• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stdarg.h>
6 #include <stdlib.h>
7 #include <cmath>
8 
9 #if V8_TARGET_ARCH_PPC
10 
11 #include "src/assembler.h"
12 #include "src/base/bits.h"
13 #include "src/codegen.h"
14 #include "src/disasm.h"
15 #include "src/ppc/constants-ppc.h"
16 #include "src/ppc/frames-ppc.h"
17 #include "src/ppc/simulator-ppc.h"
18 #include "src/runtime/runtime-utils.h"
19 
20 #if defined(USE_SIMULATOR)
21 
22 // Only build the simulator if not compiling for real PPC hardware.
23 namespace v8 {
24 namespace internal {
25 
26 const auto GetRegConfig = RegisterConfiguration::Crankshaft;
27 
28 // This macro provides a platform independent use of sscanf. The reason for
29 // SScanF not being implemented in a platform independent way through
30 // ::v8::internal::OS in the same way as SNPrintF is that the
31 // Windows C Run-Time Library does not provide vsscanf.
32 #define SScanF sscanf  // NOLINT
33 
34 // The PPCDebugger class is used by the simulator while debugging simulated
35 // PowerPC code.
36 class PPCDebugger {
37  public:
PPCDebugger(Simulator * sim)38   explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
39 
40   void Stop(Instruction* instr);
41   void Debug();
42 
43  private:
44   static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
45   static const Instr kNopInstr = (ORI);  // ori, 0,0,0
46 
47   Simulator* sim_;
48 
49   intptr_t GetRegisterValue(int regnum);
50   double GetRegisterPairDoubleValue(int regnum);
51   double GetFPDoubleRegisterValue(int regnum);
52   bool GetValue(const char* desc, intptr_t* value);
53   bool GetFPDoubleValue(const char* desc, double* value);
54 
55   // Set or delete a breakpoint. Returns true if successful.
56   bool SetBreakpoint(Instruction* break_pc);
57   bool DeleteBreakpoint(Instruction* break_pc);
58 
59   // Undo and redo all breakpoints. This is needed to bracket disassembly and
60   // execution to skip past breakpoints when run from the debugger.
61   void UndoBreakpoints();
62   void RedoBreakpoints();
63 };
64 
Stop(Instruction * instr)65 void PPCDebugger::Stop(Instruction* instr) {
66   // Get the stop code.
67   // use of kStopCodeMask not right on PowerPC
68   uint32_t code = instr->SvcValue() & kStopCodeMask;
69   // Retrieve the encoded address, which comes just after this stop.
70   char* msg =
71       *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
72   // Update this stop description.
73   if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
74     sim_->watched_stops_[code].desc = msg;
75   }
76   // Print the stop message and code if it is not the default code.
77   if (code != kMaxStopCode) {
78     PrintF("Simulator hit stop %u: %s\n", code, msg);
79   } else {
80     PrintF("Simulator hit %s\n", msg);
81   }
82   sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
83   Debug();
84 }
85 
GetRegisterValue(int regnum)86 intptr_t PPCDebugger::GetRegisterValue(int regnum) {
87   return sim_->get_register(regnum);
88 }
89 
90 
GetRegisterPairDoubleValue(int regnum)91 double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
92   return sim_->get_double_from_register_pair(regnum);
93 }
94 
95 
GetFPDoubleRegisterValue(int regnum)96 double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
97   return sim_->get_double_from_d_register(regnum);
98 }
99 
100 
GetValue(const char * desc,intptr_t * value)101 bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
102   int regnum = Registers::Number(desc);
103   if (regnum != kNoRegister) {
104     *value = GetRegisterValue(regnum);
105     return true;
106   } else {
107     if (strncmp(desc, "0x", 2) == 0) {
108       return SScanF(desc + 2, "%" V8PRIxPTR,
109                     reinterpret_cast<uintptr_t*>(value)) == 1;
110     } else {
111       return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
112              1;
113     }
114   }
115   return false;
116 }
117 
118 
GetFPDoubleValue(const char * desc,double * value)119 bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
120   int regnum = DoubleRegisters::Number(desc);
121   if (regnum != kNoRegister) {
122     *value = sim_->get_double_from_d_register(regnum);
123     return true;
124   }
125   return false;
126 }
127 
128 
SetBreakpoint(Instruction * break_pc)129 bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
130   // Check if a breakpoint can be set. If not return without any side-effects.
131   if (sim_->break_pc_ != NULL) {
132     return false;
133   }
134 
135   // Set the breakpoint.
136   sim_->break_pc_ = break_pc;
137   sim_->break_instr_ = break_pc->InstructionBits();
138   // Not setting the breakpoint instruction in the code itself. It will be set
139   // when the debugger shell continues.
140   return true;
141 }
142 
143 
DeleteBreakpoint(Instruction * break_pc)144 bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
145   if (sim_->break_pc_ != NULL) {
146     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
147   }
148 
149   sim_->break_pc_ = NULL;
150   sim_->break_instr_ = 0;
151   return true;
152 }
153 
154 
UndoBreakpoints()155 void PPCDebugger::UndoBreakpoints() {
156   if (sim_->break_pc_ != NULL) {
157     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
158   }
159 }
160 
161 
RedoBreakpoints()162 void PPCDebugger::RedoBreakpoints() {
163   if (sim_->break_pc_ != NULL) {
164     sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
165   }
166 }
167 
168 
Debug()169 void PPCDebugger::Debug() {
170   intptr_t last_pc = -1;
171   bool done = false;
172 
173 #define COMMAND_SIZE 63
174 #define ARG_SIZE 255
175 
176 #define STR(a) #a
177 #define XSTR(a) STR(a)
178 
179   char cmd[COMMAND_SIZE + 1];
180   char arg1[ARG_SIZE + 1];
181   char arg2[ARG_SIZE + 1];
182   char* argv[3] = {cmd, arg1, arg2};
183 
184   // make sure to have a proper terminating character if reaching the limit
185   cmd[COMMAND_SIZE] = 0;
186   arg1[ARG_SIZE] = 0;
187   arg2[ARG_SIZE] = 0;
188 
189   // Undo all set breakpoints while running in the debugger shell. This will
190   // make them invisible to all commands.
191   UndoBreakpoints();
192   // Disable tracing while simulating
193   bool trace = ::v8::internal::FLAG_trace_sim;
194   ::v8::internal::FLAG_trace_sim = false;
195 
196   while (!done && !sim_->has_bad_pc()) {
197     if (last_pc != sim_->get_pc()) {
198       disasm::NameConverter converter;
199       disasm::Disassembler dasm(converter);
200       // use a reasonably large buffer
201       v8::internal::EmbeddedVector<char, 256> buffer;
202       dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
203       PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(), buffer.start());
204       last_pc = sim_->get_pc();
205     }
206     char* line = ReadLine("sim> ");
207     if (line == NULL) {
208       break;
209     } else {
210       char* last_input = sim_->last_debugger_input();
211       if (strcmp(line, "\n") == 0 && last_input != NULL) {
212         line = last_input;
213       } else {
214         // Ownership is transferred to sim_;
215         sim_->set_last_debugger_input(line);
216       }
217       // Use sscanf to parse the individual parts of the command line. At the
218       // moment no command expects more than two parameters.
219       int argc = SScanF(line,
220                         "%" XSTR(COMMAND_SIZE) "s "
221                         "%" XSTR(ARG_SIZE) "s "
222                         "%" XSTR(ARG_SIZE) "s",
223                         cmd, arg1, arg2);
224       if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
225         intptr_t value;
226 
227         // If at a breakpoint, proceed past it.
228         if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
229                 ->InstructionBits() == 0x7d821008) {
230           sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
231         } else {
232           sim_->ExecuteInstruction(
233               reinterpret_cast<Instruction*>(sim_->get_pc()));
234         }
235 
236         if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
237           for (int i = 1; i < value; i++) {
238             disasm::NameConverter converter;
239             disasm::Disassembler dasm(converter);
240             // use a reasonably large buffer
241             v8::internal::EmbeddedVector<char, 256> buffer;
242             dasm.InstructionDecode(buffer,
243                                    reinterpret_cast<byte*>(sim_->get_pc()));
244             PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(),
245                    buffer.start());
246             sim_->ExecuteInstruction(
247                 reinterpret_cast<Instruction*>(sim_->get_pc()));
248           }
249         }
250       } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
251         // If at a breakpoint, proceed past it.
252         if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
253                 ->InstructionBits() == 0x7d821008) {
254           sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
255         } else {
256           // Execute the one instruction we broke at with breakpoints disabled.
257           sim_->ExecuteInstruction(
258               reinterpret_cast<Instruction*>(sim_->get_pc()));
259         }
260         // Leave the debugger shell.
261         done = true;
262       } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
263         if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
264           intptr_t value;
265           double dvalue;
266           if (strcmp(arg1, "all") == 0) {
267             for (int i = 0; i < kNumRegisters; i++) {
268               value = GetRegisterValue(i);
269               PrintF("    %3s: %08" V8PRIxPTR,
270                      GetRegConfig()->GetGeneralRegisterName(i), value);
271               if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
272                   (i % 2) == 0) {
273                 dvalue = GetRegisterPairDoubleValue(i);
274                 PrintF(" (%f)\n", dvalue);
275               } else if (i != 0 && !((i + 1) & 3)) {
276                 PrintF("\n");
277               }
278             }
279             PrintF("  pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
280                    "  "
281                    "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
282                    sim_->special_reg_pc_, sim_->special_reg_lr_,
283                    sim_->special_reg_ctr_, sim_->special_reg_xer_,
284                    sim_->condition_reg_);
285           } else if (strcmp(arg1, "alld") == 0) {
286             for (int i = 0; i < kNumRegisters; i++) {
287               value = GetRegisterValue(i);
288               PrintF("     %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
289                      GetRegConfig()->GetGeneralRegisterName(i), value, value);
290               if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
291                   (i % 2) == 0) {
292                 dvalue = GetRegisterPairDoubleValue(i);
293                 PrintF(" (%f)\n", dvalue);
294               } else if (!((i + 1) % 2)) {
295                 PrintF("\n");
296               }
297             }
298             PrintF("   pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
299                    "  "
300                    "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
301                    sim_->special_reg_pc_, sim_->special_reg_lr_,
302                    sim_->special_reg_ctr_, sim_->special_reg_xer_,
303                    sim_->condition_reg_);
304           } else if (strcmp(arg1, "allf") == 0) {
305             for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
306               dvalue = GetFPDoubleRegisterValue(i);
307               uint64_t as_words = bit_cast<uint64_t>(dvalue);
308               PrintF("%3s: %f 0x%08x %08x\n",
309                      GetRegConfig()->GetDoubleRegisterName(i), dvalue,
310                      static_cast<uint32_t>(as_words >> 32),
311                      static_cast<uint32_t>(as_words & 0xffffffff));
312             }
313           } else if (arg1[0] == 'r' &&
314                      (arg1[1] >= '0' && arg1[1] <= '9' &&
315                       (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
316                                            arg1[3] == '\0')))) {
317             int regnum = strtoul(&arg1[1], 0, 10);
318             if (regnum != kNoRegister) {
319               value = GetRegisterValue(regnum);
320               PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
321                      value);
322             } else {
323               PrintF("%s unrecognized\n", arg1);
324             }
325           } else {
326             if (GetValue(arg1, &value)) {
327               PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
328                      value);
329             } else if (GetFPDoubleValue(arg1, &dvalue)) {
330               uint64_t as_words = bit_cast<uint64_t>(dvalue);
331               PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
332                      static_cast<uint32_t>(as_words >> 32),
333                      static_cast<uint32_t>(as_words & 0xffffffff));
334             } else {
335               PrintF("%s unrecognized\n", arg1);
336             }
337           }
338         } else {
339           PrintF("print <register>\n");
340         }
341       } else if ((strcmp(cmd, "po") == 0) ||
342                  (strcmp(cmd, "printobject") == 0)) {
343         if (argc == 2) {
344           intptr_t value;
345           OFStream os(stdout);
346           if (GetValue(arg1, &value)) {
347             Object* obj = reinterpret_cast<Object*>(value);
348             os << arg1 << ": \n";
349 #ifdef DEBUG
350             obj->Print(os);
351             os << "\n";
352 #else
353             os << Brief(obj) << "\n";
354 #endif
355           } else {
356             os << arg1 << " unrecognized\n";
357           }
358         } else {
359           PrintF("printobject <value>\n");
360         }
361       } else if (strcmp(cmd, "setpc") == 0) {
362         intptr_t value;
363 
364         if (!GetValue(arg1, &value)) {
365           PrintF("%s unrecognized\n", arg1);
366           continue;
367         }
368         sim_->set_pc(value);
369       } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
370         intptr_t* cur = NULL;
371         intptr_t* end = NULL;
372         int next_arg = 1;
373 
374         if (strcmp(cmd, "stack") == 0) {
375           cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
376         } else {  // "mem"
377           intptr_t value;
378           if (!GetValue(arg1, &value)) {
379             PrintF("%s unrecognized\n", arg1);
380             continue;
381           }
382           cur = reinterpret_cast<intptr_t*>(value);
383           next_arg++;
384         }
385 
386         intptr_t words;  // likely inaccurate variable name for 64bit
387         if (argc == next_arg) {
388           words = 10;
389         } else {
390           if (!GetValue(argv[next_arg], &words)) {
391             words = 10;
392           }
393         }
394         end = cur + words;
395 
396         while (cur < end) {
397           PrintF("  0x%08" V8PRIxPTR ":  0x%08" V8PRIxPTR " %10" V8PRIdPTR,
398                  reinterpret_cast<intptr_t>(cur), *cur, *cur);
399           HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
400           intptr_t value = *cur;
401           Heap* current_heap = sim_->isolate_->heap();
402           if (((value & 1) == 0) ||
403               current_heap->ContainsSlow(obj->address())) {
404             PrintF(" (");
405             if ((value & 1) == 0) {
406               PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
407             } else {
408               obj->ShortPrint();
409             }
410             PrintF(")");
411           }
412           PrintF("\n");
413           cur++;
414         }
415       } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
416         disasm::NameConverter converter;
417         disasm::Disassembler dasm(converter);
418         // use a reasonably large buffer
419         v8::internal::EmbeddedVector<char, 256> buffer;
420 
421         byte* prev = NULL;
422         byte* cur = NULL;
423         byte* end = NULL;
424 
425         if (argc == 1) {
426           cur = reinterpret_cast<byte*>(sim_->get_pc());
427           end = cur + (10 * Instruction::kInstrSize);
428         } else if (argc == 2) {
429           int regnum = Registers::Number(arg1);
430           if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
431             // The argument is an address or a register name.
