStub* stub);
888
889 // ---------------------------------------------------------------------------
890 // String utilities.
891
892 // Check whether the instance type represents a flat one-byte string. Jump to
893 // the label if not. If the instance type can be scratched specify same
894 // register for both instance type and scratch.
895 void JumpIfInstanceTypeIsNotSequentialOneByte(
896 Register instance_type, Register scratch,
897 Label* on_not_flat_one_byte_string);
898
899 // Checks if both objects are sequential one-byte strings, and jumps to label
900 // if either is not.
901 void JumpIfNotBothSequentialOneByteStrings(
902 Register object1, Register object2, Register scratch1, Register scratch2,
903 Label* on_not_flat_one_byte_strings);
904
905 // Checks if the given register or operand is a unique name
906 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
907 Label::Distance distance = Label::kFar) {
908 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
909 }
910
911 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
912 Label::Distance distance = Label::kFar);
913
914 void EmitSeqStringSetCharCheck(Register string, Register index,
915 Register value, uint32_t encoding_mask);
916
SafepointRegisterStackIndex(Register reg)917 static int SafepointRegisterStackIndex(Register reg) {
918 return SafepointRegisterStackIndex(reg.code());
919 }
920
921 // Load the type feedback vector from a JavaScript frame.
922 void EmitLoadTypeFeedbackVector(Register vector);
923
924 // Activation support.
925 void EnterFrame(StackFrame::Type type);
926 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
927 void LeaveFrame(StackFrame::Type type);
928
929 void EnterBuiltinFrame(Register context, Register target, Register argc);
930 void LeaveBuiltinFrame(Register context, Register target, Register argc);
931
932 // Expects object in eax and returns map with validated enum cache
933 // in eax. Assumes that any other register can be used as a scratch.
934 void CheckEnumCache(Label* call_runtime);
935
936 // AllocationMemento support. Arrays may have an associated
937 // AllocationMemento object that can be checked for in order to pretransition
938 // to another type.
939 // On entry, receiver_reg should point to the array object.
940 // scratch_reg gets clobbered.
941 // If allocation info is present, conditional code is set to equal.
942 void TestJSArrayForAllocationMemento(Register receiver_reg,
943 Register scratch_reg,
944 Label* no_memento_found);
945
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)946 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
947 Register scratch_reg,
948 Label* memento_found) {
949 Label no_memento_found;
950 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
951 &no_memento_found);
952 j(equal, memento_found);
953 bind(&no_memento_found);
954 }
955
956 // Jumps to found label if a prototype map has dictionary elements.
957 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
958 Register scratch1, Label* found);
959
960 private:
961 bool generating_stub_;
962 bool has_frame_;
963 // This handle will be patched with the code object on installation.
964 Handle<Object> code_object_;
965
966 // Helper functions for generating invokes.
967 void InvokePrologue(const ParameterCount& expected,
968 const ParameterCount& actual, Label* done,
969 bool* definitely_mismatches, InvokeFlag flag,
970 Label::Distance done_distance,
971 const CallWrapper& call_wrapper);
972
973 void EnterExitFramePrologue(StackFrame::Type frame_type);
974 void EnterExitFrameEpilogue(int argc, bool save_doubles);
975
976 void LeaveExitFrameEpilogue(bool restore_context);
977
978 // Allocation support helpers.
979 void LoadAllocationTopHelper(Register result, Register scratch,
980 AllocationFlags flags);
981
982 void UpdateAllocationTopHelper(Register result_end, Register scratch,
983 AllocationFlags flags);
984
985 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
986 void InNewSpace(Register object, Register scratch, Condition cc,
987 Label* condition_met,
988 Label::Distance condition_met_distance = Label::kFar);
989
990 // Helper for finding the mark bits for an address. Afterwards, the
991 // bitmap register points at the word with the mark bits and the mask
992 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
993 // unchanged.
994 inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
995 Register mask_reg);
996
997 // Compute memory operands for safepoint stack slots.
998 Operand SafepointRegisterSlot(Register reg);
999 static int SafepointRegisterStackIndex(int reg_code);
1000
1001 // Needs access to SafepointRegisterStackIndex for compiled frame
1002 // traversal.
1003 friend class StandardFrame;
1004 };
1005
1006 // The code patcher is used to patch (typically) small parts of code e.g. for
1007 // debugging and other types of instrumentation. When using the code patcher
1008 // the exact number of bytes specified must be emitted. Is not legal to emit
1009 // relocation information. If any of these constraints are violated it causes
1010 // an assertion.
1011 class CodePatcher {
1012 public:
1013 CodePatcher(Isolate* isolate, byte* address, int size);
1014 ~CodePatcher();
1015
1016 // Macro assembler to emit code.
masm()1017 MacroAssembler* masm() { return &masm_; }
1018
1019 private:
1020 byte* address_; // The address of the code being patched.
1021 int size_; // Number of bytes of the expected patch size.
1022 MacroAssembler masm_; // Macro assembler used to generate the code.
1023 };
1024
1025 // -----------------------------------------------------------------------------
1026 // Static helper functions.
1027
1028 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1029 inline Operand FieldOperand(Register object, int offset) {
1030 return Operand(object, offset - kHeapObjectTag);
1031 }
1032
1033 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1034 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
1035 int offset) {
1036 return Operand(object, index, scale, offset - kHeapObjectTag);
1037 }
1038
1039 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
1040 int additional_offset = 0) {
1041 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1042 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1043 }
1044
ContextOperand(Register context,int index)1045 inline Operand ContextOperand(Register context, int index) {
1046 return Operand(context, Context::SlotOffset(index));
1047 }
1048
ContextOperand(Register context,Register index)1049 inline Operand ContextOperand(Register context, Register index) {
1050 return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
1051 }
1052
NativeContextOperand()1053 inline Operand NativeContextOperand() {
1054 return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
1055 }
1056
1057 #define ACCESS_MASM(masm) masm->
1058
1059 } // namespace internal
1060 } // namespace v8
1061
1062 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_
1063