• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips64/assembler-mips64.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
SupportsSimd128()52 bool CpuFeatures::SupportsSimd128() { return false; }
53 
54 // -----------------------------------------------------------------------------
55 // Operand and MemOperand.
56 
Operand(int64_t immediate,RelocInfo::Mode rmode)57 Operand::Operand(int64_t immediate, RelocInfo::Mode rmode)  {
58   rm_ = no_reg;
59   imm64_ = immediate;
60   rmode_ = rmode;
61 }
62 
63 
Operand(const ExternalReference & f)64 Operand::Operand(const ExternalReference& f)  {
65   rm_ = no_reg;
66   imm64_ = reinterpret_cast<int64_t>(f.address());
67   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
68 }
69 
70 
Operand(Smi * value)71 Operand::Operand(Smi* value) {
72   rm_ = no_reg;
73   imm64_ =  reinterpret_cast<intptr_t>(value);
74   rmode_ = RelocInfo::NONE32;
75 }
76 
77 
Operand(Register rm)78 Operand::Operand(Register rm) {
79   rm_ = rm;
80 }
81 
82 
is_reg()83 bool Operand::is_reg() const {
84   return rm_.is_valid();
85 }
86 
87 
88 // -----------------------------------------------------------------------------
89 // RelocInfo.
90 
apply(intptr_t delta)91 void RelocInfo::apply(intptr_t delta) {
92   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
93     // Absolute code pointer inside code object moves with the code object.
94     byte* p = reinterpret_cast<byte*>(pc_);
95     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
96     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
97   }
98 }
99 
100 
target_address()101 Address RelocInfo::target_address() {
102   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
103   return Assembler::target_address_at(pc_, host_);
104 }
105 
target_address_address()106 Address RelocInfo::target_address_address() {
107   DCHECK(IsCodeTarget(rmode_) ||
108          IsRuntimeEntry(rmode_) ||
109          rmode_ == EMBEDDED_OBJECT ||
110          rmode_ == EXTERNAL_REFERENCE);
111   // Read the address of the word containing the target_address in an
112   // instruction stream.
113   // The only architecture-independent user of this function is the serializer.
114   // The serializer uses it to find out how many raw bytes of instruction to
115   // output before the next target.
116   // For an instruction like LUI/ORI where the target bits are mixed into the
117   // instruction bits, the size of the target will be zero, indicating that the
118   // serializer should not step forward in memory after a target is resolved
119   // and written. In this case the target_address_address function should
120   // return the end of the instructions to be patched, allowing the
121   // deserializer to deserialize the instructions as raw bytes and put them in
122   // place, ready to be patched with the target. After jump optimization,
123   // that is the address of the instruction that follows J/JAL/JR/JALR
124   // instruction.
125   // return reinterpret_cast<Address>(
126   //  pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
127   return reinterpret_cast<Address>(
128     pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
129 }
130 
131 
constant_pool_entry_address()132 Address RelocInfo::constant_pool_entry_address() {
133   UNREACHABLE();
134   return NULL;
135 }
136 
137 
target_address_size()138 int RelocInfo::target_address_size() {
139   return Assembler::kSpecialTargetSize;
140 }
141 
142 
target_address_from_return_address(Address pc)143 Address Assembler::target_address_from_return_address(Address pc) {
144   return pc - kCallTargetAddressOffset;
145 }
146 
147 
set_target_internal_reference_encoded_at(Address pc,Address target)148 void Assembler::set_target_internal_reference_encoded_at(Address pc,
149                                                          Address target) {
150   // Encoded internal references are j/jal instructions.
151   Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
152 
153   uint64_t imm28 =
154       (reinterpret_cast<uint64_t>(target) & static_cast<uint64_t>(kImm28Mask));
155 
156   instr &= ~kImm26Mask;
157   uint64_t imm26 = imm28 >> 2;
158   DCHECK(is_uint26(imm26));
159 
160   instr_at_put(pc, instr | (imm26 & kImm26Mask));
161   // Currently used only by deserializer, and all code will be flushed
162   // after complete deserialization, no need to flush on each reference.