432             intptr_t value;
433             if (GetValue(arg1, &value)) {
434               cur = reinterpret_cast<byte*>(value);
435               // Disassemble 10 instructions at <arg1>.
436               end = cur + (10 * Instruction::kInstrSize);
437             }
438           } else {
439             // The argument is the number of instructions.
440             intptr_t value;
441             if (GetValue(arg1, &value)) {
442               cur = reinterpret_cast<byte*>(sim_->get_pc());
443               // Disassemble <arg1> instructions.
444               end = cur + (value * Instruction::kInstrSize);
445             }
446           }
447         } else {
448           intptr_t value1;
449           intptr_t value2;
450           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
451             cur = reinterpret_cast<byte*>(value1);
452             end = cur + (value2 * Instruction::kInstrSize);
453           }
454         }
455 
456         while (cur < end) {
457           prev = cur;
458           cur += dasm.InstructionDecode(buffer, cur);
459           PrintF("  0x%08" V8PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(prev),
460                  buffer.start());
461         }
462       } else if (strcmp(cmd, "gdb") == 0) {
463         PrintF("relinquishing control to gdb\n");
464         v8::base::OS::DebugBreak();
465         PrintF("regaining control from gdb\n");
466       } else if (strcmp(cmd, "break") == 0) {
467         if (argc == 2) {
468           intptr_t value;
469           if (GetValue(arg1, &value)) {
470             if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
471               PrintF("setting breakpoint failed\n");
472             }
473           } else {
474             PrintF("%s unrecognized\n", arg1);
475           }
476         } else {
477           PrintF("break <address>\n");
478         }
479       } else if (strcmp(cmd, "del") == 0) {
480         if (!DeleteBreakpoint(NULL)) {
481           PrintF("deleting breakpoint failed\n");
482         }
483       } else if (strcmp(cmd, "cr") == 0) {
484         PrintF("Condition reg: %08x\n", sim_->condition_reg_);
485       } else if (strcmp(cmd, "lr") == 0) {
486         PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
487       } else if (strcmp(cmd, "ctr") == 0) {
488         PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
489       } else if (strcmp(cmd, "xer") == 0) {
490         PrintF("XER: %08x\n", sim_->special_reg_xer_);
491       } else if (strcmp(cmd, "fpscr") == 0) {
492         PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
493       } else if (strcmp(cmd, "stop") == 0) {
494         intptr_t value;
495         intptr_t stop_pc =
496             sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
497         Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
498         Instruction* msg_address =
499             reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
500         if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
501           // Remove the current stop.
502           if (sim_->isStopInstruction(stop_instr)) {
503             stop_instr->SetInstructionBits(kNopInstr);
504             msg_address->SetInstructionBits(kNopInstr);
505           } else {
506             PrintF("Not at debugger stop.\n");
507           }
508         } else if (argc == 3) {
509           // Print information about all/the specified breakpoint(s).
510           if (strcmp(arg1, "info") == 0) {
511             if (strcmp(arg2, "all") == 0) {
512               PrintF("Stop information:\n");
513               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
514                 sim_->PrintStopInfo(i);
515               }
516             } else if (GetValue(arg2, &value)) {
517               sim_->PrintStopInfo(value);
518             } else {
519               PrintF("Unrecognized argument.\n");
520             }
521           } else if (strcmp(arg1, "enable") == 0) {
522             // Enable all/the specified breakpoint(s).
523             if (strcmp(arg2, "all") == 0) {
524               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
525                 sim_->EnableStop(i);
526               }
527             } else if (GetValue(arg2, &value)) {
528               sim_->EnableStop(value);
529             } else {
530               PrintF("Unrecognized argument.\n");
531             }
532           } else if (strcmp(arg1, "disable") == 0) {
533             // Disable all/the specified breakpoint(s).
534             if (strcmp(arg2, "all") == 0) {
535               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
536                 sim_->DisableStop(i);
537               }
538             } else if (GetValue(arg2, &value)) {
539               sim_->DisableStop(value);
540             } else {
541               PrintF("Unrecognized argument.\n");
542             }
543           }
544         } else {
545           PrintF("Wrong usage. Use help command for more information.\n");
546         }
547       } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
548         ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
549         PrintF("Trace of executed instructions is %s\n",
550                ::v8::internal::FLAG_trace_sim ? "on" : "off");
551       } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
552         PrintF("cont\n");
553         PrintF("  continue execution (alias 'c')\n");
554         PrintF("stepi [num instructions]\n");
555         PrintF("  step one/num instruction(s) (alias 'si')\n");
556         PrintF("print <register>\n");
557         PrintF("  print register content (alias 'p')\n");
558         PrintF("  use register name 'all' to display all integer registers\n");
559         PrintF(
560             "  use register name 'alld' to display integer registers "
561             "with decimal values\n");
562         PrintF("  use register name 'rN' to display register number 'N'\n");
563         PrintF("  add argument 'fp' to print register pair double values\n");
564         PrintF(
565             "  use register name 'allf' to display floating-point "
566             "registers\n");
567         PrintF("printobject <register>\n");
568         PrintF("  print an object from a register (alias 'po')\n");
569         PrintF("cr\n");
570         PrintF("  print condition register\n");
571         PrintF("lr\n");
572         PrintF("  print link register\n");
573         PrintF("ctr\n");
574         PrintF("  print ctr register\n");
575         PrintF("xer\n");
576         PrintF("  print XER\n");
577         PrintF("fpscr\n");
578         PrintF("  print FPSCR\n");
579         PrintF("stack [<num words>]\n");
580         PrintF("  dump stack content, default dump 10 words)\n");
581         PrintF("mem <address> [<num words>]\n");
582         PrintF("  dump memory content, default dump 10 words)\n");
583         PrintF("disasm [<instructions>]\n");
584         PrintF("disasm [<address/register>]\n");
585         PrintF("disasm [[<address/register>] <instructions>]\n");
586         PrintF("  disassemble code, default is 10 instructions\n");
587         PrintF("  from pc (alias 'di')\n");
588         PrintF("gdb\n");
589         PrintF("  enter gdb\n");
590         PrintF("break <address>\n");
591         PrintF("  set a break point on the address\n");
592         PrintF("del\n");
593         PrintF("  delete the breakpoint\n");
594         PrintF("trace (alias 't')\n");
595         PrintF("  toogle the tracing of all executed statements\n");
596         PrintF("stop feature:\n");
597         PrintF("  Description:\n");
598         PrintF("    Stops are debug instructions inserted by\n");
599         PrintF("    the Assembler::stop() function.\n");
600         PrintF("    When hitting a stop, the Simulator will\n");
601         PrintF("    stop and and give control to the PPCDebugger.\n");
602         PrintF("    The first %d stop codes are watched:\n",
603                Simulator::kNumOfWatchedStops);
604         PrintF("    - They can be enabled / disabled: the Simulator\n");
605         PrintF("      will / won't stop when hitting them.\n");
606         PrintF("    - The Simulator keeps track of how many times they \n");
607         PrintF("      are met. (See the info command.) Going over a\n");
608         PrintF("      disabled stop still increases its counter. \n");
609         PrintF("  Commands:\n");
610         PrintF("    stop info all/<code> : print infos about number <code>\n");
611         PrintF("      or all stop(s).\n");
612         PrintF("    stop enable/disable all/<code> : enables / disables\n");
613         PrintF("      all or number <code> stop(s)\n");
614         PrintF("    stop unstop\n");
615         PrintF("      ignore the stop instruction at the current location\n");
616         PrintF("      from now on\n");
617       } else {
618         PrintF("Unknown command: %s\n", cmd);
619       }
620     }
621   }
622 
623   // Add all the breakpoints back to stop execution and enter the debugger
624   // shell when hit.
625   RedoBreakpoints();
626   // Restore tracing
627   ::v8::internal::FLAG_trace_sim = trace;
628 
629 #undef COMMAND_SIZE
630 #undef ARG_SIZE
631 
632 #undef STR
633 #undef XSTR
634 }
635 
636 
ICacheMatch(void * one,void * two)637 static bool ICacheMatch(void* one, void* two) {
638   DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
639   DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
640   return one == two;
641 }
642 
643 
ICacheHash(void * key)644 static uint32_t ICacheHash(void* key) {
645   return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
646 }
647 
648 
AllOnOnePage(uintptr_t start,int size)649 static bool AllOnOnePage(uintptr_t start, int size) {
650   intptr_t start_page = (start & ~CachePage::kPageMask);
651   intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
652   return start_page == end_page;
653 }
654 
655 
set_last_debugger_input(char * input)656 void Simulator::set_last_debugger_input(char* input) {
657   DeleteArray(last_debugger_input_);
658   last_debugger_input_ = input;
659 }
660 
FlushICache(base::CustomMatcherHashMap * i_cache,void * start_addr,size_t size)661 void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
662                             void* start_addr, size_t size) {
663   intptr_t start = reinterpret_cast<intptr_t>(start_addr);
664   int intra_line = (start & CachePage::kLineMask);
665   start -= intra_line;
666   size += intra_line;
667   size = ((size - 1) | CachePage::kLineMask) + 1;
668   int offset = (start & CachePage::kPageMask);
669   while (!AllOnOnePage(start, size - 1)) {
670     int bytes_to_flush = CachePage::kPageSize - offset;
671     FlushOnePage(i_cache, start, bytes_to_flush);
672     start += bytes_to_flush;
673     size -= bytes_to_flush;
674     DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
675     offset = 0;
676   }
677   if (size != 0) {
678     FlushOnePage(i_cache, start, size);
679   }
680 }
681 
GetCachePage(base::CustomMatcherHashMap * i_cache,void * page)682 CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
683                                    void* page) {
684   base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
685   if (entry->value == NULL) {
686     CachePage* new_page = new CachePage();
687     entry->value = new_page;
688   }
689   return reinterpret_cast<CachePage*>(entry->value);
690 }
691 
692 
693 // Flush from start up to and not including start + size.
FlushOnePage(base::CustomMatcherHashMap * i_cache,intptr_t start,int size)694 void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
695                              intptr_t start, int size) {
696   DCHECK(size <= CachePage::kPageSize);
697   DCHECK(AllOnOnePage(start, size - 1));
698   DCHECK((start & CachePage::kLineMask) == 0);
699   DCHECK((size & CachePage::kLineMask) == 0);
700   void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
701   int offset = (start & CachePage::kPageMask);
702   CachePage* cache_page = GetCachePage(i_cache, page);
703   char* valid_bytemap = cache_page->ValidityByte(offset);
704   memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
705 }
706 
CheckICache(base::CustomMatcherHashMap * i_cache,Instruction * instr)707 void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
708                             Instruction* instr) {
709   intptr_t address = reinterpret_cast<intptr_t>(instr);
710   void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
711   void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
712   int offset = (address & CachePage::kPageMask);
713   CachePage* cache_page = GetCachePage(i_cache, page);
714   char* cache_valid_byte = cache_page->ValidityByte(offset);
715   bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
716   char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
717   if (cache_hit) {
718     // Check that the data in memory matches the contents of the I-cache.
719     CHECK_EQ(0,
720              memcmp(reinterpret_cast<void*>(instr),
721                     cache_page->CachedData(offset), Instruction::kInstrSize));
722   } else {
723     // Cache miss.  Load memory into the cache.
724     memcpy(cached_line, line, CachePage::kLineLength);
725     *cache_valid_byte = CachePage::LINE_VALID;
726   }
727 }
728 
729 
Initialize(Isolate * isolate)730 void Simulator::Initialize(Isolate* isolate) {
731   if (isolate->simulator_initialized()) return;
732   isolate->set_simulator_initialized(true);
733   ::v8::internal::ExternalReference::set_redirector(isolate,
734                                                     &RedirectExternalReference);
735 }
736 
737 
Simulator(Isolate * isolate)738 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
739   i_cache_ = isolate_->simulator_i_cache();
740   if (i_cache_ == NULL) {
741     i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
742     isolate_->set_simulator_i_cache(i_cache_);
743   }
744   Initialize(isolate);
745 // Set up simulator support first. Some of this information is needed to
746 // setup the architecture state.
747 #if V8_TARGET_ARCH_PPC64
748   size_t stack_size = FLAG_sim_stack_size * KB;
749 #else
750   size_t stack_size = MB;  // allocate 1MB for stack
751 #endif
752   stack_size += 2 * stack_protection_size_;
753   stack_ = reinterpret_cast<char*>(malloc(stack_size));
754   pc_modified_ = false;
755   icount_ = 0;
756   break_pc_ = NULL;
757   break_instr_ = 0;
758 
759   // Set up architecture state.
760   // All registers are initialized to zero to start with.
761   for (int i = 0; i < kNumGPRs; i++) {
762     registers_[i] = 0;
763   }
764   condition_reg_ = 0;
765   fp_condition_reg_ = 0;
766   special_reg_pc_ = 0;
767   special_reg_lr_ = 0;
768   special_reg_ctr_ = 0;
769 
770   // Initializing FP registers.
771   for (int i = 0; i < kNumFPRs; i++) {
772     fp_registers_[i] = 0.0;
773   }
774 
775   // The sp is initialized to point to the bottom (high address) of the
776   // allocated stack area. To be safe in potential stack underflows we leave
777   // some buffer below.
