1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_PPC
6
7 #include "src/codegen.h"
8 #include "src/ic/ic.h"
9 #include "src/ic/ic-compiler.h"
10 #include "src/ic/stub-cache.h"
11
12 namespace v8 {
13 namespace internal {
14
15
16 // ----------------------------------------------------------------------------
17 // Static IC stub generators.
18 //
19
20 #define __ ACCESS_MASM(masm)
21
22 // Helper function used from LoadIC GenerateNormal.
23 //
24 // elements: Property dictionary. It is not clobbered if a jump to the miss
25 // label is done.
26 // name: Property name. It is not clobbered if a jump to the miss label is
27 // done
28 // result: Register for the result. It is only updated if a jump to the miss
29 // label is not done. Can be the same as elements or name clobbering
30 // one of these in the case of not jumping to the miss label.
31 // The two scratch registers need to be different from elements, name and
32 // result.
33 // The generated code assumes that the receiver has slow properties,
34 // is not a global object and does not have interceptors.
GenerateDictionaryLoad(MacroAssembler * masm,Label * miss,Register elements,Register name,Register result,Register scratch1,Register scratch2)35 static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
36 Register elements, Register name,
37 Register result, Register scratch1,
38 Register scratch2) {
39 // Main use of the scratch registers.
40 // scratch1: Used as temporary and to hold the capacity of the property
41 // dictionary.
42 // scratch2: Used as temporary.
43 Label done;
44
45 // Probe the dictionary.
46 NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
47 name, scratch1, scratch2);
48
49 // If probing finds an entry check that the value is a normal
50 // property.
51 __ bind(&done); // scratch2 == elements + 4 * index
52 const int kElementsStartOffset =
53 NameDictionary::kHeaderSize +
54 NameDictionary::kElementsStartIndex * kPointerSize;
55 const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
56 __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
57 __ mr(r0, scratch2);
58 __ LoadSmiLiteral(scratch2, Smi::FromInt(PropertyDetails::TypeField::kMask));
59 __ and_(scratch2, scratch1, scratch2, SetRC);
60 __ bne(miss, cr0);
61 __ mr(scratch2, r0);
62
63 // Get the value at the masked, scaled index and return.
64 __ LoadP(result,
65 FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
66 }
67
68
69 // Helper function used from StoreIC::GenerateNormal.
70 //
71 // elements: Property dictionary. It is not clobbered if a jump to the miss
72 // label is done.
73 // name: Property name. It is not clobbered if a jump to the miss label is
74 // done
75 // value: The value to store.
76 // The two scratch registers need to be different from elements, name and
77 // result.
78 // The generated code assumes that the receiver has slow properties,
79 // is not a global object and does not have interceptors.
GenerateDictionaryStore(MacroAssembler * masm,Label * miss,Register elements,Register name,Register value,Register scratch1,Register scratch2)80 static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
81 Register elements, Register name,
82 Register value, Register scratch1,
83 Register scratch2) {
84 // Main use of the scratch registers.
85 // scratch1: Used as temporary and to hold the capacity of the property
86 // dictionary.
87 // scratch2: Used as temporary.
88 Label done;
89
90 // Probe the dictionary.
91 NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
92 name, scratch1, scratch2);
93
94 // If probing finds an entry in the dictionary check that the value
95 // is a normal property that is not read only.
96 __ bind(&done); // scratch2 == elements + 4 * index
97 const int kElementsStartOffset =
98 NameDictionary::kHeaderSize +
99 NameDictionary::kElementsStartIndex * kPointerSize;
100 const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
101 int kTypeAndReadOnlyMask =
102 PropertyDetails::TypeField::kMask |
103 PropertyDetails::AttributesField::encode(READ_ONLY);
104 __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
105 __ mr(r0, scratch2);
106 __ LoadSmiLiteral(scratch2, Smi::FromInt(kTypeAndReadOnlyMask));
107 __ and_(scratch2, scratch1, scratch2, SetRC);
108 __ bne(miss, cr0);
109 __ mr(scratch2, r0);
110
111 // Store the value at the masked, scaled index and return.