163 }
164 
165 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)166 void Assembler::deserialization_set_target_internal_reference_at(
167     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
168   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
169     DCHECK(IsJ(instr_at(pc)));
170     set_target_internal_reference_encoded_at(pc, target);
171   } else {
172     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
173     Memory::Address_at(pc) = target;
174   }
175 }
176 
177 
target_object()178 Object* RelocInfo::target_object() {
179   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
180   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
181 }
182 
183 
target_object_handle(Assembler * origin)184 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
185   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
186   return Handle<Object>(reinterpret_cast<Object**>(
187       Assembler::target_address_at(pc_, host_)));
188 }
189 
190 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)191 void RelocInfo::set_target_object(Object* target,
192                                   WriteBarrierMode write_barrier_mode,
193                                   ICacheFlushMode icache_flush_mode) {
194   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
195   Assembler::set_target_address_at(isolate_, pc_, host_,
196                                    reinterpret_cast<Address>(target),
197                                    icache_flush_mode);
198   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
199       host() != NULL &&
200       target->IsHeapObject()) {
201     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
202         host(), this, HeapObject::cast(target));
203     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
204   }
205 }
206 
207 
target_external_reference()208 Address RelocInfo::target_external_reference() {
209   DCHECK(rmode_ == EXTERNAL_REFERENCE);
210   return Assembler::target_address_at(pc_, host_);
211 }
212 
213 
target_internal_reference()214 Address RelocInfo::target_internal_reference() {
215   if (rmode_ == INTERNAL_REFERENCE) {
216     return Memory::Address_at(pc_);
217   } else {
218     // Encoded internal references are j/jal instructions.
219     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
220     Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
221     instr &= kImm26Mask;
222     uint64_t imm28 = instr << 2;
223     uint64_t segment =
224         (reinterpret_cast<uint64_t>(pc_) & ~static_cast<uint64_t>(kImm28Mask));
225     return reinterpret_cast<Address>(segment | imm28);
226   }
227 }
228 
229 
target_internal_reference_address()230 Address RelocInfo::target_internal_reference_address() {
231   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
232   return reinterpret_cast<Address>(pc_);
233 }
234 
235 
target_runtime_entry(Assembler * origin)236 Address RelocInfo::target_runtime_entry(Assembler* origin) {
237   DCHECK(IsRuntimeEntry(rmode_));
238   return target_address();
239 }
240 
241 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)242 void RelocInfo::set_target_runtime_entry(Address target,
243                                          WriteBarrierMode write_barrier_mode,
244                                          ICacheFlushMode icache_flush_mode) {
245   DCHECK(IsRuntimeEntry(rmode_));
246   if (target_address() != target)
247     set_target_address(target, write_barrier_mode, icache_flush_mode);
248 }
249 
250 
target_cell_handle()251 Handle<Cell> RelocInfo::target_cell_handle() {
252   DCHECK(rmode_ == RelocInfo::CELL);
253   Address address = Memory::Address_at(pc_);
254   return Handle<Cell>(reinterpret_cast<Cell**>(address));
255 }
256 
257 
target_cell()258 Cell* RelocInfo::target_cell() {
259   DCHECK(rmode_ == RelocInfo::CELL);
260   return Cell::FromValueAddress(Memory::Address_at(pc_));
261 }
262 
263 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)264 void RelocInfo::set_target_cell(Cell* cell,
265                                 WriteBarrierMode write_barrier_mode,
266                                 ICacheFlushMode icache_flush_mode) {
267   DCHECK(rmode_ == RelocInfo::CELL);
268   Address address = cell->address() + Cell::kValueOffset;
269   Memory::Address_at(pc_) = address;
270   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
271     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
272                                                                   cell);
273   }
274 }
275 
276 
277 static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
278 
279 
code_age_stub_handle(Assembler * origin)280 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
281   UNREACHABLE();  // This should never be reached on Arm.
282   return Handle<Object>();
283 }
284 
285 
code_age_stub()286 Code* RelocInfo::code_age_stub() {
287   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
288   return Code::GetCodeFromTargetAddress(
289       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
290 }
291 
292 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)293 void RelocInfo::set_code_age_stub(Code* stub,
294                                   ICacheFlushMode icache_flush_mode) {
295   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
296   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
297                                    stub->instruction_start());
298 }
299 
300 
debug_call_address()301 Address RelocInfo::debug_call_address() {
302   // The pc_ offset of 0 assumes patched debug break slot or return
303   // sequence.
304   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
305   return Assembler::target_address_at(pc_, host_);
306 }
307 
308 
set_debug_call_address(Address target)309 void RelocInfo::set_debug_call_address(Address target) {
310   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
311   // The pc_ offset of 0 assumes patched debug break slot or return
312   // sequence.
