• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 
41 #include <set>
42 
43 #include "src/assembler.h"
44 #include "src/mips64/constants-mips64.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // clang-format off
50 #define GENERAL_REGISTERS(V)                              \
51   V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52   V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2)  V(t3)  \
53   V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54   V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55 
56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
57   V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58   V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2) V(s7)
59 
60 #define DOUBLE_REGISTERS(V)                               \
61   V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62   V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63   V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64   V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65 
66 #define FLOAT_REGISTERS DOUBLE_REGISTERS
67 #define SIMD128_REGISTERS DOUBLE_REGISTERS
68 
69 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
70   V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
71   V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
72 // clang-format on
73 
74 // CPU Registers.
75 //
76 // 1) We would prefer to use an enum, but enum values are assignment-
77 // compatible with int, which has caused code-generation bugs.
78 //
79 // 2) We would prefer to use a class instead of a struct but we don't like
80 // the register initialization to depend on the particular initialization
81 // order (which appears to be different on OS X, Linux, and Windows for the
82 // installed versions of C++ we tried). Using a struct permits C-style
83 // "initialization". Also, the Register objects cannot be const as this
84 // forces initialization stubs in MSVC, making us dependent on initialization
85 // order.
86 //
87 // 3) By not using an enum, we are possibly preventing the compiler from
88 // doing certain constant folds, which may significantly reduce the
89 // code generated for some assembly instructions (because they boil down
90 // to a few constants). If this is a problem, we could change the code
91 // such that we use an enum in optimized mode, and the struct in debug
92 // mode. This way we get the compile-time error checking in debug mode
93 // and best performance in optimized code.
94 
95 
96 // -----------------------------------------------------------------------------
97 // Implementation of Register and FPURegister.
98 
99 struct Register {
100   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
101 
102 #if defined(V8_TARGET_LITTLE_ENDIAN)
103   static const int kMantissaOffset = 0;
104   static const int kExponentOffset = 4;
105 #elif defined(V8_TARGET_BIG_ENDIAN)
106   static const int kMantissaOffset = 4;
107   static const int kExponentOffset = 0;
108 #else
109 #error Unknown endianness
110 #endif
111 
112   enum Code {
113 #define REGISTER_CODE(R) kCode_##R,
114     GENERAL_REGISTERS(REGISTER_CODE)
115 #undef REGISTER_CODE
116         kAfterLast,
117     kCode_no_reg = -1
118   };
119 
120   static const int kNumRegisters = Code::kAfterLast;
121 
from_codeRegister122   static Register from_code(int code) {
123     DCHECK(code >= 0);
124     DCHECK(code < kNumRegisters);
125     Register r = { code };
126     return r;
127   }
128 
is_validRegister129   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister130   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister131   int code() const {
132     DCHECK(is_valid());
133     return reg_code;
134   }
bitRegister135   int bit() const {
136     DCHECK(is_valid());
137     return 1 << reg_code;
138   }
139 
140   // Unfortunately we can't make this private in a struct.
141   int reg_code;
142 };
143 
144 // s7: context register
145 // s3: lithium scratch
146 // s4: lithium scratch2
147 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
148 GENERAL_REGISTERS(DECLARE_REGISTER)
149 #undef DECLARE_REGISTER
150 const Register no_reg = {Register::kCode_no_reg};
151 
152 
153 int ToNumber(Register reg);
154 
155 Register ToRegister(int num);
156 
157 static const bool kSimpleFPAliasing = true;
158 
159 // Coprocessor register.
160 struct FPURegister {
161   enum Code {
162 #define REGISTER_CODE(R) kCode_##R,
163     DOUBLE_REGISTERS(REGISTER_CODE)
164 #undef REGISTER_CODE
165         kAfterLast,
166     kCode_no_reg = -1
167   };
168 
169   static const int kMaxNumRegisters = Code::kAfterLast;
170 
171   inline static int NumRegisters();
172 
173   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
174   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
175   // number of Double regs (64-bit regs, or FPU-reg-pairs).
176 
is_validFPURegister177   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isFPURegister178   bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
lowFPURegister179   FPURegister low() const {
180     // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
181     // Find low reg of a Double-reg pair, which is the reg itself.
182     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
183     FPURegister reg;
184     reg.reg_code = reg_code;
185     DCHECK(reg.is_valid());
186     return reg;
187   }
highFPURegister188   FPURegister high() const {
189     // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
190     // Find high reg of a Doubel-reg pair, which is reg + 1.
191     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
192     FPURegister reg;
193     reg.reg_code = reg_code + 1;
194     DCHECK(reg.is_valid());
195     return reg;
196   }
197 
codeFPURegister198   int code() const {
199     DCHECK(is_valid());
200     return reg_code;
201   }
bitFPURegister202   int bit() const {
203     DCHECK(is_valid());
204     return 1 << reg_code;
205   }
206 
from_codeFPURegister207   static FPURegister from_code(int code) {
208     FPURegister r = {code};
209     return r;
210   }
setcodeFPURegister211   void setcode(int f) {
212     reg_code = f;
213     DCHECK(is_valid());
214   }
215   // Unfortunately we can't make this private in a struct.
216   int reg_code;
217 };
218 
219 // A few double registers are reserved: one as a scratch register and one to
220 // hold 0.0.
221 //  f28: 0.0
222 //  f30: scratch register.
223 
224 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
225 // 32-bit registers, f0 through f31. When used as 'double' they are used
226 // in pairs, starting with the even numbered register. So a double operation
227 // on f0 really uses f0 and f1.
228 // (Modern mips hardware also supports 32 64-bit registers, via setting
229 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
230 // but it is not in common use. Someday we will want to support this in v8.)
231 
232 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
233 typedef FPURegister FloatRegister;
234 
235 typedef FPURegister DoubleRegister;
236 
237 // TODO(mips64) Define SIMD registers.
238 typedef FPURegister Simd128Register;
239 
240 const DoubleRegister no_freg = {-1};
241 
242 const DoubleRegister f0 = {0};  // Return value in hard float mode.
243 const DoubleRegister f1 = {1};
244 const DoubleRegister f2 = {2};
245 const DoubleRegister f3 = {3};
246 const DoubleRegister f4 = {4};
247 const DoubleRegister f5 = {5};
248 const DoubleRegister f6 = {6};
249 const DoubleRegister f7 = {7};
250 const DoubleRegister f8 = {8};
251 const DoubleRegister f9 = {9};
252 const DoubleRegister f10 = {10};
253 const DoubleRegister f11 = {11};
254 const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
255 const DoubleRegister f13 = {13};
256 const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
257 const DoubleRegister f15 = {15};
258 const DoubleRegister f16 = {16};
259 const DoubleRegister f17 = {17};
260 const DoubleRegister f18 = {18};
261 const DoubleRegister f19 = {19};
262 const DoubleRegister f20 = {20};
263 const DoubleRegister f21 = {21};
264 const DoubleRegister f22 = {22};
265 const DoubleRegister f23 = {23};
266 const DoubleRegister f24 = {24};
267 const DoubleRegister f25 = {25};
268 const DoubleRegister f26 = {26};
269 const DoubleRegister f27 = {27};
270 const DoubleRegister f28 = {28};
271 const DoubleRegister f29 = {29};
272 const DoubleRegister f30 = {30};
273 const DoubleRegister f31 = {31};
274 
275 // Register aliases.