778   registers_[sp] =
779       reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
780 
781   last_debugger_input_ = NULL;
782 }
783 
784 
~Simulator()785 Simulator::~Simulator() { free(stack_); }
786 
787 
788 // When the generated code calls an external reference we need to catch that in
789 // the simulator.  The external reference will be a function compiled for the
790 // host architecture.  We need to call that function instead of trying to
791 // execute it with the simulator.  We do that by redirecting the external
792 // reference to a svc (Supervisor Call) instruction that is handled by
793 // the simulator.  We write the original destination of the jump just at a known
794 // offset from the svc instruction so the simulator knows what to call.
795 class Redirection {
796  public:
Redirection(Isolate * isolate,void * external_function,ExternalReference::Type type)797   Redirection(Isolate* isolate, void* external_function,
798               ExternalReference::Type type)
799       : external_function_(external_function),
800         swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
801         type_(type),
802         next_(NULL) {
803     next_ = isolate->simulator_redirection();
804     Simulator::current(isolate)->FlushICache(
805         isolate->simulator_i_cache(),
806         reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
807     isolate->set_simulator_redirection(this);
808     if (ABI_USES_FUNCTION_DESCRIPTORS) {
809       function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
810       function_descriptor_[1] = 0;
811       function_descriptor_[2] = 0;
812     }
813   }
814 
address()815   void* address() {
816     if (ABI_USES_FUNCTION_DESCRIPTORS) {
817       return reinterpret_cast<void*>(function_descriptor_);
818     } else {
819       return reinterpret_cast<void*>(&swi_instruction_);
820     }
821   }
822 
external_function()823   void* external_function() { return external_function_; }
type()824   ExternalReference::Type type() { return type_; }
825 
Get(Isolate * isolate,void * external_function,ExternalReference::Type type)826   static Redirection* Get(Isolate* isolate, void* external_function,
827                           ExternalReference::Type type) {
828     Redirection* current = isolate->simulator_redirection();
829     for (; current != NULL; current = current->next_) {
830       if (current->external_function_ == external_function) {
831         DCHECK_EQ(current->type(), type);
832         return current;
833       }
834     }
835     return new Redirection(isolate, external_function, type);
836   }
837 
FromSwiInstruction(Instruction * swi_instruction)838   static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
839     char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
840     char* addr_of_redirection =
841         addr_of_swi - offsetof(Redirection, swi_instruction_);
842     return reinterpret_cast<Redirection*>(addr_of_redirection);
843   }
844 
FromAddress(void * address)845   static Redirection* FromAddress(void* address) {
846     int delta = ABI_USES_FUNCTION_DESCRIPTORS
847                     ? offsetof(Redirection, function_descriptor_)
848                     : offsetof(Redirection, swi_instruction_);
849     char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
850     return reinterpret_cast<Redirection*>(addr_of_redirection);
851   }
852 
ReverseRedirection(intptr_t reg)853   static void* ReverseRedirection(intptr_t reg) {
854     Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
855     return redirection->external_function();
856   }
857 
DeleteChain(Redirection * redirection)858   static void DeleteChain(Redirection* redirection) {
859     while (redirection != nullptr) {
860       Redirection* next = redirection->next_;
861       delete redirection;
862       redirection = next;
863     }
864   }
865 
866  private:
867   void* external_function_;
868   uint32_t swi_instruction_;
869   ExternalReference::Type type_;
870   Redirection* next_;
871   intptr_t function_descriptor_[3];
872 };
873 
874 
875 // static
TearDown(base::CustomMatcherHashMap * i_cache,Redirection * first)876 void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
877                          Redirection* first) {
878   Redirection::DeleteChain(first);
879   if (i_cache != nullptr) {
880     for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
881          entry = i_cache->Next(entry)) {
882       delete static_cast<CachePage*>(entry->value);
883     }
884     delete i_cache;
885   }
886 }
887 
888 
RedirectExternalReference(Isolate * isolate,void * external_function,ExternalReference::Type type)889 void* Simulator::RedirectExternalReference(Isolate* isolate,
890                                            void* external_function,
891                                            ExternalReference::Type type) {
892   Redirection* redirection = Redirection::Get(isolate, external_function, type);
893   return redirection->address();
894 }
895 
896 
897 // Get the active Simulator for the current thread.
current(Isolate * isolate)898 Simulator* Simulator::current(Isolate* isolate) {
899   v8::internal::Isolate::PerIsolateThreadData* isolate_data =
900       isolate->FindOrAllocatePerThreadDataForThisThread();
901   DCHECK(isolate_data != NULL);
902 
903   Simulator* sim = isolate_data->simulator();
904   if (sim == NULL) {
905     // TODO(146): delete the simulator object when a thread/isolate goes away.
906     sim = new Simulator(isolate);
907     isolate_data->set_simulator(sim);
908   }
909   return sim;
910 }
911 
912 
913 // Sets the register in the architecture state.
set_register(int reg,intptr_t value)914 void Simulator::set_register(int reg, intptr_t value) {
915   DCHECK((reg >= 0) && (reg < kNumGPRs));
916   registers_[reg] = value;
917 }
918 
919 
920 // Get the register from the architecture state.
get_register(int reg) const921 intptr_t Simulator::get_register(int reg) const {
922   DCHECK((reg >= 0) && (reg < kNumGPRs));
923   // Stupid code added to avoid bug in GCC.
924   // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
925   if (reg >= kNumGPRs) return 0;
926   // End stupid code.
927   return registers_[reg];
928 }
929 
930 
get_double_from_register_pair(int reg)931 double Simulator::get_double_from_register_pair(int reg) {
932   DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
933 
934   double dm_val = 0.0;
935 #if !V8_TARGET_ARCH_PPC64  // doesn't make sense in 64bit mode
936   // Read the bits from the unsigned integer register_[] array
937   // into the double precision floating point value and return it.
938   char buffer[sizeof(fp_registers_[0])];
939   memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
940   memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
941 #endif
942   return (dm_val);
943 }
944 
945 
946 // Raw access to the PC register.
set_pc(intptr_t value)947 void Simulator::set_pc(intptr_t value) {
948   pc_modified_ = true;
949   special_reg_pc_ = value;
950 }
951 
952 
has_bad_pc() const953 bool Simulator::has_bad_pc() const {
954   return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
955 }
956 
957 
958 // Raw access to the PC register without the special adjustment when reading.
get_pc() const959 intptr_t Simulator::get_pc() const { return special_reg_pc_; }
960 
961 
962 // Runtime FP routines take:
963 // - two double arguments
964 // - one double argument and zero or one integer arguments.
965 // All are consructed here from d1, d2 and r3.
GetFpArgs(double * x,double * y,intptr_t * z)966 void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
967   *x = get_double_from_d_register(1);
968   *y = get_double_from_d_register(2);
969   *z = get_register(3);
970 }
971 
972 
973 // The return value is in d1.
SetFpResult(const double & result)974 void Simulator::SetFpResult(const double& result) {
975   set_d_register_from_double(1, result);
976 }
977 
978 
TrashCallerSaveRegisters()979 void Simulator::TrashCallerSaveRegisters() {
980 // We don't trash the registers with the return value.
981 #if 0  // A good idea to trash volatile registers, needs to be done
982   registers_[2] = 0x50Bad4U;
983   registers_[3] = 0x50Bad4U;
984   registers_[12] = 0x50Bad4U;
985 #endif
986 }
987 
988 
ReadWU(intptr_t addr,Instruction * instr)989 uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
990   uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
991   return *ptr;
992 }
993 
994 
ReadW(intptr_t addr,Instruction * instr)995 int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
996   int32_t* ptr = reinterpret_cast<int32_t*>(addr);
997   return *ptr;
998 }
999 
1000 
WriteW(intptr_t addr,uint32_t value,Instruction * instr)1001 void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
1002   uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1003   *ptr = value;
1004   return;
1005 }
1006 
1007 
WriteW(intptr_t addr,int32_t value,Instruction * instr)1008 void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
1009   int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1010   *ptr = value;
1011   return;
1012 }
1013 
1014 
ReadHU(intptr_t addr,Instruction * instr)1015 uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
1016   uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1017   return *ptr;
1018 }
1019 
1020 
ReadH(intptr_t addr,Instruction * instr)1021 int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
1022   int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1023   return *ptr;
1024 }
1025 
1026 
WriteH(intptr_t addr,uint16_t value,Instruction * instr)1027 void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
1028   uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1029   *ptr = value;
1030   return;
1031 }
1032 
1033 
WriteH(intptr_t addr,int16_t value,Instruction * instr)1034 void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
1035   int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1036   *ptr = value;
1037   return;
1038 }
1039 
1040 
ReadBU(intptr_t addr)1041 uint8_t Simulator::ReadBU(intptr_t addr) {
1042   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1043   return *ptr;
1044 }
1045 
1046 
ReadB(intptr_t addr)1047 int8_t Simulator::ReadB(intptr_t addr) {
1048   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1049   return *ptr;
1050 }
1051 
1052 
WriteB(intptr_t addr,uint8_t value)1053 void Simulator::WriteB(intptr_t addr, uint8_t value) {
1054   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1055   *ptr = value;
1056 }
1057 
1058 
WriteB(intptr_t addr,int8_t value)1059 void Simulator::WriteB(intptr_t addr, int8_t value) {
1060   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1061   *ptr = value;
1062 }
1063 
1064 
ReadDW(intptr_t addr)1065 intptr_t* Simulator::ReadDW(intptr_t addr) {
1066   intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1067   return ptr;
1068 }
1069 
1070 
WriteDW(intptr_t addr,int64_t value)1071 void Simulator::WriteDW(intptr_t addr, int64_t value) {
1072   int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1073   *ptr = value;
1074   return;
1075 }
1076 
1077 
1078 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit(uintptr_t c_limit) const1079 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1080   // The simulator uses a separate JS stack. If we have exhausted the C stack,
1081   // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1082   if (GetCurrentStackPosition() < c_limit) {
1083     return reinterpret_cast<uintptr_t>(get_sp());
1084   }
1085 
1086   // Otherwise the limit is the JS stack. Leave a safety margin to prevent
1087   // overrunning the stack when pushing values.
1088   return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
1089 }
1090 
1091 
1092 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)1093 void Simulator::Format(Instruction* instr, const char* format) {
1094   PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
1095          reinterpret_cast<intptr_t>(instr), format);
1096   UNIMPLEMENTED();
1097 }
1098 
1099 
1100 // Calculate C flag value for additions.
CarryFrom(int32_t left,int32_t right,int32_t carry)1101 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1102   uint32_t uleft = static_cast<uint32_t>(left);
1103   uint32_t uright = static_cast<uint32_t>(right);
1104   uint32_t urest = 0xffffffffU - uleft;
1105 
1106   return (uright > urest) ||
1107          (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1108 }
1109 
1110 
1111 // Calculate C flag value for subtractions.
BorrowFrom(int32_t left,int32_t right)1112 bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1113   uint32_t uleft = static_cast<uint32_t>(left);
1114   uint32_t uright = static_cast<uint32_t>(right);
1115 
1116   return (uright > uleft);
1117 }
1118 
1119 
1120 // Calculate V flag value for additions and subtractions.
OverflowFrom(int32_t alu_out,int32_t left,int32_t right,bool addition)1121 bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
1122                              bool addition) {
1123   bool overflow;
1124   if (addition) {
1125     // operands have the same sign
1126     overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1127                // and operands and result have different sign
1128                &&
1129                ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1130   } else {
1131     // operands have different signs
1132     overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1133                // and first operand and result have different signs
1134                &&
1135                ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1136   }
1137   return overflow;
1138 }
1139 
1140 
1141 #if V8_TARGET_ARCH_PPC64
decodeObjectPair(ObjectPair * pair,intptr_t * x,intptr_t * y)1142 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1143   *x = reinterpret_cast<intptr_t>(pair->x);
1144   *y = reinterpret_cast<intptr_t>(pair->y);
1145 }
1146 #else
decodeObjectPair(ObjectPair * pair,intptr_t * x,intptr_t * y)1147 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1148 #if V8_TARGET_BIG_ENDIAN
1149   *x = static_cast<int32_t>(*pair >> 32);
1150   *y = static_cast<int32_t>(*pair);
1151 #else
1152   *x = static_cast<int32_t>(*pair);
1153   *y = static_cast<int32_t>(*pair >> 32);
1154 #endif
1155 }
1156 #endif
1157 
1158 // Calls into the V8 runtime.
1159 typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
1160                                          intptr_t arg2, intptr_t arg3,
1161                                          intptr_t arg4, intptr_t arg5);
1162 typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
1163                                                intptr_t arg2, intptr_t arg3,
1164                                                intptr_t arg4, intptr_t arg5);
1165 typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
1166                                                    intptr_t arg2, intptr_t arg3,
1167                                                    intptr_t arg4,
1168                                                    intptr_t arg5);
1169 
1170 // These prototypes handle the four types of FP calls.
1171 typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1172 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1173 typedef double (*SimulatorRuntimeFPCall)(double darg0);
1174 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
1175 
1176 // This signature supports direct call in to API function native callback
1177 // (refer to InvocationCallback in v8.h).
1178 typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
1179 typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
1180 
1181 // This signature supports direct call to accessor getter callback.
1182 typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
1183 typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
1184                                                     intptr_t arg1, void* arg2);
1185 
1186 // Software interrupt instructions are used by the simulator to call into the
1187 // C-based V8 runtime.
SoftwareInterrupt(Instruction * instr)1188 void Simulator::SoftwareInterrupt(Instruction* instr) {
1189   int svc = instr->SvcValue();
1190   switch (svc) {
1191     case kCallRtRedirected: {
1192       // Check if stack is aligned. Error if not aligned is reported below to
1193       // include information on the function called.