313   Assembler::set_target_address_at(isolate_, pc_, host_, target);
314   if (host() != NULL) {
315     Object* target_code = Code::GetCodeFromTargetAddress(target);
316     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
317         host(), this, HeapObject::cast(target_code));
318   }
319 }
320 
321 
WipeOut()322 void RelocInfo::WipeOut() {
323   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
324          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
325          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
326   if (IsInternalReference(rmode_)) {
327     Memory::Address_at(pc_) = NULL;
328   } else if (IsInternalReferenceEncoded(rmode_)) {
329     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
330   } else {
331     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
332   }
333 }
334 
335 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)336 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
337   RelocInfo::Mode mode = rmode();
338   if (mode == RelocInfo::EMBEDDED_OBJECT) {
339     visitor->VisitEmbeddedPointer(this);
340   } else if (RelocInfo::IsCodeTarget(mode)) {
341     visitor->VisitCodeTarget(this);
342   } else if (mode == RelocInfo::CELL) {
343     visitor->VisitCell(this);
344   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
345     visitor->VisitExternalReference(this);
346   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
347              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
348     visitor->VisitInternalReference(this);
349   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
350     visitor->VisitCodeAgeSequence(this);
351   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
352              IsPatchedDebugBreakSlotSequence()) {
353     visitor->VisitDebugTarget(this);
354   } else if (RelocInfo::IsRuntimeEntry(mode)) {
355     visitor->VisitRuntimeEntry(this);
356   }
357 }
358 
359 
360 template<typename StaticVisitor>
Visit(Heap * heap)361 void RelocInfo::Visit(Heap* heap) {
362   RelocInfo::Mode mode = rmode();
363   if (mode == RelocInfo::EMBEDDED_OBJECT) {
364     StaticVisitor::VisitEmbeddedPointer(heap, this);
365   } else if (RelocInfo::IsCodeTarget(mode)) {
366     StaticVisitor::VisitCodeTarget(heap, this);
367   } else if (mode == RelocInfo::CELL) {
368     StaticVisitor::VisitCell(heap, this);
369   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
370     StaticVisitor::VisitExternalReference(this);
371   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
372              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
373     StaticVisitor::VisitInternalReference(this);
374   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
375     StaticVisitor::VisitCodeAgeSequence(heap, this);
376   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
377              IsPatchedDebugBreakSlotSequence()) {
378     StaticVisitor::VisitDebugTarget(heap, this);
379   } else if (RelocInfo::IsRuntimeEntry(mode)) {
380     StaticVisitor::VisitRuntimeEntry(this);
381   }
382 }
383 
384 
385 // -----------------------------------------------------------------------------
386 // Assembler.
387 
388 
CheckBuffer()389 void Assembler::CheckBuffer() {
390   if (buffer_space() <= kGap) {
391     GrowBuffer();
392   }
393 }
394 
395 
CheckTrampolinePoolQuick(int extra_instructions)396 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
397   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
398     CheckTrampolinePool();
399   }
400 }
401 
402 
CheckForEmitInForbiddenSlot()403 void Assembler::CheckForEmitInForbiddenSlot() {
404   if (!is_buffer_growth_blocked()) {
405     CheckBuffer();
406   }
407   if (IsPrevInstrCompactBranch()) {
408     // Nop instruction to preceed a CTI in forbidden slot:
409     Instr nop = SPECIAL | SLL;
410     *reinterpret_cast<Instr*>(pc_) = nop;
411     pc_ += kInstrSize;
412 
413     ClearCompactBranchState();
414   }
415 }
416 
417 
EmitHelper(Instr x,CompactBranchType is_compact_branch)418 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
419   if (IsPrevInstrCompactBranch()) {
420     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
421       // Nop instruction to preceed a CTI in forbidden slot:
422       Instr nop = SPECIAL | SLL;
423       *reinterpret_cast<Instr*>(pc_) = nop;
424       pc_ += kInstrSize;
425     }
426     ClearCompactBranchState();
427   }
428   *reinterpret_cast<Instr*>(pc_) = x;
429   pc_ += kInstrSize;
430   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
431     EmittedCompactBranchInstruction();
432   }
433   CheckTrampolinePoolQuick();
434 }
435 
436 template <>
437 inline void Assembler::EmitHelper(uint8_t x);
438 
439 template <typename T>
EmitHelper(T x)440 void Assembler::EmitHelper(T x) {
441   *reinterpret_cast<T*>(pc_) = x;
442   pc_ += sizeof(x);
443   CheckTrampolinePoolQuick();
444 }
445 
446 template <>
EmitHelper(uint8_t x)447 void Assembler::EmitHelper(uint8_t x) {
448   *reinterpret_cast<uint8_t*>(pc_) = x;
449   pc_ += sizeof(x);
450   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
451     CheckTrampolinePoolQuick();
452   }
453 }
454 
emit(Instr x,CompactBranchType is_compact_branch)455 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
456   if (!is_buffer_growth_blocked()) {
457     CheckBuffer();
458   }
459   EmitHelper(x, is_compact_branch);
460 }
461 
462 
emit(uint64_t data)463 void Assembler::emit(uint64_t data) {
464   CheckForEmitInForbiddenSlot();
465   EmitHelper(data);
466 }
467 
468 
469 }  // namespace internal
470 }  // namespace v8
471 
472 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
473