276 // cp is assumed to be a callee saved register.
277 // Defined using #define instead of "static const Register&" because Clang
278 // complains otherwise when a compilation unit that includes this header
279 // doesn't use the variables.
280 #define kRootRegister s6
281 #define cp s7
282 #define kLithiumScratchReg s3
283 #define kLithiumScratchReg2 s4
284 #define kLithiumScratchDouble f30
285 #define kDoubleRegZero f28
286 // Used on mips64r6 for compare operations.
287 // We use the last non-callee saved odd register for N64 ABI
288 #define kDoubleCompareReg f23
289 
290 // FPU (coprocessor 1) control registers.
291 // Currently only FCSR (#31) is implemented.
292 struct FPUControlRegister {
is_validFPUControlRegister293   bool is_valid() const { return reg_code == kFCSRRegister; }
isFPUControlRegister294   bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
codeFPUControlRegister295   int code() const {
296     DCHECK(is_valid());
297     return reg_code;
298   }
bitFPUControlRegister299   int bit() const {
300     DCHECK(is_valid());
301     return 1 << reg_code;
302   }
setcodeFPUControlRegister303   void setcode(int f) {
304     reg_code = f;
305     DCHECK(is_valid());
306   }
307   // Unfortunately we can't make this private in a struct.
308   int reg_code;
309 };
310 
311 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
312 const FPUControlRegister FCSR = { kFCSRRegister };
313 
314 // -----------------------------------------------------------------------------
315 // Machine instruction Operands.
316 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
317 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
318 // Class Operand represents a shifter operand in data processing instructions.
319 class Operand BASE_EMBEDDED {
320  public:
321   // Immediate.
322   INLINE(explicit Operand(int64_t immediate,
323          RelocInfo::Mode rmode = RelocInfo::NONE64));
324   INLINE(explicit Operand(const ExternalReference& f));
325   INLINE(explicit Operand(const char* s));
326   INLINE(explicit Operand(Object** opp));
327   INLINE(explicit Operand(Context** cpp));
328   explicit Operand(Handle<Object> handle);
329   INLINE(explicit Operand(Smi* value));
330 
331   // Register.
332   INLINE(explicit Operand(Register rm));
333 
334   // Return true if this is a register operand.
335   INLINE(bool is_reg() const);
336 
immediate()337   inline int64_t immediate() const {
338     DCHECK(!is_reg());
339     return imm64_;
340   }
341 
rm()342   Register rm() const { return rm_; }
343 
344  private:
345   Register rm_;
346   int64_t imm64_;  // Valid if rm_ == no_reg.
347   RelocInfo::Mode rmode_;
348 
349   friend class Assembler;
350   friend class MacroAssembler;
351 };
352 
353 
354 // On MIPS we have only one adressing mode with base_reg + offset.
355 // Class MemOperand represents a memory operand in load and store instructions.
356 class MemOperand : public Operand {
357  public:
358   // Immediate value attached to offset.
359   enum OffsetAddend {
360     offset_minus_one = -1,
361     offset_zero = 0
362   };
363 
364   explicit MemOperand(Register rn, int32_t offset = 0);
365   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
366                       OffsetAddend offset_addend = offset_zero);
offset()367   int32_t offset() const { return offset_; }
368 
OffsetIsInt16Encodable()369   bool OffsetIsInt16Encodable() const {
370     return is_int16(offset_);
371   }
372 
373  private:
374   int32_t offset_;
375 
376   friend class Assembler;
377 };
378 
379 
380 class Assembler : public AssemblerBase {
381  public:
382   // Create an assembler. Instructions and relocation information are emitted
383   // into a buffer, with the instructions starting from the beginning and the
384   // relocation information starting from the end of the buffer. See CodeDesc
385   // for a detailed comment on the layout (globals.h).
386   //
387   // If the provided buffer is NULL, the assembler allocates and grows its own
388   // buffer, and buffer_size determines the initial buffer size. The buffer is
389   // owned by the assembler and deallocated upon destruction of the assembler.
390   //
391   // If the provided buffer is not NULL, the assembler uses the provided buffer
392   // for code generation and assumes its size to be buffer_size. If the buffer
393   // is too small, a fatal error occurs. No deallocation of the buffer is done
394   // upon destruction of the assembler.
395   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()396   virtual ~Assembler() { }
397 
398   // GetCode emits any pending (non-emitted) code and fills the descriptor
399   // desc. GetCode() is idempotent; it returns the same result if no other
400   // Assembler functions are invoked in between GetCode() calls.
401   void GetCode(CodeDesc* desc);
402 
403   // Label operations & relative jumps (PPUM Appendix D).
404   //
405   // Takes a branch opcode (cc) and a label (L) and generates
406   // either a backward branch or a forward branch and links it
407   // to the label fixup chain. Usage:
408   //
409   // Label L;    // unbound label
410   // j(cc, &L);  // forward branch to unbound label
411   // bind(&L);   // bind label to the current pc
412   // j(cc, &L);  // backward branch to bound label
413   // bind(&L);   // illegal: a label may be bound only once
414   //
415   // Note: The same Label can be used for forward and backward branches
416   // but it may be bound only once.
417   void bind(Label* L);  // Binds an unbound label L to current code position.
418 
419   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
420 
421   // Determines if Label is bound and near enough so that branch instruction
422   // can be used to reach it, instead of jump instruction.
423   bool is_near(Label* L);
424   bool is_near(Label* L, OffsetSize bits);
425   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)426   inline bool is_near_pre_r6(Label* L) {
427     DCHECK(!(kArchVariant == kMips64r6));
428     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
429   }
is_near_r6(Label * L)430   inline bool is_near_r6(Label* L) {
431     DCHECK(kArchVariant == kMips64r6);
432     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
433   }
434 
435   int BranchOffset(Instr instr);
436 
437   // Returns the branch offset to the given label from the current code
438   // position. Links the label to the current position if it is still unbound.
439   // Manages the jump elimination optimization if the second parameter is true.