1194       bool stack_aligned =
1195           (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
1196           0;
1197       Redirection* redirection = Redirection::FromSwiInstruction(instr);
1198       const int kArgCount = 6;
1199       int arg0_regnum = 3;
1200       intptr_t result_buffer = 0;
1201       bool uses_result_buffer =
1202           redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
1203           (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
1204            !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
1205       if (uses_result_buffer) {
1206         result_buffer = get_register(r3);
1207         arg0_regnum++;
1208       }
1209       intptr_t arg[kArgCount];
1210       for (int i = 0; i < kArgCount; i++) {
1211         arg[i] = get_register(arg0_regnum + i);
1212       }
1213       bool fp_call =
1214           (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1215           (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1216           (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1217           (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1218       // This is dodgy but it works because the C entry stubs are never moved.
1219       // See comment in codegen-arm.cc and bug 1242173.
1220       intptr_t saved_lr = special_reg_lr_;
1221       intptr_t external =
1222           reinterpret_cast<intptr_t>(redirection->external_function());
1223       if (fp_call) {
1224         double dval0, dval1;  // one or two double parameters
1225         intptr_t ival;        // zero or one integer parameters
1226         int iresult = 0;      // integer return value
1227         double dresult = 0;   // double return value
1228         GetFpArgs(&dval0, &dval1, &ival);
1229         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1230           SimulatorRuntimeCall generic_target =
1231               reinterpret_cast<SimulatorRuntimeCall>(external);
1232           switch (redirection->type()) {
1233             case ExternalReference::BUILTIN_FP_FP_CALL:
1234             case ExternalReference::BUILTIN_COMPARE_CALL:
1235               PrintF("Call to host function at %p with args %f, %f",
1236                      static_cast<void*>(FUNCTION_ADDR(generic_target)),
1237                      dval0, dval1);
1238               break;
1239             case ExternalReference::BUILTIN_FP_CALL:
1240               PrintF("Call to host function at %p with arg %f",
1241                      static_cast<void*>(FUNCTION_ADDR(generic_target)),
1242                      dval0);
1243               break;
1244             case ExternalReference::BUILTIN_FP_INT_CALL:
1245               PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
1246                      static_cast<void*>(FUNCTION_ADDR(generic_target)),
1247                      dval0, ival);
1248               break;
1249             default:
1250               UNREACHABLE();
1251               break;
1252           }
1253           if (!stack_aligned) {
1254             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1255                    get_register(sp));
1256           }
1257           PrintF("\n");
1258         }
1259         CHECK(stack_aligned);
1260         switch (redirection->type()) {
1261           case ExternalReference::BUILTIN_COMPARE_CALL: {
1262             SimulatorRuntimeCompareCall target =
1263                 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1264             iresult = target(dval0, dval1);
1265             set_register(r3, iresult);
1266             break;
1267           }
1268           case ExternalReference::BUILTIN_FP_FP_CALL: {
1269             SimulatorRuntimeFPFPCall target =
1270                 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1271             dresult = target(dval0, dval1);
1272             SetFpResult(dresult);
1273             break;
1274           }
1275           case ExternalReference::BUILTIN_FP_CALL: {
1276             SimulatorRuntimeFPCall target =
1277                 reinterpret_cast<SimulatorRuntimeFPCall>(external);
1278             dresult = target(dval0);
1279             SetFpResult(dresult);
1280             break;
1281           }
1282           case ExternalReference::BUILTIN_FP_INT_CALL: {
1283             SimulatorRuntimeFPIntCall target =
1284                 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1285             dresult = target(dval0, ival);
1286             SetFpResult(dresult);
1287             break;
1288           }
1289           default:
1290             UNREACHABLE();
1291             break;
1292         }
1293         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1294           switch (redirection->type()) {
1295             case ExternalReference::BUILTIN_COMPARE_CALL:
1296               PrintF("Returned %08x\n", iresult);
1297               break;
1298             case ExternalReference::BUILTIN_FP_FP_CALL:
1299             case ExternalReference::BUILTIN_FP_CALL:
1300             case ExternalReference::BUILTIN_FP_INT_CALL:
1301               PrintF("Returned %f\n", dresult);
1302               break;
1303             default:
1304               UNREACHABLE();
1305               break;
1306           }
1307         }
1308       } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1309         // See callers of MacroAssembler::CallApiFunctionAndReturn for
1310         // explanation of register usage.
1311         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1312           PrintF("Call to host function at %p args %08" V8PRIxPTR,
1313                  reinterpret_cast<void*>(external), arg[0]);
1314           if (!stack_aligned) {
1315             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1316                    get_register(sp));
1317           }
1318           PrintF("\n");
1319         }
1320         CHECK(stack_aligned);
1321         SimulatorRuntimeDirectApiCall target =
1322             reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1323         target(arg[0]);
1324       } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
1325         // See callers of MacroAssembler::CallApiFunctionAndReturn for
1326         // explanation of register usage.
1327         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1328           PrintF("Call to host function at %p args %08" V8PRIxPTR
1329                  " %08" V8PRIxPTR,
1330                  reinterpret_cast<void*>(external), arg[0], arg[1]);
1331           if (!stack_aligned) {
1332             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1333                    get_register(sp));
1334           }
1335           PrintF("\n");
1336         }
1337         CHECK(stack_aligned);
1338         SimulatorRuntimeProfilingApiCall target =
1339             reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1340         target(arg[0], Redirection::ReverseRedirection(arg[1]));
1341       } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1342         // See callers of MacroAssembler::CallApiFunctionAndReturn for
1343         // explanation of register usage.
1344         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1345           PrintF("Call to host function at %p args %08" V8PRIxPTR
1346                  " %08" V8PRIxPTR,
1347                  reinterpret_cast<void*>(external), arg[0], arg[1]);
1348           if (!stack_aligned) {
1349             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1350                    get_register(sp));
1351           }
1352           PrintF("\n");
1353         }
1354         CHECK(stack_aligned);
1355         SimulatorRuntimeDirectGetterCall target =
1356             reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1357         if (!ABI_PASSES_HANDLES_IN_REGS) {
1358           arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1359         }
1360         target(arg[0], arg[1]);
1361       } else if (redirection->type() ==
1362                  ExternalReference::PROFILING_GETTER_CALL) {
1363         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1364           PrintF("Call to host function at %p args %08" V8PRIxPTR
1365                  " %08" V8PRIxPTR " %08" V8PRIxPTR,
1366                  reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
1367           if (!stack_aligned) {
1368             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1369                    get_register(sp));
1370           }
1371           PrintF("\n");
1372         }
1373         CHECK(stack_aligned);
1374         SimulatorRuntimeProfilingGetterCall target =
1375             reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
1376         if (!ABI_PASSES_HANDLES_IN_REGS) {
1377           arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1378         }
1379         target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
1380       } else {
1381         // builtin call.
1382         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1383           SimulatorRuntimeCall target =
1384               reinterpret_cast<SimulatorRuntimeCall>(external);
1385           PrintF(
1386               "Call to host function at %p,\n"
1387               "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1388               ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
1389               static_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1],
1390               arg[2], arg[3], arg[4], arg[5]);
1391           if (!stack_aligned) {
1392             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1393                    get_register(sp));
1394           }
1395           PrintF("\n");
1396         }
1397         CHECK(stack_aligned);
1398         if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
1399           SimulatorRuntimeTripleCall target =
1400               reinterpret_cast<SimulatorRuntimeTripleCall>(external);
1401           ObjectTriple result =
1402               target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1403           if (::v8::internal::FLAG_trace_sim) {
1404             PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1405                    "}\n",
1406                    reinterpret_cast<intptr_t>(result.x),
1407                    reinterpret_cast<intptr_t>(result.y),
1408                    reinterpret_cast<intptr_t>(result.z));
1409           }
1410           memcpy(reinterpret_cast<void*>(result_buffer), &result,
1411                  sizeof(ObjectTriple));
1412           set_register(r3, result_buffer);
1413         } else {
1414           if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
1415             SimulatorRuntimePairCall target =
1416                 reinterpret_cast<SimulatorRuntimePairCall>(external);
1417             ObjectPair result =
1418                 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1419             intptr_t x;
1420             intptr_t y;
1421             decodeObjectPair(&result, &x, &y);
1422             if (::v8::internal::FLAG_trace_sim) {
1423               PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
1424             }
1425             if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) {
1426               set_register(r3, x);
1427               set_register(r4, y);
1428             } else {
1429               memcpy(reinterpret_cast<void*>(result_buffer), &result,
1430                      sizeof(ObjectPair));
1431               set_register(r3, result_buffer);
1432             }
1433           } else {
1434             DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1435             SimulatorRuntimeCall target =
1436                 reinterpret_cast<SimulatorRuntimeCall>(external);
1437             intptr_t result =
1438                 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1439             if (::v8::internal::FLAG_trace_sim) {
1440               PrintF("Returned %08" V8PRIxPTR "\n", result);
1441             }
1442             set_register(r3, result);
1443           }
1444         }
1445       }
1446       set_pc(saved_lr);
1447       break;
1448     }
1449     case kBreakpoint: {
1450       PPCDebugger dbg(this);
1451       dbg.Debug();
1452       break;
1453     }
1454     // stop uses all codes greater than 1 << 23.
1455     default: {
1456       if (svc >= (1 << 23)) {
1457         uint32_t code = svc & kStopCodeMask;
1458         if (isWatchedStop(code)) {
1459           IncreaseStopCounter(code);
1460         }
1461         // Stop if it is enabled, otherwise go on jumping over the stop
1462         // and the message address.
1463         if (isEnabledStop(code)) {
1464           PPCDebugger dbg(this);
1465           dbg.Stop(instr);
1466         } else {
1467           set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
1468         }
1469       } else {
1470         // This is not a valid svc code.
1471         UNREACHABLE();
1472         break;
1473       }
1474     }
1475   }
1476 }
1477 
1478 
1479 // Stop helper functions.
isStopInstruction(Instruction * instr)1480 bool Simulator::isStopInstruction(Instruction* instr) {
1481   return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1482 }
1483 
1484 
isWatchedStop(uint32_t code)1485 bool Simulator::isWatchedStop(uint32_t code) {
1486   DCHECK(code <= kMaxStopCode);
1487   return code < kNumOfWatchedStops;
1488 }
1489 
1490 
isEnabledStop(uint32_t code)1491 bool Simulator::isEnabledStop(uint32_t code) {
1492   DCHECK(code <= kMaxStopCode);
1493   // Unwatched stops are always enabled.
1494   return !isWatchedStop(code) ||
1495          !(watched_stops_[code].count & kStopDisabledBit);
1496 }
1497 
1498 
EnableStop(uint32_t code)1499 void Simulator::EnableStop(uint32_t code) {
1500   DCHECK(isWatchedStop(code));
1501   if (!isEnabledStop(code)) {
1502     watched_stops_[code].count &= ~kStopDisabledBit;
1503   }
1504 }
1505 
1506 
DisableStop(uint32_t code)1507 void Simulator::DisableStop(uint32_t code) {
1508   DCHECK(isWatchedStop(code));
1509   if (isEnabledStop(code)) {
1510     watched_stops_[code].count |= kStopDisabledBit;
1511   }
1512 }
1513 
1514 
IncreaseStopCounter(uint32_t code)1515 void Simulator::IncreaseStopCounter(uint32_t code) {
1516   DCHECK(code <= kMaxStopCode);
1517   DCHECK(isWatchedStop(code));
1518   if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1519     PrintF(
1520         "Stop counter for code %i has overflowed.\n"
1521         "Enabling this code and reseting the counter to 0.\n",
1522         code);
1523     watched_stops_[code].count = 0;
1524     EnableStop(code);
1525   } else {
1526     watched_stops_[code].count++;
1527   }
1528 }
1529 
1530 
1531 // Print a stop status.
PrintStopInfo(uint32_t code)1532 void Simulator::PrintStopInfo(uint32_t code) {
1533   DCHECK(code <= kMaxStopCode);
1534   if (!isWatchedStop(code)) {
1535     PrintF("Stop not watched.");
1536   } else {
1537     const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1538     int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1539     // Don't print the state of unused breakpoints.
1540     if (count != 0) {
1541       if (watched_stops_[code].desc) {
1542         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
1543                state, count, watched_stops_[code].desc);
1544       } else {
1545         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
1546                count);
1547       }
1548     }
1549   }
1550 }
1551 
1552 
SetCR0(intptr_t result,bool setSO)1553 void Simulator::SetCR0(intptr_t result, bool setSO) {
1554   int bf = 0;
1555   if (result < 0) {
1556     bf |= 0x80000000;
1557   }
1558   if (result > 0) {
1559     bf |= 0x40000000;
1560   }
1561   if (result == 0) {
1562     bf |= 0x20000000;
1563   }
1564   if (setSO) {
1565     bf |= 0x10000000;
1566   }
1567   condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
1568 }
1569 
1570 
ExecuteBranchConditional(Instruction * instr,BCType type)1571 void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
1572   int bo = instr->Bits(25, 21) << 21;
1573   int condition_bit = instr->Bits(20, 16);
1574   int condition_mask = 0x80000000 >> condition_bit;
1575   switch (bo) {
1576     case DCBNZF:  // Decrement CTR; branch if CTR != 0 and condition false
1577     case DCBEZF:  // Decrement CTR; branch if CTR == 0 and condition false
1578       UNIMPLEMENTED();
1579     case BF: {  // Branch if condition false
1580       if (condition_reg_ & condition_mask) return;
1581       break;
1582     }
1583     case DCBNZT:  // Decrement CTR; branch if CTR != 0 and condition true
1584     case DCBEZT:  // Decrement CTR; branch if CTR == 0 and condition true
1585       UNIMPLEMENTED();
1586     case BT: {  // Branch if condition true
1587       if (!(condition_reg_ & condition_mask)) return;
1588       break;
1589     }
1590     case DCBNZ:  // Decrement CTR; branch if CTR != 0
1591     case DCBEZ:  // Decrement CTR; branch if CTR == 0
1592       special_reg_ctr_ -= 1;
1593       if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
1594       break;
1595     case BA: {                   // Branch always
1596       break;
1597     }
1598     default:
1599       UNIMPLEMENTED();  // Invalid encoding
1600   }
1601 
1602   intptr_t old_pc = get_pc();
1603 
1604   switch (type) {
1605     case BC_OFFSET: {
1606       int offset = (instr->Bits(15, 2) << 18) >> 16;
1607       set_pc(old_pc + offset);
1608       break;
1609     }
1610     case BC_LINK_REG:
1611       set_pc(special_reg_lr_);
1612       break;
1613     case BC_CTR_REG:
1614       set_pc(special_reg_ctr_);
1615       break;
1616   }
1617 
1618   if (instr->Bit(0) == 1) {  // LK flag set
1619     special_reg_lr_ = old_pc + 4;
1620   }
1621 }
1622 
1623 
1624 // Handle execution based on instruction types.