112 const int kValueOffset = kElementsStartOffset + kPointerSize;
113 __ addi(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
114 __ StoreP(value, MemOperand(scratch2));
115
116 // Update the write barrier. Make sure not to clobber the value.
117 __ mr(scratch1, value);
118 __ RecordWrite(elements, scratch2, scratch1, kLRHasNotBeenSaved,
119 kDontSaveFPRegs);
120 }
121
GenerateNormal(MacroAssembler * masm)122 void LoadIC::GenerateNormal(MacroAssembler* masm) {
123 Register dictionary = r3;
124 DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
125 DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
126
127 Label slow;
128
129 __ LoadP(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
130 JSObject::kPropertiesOffset));
131 GenerateDictionaryLoad(masm, &slow, dictionary,
132 LoadDescriptor::NameRegister(), r3, r6, r7);
133 __ Ret();
134
135 // Dictionary load failed, go slow (but don't miss).
136 __ bind(&slow);
137 GenerateRuntimeGetProperty(masm);
138 }
139
140
141 // A register that isn't one of the parameters to the load ic.
LoadIC_TempRegister()142 static const Register LoadIC_TempRegister() { return r6; }
143
144
LoadIC_PushArgs(MacroAssembler * masm)145 static void LoadIC_PushArgs(MacroAssembler* masm) {
146 Register receiver = LoadDescriptor::ReceiverRegister();
147 Register name = LoadDescriptor::NameRegister();
148 Register slot = LoadDescriptor::SlotRegister();
149 Register vector = LoadWithVectorDescriptor::VectorRegister();
150
151 __ Push(receiver, name, slot, vector);
152 }
153
154
GenerateMiss(MacroAssembler * masm)155 void LoadIC::GenerateMiss(MacroAssembler* masm) {
156 // The return address is in lr.
157 Isolate* isolate = masm->isolate();
158
159 DCHECK(!AreAliased(r7, r8, LoadWithVectorDescriptor::SlotRegister(),
160 LoadWithVectorDescriptor::VectorRegister()));
161 __ IncrementCounter(isolate->counters()->ic_load_miss(), 1, r7, r8);
162
163 LoadIC_PushArgs(masm);
164
165 // Perform tail call to the entry.
166 __ TailCallRuntime(Runtime::kLoadIC_Miss);
167 }
168
GenerateRuntimeGetProperty(MacroAssembler * masm)169 void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
170 // The return address is in lr.
171
172 __ mr(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister());
173 __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister());
174
175 // Do tail-call to runtime routine.
176 __ TailCallRuntime(Runtime::kGetProperty);
177 }
178
179
GenerateMiss(MacroAssembler * masm)180 void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
181 // The return address is in lr.
182 Isolate* isolate = masm->isolate();
183
184 DCHECK(!AreAliased(r7, r8, LoadWithVectorDescriptor::SlotRegister(),
185 LoadWithVectorDescriptor::VectorRegister()));
186 __ IncrementCounter(isolate->counters()->ic_keyed_load_miss(), 1, r7, r8);
187
188 LoadIC_PushArgs(masm);
189
190 // Perform tail call to the entry.
191 __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
192 }
193
GenerateRuntimeGetProperty(MacroAssembler * masm)194 void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
195 // The return address is in lr.
196
197 __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
198
199 // Do tail-call to runtime routine.
200 __ TailCallRuntime(Runtime::kKeyedGetProperty);
201 }
202
StoreIC_PushArgs(MacroAssembler * masm)203 static void StoreIC_PushArgs(MacroAssembler* masm) {
204 __ Push(StoreWithVectorDescriptor::ValueRegister(),
205 StoreWithVectorDescriptor::SlotRegister(),
206 StoreWithVectorDescriptor::VectorRegister(),
207 StoreWithVectorDescriptor::ReceiverRegister(),
208 StoreWithVectorDescriptor::NameRegister());
209 }
210
211
GenerateMiss(MacroAssembler * masm)212 void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
213 StoreIC_PushArgs(masm);
214
215 __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
216 }
217
GenerateSlow(MacroAssembler * masm)218 void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
219 StoreIC_PushArgs(masm);
220
221 // The slow case calls into the runtime to complete the store without causing
222 // an IC miss that would otherwise cause a transition to the generic stub.