440   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)441   inline int32_t branch_offset(Label* L) {
442     return branch_offset_helper(L, OffsetSize::kOffset16);
443   }
branch_offset21(Label * L)444   inline int32_t branch_offset21(Label* L) {
445     return branch_offset_helper(L, OffsetSize::kOffset21);
446   }
branch_offset26(Label * L)447   inline int32_t branch_offset26(Label* L) {
448     return branch_offset_helper(L, OffsetSize::kOffset26);
449   }
shifted_branch_offset(Label * L)450   inline int32_t shifted_branch_offset(Label* L) {
451     return branch_offset(L) >> 2;
452   }
shifted_branch_offset21(Label * L)453   inline int32_t shifted_branch_offset21(Label* L) {
454     return branch_offset21(L) >> 2;
455   }
shifted_branch_offset26(Label * L)456   inline int32_t shifted_branch_offset26(Label* L) {
457     return branch_offset26(L) >> 2;
458   }
459   uint64_t jump_address(Label* L);
460   uint64_t jump_offset(Label* L);
461 
462   // Puts a labels target address at the given position.
463   // The high 8 bits are set to zero.
464   void label_at_put(Label* L, int at_offset);
465 
466   // Read/Modify the code target address in the branch/call instruction at pc.
467   static Address target_address_at(Address pc);
468   static void set_target_address_at(
469       Isolate* isolate, Address pc, Address target,
470       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
471   // On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at (Address pc,Address constant_pool))472   INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
473     return target_address_at(pc);
474   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))475   INLINE(static void set_target_address_at(
476       Isolate* isolate, Address pc, Address constant_pool, Address target,
477       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
478     set_target_address_at(isolate, pc, target, icache_flush_mode);
479   }
INLINE(static Address target_address_at (Address pc,Code * code))480   INLINE(static Address target_address_at(Address pc, Code* code)) {
481     Address constant_pool = code ? code->constant_pool() : NULL;
482     return target_address_at(pc, constant_pool);
483   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))484   INLINE(static void set_target_address_at(
485       Isolate* isolate, Address pc, Code* code, Address target,
486       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
487     Address constant_pool = code ? code->constant_pool() : NULL;
488     set_target_address_at(isolate, pc, constant_pool, target,
489                           icache_flush_mode);
490   }
491 
492   // Return the code target address at a call site from the return address
493   // of that call in the instruction stream.
494   inline static Address target_address_from_return_address(Address pc);
495 
496   static void JumpLabelToJumpRegister(Address pc);
497 
498   static void QuietNaN(HeapObject* nan);
499 
500   // This sets the branch destination (which gets loaded at the call address).
501   // This is for calls and branches within generated code.  The serializer
502   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)503   inline static void deserialization_set_special_target_at(
504       Isolate* isolate, Address instruction_payload, Code* code,
505       Address target) {
506     set_target_address_at(
507         isolate,
508         instruction_payload - kInstructionsFor64BitConstant * kInstrSize, code,
509         target);
510   }
511 
512   // This sets the internal reference at the pc.
513   inline static void deserialization_set_target_internal_reference_at(
514       Isolate* isolate, Address pc, Address target,
515       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
516 
517   // Size of an instruction.
518   static const int kInstrSize = sizeof(Instr);
519 
520   // Difference between address of current opcode and target address offset.
521   static const int kBranchPCOffset = 4;
522 
523   // Here we are patching the address in the LUI/ORI instruction pair.
524   // These values are used in the serialization process and must be zero for
525   // MIPS platform, as Code, Embedded Object or External-reference pointers
526   // are split across two consecutive instructions and don't exist separately
527   // in the code, so the serializer should not step forwards in memory after
528   // a target is resolved and written.
529   static const int kSpecialTargetSize = 0;
530 
531   // Number of consecutive instructions used to store 32bit/64bit constant.
532   // This constant was used in RelocInfo::target_address_address() function
533   // to tell serializer address of the instruction that follows
534   // LUI/ORI instruction pair.
535   static const int kInstructionsFor32BitConstant = 2;
536   static const int kInstructionsFor64BitConstant = 4;
537 
538   // Distance between the instruction referring to the address of the call
539   // target and the return address.
540 #ifdef _MIPS_ARCH_MIPS64R6
541   static const int kCallTargetAddressOffset = 5 * kInstrSize;
542 #else
543   static const int kCallTargetAddressOffset = 6 * kInstrSize;
544 #endif
545 
546   // Distance between start of patched debug break slot and the emitted address
547   // to jump to.
548   static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize;
549 
550   // Difference between address of current opcode and value read from pc
551   // register.
552   static const int kPcLoadDelta = 4;
553 
554 #ifdef _MIPS_ARCH_MIPS64R6
555   static const int kDebugBreakSlotInstructions = 5;
556 #else
557   static const int kDebugBreakSlotInstructions = 6;
558 #endif
559   static const int kDebugBreakSlotLength =
560       kDebugBreakSlotInstructions * kInstrSize;
561 
562 
563   // ---------------------------------------------------------------------------
564   // Code generation.
565 
566   // Insert the smallest number of nop instructions
567   // possible to align the pc offset to a multiple
568   // of m. m must be a power of 2 (>= 4).
569   void Align(int m);
570   // Insert the smallest number of zero bytes possible to align the pc offset
571   // to a mulitple of m. m must be a power of 2 (>= 2).
572   void DataAlign(int m);
573   // Aligns code to something that's optimal for a jump target for the platform.
574   void CodeTargetAlign();
575 
576   // Different nop operations are used by the code generator to detect certain
577   // states of the generated code.
578   enum NopMarkerTypes {
579     NON_MARKING_NOP = 0,
580     DEBUG_BREAK_NOP,
581     // IC markers.
582     PROPERTY_ACCESS_INLINED,
583     PROPERTY_ACCESS_INLINED_CONTEXT,
584     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
585     // Helper values.
586     LAST_CODE_MARKER,
587     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
588     // Code aging
589     CODE_AGE_MARKER_NOP = 6,
590     CODE_AGE_SEQUENCE_NOP
591   };
592 
593   // Type == 0 is the default non-marking nop. For mips this is a
594   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
595   // marking, to avoid conflict with ssnop and ehb instructions.
596   void nop(unsigned int type = 0) {
597     DCHECK(type < 32);
598     Register nop_rt_reg = (type == 0) ? zero_reg : at;
599     sll(zero_reg, nop_rt_reg, type, true);
600   }
601 
602 
603   // --------Branch-and-jump-instructions----------
604   // We don't use likely variant of instructions.