ExecuteExt1(Instruction * instr)1625 void Simulator::ExecuteExt1(Instruction* instr) {
1626   switch (instr->Bits(10, 1) << 1) {
1627     case MCRF:
1628       UNIMPLEMENTED();  // Not used by V8.
1629     case BCLRX:
1630       ExecuteBranchConditional(instr, BC_LINK_REG);
1631       break;
1632     case BCCTRX:
1633       ExecuteBranchConditional(instr, BC_CTR_REG);
1634       break;
1635     case CRNOR:
1636     case RFI:
1637     case CRANDC:
1638       UNIMPLEMENTED();
1639     case ISYNC: {
1640       // todo - simulate isync
1641       break;
1642     }
1643     case CRXOR: {
1644       int bt = instr->Bits(25, 21);
1645       int ba = instr->Bits(20, 16);
1646       int bb = instr->Bits(15, 11);
1647       int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1648       int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1649       int bt_val = ba_val ^ bb_val;
1650       bt_val = bt_val << (31 - bt);  // shift bit to correct destination
1651       condition_reg_ &= ~(0x80000000 >> bt);
1652       condition_reg_ |= bt_val;
1653       break;
1654     }
1655     case CREQV: {
1656       int bt = instr->Bits(25, 21);
1657       int ba = instr->Bits(20, 16);
1658       int bb = instr->Bits(15, 11);
1659       int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1660       int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1661       int bt_val = 1 - (ba_val ^ bb_val);
1662       bt_val = bt_val << (31 - bt);  // shift bit to correct destination
1663       condition_reg_ &= ~(0x80000000 >> bt);
1664       condition_reg_ |= bt_val;
1665       break;
1666     }
1667     case CRNAND:
1668     case CRAND:
1669     case CRORC:
1670     case CROR:
1671     default: {
1672       UNIMPLEMENTED();  // Not used by V8.
1673     }
1674   }
1675 }
1676 
1677 
ExecuteExt2_10bit(Instruction * instr)1678 bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
1679   bool found = true;
1680 
1681   int opcode = instr->Bits(10, 1) << 1;
1682   switch (opcode) {
1683     case SRWX: {
1684       int rs = instr->RSValue();
1685       int ra = instr->RAValue();
1686       int rb = instr->RBValue();
1687       uint32_t rs_val = get_register(rs);
1688       uintptr_t rb_val = get_register(rb) & 0x3f;
1689       intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val;
1690       set_register(ra, result);
1691       if (instr->Bit(0)) {  // RC bit set
1692         SetCR0(result);
1693       }
1694       break;
1695     }
1696 #if V8_TARGET_ARCH_PPC64
1697     case SRDX: {
1698       int rs = instr->RSValue();
1699       int ra = instr->RAValue();
1700       int rb = instr->RBValue();
1701       uintptr_t rs_val = get_register(rs);
1702       uintptr_t rb_val = get_register(rb) & 0x7f;
1703       intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val;
1704       set_register(ra, result);
1705       if (instr->Bit(0)) {  // RC bit set
1706         SetCR0(result);
1707       }
1708       break;
1709     }
1710 #endif
1711     case SRAW: {
1712       int rs = instr->RSValue();
1713       int ra = instr->RAValue();
1714       int rb = instr->RBValue();
1715       int32_t rs_val = get_register(rs);
1716       intptr_t rb_val = get_register(rb) & 0x3f;
1717       intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val;
1718       set_register(ra, result);
1719       if (instr->Bit(0)) {  // RC bit set
1720         SetCR0(result);
1721       }
1722       break;
1723     }
1724 #if V8_TARGET_ARCH_PPC64
1725     case SRAD: {
1726       int rs = instr->RSValue();
1727       int ra = instr->RAValue();
1728       int rb = instr->RBValue();
1729       intptr_t rs_val = get_register(rs);
1730       intptr_t rb_val = get_register(rb) & 0x7f;
1731       intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val;
1732       set_register(ra, result);
1733       if (instr->Bit(0)) {  // RC bit set
1734         SetCR0(result);
1735       }
1736       break;
1737     }
1738 #endif
1739     case SRAWIX: {
1740       int ra = instr->RAValue();
1741       int rs = instr->RSValue();
1742       int sh = instr->Bits(15, 11);
1743       int32_t rs_val = get_register(rs);
1744       intptr_t result = rs_val >> sh;
1745       set_register(ra, result);
1746       if (instr->Bit(0)) {  // RC bit set
1747         SetCR0(result);
1748       }
1749       break;
1750     }
1751 #if V8_TARGET_ARCH_PPC64
1752     case EXTSW: {
1753       const int shift = kBitsPerPointer - 32;
1754       int ra = instr->RAValue();
1755       int rs = instr->RSValue();
1756       intptr_t rs_val = get_register(rs);
1757       intptr_t ra_val = (rs_val << shift) >> shift;
1758       set_register(ra, ra_val);
1759       if (instr->Bit(0)) {  // RC bit set
1760         SetCR0(ra_val);
1761       }
1762       break;
1763     }
1764 #endif
1765     case EXTSH: {
1766       const int shift = kBitsPerPointer - 16;
1767       int ra = instr->RAValue();
1768       int rs = instr->RSValue();
1769       intptr_t rs_val = get_register(rs);
1770       intptr_t ra_val = (rs_val << shift) >> shift;
1771       set_register(ra, ra_val);
1772       if (instr->Bit(0)) {  // RC bit set
1773         SetCR0(ra_val);
1774       }
1775       break;
1776     }
1777     case EXTSB: {
1778       const int shift = kBitsPerPointer - 8;
1779       int ra = instr->RAValue();
1780       int rs = instr->RSValue();
1781       intptr_t rs_val = get_register(rs);
1782       intptr_t ra_val = (rs_val << shift) >> shift;
1783       set_register(ra, ra_val);
1784       if (instr->Bit(0)) {  // RC bit set
1785         SetCR0(ra_val);
1786       }
1787       break;
1788     }
1789     case LFSUX:
1790     case LFSX: {
1791       int frt = instr->RTValue();
1792       int ra = instr->RAValue();
1793       int rb = instr->RBValue();
1794       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1795       intptr_t rb_val = get_register(rb);
1796       int32_t val = ReadW(ra_val + rb_val, instr);
1797       float* fptr = reinterpret_cast<float*>(&val);
1798       set_d_register_from_double(frt, static_cast<double>(*fptr));
1799       if (opcode == LFSUX) {
1800         DCHECK(ra != 0);
1801         set_register(ra, ra_val + rb_val);
1802       }
1803       break;
1804     }
1805     case LFDUX:
1806     case LFDX: {
1807       int frt = instr->RTValue();
1808       int ra = instr->RAValue();
1809       int rb = instr->RBValue();
1810       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1811       intptr_t rb_val = get_register(rb);
1812       int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val));
1813       set_d_register(frt, *dptr);
1814       if (opcode == LFDUX) {
1815         DCHECK(ra != 0);
1816         set_register(ra, ra_val + rb_val);
1817       }
1818       break;
1819     }
1820     case STFSUX: {
1821       case STFSX:
1822         int frs = instr->RSValue();
1823         int ra = instr->RAValue();
1824         int rb = instr->RBValue();
1825         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1826         intptr_t rb_val = get_register(rb);
1827         float frs_val = static_cast<float>(get_double_from_d_register(frs));
1828         int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
1829         WriteW(ra_val + rb_val, *p, instr);
1830         if (opcode == STFSUX) {
1831           DCHECK(ra != 0);
1832           set_register(ra, ra_val + rb_val);
1833         }
1834         break;
1835     }
1836     case STFDUX: {
1837       case STFDX:
1838         int frs = instr->RSValue();
1839         int ra = instr->RAValue();
1840         int rb = instr->RBValue();
1841         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1842         intptr_t rb_val = get_register(rb);
1843         int64_t frs_val = get_d_register(frs);
1844         WriteDW(ra_val + rb_val, frs_val);
1845         if (opcode == STFDUX) {
1846           DCHECK(ra != 0);
1847           set_register(ra, ra_val + rb_val);
1848         }
1849         break;
1850     }
1851     case POPCNTW: {
1852       int rs = instr->RSValue();
1853       int ra = instr->RAValue();
1854       uintptr_t rs_val = get_register(rs);
1855       uintptr_t count = 0;
1856       int n = 0;
1857       uintptr_t bit = 0x80000000;
1858       for (; n < 32; n++) {
1859         if (bit & rs_val) count++;
1860         bit >>= 1;
1861       }
1862       set_register(ra, count);
1863       break;
1864     }
1865 #if V8_TARGET_ARCH_PPC64
1866     case POPCNTD: {
1867       int rs = instr->RSValue();
1868       int ra = instr->RAValue();
1869       uintptr_t rs_val = get_register(rs);
1870       uintptr_t count = 0;
1871       int n = 0;
1872       uintptr_t bit = 0x8000000000000000UL;
1873       for (; n < 64; n++) {
1874         if (bit & rs_val) count++;
1875         bit >>= 1;
1876       }
1877       set_register(ra, count);
1878       break;
1879     }
1880 #endif
1881     case SYNC: {
1882       // todo - simulate sync
1883       break;
1884     }
1885     case ICBI: {
1886       // todo - simulate icbi
1887       break;
1888     }
1889     default: {
1890       found = false;
1891       break;
1892     }
1893   }
1894 
1895   if (found) return found;
1896 
1897   found = true;
1898   opcode = instr->Bits(10, 2) << 2;
1899   switch (opcode) {
1900     case SRADIX: {
1901       int ra = instr->RAValue();
1902       int rs = instr->RSValue();
1903       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
1904       intptr_t rs_val = get_register(rs);
1905       intptr_t result = rs_val >> sh;
1906       set_register(ra, result);
1907       if (instr->Bit(0)) {  // RC bit set
1908         SetCR0(result);
1909       }
1910       break;
1911     }
1912     default: {
1913       found = false;
1914       break;
1915     }
1916   }
1917 
1918   return found;
1919 }
1920 
1921 
ExecuteExt2_9bit_part1(Instruction * instr)1922 bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
1923   bool found = true;
1924 
1925   int opcode = instr->Bits(9, 1) << 1;
1926   switch (opcode) {
1927     case TW: {
1928       // used for call redirection in simulation mode
1929       SoftwareInterrupt(instr);
1930       break;
1931     }
1932     case CMP: {
1933       int ra = instr->RAValue();
1934       int rb = instr->RBValue();
1935       int cr = instr->Bits(25, 23);
1936       uint32_t bf = 0;
1937 #if V8_TARGET_ARCH_PPC64
1938       int L = instr->Bit(21);
1939       if (L) {
1940 #endif
1941         intptr_t ra_val = get_register(ra);
1942         intptr_t rb_val = get_register(rb);
1943         if (ra_val < rb_val) {
1944           bf |= 0x80000000;
1945         }
1946         if (ra_val > rb_val) {
1947           bf |= 0x40000000;
1948         }
1949         if (ra_val == rb_val) {
1950           bf |= 0x20000000;
1951         }
1952 #if V8_TARGET_ARCH_PPC64
1953       } else {
1954         int32_t ra_val = get_register(ra);
1955         int32_t rb_val = get_register(rb);
1956         if (ra_val < rb_val) {
1957           bf |= 0x80000000;
1958         }
1959         if (ra_val > rb_val) {
1960           bf |= 0x40000000;
1961         }
1962         if (ra_val == rb_val) {
1963           bf |= 0x20000000;
1964         }
1965       }
1966 #endif
1967       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
1968       uint32_t condition = bf >> (cr * 4);
1969       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
1970       break;
1971     }
1972     case SUBFCX: {
1973       int rt = instr->RTValue();
1974       int ra = instr->RAValue();
1975       int rb = instr->RBValue();
1976       // int oe = instr->Bit(10);
1977       uintptr_t ra_val = get_register(ra);
1978       uintptr_t rb_val = get_register(rb);
1979       uintptr_t alu_out = ~ra_val + rb_val + 1;
1980       // Set carry
1981       if (ra_val <= rb_val) {
1982         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
1983       } else {
1984         special_reg_xer_ &= ~0xF0000000;
1985       }
1986       set_register(rt, alu_out);
1987       if (instr->Bit(0)) {  // RC bit set
1988         SetCR0(alu_out);
1989       }
1990       // todo - handle OE bit
1991       break;
1992     }
1993     case SUBFEX: {
1994       int rt = instr->RTValue();
1995       int ra = instr->RAValue();
1996       int rb = instr->RBValue();
1997       // int oe = instr->Bit(10);
1998       uintptr_t ra_val = get_register(ra);
1999       uintptr_t rb_val = get_register(rb);
2000       uintptr_t alu_out = ~ra_val + rb_val;
2001       if (special_reg_xer_ & 0x20000000) {
2002         alu_out += 1;
2003       }
2004       set_register(rt, alu_out);
2005       if (instr->Bit(0)) {  // RC bit set