223 __ TailCallRuntime(Runtime::kKeyedStoreIC_Slow);
224 }
225
KeyedStoreGenerateMegamorphicHelper(MacroAssembler * masm,Label * fast_object,Label * fast_double,Label * slow,KeyedStoreCheckMap check_map,KeyedStoreIncrementLength increment_length,Register value,Register key,Register receiver,Register receiver_map,Register elements_map,Register elements)226 static void KeyedStoreGenerateMegamorphicHelper(
227 MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
228 KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
229 Register value, Register key, Register receiver, Register receiver_map,
230 Register elements_map, Register elements) {
231 Label transition_smi_elements;
232 Label finish_object_store, non_double_value, transition_double_elements;
233 Label fast_double_without_map_check;
234
235 // Fast case: Do the store, could be either Object or double.
236 __ bind(fast_object);
237 Register scratch = r7;
238 Register address = r8;
239 DCHECK(!AreAliased(value, key, receiver, receiver_map, elements_map, elements,
240 scratch, address));
241
242 if (check_map == kCheckMap) {
243 __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
244 __ mov(scratch, Operand(masm->isolate()->factory()->fixed_array_map()));
245 __ cmp(elements_map, scratch);
246 __ bne(fast_double);
247 }
248
249 // HOLECHECK: guards "A[i] = V"
250 // We have to go to the runtime if the current value is the hole because
251 // there may be a callback on the element
252 Label holecheck_passed1;
253 __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
254 __ SmiToPtrArrayOffset(scratch, key);
255 __ LoadPX(scratch, MemOperand(address, scratch));
256 __ Cmpi(scratch, Operand(masm->isolate()->factory()->the_hole_value()), r0);
257 __ bne(&holecheck_passed1);
258 __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);
259
260 __ bind(&holecheck_passed1);
261
262 // Smi stores don't require further checks.
263 Label non_smi_value;
264 __ JumpIfNotSmi(value, &non_smi_value);
265
266 if (increment_length == kIncrementLength) {
267 // Add 1 to receiver->length.
268 __ AddSmiLiteral(scratch, key, Smi::FromInt(1), r0);
269 __ StoreP(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset), r0);
270 }
271 // It's irrelevant whether array is smi-only or not when writing a smi.
272 __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
273 __ SmiToPtrArrayOffset(scratch, key);
274 __ StorePX(value, MemOperand(address, scratch));
275 __ Ret();
276
277 __ bind(&non_smi_value);
278 // Escape to elements kind transition case.
279 __ CheckFastObjectElements(receiver_map, scratch, &transition_smi_elements);
280
281 // Fast elements array, store the value to the elements backing store.
282 __ bind(&finish_object_store);
283 if (increment_length == kIncrementLength) {
284 // Add 1 to receiver->length.
285 __ AddSmiLiteral(scratch, key, Smi::FromInt(1), r0);
286 __ StoreP(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset), r0);
287 }
288 __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
289 __ SmiToPtrArrayOffset(scratch, key);
290 __ StorePUX(value, MemOperand(address, scratch));
291 // Update write barrier for the elements array address.
292 __ mr(scratch, value); // Preserve the value which is returned.
293 __ RecordWrite(elements, address, scratch, kLRHasNotBeenSaved,
294 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
295 __ Ret();
296
297 __ bind(fast_double);
298 if (check_map == kCheckMap) {
299 // Check for fast double array case. If this fails, call through to the
300 // runtime.
301 __ CompareRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex);
302 __ bne(slow);
303 }
304
305 // HOLECHECK: guards "A[i] double hole?"
306 // We have to see if the double version of the hole is present. If so
307 // go to the runtime.
308 __ addi(address, elements,
309 Operand((FixedDoubleArray::kHeaderSize + Register::kExponentOffset -
310 kHeapObjectTag)));
311 __ SmiToDoubleArrayOffset(scratch, key);
312 __ lwzx(scratch, MemOperand(address, scratch));
313 __ Cmpi(scratch, Operand(kHoleNanUpper32), r0);
314 __ bne(&fast_double_without_map_check);
315 __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);
316
317 __ bind(&fast_double_without_map_check);
318 __ StoreNumberToDoubleElements(value, key, elements, scratch, d0,
319 &transition_double_elements);
320 if (increment_length == kIncrementLength) {
321 // Add 1 to receiver->length.