605   void b(int16_t offset);
b(Label * L)606   inline void b(Label* L) { b(shifted_branch_offset(L)); }
607   void bal(int16_t offset);
bal(Label * L)608   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
609   void bc(int32_t offset);
bc(Label * L)610   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
611   void balc(int32_t offset);
balc(Label * L)612   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
613 
614   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)615   inline void beq(Register rs, Register rt, Label* L) {
616     beq(rs, rt, shifted_branch_offset(L));
617   }
618   void bgez(Register rs, int16_t offset);
619   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)620   inline void bgezc(Register rt, Label* L) {
621     bgezc(rt, shifted_branch_offset(L));
622   }
623   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)624   inline void bgeuc(Register rs, Register rt, Label* L) {
625     bgeuc(rs, rt, shifted_branch_offset(L));
626   }
627   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)628   inline void bgec(Register rs, Register rt, Label* L) {
629     bgec(rs, rt, shifted_branch_offset(L));
630   }
631   void bgezal(Register rs, int16_t offset);
632   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)633   inline void bgezalc(Register rt, Label* L) {
634     bgezalc(rt, shifted_branch_offset(L));
635   }
636   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)637   inline void bgezall(Register rs, Label* L) {
638     bgezall(rs, branch_offset(L) >> 2);
639   }
640   void bgtz(Register rs, int16_t offset);
641   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)642   inline void bgtzc(Register rt, Label* L) {
643     bgtzc(rt, shifted_branch_offset(L));
644   }
645   void blez(Register rs, int16_t offset);
646   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)647   inline void blezc(Register rt, Label* L) {
648     blezc(rt, shifted_branch_offset(L));
649   }
650   void bltz(Register rs, int16_t offset);
651   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)652   inline void bltzc(Register rt, Label* L) {
653     bltzc(rt, shifted_branch_offset(L));
654   }
655   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)656   inline void bltuc(Register rs, Register rt, Label* L) {
657     bltuc(rs, rt, shifted_branch_offset(L));
658   }
659   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)660   inline void bltc(Register rs, Register rt, Label* L) {
661     bltc(rs, rt, shifted_branch_offset(L));
662   }
663   void bltzal(Register rs, int16_t offset);
664   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)665   inline void blezalc(Register rt, Label* L) {
666     blezalc(rt, shifted_branch_offset(L));
667   }
668   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)669   inline void bltzalc(Register rt, Label* L) {
670     bltzalc(rt, shifted_branch_offset(L));
671   }
672   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)673   inline void bgtzalc(Register rt, Label* L) {
674     bgtzalc(rt, shifted_branch_offset(L));
675   }
676   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)677   inline void beqzalc(Register rt, Label* L) {
678     beqzalc(rt, shifted_branch_offset(L));
679   }
680   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)681   inline void beqc(Register rs, Register rt, Label* L) {
682     beqc(rs, rt, shifted_branch_offset(L));
683   }
684   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)685   inline void beqzc(Register rs, Label* L) {
686     beqzc(rs, shifted_branch_offset21(L));
687   }
688   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)689   inline void bnezalc(Register rt, Label* L) {
690     bnezalc(rt, shifted_branch_offset(L));
691   }
692   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)693   inline void bnec(Register rs, Register rt, Label* L) {
694     bnec(rs, rt, shifted_branch_offset(L));
695   }
696   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)697   inline void bnezc(Register rt, Label* L) {
698     bnezc(rt, shifted_branch_offset21(L));
699   }
700   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)701   inline void bne(Register rs, Register rt, Label* L) {
702     bne(rs, rt, shifted_branch_offset(L));
703   }
704   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)705   inline void bovc(Register rs, Register rt, Label* L) {
706     bovc(rs, rt, shifted_branch_offset(L));
707   }
708   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)709   inline void bnvc(Register rs, Register rt, Label* L) {
710     bnvc(rs, rt, shifted_branch_offset(L));
711   }
712 
713   // Never use the int16_t b(l)cond version with a branch offset
714   // instead of using the Label* version.
715 
716   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
717   void j(int64_t target);
718   void jal(int64_t target);
719   void j(Label* target);
720   void jal(Label* target);
721   void jalr(Register rs, Register rd = ra);
722   void jr(Register target);
723   void jic(Register rt, int16_t offset);
724   void jialc(Register rt, int16_t offset);
725 
726 
727   // -------Data-processing-instructions---------
728 
729   // Arithmetic.
730   void addu(Register rd, Register rs, Register rt);
731   void subu(Register rd, Register rs, Register rt);
732 
733   void div(Register rs, Register rt);
734   void divu(Register rs, Register rt);
735   void ddiv(Register rs, Register rt);
736   void ddivu(Register rs, Register rt);
737   void div(Register rd, Register rs, Register rt);
738   void divu(Register rd, Register rs, Register rt);
739   void ddiv(Register rd, Register rs, Register rt);
740   void ddivu(Register rd, Register rs, Register rt);
741   void mod(Register rd, Register rs, Register rt);
742   void modu(Register rd, Register rs, Register rt);
743   void dmod(Register rd, Register rs, Register rt);
744   void dmodu(Register rd, Register rs, Register rt);
745 
746   void mul(Register rd, Register rs, Register rt);
747   void muh(Register rd, Register rs, Register rt);
748   void mulu(Register rd, Register rs, Register rt);
749   void muhu(Register rd, Register rs, Register rt);
750   void mult(Register rs, Register rt);
751   void multu(Register rs, Register rt);
752   void dmul(Register rd, Register rs, Register rt);
753   void dmuh(Register rd, Register rs, Register rt);
754   void dmulu(Register rd, Register rs, Register rt);
755   void dmuhu(Register rd, Register rs, Register rt);
756   void daddu(Register rd, Register rs, Register rt);
757   void dsubu(Register rd, Register rs, Register rt);
758   void dmult(Register rs, Register rt);
759   void dmultu(Register rs, Register rt);
760 
761   void addiu(Register rd, Register rs, int32_t j);
762   void daddiu(Register rd, Register rs, int32_t j);
763 
764   // Logical.
765   void and_(Register rd, Register rs, Register rt);
766   void or_(Register rd, Register rs, Register rt);
767   void xor_(Register rd, Register rs, Register rt);
768   void nor(Register rd, Register rs, Register rt);
769 
770   void andi(Register rd, Register rs, int32_t j);
771   void ori(Register rd, Register rs, int32_t j);
772   void xori(Register rd, Register rs, int32_t j);
773   void lui(Register rd, int32_t j);
774   void aui(Register rt, Register rs, int32_t j);
775   void daui(Register rt, Register rs, int32_t j);
776   void dahi(Register rs, int32_t j);
777   void dati(Register rs, int32_t j);
778 
779   // Shifts.
780   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
781   // and may cause problems in normal code. coming_from_nop makes sure this
782   // doesn't happen.