2006         SetCR0(static_cast<intptr_t>(alu_out));
2007       }
2008       // todo - handle OE bit
2009       break;
2010     }
2011     case ADDCX: {
2012       int rt = instr->RTValue();
2013       int ra = instr->RAValue();
2014       int rb = instr->RBValue();
2015       // int oe = instr->Bit(10);
2016       uintptr_t ra_val = get_register(ra);
2017       uintptr_t rb_val = get_register(rb);
2018       uintptr_t alu_out = ra_val + rb_val;
2019       // Set carry
2020       if (~ra_val < rb_val) {
2021         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
2022       } else {
2023         special_reg_xer_ &= ~0xF0000000;
2024       }
2025       set_register(rt, alu_out);
2026       if (instr->Bit(0)) {  // RC bit set
2027         SetCR0(static_cast<intptr_t>(alu_out));
2028       }
2029       // todo - handle OE bit
2030       break;
2031     }
2032     case ADDEX: {
2033       int rt = instr->RTValue();
2034       int ra = instr->RAValue();
2035       int rb = instr->RBValue();
2036       // int oe = instr->Bit(10);
2037       uintptr_t ra_val = get_register(ra);
2038       uintptr_t rb_val = get_register(rb);
2039       uintptr_t alu_out = ra_val + rb_val;
2040       if (special_reg_xer_ & 0x20000000) {
2041         alu_out += 1;
2042       }
2043       set_register(rt, alu_out);
2044       if (instr->Bit(0)) {  // RC bit set
2045         SetCR0(static_cast<intptr_t>(alu_out));
2046       }
2047       // todo - handle OE bit
2048       break;
2049     }
2050     case MULHWX: {
2051       int rt = instr->RTValue();
2052       int ra = instr->RAValue();
2053       int rb = instr->RBValue();
2054       int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2055       int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2056       int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
2057       alu_out >>= 32;
2058       set_register(rt, alu_out);
2059       if (instr->Bit(0)) {  // RC bit set
2060         SetCR0(static_cast<intptr_t>(alu_out));
2061       }
2062       break;
2063     }
2064     case MULHWUX: {
2065       int rt = instr->RTValue();
2066       int ra = instr->RAValue();
2067       int rb = instr->RBValue();
2068       uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2069       uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2070       uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
2071       alu_out >>= 32;
2072       set_register(rt, alu_out);
2073       if (instr->Bit(0)) {  // RC bit set
2074         SetCR0(static_cast<intptr_t>(alu_out));
2075       }
2076       break;
2077     }
2078     case NEGX: {
2079       int rt = instr->RTValue();
2080       int ra = instr->RAValue();
2081       intptr_t ra_val = get_register(ra);
2082       intptr_t alu_out = 1 + ~ra_val;
2083 #if V8_TARGET_ARCH_PPC64
2084       intptr_t one = 1;  // work-around gcc
2085       intptr_t kOverflowVal = (one << 63);
2086 #else
2087       intptr_t kOverflowVal = kMinInt;
2088 #endif
2089       set_register(rt, alu_out);
2090       if (instr->Bit(10)) {  // OE bit set
2091         if (ra_val == kOverflowVal) {
2092           special_reg_xer_ |= 0xC0000000;  // set SO,OV
2093         } else {
2094           special_reg_xer_ &= ~0x40000000;  // clear OV
2095         }
2096       }
2097       if (instr->Bit(0)) {  // RC bit set
2098         bool setSO = (special_reg_xer_ & 0x80000000);
2099         SetCR0(alu_out, setSO);
2100       }
2101       break;
2102     }
2103     case SLWX: {
2104       int rs = instr->RSValue();
2105       int ra = instr->RAValue();
2106       int rb = instr->RBValue();
2107       uint32_t rs_val = get_register(rs);
2108       uintptr_t rb_val = get_register(rb) & 0x3f;
2109       uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val;
2110       set_register(ra, result);
2111       if (instr->Bit(0)) {  // RC bit set
2112         SetCR0(result);
2113       }
2114       break;
2115     }
2116 #if V8_TARGET_ARCH_PPC64
2117     case SLDX: {
2118       int rs = instr->RSValue();
2119       int ra = instr->RAValue();
2120       int rb = instr->RBValue();
2121       uintptr_t rs_val = get_register(rs);
2122       uintptr_t rb_val = get_register(rb) & 0x7f;
2123       uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val;
2124       set_register(ra, result);
2125       if (instr->Bit(0)) {  // RC bit set
2126         SetCR0(result);
2127       }
2128       break;
2129     }
2130     case MFVSRD: {
2131       DCHECK(!instr->Bit(0));
2132       int frt = instr->RTValue();
2133       int ra = instr->RAValue();
2134       int64_t frt_val = get_d_register(frt);
2135       set_register(ra, frt_val);
2136       break;
2137     }
2138     case MFVSRWZ: {
2139       DCHECK(!instr->Bit(0));
2140       int frt = instr->RTValue();
2141       int ra = instr->RAValue();
2142       int64_t frt_val = get_d_register(frt);
2143       set_register(ra, static_cast<uint32_t>(frt_val));
2144       break;
2145     }
2146     case MTVSRD: {
2147       DCHECK(!instr->Bit(0));
2148       int frt = instr->RTValue();
2149       int ra = instr->RAValue();
2150       int64_t ra_val = get_register(ra);
2151       set_d_register(frt, ra_val);
2152       break;
2153     }
2154     case MTVSRWA: {
2155       DCHECK(!instr->Bit(0));
2156       int frt = instr->RTValue();
2157       int ra = instr->RAValue();
2158       int64_t ra_val = static_cast<int32_t>(get_register(ra));
2159       set_d_register(frt, ra_val);
2160       break;
2161     }
2162     case MTVSRWZ: {
2163       DCHECK(!instr->Bit(0));
2164       int frt = instr->RTValue();
2165       int ra = instr->RAValue();
2166       uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
2167       set_d_register(frt, ra_val);
2168       break;
2169     }
2170 #endif
2171     default: {
2172       found = false;
2173       break;
2174     }
2175   }
2176 
2177   return found;
2178 }
2179 
2180 
ExecuteExt2_9bit_part2(Instruction * instr)2181 bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
2182   bool found = true;
2183   int opcode = instr->Bits(9, 1) << 1;
2184   switch (opcode) {
2185     case CNTLZWX: {
2186       int rs = instr->RSValue();
2187       int ra = instr->RAValue();
2188       uintptr_t rs_val = get_register(rs);
2189       uintptr_t count = 0;
2190       int n = 0;
2191       uintptr_t bit = 0x80000000;
2192       for (; n < 32; n++) {
2193         if (bit & rs_val) break;
2194         count++;
2195         bit >>= 1;
2196       }
2197       set_register(ra, count);
2198       if (instr->Bit(0)) {  // RC Bit set
2199         int bf = 0;
2200         if (count > 0) {
2201           bf |= 0x40000000;
2202         }
2203         if (count == 0) {
2204           bf |= 0x20000000;
2205         }
2206         condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2207       }
2208       break;
2209     }
2210 #if V8_TARGET_ARCH_PPC64
2211     case CNTLZDX: {
2212       int rs = instr->RSValue();
2213       int ra = instr->RAValue();
2214       uintptr_t rs_val = get_register(rs);
2215       uintptr_t count = 0;
2216       int n = 0;
2217       uintptr_t bit = 0x8000000000000000UL;
2218       for (; n < 64; n++) {
2219         if (bit & rs_val) break;
2220         count++;
2221         bit >>= 1;
2222       }
2223       set_register(ra, count);
2224       if (instr->Bit(0)) {  // RC Bit set
2225         int bf = 0;
2226         if (count > 0) {
2227           bf |= 0x40000000;
2228         }
2229         if (count == 0) {
2230           bf |= 0x20000000;
2231         }
2232         condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2233       }
2234       break;
2235     }
2236 #endif
2237     case ANDX: {
2238       int rs = instr->RSValue();
2239       int ra = instr->RAValue();
2240       int rb = instr->RBValue();
2241       intptr_t rs_val = get_register(rs);
2242       intptr_t rb_val = get_register(rb);
2243       intptr_t alu_out = rs_val & rb_val;
2244       set_register(ra, alu_out);
2245       if (instr->Bit(0)) {  // RC Bit set
2246         SetCR0(alu_out);
2247       }
2248       break;
2249     }
2250     case ANDCX: {
2251       int rs = instr->RSValue();
2252       int ra = instr->RAValue();
2253       int rb = instr->RBValue();
2254       intptr_t rs_val = get_register(rs);
2255       intptr_t rb_val = get_register(rb);
2256       intptr_t alu_out = rs_val & ~rb_val;
2257       set_register(ra, alu_out);
2258       if (instr->Bit(0)) {  // RC Bit set
2259         SetCR0(alu_out);
2260       }
2261       break;
2262     }
2263     case CMPL: {
2264       int ra = instr->RAValue();
2265       int rb = instr->RBValue();
2266       int cr = instr->Bits(25, 23);
2267       uint32_t bf = 0;
2268 #if V8_TARGET_ARCH_PPC64
2269       int L = instr->Bit(21);
2270       if (L) {
2271 #endif
2272         uintptr_t ra_val = get_register(ra);
2273         uintptr_t rb_val = get_register(rb);
2274         if (ra_val < rb_val) {
2275           bf |= 0x80000000;
2276         }
2277         if (ra_val > rb_val) {
2278           bf |= 0x40000000;
2279         }
2280         if (ra_val == rb_val) {
2281           bf |= 0x20000000;
2282         }
2283 #if V8_TARGET_ARCH_PPC64
2284       } else {
2285         uint32_t ra_val = get_register(ra);
2286         uint32_t rb_val = get_register(rb);
2287         if (ra_val < rb_val) {
2288           bf |= 0x80000000;
2289         }
2290         if (ra_val > rb_val) {
2291           bf |= 0x40000000;
2292         }
2293         if (ra_val == rb_val) {
2294           bf |= 0x20000000;
2295         }
2296       }
2297 #endif
2298       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2299       uint32_t condition = bf >> (cr * 4);
2300       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2301       break;
2302     }
2303     case SUBFX: {
2304       int rt = instr->RTValue();
2305       int ra = instr->RAValue();
2306       int rb = instr->RBValue();
2307       // int oe = instr->Bit(10);
2308       intptr_t ra_val = get_register(ra);
2309       intptr_t rb_val = get_register(rb);
2310       intptr_t alu_out = rb_val - ra_val;
2311       // todo - figure out underflow
2312       set_register(rt, alu_out);
2313       if (instr->Bit(0)) {  // RC Bit set
2314         SetCR0(alu_out);
2315       }
2316       // todo - handle OE bit
2317       break;
2318     }
2319     case ADDZEX: {
2320       int rt = instr->RTValue();
2321       int ra = instr->RAValue();
2322       intptr_t ra_val = get_register(ra);
2323       if (special_reg_xer_ & 0x20000000) {
2324         ra_val += 1;
2325       }
2326       set_register(rt, ra_val);
2327       if (instr->Bit(0)) {  // RC bit set
2328         SetCR0(ra_val);
2329       }
2330       // todo - handle OE bit
2331       break;
2332     }
2333     case NORX: {
2334       int rs = instr->RSValue();
2335       int ra = instr->RAValue();
2336       int rb = instr->RBValue();
2337       intptr_t rs_val = get_register(rs);
2338       intptr_t rb_val = get_register(rb);
2339       intptr_t alu_out = ~(rs_val | rb_val);
2340       set_register(ra, alu_out);
2341       if (instr->Bit(0)) {  // RC bit set
2342         SetCR0(alu_out);
2343       }
2344       break;
2345     }
2346     case MULLW: {
2347       int rt = instr->RTValue();
2348       int ra = instr->RAValue();
2349       int rb = instr->RBValue();
2350       int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2351       int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2352       int32_t alu_out = ra_val * rb_val;
2353       set_register(rt, alu_out);
2354       if (instr->Bit(0)) {  // RC bit set
2355         SetCR0(alu_out);
2356       }
2357       // todo - handle OE bit
2358       break;
2359     }
2360 #if V8_TARGET_ARCH_PPC64
2361     case MULLD: {
2362       int rt = instr->RTValue();
2363       int ra = instr->RAValue();
2364       int rb = instr->RBValue();
2365       int64_t ra_val = get_register(ra);
2366       int64_t rb_val = get_register(rb);
2367       int64_t alu_out = ra_val * rb_val;
2368       set_register(rt, alu_out);
2369       if (instr->Bit(0)) {  // RC bit set
2370         SetCR0(alu_out);
2371       }
2372       // todo - handle OE bit
2373       break;
2374     }
2375 #endif
2376     case DIVW: {
2377       int rt = instr->RTValue();
2378       int ra = instr->RAValue();
2379       int rb = instr->RBValue();
2380       int32_t ra_val = get_register(ra);
2381       int32_t rb_val = get_register(rb);
2382       bool overflow = (ra_val == kMinInt && rb_val == -1);
2383       // result is undefined if divisor is zero or if operation
2384       // is 0x80000000 / -1.