322 __ AddSmiLiteral(scratch, key, Smi::FromInt(1), r0);
323 __ StoreP(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset), r0);
324 }
325 __ Ret();
326
327 __ bind(&transition_smi_elements);
328 // Transition the array appropriately depending on the value type.
329 __ LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
330 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
331 __ bne(&non_double_value);
332
333 // Value is a double. Transition FAST_SMI_ELEMENTS ->
334 // FAST_DOUBLE_ELEMENTS and complete the store.
335 __ LoadTransitionedArrayMapConditional(
336 FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, scratch, slow);
337 AllocationSiteMode mode =
338 AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
339 ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
340 receiver_map, mode, slow);
341 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
342 __ b(&fast_double_without_map_check);
343
344 __ bind(&non_double_value);
345 // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
346 __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
347 receiver_map, scratch, slow);
348 mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
349 ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
350 masm, receiver, key, value, receiver_map, mode, slow);
351 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
352 __ b(&finish_object_store);
353
354 __ bind(&transition_double_elements);
355 // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
356 // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
357 // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
358 __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
359 receiver_map, scratch, slow);
360 mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
361 ElementsTransitionGenerator::GenerateDoubleToObject(
362 masm, receiver, key, value, receiver_map, mode, slow);
363 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
364 __ b(&finish_object_store);
365 }
366
367
GenerateMegamorphic(MacroAssembler * masm,LanguageMode language_mode)368 void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
369 LanguageMode language_mode) {
370 // ---------- S t a t e --------------
371 // -- r3 : value
372 // -- r4 : key
373 // -- r5 : receiver
374 // -- lr : return address
375 // -----------------------------------
376 Label slow, fast_object, fast_object_grow;
377 Label fast_double, fast_double_grow;
378 Label array, extra, check_if_double_array, maybe_name_key, miss;
379
380 // Register usage.
381 Register value = StoreDescriptor::ValueRegister();
382 Register key = StoreDescriptor::NameRegister();
383 Register receiver = StoreDescriptor::ReceiverRegister();
384 DCHECK(receiver.is(r4));
385 DCHECK(key.is(r5));
386 DCHECK(value.is(r3));
387 Register receiver_map = r6;
388 Register elements_map = r9;
389 Register elements = r10; // Elements array of the receiver.
390 // r7 and r8 are used as general scratch registers.
391
392 // Check that the key is a smi.
393 __ JumpIfNotSmi(key, &maybe_name_key);
394 // Check that the object isn't a smi.
395 __ JumpIfSmi(receiver, &slow);
396 // Get the map of the object.
397 __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
398 // Check that the receiver does not require access checks.
399 // The generic stub does not perform map checks.
400 __ lbz(ip, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
401 __ andi(r0, ip, Operand(1 << Map::kIsAccessCheckNeeded));
402 __ bne(&slow, cr0);
403 // Check if the object is a JS array or not.
404 __ lbz(r7, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
405 __ cmpi(r7, Operand(JS_ARRAY_TYPE));
406 __ beq(&array);
407 // Check that the object is some kind of JSObject.
408 __ cmpi(r7, Operand(FIRST_JS_OBJECT_TYPE));
409 __ blt(&slow);
410
411 // Object case: Check key against length in the elements array.
412 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
413 // Check array bounds. Both the key and the length of FixedArray are smis.
414 __ LoadP(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
415 __ cmpl(key, ip);
416 __ blt(&fast_object);
417
418 // Slow case, handle jump to runtime.
419 __ bind(&slow);
420 // Entry registers are intact.
421 // r3: value.
422 // r4: key.
423 // r5: receiver.
424 PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
425 // Never returns to here.
426
427 __ bind(&maybe_name_key);
428 __ LoadP(r7, FieldMemOperand(key, HeapObject::kMapOffset));
429 __ lbz(r7, FieldMemOperand(r7, Map::kInstanceTypeOffset));
430 __ JumpIfNotUniqueNameInstanceType(r7, &slow);
431
432 // The handlers in the stub cache expect a vector and slot. Since we won't
433 // change the IC from any downstream misses, a dummy vector can be used.