783   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
784   void sllv(Register rd, Register rt, Register rs);
785   void srl(Register rd, Register rt, uint16_t sa);
786   void srlv(Register rd, Register rt, Register rs);
787   void sra(Register rt, Register rd, uint16_t sa);
788   void srav(Register rt, Register rd, Register rs);
789   void rotr(Register rd, Register rt, uint16_t sa);
790   void rotrv(Register rd, Register rt, Register rs);
791   void dsll(Register rd, Register rt, uint16_t sa);
792   void dsllv(Register rd, Register rt, Register rs);
793   void dsrl(Register rd, Register rt, uint16_t sa);
794   void dsrlv(Register rd, Register rt, Register rs);
795   void drotr(Register rd, Register rt, uint16_t sa);
796   void drotr32(Register rd, Register rt, uint16_t sa);
797   void drotrv(Register rd, Register rt, Register rs);
798   void dsra(Register rt, Register rd, uint16_t sa);
799   void dsrav(Register rd, Register rt, Register rs);
800   void dsll32(Register rt, Register rd, uint16_t sa);
801   void dsrl32(Register rt, Register rd, uint16_t sa);
802   void dsra32(Register rt, Register rd, uint16_t sa);
803 
804   // ------------Memory-instructions-------------
805 
806   void lb(Register rd, const MemOperand& rs);
807   void lbu(Register rd, const MemOperand& rs);
808   void lh(Register rd, const MemOperand& rs);
809   void lhu(Register rd, const MemOperand& rs);
810   void lw(Register rd, const MemOperand& rs);
811   void lwu(Register rd, const MemOperand& rs);
812   void lwl(Register rd, const MemOperand& rs);
813   void lwr(Register rd, const MemOperand& rs);
814   void sb(Register rd, const MemOperand& rs);
815   void sh(Register rd, const MemOperand& rs);
816   void sw(Register rd, const MemOperand& rs);
817   void swl(Register rd, const MemOperand& rs);
818   void swr(Register rd, const MemOperand& rs);
819   void ldl(Register rd, const MemOperand& rs);
820   void ldr(Register rd, const MemOperand& rs);
821   void sdl(Register rd, const MemOperand& rs);
822   void sdr(Register rd, const MemOperand& rs);
823   void ld(Register rd, const MemOperand& rs);
824   void sd(Register rd, const MemOperand& rs);
825 
826 
827   // ---------PC-Relative-instructions-----------
828 
829   void addiupc(Register rs, int32_t imm19);
830   void lwpc(Register rs, int32_t offset19);
831   void lwupc(Register rs, int32_t offset19);
832   void ldpc(Register rs, int32_t offset18);
833   void auipc(Register rs, int16_t imm16);
834   void aluipc(Register rs, int16_t imm16);
835 
836 
837   // ----------------Prefetch--------------------
838 
839   void pref(int32_t hint, const MemOperand& rs);
840 
841 
842   // -------------Misc-instructions--------------
843 
844   // Break / Trap instructions.
845   void break_(uint32_t code, bool break_as_stop = false);
846   void stop(const char* msg, uint32_t code = kMaxStopCode);
847   void tge(Register rs, Register rt, uint16_t code);
848   void tgeu(Register rs, Register rt, uint16_t code);
849   void tlt(Register rs, Register rt, uint16_t code);
850   void tltu(Register rs, Register rt, uint16_t code);
851   void teq(Register rs, Register rt, uint16_t code);
852   void tne(Register rs, Register rt, uint16_t code);
853 
854   // Memory barrier instruction.
855   void sync();
856 
857   // Move from HI/LO register.
858   void mfhi(Register rd);
859   void mflo(Register rd);
860 
861   // Set on less than.
862   void slt(Register rd, Register rs, Register rt);
863   void sltu(Register rd, Register rs, Register rt);
864   void slti(Register rd, Register rs, int32_t j);
865   void sltiu(Register rd, Register rs, int32_t j);
866 
867   // Conditional move.
868   void movz(Register rd, Register rs, Register rt);
869   void movn(Register rd, Register rs, Register rt);
870   void movt(Register rd, Register rs, uint16_t cc = 0);
871   void movf(Register rd, Register rs, uint16_t cc = 0);
872 
873   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
874   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
875   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
876   void seleqz(Register rd, Register rs, Register rt);
877   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
878               FPURegister ft);
879   void selnez(Register rs, Register rt, Register rd);
880   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
881               FPURegister ft);
882   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
883   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
884   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
885   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
886 
887   void movz_s(FPURegister fd, FPURegister fs, Register rt);
888   void movz_d(FPURegister fd, FPURegister fs, Register rt);
889   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
890   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
891   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
892   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
893   void movn_s(FPURegister fd, FPURegister fs, Register rt);
894   void movn_d(FPURegister fd, FPURegister fs, Register rt);
895   // Bit twiddling.
896   void clz(Register rd, Register rs);
897   void dclz(Register rd, Register rs);
898   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
899   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
900   void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
901   void dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
902   void dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
903   void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
904   void bitswap(Register rd, Register rt);
905   void dbitswap(Register rd, Register rt);
906   void align(Register rd, Register rs, Register rt, uint8_t bp);
907   void dalign(Register rd, Register rs, Register rt, uint8_t bp);
908 
909   void wsbh(Register rd, Register rt);
910   void dsbh(Register rd, Register rt);
911   void dshd(Register rd, Register rt);
912   void seh(Register rd, Register rt);
913   void seb(Register rd, Register rt);
914 
915   // --------Coprocessor-instructions----------------
916 
917   // Load, store, and move.
918   void lwc1(FPURegister fd, const MemOperand& src);
919   void ldc1(FPURegister fd, const MemOperand& src);
920 
921   void swc1(FPURegister fs, const MemOperand& dst);
922   void sdc1(FPURegister fs, const MemOperand& dst);
923 
924   void mtc1(Register rt, FPURegister fs);
925   void mthc1(Register rt, FPURegister fs);
926   void dmtc1(Register rt, FPURegister fs);
927 
928   void mfc1(Register rt, FPURegister fs);
929   void mfhc1(Register rt, FPURegister fs);
930   void dmfc1(Register rt, FPURegister fs);
931 
932   void ctc1(Register rt, FPUControlRegister fs);
933   void cfc1(Register rt, FPUControlRegister fs);
934 
935   // Arithmetic.
936   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
937   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
938   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
939   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
940   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
941   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
942   void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
943   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
944   void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
945   void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
946   void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
947   void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
948   void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
949   void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
950   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
951   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
952   void abs_s(FPURegister fd, FPURegister fs);
953   void abs_d(FPURegister fd, FPURegister fs);
954   void mov_d(FPURegister fd, FPURegister fs);
955   void mov_s(FPURegister fd, FPURegister fs);
956   void neg_s(FPURegister fd, FPURegister fs);
957   void neg_d(FPURegister fd, FPURegister fs);
958   void sqrt_s(FPURegister fd, FPURegister fs);
959   void sqrt_d(FPURegister fd, FPURegister fs);
960   void rsqrt_s(FPURegister fd, FPURegister fs);
961   void rsqrt_d(FPURegister fd, FPURegister fs);
962   void recip_d(FPURegister fd, FPURegister fs);
963   void recip_s(FPURegister fd, FPURegister fs);
964 
965   // Conversion.