2385       int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
2386       set_register(rt, alu_out);
2387       if (instr->Bit(10)) {  // OE bit set
2388         if (overflow) {
2389           special_reg_xer_ |= 0xC0000000;  // set SO,OV
2390         } else {
2391           special_reg_xer_ &= ~0x40000000;  // clear OV
2392         }
2393       }
2394       if (instr->Bit(0)) {  // RC bit set
2395         bool setSO = (special_reg_xer_ & 0x80000000);
2396         SetCR0(alu_out, setSO);
2397       }
2398       break;
2399     }
2400     case DIVWU: {
2401       int rt = instr->RTValue();
2402       int ra = instr->RAValue();
2403       int rb = instr->RBValue();
2404       uint32_t ra_val = get_register(ra);
2405       uint32_t rb_val = get_register(rb);
2406       bool overflow = (rb_val == 0);
2407       // result is undefined if divisor is zero
2408       uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
2409       set_register(rt, alu_out);
2410       if (instr->Bit(10)) {  // OE bit set
2411         if (overflow) {
2412           special_reg_xer_ |= 0xC0000000;  // set SO,OV
2413         } else {
2414           special_reg_xer_ &= ~0x40000000;  // clear OV
2415         }
2416       }
2417       if (instr->Bit(0)) {  // RC bit set
2418         bool setSO = (special_reg_xer_ & 0x80000000);
2419         SetCR0(alu_out, setSO);
2420       }
2421       break;
2422     }
2423 #if V8_TARGET_ARCH_PPC64
2424     case DIVD: {
2425       int rt = instr->RTValue();
2426       int ra = instr->RAValue();
2427       int rb = instr->RBValue();
2428       int64_t ra_val = get_register(ra);
2429       int64_t rb_val = get_register(rb);
2430       int64_t one = 1;  // work-around gcc
2431       int64_t kMinLongLong = (one << 63);
2432       // result is undefined if divisor is zero or if operation
2433       // is 0x80000000_00000000 / -1.
2434       int64_t alu_out =
2435           (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
2436               ? -1
2437               : ra_val / rb_val;
2438       set_register(rt, alu_out);
2439       if (instr->Bit(0)) {  // RC bit set
2440         SetCR0(alu_out);
2441       }
2442       // todo - handle OE bit
2443       break;
2444     }
2445     case DIVDU: {
2446       int rt = instr->RTValue();
2447       int ra = instr->RAValue();
2448       int rb = instr->RBValue();
2449       uint64_t ra_val = get_register(ra);
2450       uint64_t rb_val = get_register(rb);
2451       // result is undefined if divisor is zero
2452       uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
2453       set_register(rt, alu_out);
2454       if (instr->Bit(0)) {  // RC bit set
2455         SetCR0(alu_out);
2456       }
2457       // todo - handle OE bit
2458       break;
2459     }
2460 #endif
2461     case ADDX: {
2462       int rt = instr->RTValue();
2463       int ra = instr->RAValue();
2464       int rb = instr->RBValue();
2465       // int oe = instr->Bit(10);
2466       intptr_t ra_val = get_register(ra);
2467       intptr_t rb_val = get_register(rb);
2468       intptr_t alu_out = ra_val + rb_val;
2469       set_register(rt, alu_out);
2470       if (instr->Bit(0)) {  // RC bit set
2471         SetCR0(alu_out);
2472       }
2473       // todo - handle OE bit
2474       break;
2475     }
2476     case XORX: {
2477       int rs = instr->RSValue();
2478       int ra = instr->RAValue();
2479       int rb = instr->RBValue();
2480       intptr_t rs_val = get_register(rs);
2481       intptr_t rb_val = get_register(rb);
2482       intptr_t alu_out = rs_val ^ rb_val;
2483       set_register(ra, alu_out);
2484       if (instr->Bit(0)) {  // RC bit set
2485         SetCR0(alu_out);
2486       }
2487       break;
2488     }
2489     case ORX: {
2490       int rs = instr->RSValue();
2491       int ra = instr->RAValue();
2492       int rb = instr->RBValue();
2493       intptr_t rs_val = get_register(rs);
2494       intptr_t rb_val = get_register(rb);
2495       intptr_t alu_out = rs_val | rb_val;
2496       set_register(ra, alu_out);
2497       if (instr->Bit(0)) {  // RC bit set
2498         SetCR0(alu_out);
2499       }
2500       break;
2501     }
2502     case ORC: {
2503       int rs = instr->RSValue();
2504       int ra = instr->RAValue();
2505       int rb = instr->RBValue();
2506       intptr_t rs_val = get_register(rs);
2507       intptr_t rb_val = get_register(rb);
2508       intptr_t alu_out = rs_val | ~rb_val;
2509       set_register(ra, alu_out);
2510       if (instr->Bit(0)) {  // RC bit set
2511         SetCR0(alu_out);
2512       }
2513       break;
2514     }
2515     case MFSPR: {
2516       int rt = instr->RTValue();
2517       int spr = instr->Bits(20, 11);
2518       if (spr != 256) {
2519         UNIMPLEMENTED();  // Only LRLR supported
2520       }
2521       set_register(rt, special_reg_lr_);
2522       break;
2523     }
2524     case MTSPR: {
2525       int rt = instr->RTValue();
2526       intptr_t rt_val = get_register(rt);
2527       int spr = instr->Bits(20, 11);
2528       if (spr == 256) {
2529         special_reg_lr_ = rt_val;
2530       } else if (spr == 288) {
2531         special_reg_ctr_ = rt_val;
2532       } else if (spr == 32) {
2533         special_reg_xer_ = rt_val;
2534       } else {
2535         UNIMPLEMENTED();  // Only LR supported
2536       }
2537       break;
2538     }
2539     case MFCR: {
2540       int rt = instr->RTValue();
2541       set_register(rt, condition_reg_);
2542       break;
2543     }
2544     case STWUX:
2545     case STWX: {
2546       int rs = instr->RSValue();
2547       int ra = instr->RAValue();
2548       int rb = instr->RBValue();
2549       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2550       int32_t rs_val = get_register(rs);
2551       intptr_t rb_val = get_register(rb);
2552       WriteW(ra_val + rb_val, rs_val, instr);
2553       if (opcode == STWUX) {
2554         DCHECK(ra != 0);
2555         set_register(ra, ra_val + rb_val);
2556       }
2557       break;
2558     }
2559     case STBUX:
2560     case STBX: {
2561       int rs = instr->RSValue();
2562       int ra = instr->RAValue();
2563       int rb = instr->RBValue();
2564       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2565       int8_t rs_val = get_register(rs);
2566       intptr_t rb_val = get_register(rb);
2567       WriteB(ra_val + rb_val, rs_val);
2568       if (opcode == STBUX) {
2569         DCHECK(ra != 0);
2570         set_register(ra, ra_val + rb_val);
2571       }
2572       break;
2573     }
2574     case STHUX:
2575     case STHX: {
2576       int rs = instr->RSValue();
2577       int ra = instr->RAValue();
2578       int rb = instr->RBValue();
2579       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2580       int16_t rs_val = get_register(rs);
2581       intptr_t rb_val = get_register(rb);
2582       WriteH(ra_val + rb_val, rs_val, instr);
2583       if (opcode == STHUX) {
2584         DCHECK(ra != 0);
2585         set_register(ra, ra_val + rb_val);
2586       }
2587       break;
2588     }
2589     case LWZX:
2590     case LWZUX: {
2591       int rt = instr->RTValue();
2592       int ra = instr->RAValue();
2593       int rb = instr->RBValue();
2594       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2595       intptr_t rb_val = get_register(rb);
2596       set_register(rt, ReadWU(ra_val + rb_val, instr));
2597       if (opcode == LWZUX) {
2598         DCHECK(ra != 0 && ra != rt);
2599         set_register(ra, ra_val + rb_val);
2600       }
2601       break;
2602     }
2603 #if V8_TARGET_ARCH_PPC64
2604     case LWAX: {
2605       int rt = instr->RTValue();
2606       int ra = instr->RAValue();
2607       int rb = instr->RBValue();
2608       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2609       intptr_t rb_val = get_register(rb);
2610       set_register(rt, ReadW(ra_val + rb_val, instr));
2611       break;
2612     }
2613     case LDX:
2614     case LDUX: {
2615       int rt = instr->RTValue();
2616       int ra = instr->RAValue();
2617       int rb = instr->RBValue();
2618       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2619       intptr_t rb_val = get_register(rb);
2620       intptr_t* result = ReadDW(ra_val + rb_val);
2621       set_register(rt, *result);
2622       if (opcode == LDUX) {
2623         DCHECK(ra != 0 && ra != rt);
2624         set_register(ra, ra_val + rb_val);
2625       }
2626       break;
2627     }
2628     case STDX:
2629     case STDUX: {
2630       int rs = instr->RSValue();
2631       int ra = instr->RAValue();
2632       int rb = instr->RBValue();
2633       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2634       intptr_t rs_val = get_register(rs);
2635       intptr_t rb_val = get_register(rb);
2636       WriteDW(ra_val + rb_val, rs_val);
2637       if (opcode == STDUX) {
2638         DCHECK(ra != 0);
2639         set_register(ra, ra_val + rb_val);
2640       }
2641       break;
2642     }
2643 #endif
2644     case LBZX:
2645     case LBZUX: {
2646       int rt = instr->RTValue();
2647       int ra = instr->RAValue();
2648       int rb = instr->RBValue();
2649       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2650       intptr_t rb_val = get_register(rb);
2651       set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
2652       if (opcode == LBZUX) {
2653         DCHECK(ra != 0 && ra != rt);
2654         set_register(ra, ra_val + rb_val);
2655       }
2656       break;
2657     }
2658     case LHZX:
2659     case LHZUX: {
2660       int rt = instr->RTValue();
2661       int ra = instr->RAValue();
2662       int rb = instr->RBValue();
2663       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2664       intptr_t rb_val = get_register(rb);
2665       set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
2666       if (opcode == LHZUX) {
2667         DCHECK(ra != 0 && ra != rt);
2668         set_register(ra, ra_val + rb_val);
2669       }
2670       break;
2671     }
2672     case LHAX:
2673     case LHAUX: {
2674       int rt = instr->RTValue();
2675       int ra = instr->RAValue();
2676       int rb = instr->RBValue();
2677       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2678       intptr_t rb_val = get_register(rb);
2679       set_register(rt, ReadH(ra_val + rb_val, instr));
2680       if (opcode == LHAUX) {
2681         DCHECK(ra != 0 && ra != rt);
2682         set_register(ra, ra_val + rb_val);
2683       }
2684       break;
2685     }
2686     case DCBF: {
2687       // todo - simulate dcbf
2688       break;
2689     }
2690     default: {
2691       found = false;
2692       break;
2693     }
2694   }
2695 
2696   return found;
2697 }
2698 
2699 
ExecuteExt2_5bit(Instruction * instr)2700 void Simulator::ExecuteExt2_5bit(Instruction* instr) {
2701   int opcode = instr->Bits(5, 1) << 1;
2702   switch (opcode) {
2703     case ISEL: {
2704       int rt = instr->RTValue();
2705       int ra = instr->RAValue();
2706       int rb = instr->RBValue();
2707       int condition_bit = instr->RCValue();
2708       int condition_mask = 0x80000000 >> condition_bit;
2709       intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
2710       intptr_t rb_val = get_register(rb);
2711       intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
2712       set_register(rt, value);
2713       break;
2714     }
2715     default: {
2716       PrintF("Unimplemented: %08x\n", instr->InstructionBits());
2717       UNIMPLEMENTED();  // Not used by V8.
2718     }
2719   }
2720 }
2721 
2722 
ExecuteExt2(Instruction * instr)2723 void Simulator::ExecuteExt2(Instruction* instr) {
2724   // Check first the 10-1 bit versions
2725   if (ExecuteExt2_10bit(instr)) return;
2726   // Now look at the lesser encodings
2727   if (ExecuteExt2_9bit_part1(instr)) return;
2728   if (ExecuteExt2_9bit_part2(instr)) return;
2729   ExecuteExt2_5bit(instr);
2730 }
2731 
2732 
ExecuteExt3(Instruction * instr)2733 void Simulator::ExecuteExt3(Instruction* instr) {
2734   int opcode = instr->Bits(10, 1) << 1;
2735   switch (opcode) {
2736     case FCFID: {
2737       // fcfids
2738       int frt = instr->RTValue();
2739       int frb = instr->RBValue();
2740       int64_t frb_val = get_d_register(frb);
2741       double frt_val = static_cast<float>(frb_val);
2742       set_d_register_from_double(frt, frt_val);
2743       return;
2744     }
2745     case FCFIDU: {
2746       // fcfidus
2747       int frt = instr->RTValue();
2748       int frb = instr->RBValue();
2749       uint64_t frb_val = get_d_register(frb);
2750       double frt_val = static_cast<float>(frb_val);
2751       set_d_register_from_double(frt, frt_val);
2752       return;