434 Register vector = StoreWithVectorDescriptor::VectorRegister();
435 Register slot = StoreWithVectorDescriptor::SlotRegister();
436 DCHECK(!AreAliased(vector, slot, r8, r9, r10, r11));
437 Handle<TypeFeedbackVector> dummy_vector =
438 TypeFeedbackVector::DummyVector(masm->isolate());
439 int slot_index = dummy_vector->GetIndex(
440 FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot));
441 __ LoadRoot(vector, Heap::kDummyVectorRootIndex);
442 __ LoadSmiLiteral(slot, Smi::FromInt(slot_index));
443
444 masm->isolate()->store_stub_cache()->GenerateProbe(masm, receiver, key, r8,
445 r9, r10, r11);
446 // Cache miss.
447 __ b(&miss);
448
449 // Extra capacity case: Check if there is extra capacity to
450 // perform the store and update the length. Used for adding one
451 // element to the array by writing to array[array.length].
452 __ bind(&extra);
453 // Condition code from comparing key and array length is still available.
454 __ bne(&slow); // Only support writing to writing to array[array.length].
455 // Check for room in the elements backing store.
456 // Both the key and the length of FixedArray are smis.
457 __ LoadP(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
458 __ cmpl(key, ip);
459 __ bge(&slow);
460 __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
461 __ mov(ip, Operand(masm->isolate()->factory()->fixed_array_map()));
462 __ cmp(elements_map, ip); // PPC - I think I can re-use ip here
463 __ bne(&check_if_double_array);
464 __ b(&fast_object_grow);
465
466 __ bind(&check_if_double_array);
467 __ mov(ip, Operand(masm->isolate()->factory()->fixed_double_array_map()));
468 __ cmp(elements_map, ip); // PPC - another ip re-use
469 __ bne(&slow);
470 __ b(&fast_double_grow);
471
472 // Array case: Get the length and the elements array from the JS
473 // array. Check that the array is in fast mode (and writable); if it
474 // is the length is always a smi.
475 __ bind(&array);
476 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
477
478 // Check the key against the length in the array.
479 __ LoadP(ip, FieldMemOperand(receiver, JSArray::kLengthOffset));
480 __ cmpl(key, ip);
481 __ bge(&extra);
482
483 KeyedStoreGenerateMegamorphicHelper(
484 masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
485 value, key, receiver, receiver_map, elements_map, elements);
486 KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
487 &fast_double_grow, &slow, kDontCheckMap,
488 kIncrementLength, value, key, receiver,
489 receiver_map, elements_map, elements);
490 __ bind(&miss);
491 GenerateMiss(masm);
492 }
493
GenerateMiss(MacroAssembler * masm)494 void StoreIC::GenerateMiss(MacroAssembler* masm) {
495 StoreIC_PushArgs(masm);
496
497 // Perform tail call to the entry.
498 __ TailCallRuntime(Runtime::kStoreIC_Miss);
499 }
500
501
GenerateNormal(MacroAssembler * masm)502 void StoreIC::GenerateNormal(MacroAssembler* masm) {
503 Label miss;
504 Register receiver = StoreDescriptor::ReceiverRegister();
505 Register name = StoreDescriptor::NameRegister();
506 Register value = StoreDescriptor::ValueRegister();
507 Register dictionary = r8;
508 DCHECK(receiver.is(r4));
509 DCHECK(name.is(r5));
510 DCHECK(value.is(r3));
511 DCHECK(StoreWithVectorDescriptor::VectorRegister().is(r6));
512 DCHECK(StoreWithVectorDescriptor::SlotRegister().is(r7));
513
514 __ LoadP(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
515
516 GenerateDictionaryStore(masm, &miss, dictionary, name, value, r9, r10);
517 Counters* counters = masm->isolate()->counters();
518 __ IncrementCounter(counters->ic_store_normal_hit(), 1, r9, r10);
519 __ Ret();
520
521 __ bind(&miss);
522 __ IncrementCounter(counters->ic_store_normal_miss(), 1, r9, r10);
523 GenerateMiss(masm);
524 }
525
526
527 #undef __
528
529
ComputeCondition(Token::Value op)530 Condition CompareIC::ComputeCondition(Token::Value op) {
531 switch (op) {
532 case Token::EQ_STRICT:
533 case Token::EQ:
534 return eq;
535 case Token::LT:
536 return lt;
537 case Token::GT:
538 return gt;
539 case Token::LTE:
540 return le;
541 case Token::GTE:
542 return ge;
543 default:
544 UNREACHABLE();
545 return kNoCondition;
546 }
547 }
548
549
HasInlinedSmiCode(Address address)550 bool CompareIC::HasInlinedSmiCode(Address address) {
551 // The address of the instruction following the call.