966   void cvt_w_s(FPURegister fd, FPURegister fs);
967   void cvt_w_d(FPURegister fd, FPURegister fs);
968   void trunc_w_s(FPURegister fd, FPURegister fs);
969   void trunc_w_d(FPURegister fd, FPURegister fs);
970   void round_w_s(FPURegister fd, FPURegister fs);
971   void round_w_d(FPURegister fd, FPURegister fs);
972   void floor_w_s(FPURegister fd, FPURegister fs);
973   void floor_w_d(FPURegister fd, FPURegister fs);
974   void ceil_w_s(FPURegister fd, FPURegister fs);
975   void ceil_w_d(FPURegister fd, FPURegister fs);
976   void rint_s(FPURegister fd, FPURegister fs);
977   void rint_d(FPURegister fd, FPURegister fs);
978   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
979 
980 
981   void cvt_l_s(FPURegister fd, FPURegister fs);
982   void cvt_l_d(FPURegister fd, FPURegister fs);
983   void trunc_l_s(FPURegister fd, FPURegister fs);
984   void trunc_l_d(FPURegister fd, FPURegister fs);
985   void round_l_s(FPURegister fd, FPURegister fs);
986   void round_l_d(FPURegister fd, FPURegister fs);
987   void floor_l_s(FPURegister fd, FPURegister fs);
988   void floor_l_d(FPURegister fd, FPURegister fs);
989   void ceil_l_s(FPURegister fd, FPURegister fs);
990   void ceil_l_d(FPURegister fd, FPURegister fs);
991 
992   void class_s(FPURegister fd, FPURegister fs);
993   void class_d(FPURegister fd, FPURegister fs);
994 
995   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
996   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
997   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
998   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
999   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
1000   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
1001   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
1002   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
1003   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
1004   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
1005   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
1006   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
1007 
1008   void cvt_s_w(FPURegister fd, FPURegister fs);
1009   void cvt_s_l(FPURegister fd, FPURegister fs);
1010   void cvt_s_d(FPURegister fd, FPURegister fs);
1011 
1012   void cvt_d_w(FPURegister fd, FPURegister fs);
1013   void cvt_d_l(FPURegister fd, FPURegister fs);
1014   void cvt_d_s(FPURegister fd, FPURegister fs);
1015 
1016   // Conditions and branches for MIPSr6.
1017   void cmp(FPUCondition cond, SecondaryField fmt,
1018          FPURegister fd, FPURegister ft, FPURegister fs);
1019   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1020   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1021 
1022   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)1023   inline void bc1eqz(Label* L, FPURegister ft) {
1024     bc1eqz(shifted_branch_offset(L), ft);
1025   }
1026   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)1027   inline void bc1nez(Label* L, FPURegister ft) {
1028     bc1nez(shifted_branch_offset(L), ft);
1029   }
1030 
1031   // Conditions and branches for non MIPSr6.
1032   void c(FPUCondition cond, SecondaryField fmt,
1033          FPURegister ft, FPURegister fs, uint16_t cc = 0);
1034   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1035   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1036 
1037   void bc1f(int16_t offset, uint16_t cc = 0);
1038   inline void bc1f(Label* L, uint16_t cc = 0) {
1039     bc1f(shifted_branch_offset(L), cc);
1040   }
1041   void bc1t(int16_t offset, uint16_t cc = 0);
1042   inline void bc1t(Label* L, uint16_t cc = 0) {
1043     bc1t(shifted_branch_offset(L), cc);
1044   }
1045   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
1046 
1047   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1048   int SizeOfCodeGeneratedSince(Label* label) {
1049     return pc_offset() - label->pos();
1050   }
1051 
1052   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)1053   int InstructionsGeneratedSince(Label* label) {
1054     return SizeOfCodeGeneratedSince(label) / kInstrSize;
1055   }
1056 
1057   // Class for scoping postponing the trampoline pool generation.
1058   class BlockTrampolinePoolScope {
1059    public:
BlockTrampolinePoolScope(Assembler * assem)1060     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1061       assem_->StartBlockTrampolinePool();
1062     }
~BlockTrampolinePoolScope()1063     ~BlockTrampolinePoolScope() {
1064       assem_->EndBlockTrampolinePool();
1065     }
1066 
1067    private:
1068     Assembler* assem_;
1069 
1070     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1071   };
1072 
1073   // Class for postponing the assembly buffer growth. Typically used for
1074   // sequences of instructions that must be emitted as a unit, before
1075   // buffer growth (and relocation) can occur.
1076   // This blocking scope is not nestable.
1077   class BlockGrowBufferScope {
1078    public:
BlockGrowBufferScope(Assembler * assem)1079     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1080       assem_->StartBlockGrowBuffer();
1081     }
~BlockGrowBufferScope()1082     ~BlockGrowBufferScope() {
1083       assem_->EndBlockGrowBuffer();
1084     }
1085 
1086    private:
1087     Assembler* assem_;
1088 
1089     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1090   };
1091 
1092   // Debugging.
1093 
1094   // Mark generator continuation.
1095   void RecordGeneratorContinuation();
1096 
1097   // Mark address of a debug break slot.
1098   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1099 
1100   // Record the AST id of the CallIC being compiled, so that it can be placed
1101   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1102   void SetRecordedAstId(TypeFeedbackId ast_id) {
1103     DCHECK(recorded_ast_id_.IsNone());
1104     recorded_ast_id_ = ast_id;
1105   }
1106 
RecordedAstId()1107   TypeFeedbackId RecordedAstId() {
1108     DCHECK(!recorded_ast_id_.IsNone());
1109     return recorded_ast_id_;
1110   }
1111 
ClearRecordedAstId()1112   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1113 
1114   // Record a comment relocation entry that can be used by a disassembler.
1115   // Use --code-comments to enable.
1116   void RecordComment(const char* msg);
1117 
1118   // Record a deoptimization reason that can be used by a log or cpu profiler.
1119   // Use --trace-deopt to enable.
1120   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1121                          int id);
1122 
1123   static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1124                                        intptr_t pc_delta);
1125 
1126   // Writes a single byte or word of data in the code stream.  Used for
1127   // inline tables, e.g., jump-tables.
1128   void db(uint8_t data);
1129   void dd(uint32_t data);
1130   void dq(uint64_t data);
dp(uintptr_t data)1131   void dp(uintptr_t data) { dq(data); }
1132   void dd(Label* label);
1133 
1134   // Postpone the generation of the trampoline pool for the specified number of
1135   // instructions.
1136   void BlockTrampolinePoolFor(int instructions);
1137 
1138   // Check if there is less than kGap bytes available in the buffer.
1139   // If this is the case, we need to grow the buffer before emitting
1140   // an instruction or relocation information.
overflow()1141   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1142 
1143   // Get the number of bytes available in the buffer.
available_space()1144   inline intptr_t available_space() const {
1145     return reloc_info_writer.pos() - pc_;
1146   }
1147 
1148   // Read/patch instructions.
instr_at(byte * pc)1149   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)1150   static void instr_at_put(byte* pc, Instr instr) {
1151     *reinterpret_cast<Instr*>(pc) = instr;
1152   }
instr_at(int pos)1153   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)1154   void instr_at_put(int pos, Instr instr) {
1155     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1156   }
1157 
1158   // Check if an instruction is a branch of some kind.