552 Address cmp_instruction_address =
553 Assembler::return_address_from_call_start(address);
554
555 // If the instruction following the call is not a cmp rx, #yyy, nothing
556 // was inlined.
557 Instr instr = Assembler::instr_at(cmp_instruction_address);
558 return Assembler::IsCmpImmediate(instr);
559 }
560
561
562 //
563 // This code is paired with the JumpPatchSite class in full-codegen-ppc.cc
564 //
PatchInlinedSmiCode(Isolate * isolate,Address address,InlinedSmiCheck check)565 void PatchInlinedSmiCode(Isolate* isolate, Address address,
566 InlinedSmiCheck check) {
567 Address cmp_instruction_address =
568 Assembler::return_address_from_call_start(address);
569
570 // If the instruction following the call is not a cmp rx, #yyy, nothing
571 // was inlined.
572 Instr instr = Assembler::instr_at(cmp_instruction_address);
573 if (!Assembler::IsCmpImmediate(instr)) {
574 return;
575 }
576
577 // The delta to the start of the map check instruction and the
578 // condition code uses at the patched jump.
579 int delta = Assembler::GetCmpImmediateRawImmediate(instr);
580 delta += Assembler::GetCmpImmediateRegister(instr).code() * kOff16Mask;
581 // If the delta is 0 the instruction is cmp r0, #0 which also signals that
582 // nothing was inlined.
583 if (delta == 0) {
584 return;
585 }
586
587 if (FLAG_trace_ic) {
588 PrintF("[ patching ic at %p, cmp=%p, delta=%d\n",
589 static_cast<void*>(address),
590 static_cast<void*>(cmp_instruction_address), delta);
591 }
592
593 Address patch_address =
594 cmp_instruction_address - delta * Instruction::kInstrSize;
595 Instr instr_at_patch = Assembler::instr_at(patch_address);
596 Instr branch_instr =
597 Assembler::instr_at(patch_address + Instruction::kInstrSize);
598 // This is patching a conditional "jump if not smi/jump if smi" site.
599 // Enabling by changing from
600 // cmp cr0, rx, rx
601 // to
602 // rlwinm(r0, value, 0, 31, 31, SetRC);
603 // bc(label, BT/BF, 2)
604 // and vice-versa to be disabled again.
605 CodePatcher patcher(isolate, patch_address, 2);
606 Register reg = Assembler::GetRA(instr_at_patch);
607 if (check == ENABLE_INLINED_SMI_CHECK) {
608 DCHECK(Assembler::IsCmpRegister(instr_at_patch));
609 DCHECK_EQ(Assembler::GetRA(instr_at_patch).code(),
610 Assembler::GetRB(instr_at_patch).code());
611 patcher.masm()->TestIfSmi(reg, r0);
612 } else {
613 DCHECK(check == DISABLE_INLINED_SMI_CHECK);
614 DCHECK(Assembler::IsAndi(instr_at_patch));
615 patcher.masm()->cmp(reg, reg, cr0);
616 }
617 DCHECK(Assembler::IsBranch(branch_instr));
618
619 // Invert the logic of the branch
620 if (Assembler::GetCondition(branch_instr) == eq) {
621 patcher.EmitCondition(ne);
622 } else {
623 DCHECK(Assembler::GetCondition(branch_instr) == ne);
624 patcher.EmitCondition(eq);
625 }
626 }
627 } // namespace internal
628 } // namespace v8
629
630 #endif // V8_TARGET_ARCH_PPC
631