1159   static bool IsBranch(Instr instr);
1160   static bool IsBc(Instr instr);
1161   static bool IsBzc(Instr instr);
1162 
1163   static bool IsBeq(Instr instr);
1164   static bool IsBne(Instr instr);
1165   static bool IsBeqzc(Instr instr);
1166   static bool IsBnezc(Instr instr);
1167   static bool IsBeqc(Instr instr);
1168   static bool IsBnec(Instr instr);
1169 
1170 
1171   static bool IsJump(Instr instr);
1172   static bool IsJ(Instr instr);
1173   static bool IsLui(Instr instr);
1174   static bool IsOri(Instr instr);
1175 
1176   static bool IsJal(Instr instr);
1177   static bool IsJr(Instr instr);
1178   static bool IsJalr(Instr instr);
1179 
1180   static bool IsNop(Instr instr, unsigned int type);
1181   static bool IsPop(Instr instr);
1182   static bool IsPush(Instr instr);
1183   static bool IsLwRegFpOffset(Instr instr);
1184   static bool IsSwRegFpOffset(Instr instr);
1185   static bool IsLwRegFpNegOffset(Instr instr);
1186   static bool IsSwRegFpNegOffset(Instr instr);
1187 
1188   static Register GetRtReg(Instr instr);
1189   static Register GetRsReg(Instr instr);
1190   static Register GetRdReg(Instr instr);
1191 
1192   static uint32_t GetRt(Instr instr);
1193   static uint32_t GetRtField(Instr instr);
1194   static uint32_t GetRs(Instr instr);
1195   static uint32_t GetRsField(Instr instr);
1196   static uint32_t GetRd(Instr instr);
1197   static uint32_t GetRdField(Instr instr);
1198   static uint32_t GetSa(Instr instr);
1199   static uint32_t GetSaField(Instr instr);
1200   static uint32_t GetOpcodeField(Instr instr);
1201   static uint32_t GetFunction(Instr instr);
1202   static uint32_t GetFunctionField(Instr instr);
1203   static uint32_t GetImmediate16(Instr instr);
1204   static uint32_t GetLabelConst(Instr instr);
1205 
1206   static int32_t GetBranchOffset(Instr instr);
1207   static bool IsLw(Instr instr);
1208   static int16_t GetLwOffset(Instr instr);
1209   static Instr SetLwOffset(Instr instr, int16_t offset);
1210 
1211   static bool IsSw(Instr instr);
1212   static Instr SetSwOffset(Instr instr, int16_t offset);
1213   static bool IsAddImmediate(Instr instr);
1214   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1215 
1216   static bool IsAndImmediate(Instr instr);
1217   static bool IsEmittedConstant(Instr instr);
1218 
1219   void CheckTrampolinePool();
1220 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1221   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1222                                           ConstantPoolEntry::Access access,
1223                                           ConstantPoolEntry::Type type) {
1224     // No embedded constant pool support.
1225     UNREACHABLE();
1226   }
1227 
IsPrevInstrCompactBranch()1228   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
1229 
UnboundLabelsCount()1230   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1231 
1232  protected:
1233   // Load Scaled Address instructions.
1234   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1235   void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
1236 
1237   // Helpers.
1238   void LoadRegPlusOffsetToAt(const MemOperand& src);
1239 
1240   // Relocation for a type-recording IC has the AST id added to it.  This
1241   // member variable is a way to pass the information from the call site to
1242   // the relocation info.
1243   TypeFeedbackId recorded_ast_id_;
1244 
1245   inline static void set_target_internal_reference_encoded_at(Address pc,
1246                                                               Address target);
1247 
buffer_space()1248   int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1249 
1250   // Decode branch instruction at pos and return branch target pos.
1251   int target_at(int pos, bool is_internal);
1252 
1253   // Patch branch instruction at pos to branch to given branch target pos.
1254   void target_at_put(int pos, int target_pos, bool is_internal);
1255 
1256   // Say if we need to relocate with this mode.
1257   bool MustUseReg(RelocInfo::Mode rmode);
1258 
1259   // Record reloc info for current pc_.
1260   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1261 
1262   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1263   void BlockTrampolinePoolBefore(int pc_offset) {
1264     if (no_trampoline_pool_before_ < pc_offset)
1265       no_trampoline_pool_before_ = pc_offset;
1266   }
1267 
StartBlockTrampolinePool()1268   void StartBlockTrampolinePool() {
1269     trampoline_pool_blocked_nesting_++;
1270   }
1271 
EndBlockTrampolinePool()1272   void EndBlockTrampolinePool() {
1273     trampoline_pool_blocked_nesting_--;
1274   }
1275 
is_trampoline_pool_blocked()1276   bool is_trampoline_pool_blocked() const {
1277     return trampoline_pool_blocked_nesting_ > 0;
1278   }
1279 
has_exception()1280   bool has_exception() const {
1281     return internal_trampoline_exception_;
1282   }
1283 
1284   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1285 
is_trampoline_emitted()1286   bool is_trampoline_emitted() const {
1287     return trampoline_emitted_;
1288   }
1289 
1290   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1291   void StartBlockGrowBuffer() {
1292     DCHECK(!block_buffer_growth_);
1293     block_buffer_growth_ = true;
1294   }
1295 
EndBlockGrowBuffer()1296   void EndBlockGrowBuffer() {
1297     DCHECK(block_buffer_growth_);
1298     block_buffer_growth_ = false;
1299   }
1300 
is_buffer_growth_blocked()1301   bool is_buffer_growth_blocked() const {
1302     return block_buffer_growth_;
1303   }
1304 
EmitForbiddenSlotInstruction()1305   void EmitForbiddenSlotInstruction() {
1306     if (IsPrevInstrCompactBranch()) {
1307       nop();
1308     }
1309   }
1310 
1311   inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1312 
1313  private:
1314   // Buffer size and constant pool distance are checked together at regular
1315   // intervals of kBufferCheckInterval emitted bytes.
1316   static const int kBufferCheckInterval = 1*KB/2;
1317 
1318   // Code generation.
1319   // The relocation writer's position is at least kGap bytes below the end of
1320   // the generated instructions. This is so that multi-instruction sequences do
1321   // not have to check for overflow. The same is true for writes of large
1322   // relocation info entries.
1323   static const int kGap = 32;
1324 
1325 
1326   // Repeated checking whether the trampoline pool should be emitted is rather
1327   // expensive. By default we only check again once a number of instructions
1328   // has been generated.
1329   static const int kCheckConstIntervalInst = 32;
1330   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1331 
1332   int next_buffer_check_;  // pc offset of next buffer check.
1333 
1334   // Emission of the trampoline pool may be blocked in some code sequences.
1335   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1336   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1337 
1338   // Keep track of the last emitted pool to guarantee a maximal distance.
1339   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1340 
1341   // Automatic growth of the assembly buffer may be blocked for some sequences.
1342   bool block_buffer_growth_;  // Block growth when true.
1343 
1344   // Relocation information generation.
1345   // Each relocation is encoded as a variable size value.
1346   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1347   RelocInfoWriter reloc_info_writer;
1348 
1349   // The bound position, before this we cannot do instruction elimination.
1350   int last_bound_pos_;
1351 
1352   // Readable constants for compact branch handling in emit()
1353   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1354 
1355   // Code emission.
1356   inline void CheckBuffer();
1357   void GrowBuffer();
1358   inline void emit(Instr x,
1359                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1360   inline void emit(uint64_t x);
1361   inline void CheckForEmitInForbiddenSlot();
1362   template <typename T>
1363   inline void EmitHelper(T x);
1364   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1365 
1366   // Instruction generation.
1367   // We have 3 different kind of encoding layout on MIPS.
1368   // However due to many different types of objects encoded in the same fields
1369   // we have quite a few aliases for each mode.
1370   // Using the same structure to refer to Register and FPURegister would spare a
1371   // few aliases, but mixing both does not look clean to me.
1372   // Anyway we could surely implement this differently.
1373 
1374   void GenInstrRegister(Opcode opcode,
1375                         Register rs,
1376                         Register rt,
1377                         Register rd,
1378                         uint16_t sa = 0,
1379                         SecondaryField func = NULLSF);
1380 
1381   void GenInstrRegister(Opcode opcode,
1382                         Register rs,
1383                         Register rt,
1384                         uint16_t msb,
1385                         uint16_t lsb,
1386                         SecondaryField func);
1387 
1388   void GenInstrRegister(Opcode opcode,
1389                         SecondaryField fmt,
1390                         FPURegister ft,
1391                         FPURegister fs,
1392                         FPURegister fd,
1393                         SecondaryField func = NULLSF);
1394 
1395   void GenInstrRegister(Opcode opcode,
1396                         FPURegister fr,
1397                         FPURegister ft,
1398                         FPURegister fs,
1399                         FPURegister fd,
1400                         SecondaryField func = NULLSF);
1401 
1402   void GenInstrRegister(Opcode opcode,
1403                         SecondaryField fmt,
1404                         Register rt,
1405                         FPURegister fs,
1406                         FPURegister fd,
1407                         SecondaryField func = NULLSF);
1408 
1409   void GenInstrRegister(Opcode opcode,
1410                         SecondaryField fmt,
1411                         Register rt,
1412                         FPUControlRegister fs,
1413                         SecondaryField func = NULLSF);
1414 
1415 
1416   void GenInstrImmediate(
1417       Opcode opcode, Register rs, Register rt, int32_t j,
1418       CompactBranchType is_compact_branch = CompactBranchType::NO);
1419   void GenInstrImmediate(
1420       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1421       CompactBranchType is_compact_branch = CompactBranchType::NO);
1422   void GenInstrImmediate(
1423       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1424       CompactBranchType is_compact_branch = CompactBranchType::NO);
1425   void GenInstrImmediate(
1426       Opcode opcode, Register rs, int32_t offset21,
1427       CompactBranchType is_compact_branch = CompactBranchType::NO);
1428   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1429   void GenInstrImmediate(
1430       Opcode opcode, int32_t offset26,
1431       CompactBranchType is_compact_branch = CompactBranchType::NO);
1432 
1433   void GenInstrJump(Opcode opcode,
1434                      uint32_t address);
1435 
1436   // Labels.
1437   void print(Label* L);
1438   void bind_to(Label* L, int pos);
1439   void next(Label* L, bool is_internal);
1440 
1441   // One trampoline consists of:
1442   // - space for trampoline slots,
1443   // - space for labels.
1444   //
1445   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1446   // Space for trampoline slots preceeds space for labels. Each label is of one
1447   // instruction size, so total amount for labels is equal to
1448   // label_count *  kInstrSize.
1449   class Trampoline {
1450    public:
Trampoline()1451     Trampoline() {
1452       start_ = 0;
1453       next_slot_ = 0;
1454       free_slot_count_ = 0;
1455       end_ = 0;
1456     }
Trampoline(int start,int slot_count)1457     Trampoline(int start, int slot_count) {
1458       start_ = start;
1459       next_slot_ = start;
1460       free_slot_count_ = slot_count;
1461       end_ = start + slot_count * kTrampolineSlotsSize;
1462     }
start()1463     int start() {
1464       return start_;
1465     }
end()1466     int end() {
1467       return end_;
1468     }
take_slot()1469     int take_slot() {
1470       int trampoline_slot = kInvalidSlotPos;
1471       if (free_slot_count_ <= 0) {
1472         // We have run out of space on trampolines.
1473         // Make sure we fail in debug mode, so we become aware of each case
1474         // when this happens.
1475         DCHECK(0);
1476         // Internal exception will be caught.
1477       } else {
1478         trampoline_slot = next_slot_;
1479         free_slot_count_--;
1480         next_slot_ += kTrampolineSlotsSize;
1481       }
1482       return trampoline_slot;
1483     }
1484 
1485    private:
1486     int start_;
1487     int end_;
1488     int next_slot_;
1489     int free_slot_count_;
1490   };
1491 
1492   int32_t get_trampoline_entry(int32_t pos);
1493   int unbound_labels_count_;
1494   // After trampoline is emitted, long branches are used in generated code for
1495   // the forward branches whose target offsets could be beyond reach of branch
1496   // instruction. We use this information to trigger different mode of
1497   // branch instruction generation, where we use jump instructions rather
1498   // than regular branch instructions.
1499   bool trampoline_emitted_;
1500   static const int kTrampolineSlotsSize = 2 * kInstrSize;
1501   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1502   static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
1503   static const int kInvalidSlotPos = -1;
1504 
1505   // Internal reference positions, required for unbounded internal reference
1506   // labels.
1507   std::set<int64_t> internal_reference_positions_;
1508 
EmittedCompactBranchInstruction()1509   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1510   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1511   bool prev_instr_compact_branch_ = false;
1512 
1513   Trampoline trampoline_;
1514   bool internal_trampoline_exception_;
1515 
1516   friend class RegExpMacroAssemblerMIPS;
1517   friend class RelocInfo;
1518   friend class CodePatcher;
1519   friend class BlockTrampolinePoolScope;
1520   friend class EnsureSpace;
1521 };
1522 
1523 
1524 class EnsureSpace BASE_EMBEDDED {
1525  public:
EnsureSpace(Assembler * assembler)1526   explicit EnsureSpace(Assembler* assembler) {
1527     assembler->CheckBuffer();
1528   }
1529 };
1530 
1531 }  // namespace internal
1532 }  // namespace v8
1533 
1534 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1535