2753     }
2754   }
2755   UNIMPLEMENTED();  // Not used by V8.
2756 }
2757 
2758 
ExecuteExt4(Instruction * instr)2759 void Simulator::ExecuteExt4(Instruction* instr) {
2760   switch (instr->Bits(5, 1) << 1) {
2761     case FDIV: {
2762       int frt = instr->RTValue();
2763       int fra = instr->RAValue();
2764       int frb = instr->RBValue();
2765       double fra_val = get_double_from_d_register(fra);
2766       double frb_val = get_double_from_d_register(frb);
2767       double frt_val = fra_val / frb_val;
2768       set_d_register_from_double(frt, frt_val);
2769       return;
2770     }
2771     case FSUB: {
2772       int frt = instr->RTValue();
2773       int fra = instr->RAValue();
2774       int frb = instr->RBValue();
2775       double fra_val = get_double_from_d_register(fra);
2776       double frb_val = get_double_from_d_register(frb);
2777       double frt_val = fra_val - frb_val;
2778       set_d_register_from_double(frt, frt_val);
2779       return;
2780     }
2781     case FADD: {
2782       int frt = instr->RTValue();
2783       int fra = instr->RAValue();
2784       int frb = instr->RBValue();
2785       double fra_val = get_double_from_d_register(fra);
2786       double frb_val = get_double_from_d_register(frb);
2787       double frt_val = fra_val + frb_val;
2788       set_d_register_from_double(frt, frt_val);
2789       return;
2790     }
2791     case FSQRT: {
2792       lazily_initialize_fast_sqrt(isolate_);
2793       int frt = instr->RTValue();
2794       int frb = instr->RBValue();
2795       double frb_val = get_double_from_d_register(frb);
2796       double frt_val = fast_sqrt(frb_val, isolate_);
2797       set_d_register_from_double(frt, frt_val);
2798       return;
2799     }
2800     case FSEL: {
2801       int frt = instr->RTValue();
2802       int fra = instr->RAValue();
2803       int frb = instr->RBValue();
2804       int frc = instr->RCValue();
2805       double fra_val = get_double_from_d_register(fra);
2806       double frb_val = get_double_from_d_register(frb);
2807       double frc_val = get_double_from_d_register(frc);
2808       double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
2809       set_d_register_from_double(frt, frt_val);
2810       return;
2811     }
2812     case FMUL: {
2813       int frt = instr->RTValue();
2814       int fra = instr->RAValue();
2815       int frc = instr->RCValue();
2816       double fra_val = get_double_from_d_register(fra);
2817       double frc_val = get_double_from_d_register(frc);
2818       double frt_val = fra_val * frc_val;
2819       set_d_register_from_double(frt, frt_val);
2820       return;
2821     }
2822     case FMSUB: {
2823       int frt = instr->RTValue();
2824       int fra = instr->RAValue();
2825       int frb = instr->RBValue();
2826       int frc = instr->RCValue();
2827       double fra_val = get_double_from_d_register(fra);
2828       double frb_val = get_double_from_d_register(frb);
2829       double frc_val = get_double_from_d_register(frc);
2830       double frt_val = (fra_val * frc_val) - frb_val;
2831       set_d_register_from_double(frt, frt_val);
2832       return;
2833     }
2834     case FMADD: {
2835       int frt = instr->RTValue();
2836       int fra = instr->RAValue();
2837       int frb = instr->RBValue();
2838       int frc = instr->RCValue();
2839       double fra_val = get_double_from_d_register(fra);
2840       double frb_val = get_double_from_d_register(frb);
2841       double frc_val = get_double_from_d_register(frc);
2842       double frt_val = (fra_val * frc_val) + frb_val;
2843       set_d_register_from_double(frt, frt_val);
2844       return;
2845     }
2846   }
2847   int opcode = instr->Bits(10, 1) << 1;
2848   switch (opcode) {
2849     case FCMPU: {
2850       int fra = instr->RAValue();
2851       int frb = instr->RBValue();
2852       double fra_val = get_double_from_d_register(fra);
2853       double frb_val = get_double_from_d_register(frb);
2854       int cr = instr->Bits(25, 23);
2855       int bf = 0;
2856       if (fra_val < frb_val) {
2857         bf |= 0x80000000;
2858       }
2859       if (fra_val > frb_val) {
2860         bf |= 0x40000000;
2861       }
2862       if (fra_val == frb_val) {
2863         bf |= 0x20000000;
2864       }
2865       if (std::isunordered(fra_val, frb_val)) {
2866         bf |= 0x10000000;
2867       }
2868       int condition_mask = 0xF0000000 >> (cr * 4);
2869       int condition = bf >> (cr * 4);
2870       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2871       return;
2872     }
2873     case FRIN: {
2874       int frt = instr->RTValue();
2875       int frb = instr->RBValue();
2876       double frb_val = get_double_from_d_register(frb);
2877       double frt_val = std::round(frb_val);
2878       set_d_register_from_double(frt, frt_val);
2879       if (instr->Bit(0)) {  // RC bit set
2880                             //  UNIMPLEMENTED();
2881       }
2882       return;
2883     }
2884     case FRIZ: {
2885       int frt = instr->RTValue();
2886       int frb = instr->RBValue();
2887       double frb_val = get_double_from_d_register(frb);
2888       double frt_val = std::trunc(frb_val);
2889       set_d_register_from_double(frt, frt_val);
2890       if (instr->Bit(0)) {  // RC bit set
2891                             //  UNIMPLEMENTED();
2892       }
2893       return;
2894     }
2895     case FRIP: {
2896       int frt = instr->RTValue();
2897       int frb = instr->RBValue();
2898       double frb_val = get_double_from_d_register(frb);
2899       double frt_val = std::ceil(frb_val);
2900       set_d_register_from_double(frt, frt_val);
2901       if (instr->Bit(0)) {  // RC bit set
2902                             //  UNIMPLEMENTED();
2903       }
2904       return;
2905     }
2906     case FRIM: {
2907       int frt = instr->RTValue();
2908       int frb = instr->RBValue();
2909       double frb_val = get_double_from_d_register(frb);
2910       double frt_val = std::floor(frb_val);
2911       set_d_register_from_double(frt, frt_val);
2912       if (instr->Bit(0)) {  // RC bit set
2913                             //  UNIMPLEMENTED();
2914       }
2915       return;
2916     }
2917     case FRSP: {
2918       int frt = instr->RTValue();
2919       int frb = instr->RBValue();
2920       // frsp round 8-byte double-precision value to
2921       // single-precision value
2922       double frb_val = get_double_from_d_register(frb);
2923       double frt_val = static_cast<float>(frb_val);
2924       set_d_register_from_double(frt, frt_val);
2925       if (instr->Bit(0)) {  // RC bit set
2926                             //  UNIMPLEMENTED();
2927       }
2928       return;
2929     }
2930     case FCFID: {
2931       int frt = instr->RTValue();
2932       int frb = instr->RBValue();
2933       int64_t frb_val = get_d_register(frb);
2934       double frt_val = static_cast<double>(frb_val);
2935       set_d_register_from_double(frt, frt_val);
2936       return;
2937     }
2938     case FCFIDU: {
2939       int frt = instr->RTValue();
2940       int frb = instr->RBValue();
2941       uint64_t frb_val = get_d_register(frb);
2942       double frt_val = static_cast<double>(frb_val);
2943       set_d_register_from_double(frt, frt_val);
2944       return;
2945     }
2946     case FCTID:
2947     case FCTIDZ: {
2948       int frt = instr->RTValue();
2949       int frb = instr->RBValue();
2950       double frb_val = get_double_from_d_register(frb);
2951       int mode = (opcode == FCTIDZ) ? kRoundToZero
2952                                     : (fp_condition_reg_ & kFPRoundingModeMask);
2953       int64_t frt_val;
2954       int64_t one = 1;  // work-around gcc
2955       int64_t kMinVal = (one << 63);
2956       int64_t kMaxVal = kMinVal - 1;
2957       bool invalid_convert = false;
2958 
2959       if (std::isnan(frb_val)) {
2960         frt_val = kMinVal;
2961         invalid_convert = true;
2962       } else {
2963         switch (mode) {
2964           case kRoundToZero:
2965             frb_val = std::trunc(frb_val);
2966             break;
2967           case kRoundToPlusInf:
2968             frb_val = std::ceil(frb_val);
2969             break;
2970           case kRoundToMinusInf:
2971             frb_val = std::floor(frb_val);
2972             break;
2973           default:
2974             UNIMPLEMENTED();  // Not used by V8.
2975             break;
2976         }
2977         if (frb_val < static_cast<double>(kMinVal)) {
2978           frt_val = kMinVal;
2979           invalid_convert = true;
2980         } else if (frb_val >= static_cast<double>(kMaxVal)) {
2981           frt_val = kMaxVal;
2982           invalid_convert = true;
2983         } else {
2984           frt_val = (int64_t)frb_val;
2985         }
2986       }
2987       set_d_register(frt, frt_val);
2988       if (invalid_convert) SetFPSCR(VXCVI);
2989       return;
2990     }
2991     case FCTIDU:
2992     case FCTIDUZ: {
2993       int frt = instr->RTValue();
2994       int frb = instr->RBValue();
2995       double frb_val = get_double_from_d_register(frb);
2996       int mode = (opcode == FCTIDUZ)
2997                      ? kRoundToZero
2998                      : (fp_condition_reg_ & kFPRoundingModeMask);
2999       uint64_t frt_val;
3000       uint64_t kMinVal = 0;
3001       uint64_t kMaxVal = kMinVal - 1;
3002       bool invalid_convert = false;
3003 
3004       if (std::isnan(frb_val)) {
3005         frt_val = kMinVal;
3006         invalid_convert = true;
3007       } else {
3008         switch (mode) {
3009           case kRoundToZero:
3010             frb_val = std::trunc(frb_val);
3011             break;
3012           case kRoundToPlusInf:
3013             frb_val = std::ceil(frb_val);
3014             break;
3015           case kRoundToMinusInf:
3016             frb_val = std::floor(frb_val);
3017             break;
3018           default:
3019             UNIMPLEMENTED();  // Not used by V8.
3020             break;
3021         }
3022         if (frb_val < static_cast<double>(kMinVal)) {
3023           frt_val = kMinVal;
3024           invalid_convert = true;
3025         } else if (frb_val >= static_cast<double>(kMaxVal)) {
3026           frt_val = kMaxVal;
3027           invalid_convert = true;
3028         } else {
3029           frt_val = (uint64_t)frb_val;
3030         }
3031       }
3032       set_d_register(frt, frt_val);
3033       if (invalid_convert) SetFPSCR(VXCVI);
3034       return;
3035     }
3036     case FCTIW:
3037     case FCTIWZ: {
3038       int frt = instr->RTValue();
3039       int frb = instr->RBValue();
3040       double frb_val = get_double_from_d_register(frb);
3041       int mode = (opcode == FCTIWZ) ? kRoundToZero
3042                                     : (fp_condition_reg_ & kFPRoundingModeMask);
3043       int64_t frt_val;
3044       int64_t kMinVal = kMinInt;
3045       int64_t kMaxVal = kMaxInt;
3046 
3047       if (std::isnan(frb_val)) {
3048         frt_val = kMinVal;
3049       } else {
3050         switch (mode) {
3051           case kRoundToZero:
3052             frb_val = std::trunc(frb_val);
3053             break;
3054           case kRoundToPlusInf:
3055             frb_val = std::ceil(frb_val);
3056             break;
3057           case kRoundToMinusInf:
3058             frb_val = std::floor(frb_val);
3059             break;
3060           case kRoundToNearest: {
3061             double orig = frb_val;
3062             frb_val = lround(frb_val);
3063             // Round to even if exactly halfway.  (lround rounds up)
3064             if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
3065               frb_val += ((frb_val > 0) ? -1.0 : 1.0);
3066             }
3067             break;
3068           }
3069           default:
3070             UNIMPLEMENTED();  // Not used by V8.
3071             break;
3072         }
3073         if (frb_val < kMinVal) {
3074           frt_val = kMinVal;
3075         } else if (frb_val > kMaxVal) {
3076           frt_val = kMaxVal;
3077         } else {
3078           frt_val = (int64_t)frb_val;
3079         }
3080       }
3081       set_d_register(frt, frt_val);
3082       return;
3083     }
3084     case FNEG: {
3085       int frt = instr->RTValue();
3086       int frb = instr->RBValue();
3087       double frb_val = get_double_from_d_register(frb);
3088       double frt_val = -frb_val;
3089       set_d_register_from_double(frt, frt_val);
3090       return;
3091     }
3092     case FMR: {
3093       int frt = instr->RTValue();
3094       int frb = instr->RBValue();
3095       int64_t frb_val = get_d_register(frb);
3096       set_d_register(frt, frb_val);
3097       return;
3098     }
3099     case MTFSFI: {
3100       int bf = instr->Bits(25, 23);
3101       int imm = instr->Bits(15, 12);
3102       int fp_condition_mask = 0xF0000000 >> (bf * 4);
3103       fp_condition_reg_ &= ~fp_condition_mask;
3104       fp_condition_reg_ |= (imm << (28 - (bf * 4)));
3105       if (instr->Bit(0)) {  // RC bit set
3106         condition_reg_ &= 0xF0FFFFFF;
3107         condition_reg_ |= (imm << 23);
3108       }
3109       return;
3110     }
3111     case MTFSF: {
3112       int frb = instr->RBValue();
3113       int64_t frb_dval = get_d_register(frb);
3114       int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff);
3115       int l = instr->Bits(25, 25);
3116       if (l == 1) {
3117         fp_condition_reg_ = frb_ival;
3118       } else {
3119         UNIMPLEMENTED();
3120       }
3121       if (instr->Bit(0)) {  // RC bit set
3122         UNIMPLEMENTED();
3123         // int w = instr->Bits(16, 16);
3124         // int flm = instr->Bits(24, 17);
3125       }
3126       return;
3127     }
3128     case MFFS: {
3129       int frt = instr->RTValue();
3130       int64_t lval = static_cast<int64_t>(fp_condition_reg_);
3131       set_d_register(frt, lval);
3132       return;
3133     }
3134     case MCRFS: {
3135       int bf = instr->Bits(25, 23);
3136       int bfa = instr->Bits(20, 18);
3137       int cr_shift = (7 - bf) * CRWIDTH;
3138       int fp_shift = (7 - bfa) * CRWIDTH;
3139       int field_val = (fp_condition_reg_ >> fp_shift) & 0xf;
3140       condition_reg_ &= ~(0x0f << cr_shift);
3141       condition_reg_ |= (field_val << cr_shift);
3142       // Clear copied exception bits
3143       switch (bfa) {
3144         case 5:
3145           ClearFPSCR(VXSOFT);
3146           ClearFPSCR(VXSQRT);
3147           ClearFPSCR(VXCVI);
3148           break;
3149         default:
3150           UNIMPLEMENTED();
3151           break;
3152       }
3153       return;
3154     }
3155     case MTFSB0: {
3156       int bt = instr->Bits(25, 21);
3157       ClearFPSCR(bt);
3158       if (instr->Bit(0)) {  // RC bit set
3159         UNIMPLEMENTED();
3160       }
3161       return;
3162     }
3163     case MTFSB1: {
3164       int bt = instr->Bits(25, 21);
3165       SetFPSCR(bt);
3166       if (instr->Bit(0)) {  // RC bit set
3167         UNIMPLEMENTED();
3168       }
3169       return;
3170     }
3171     case FABS: {
3172       int frt = instr->RTValue();
3173       int frb = instr->RBValue();
3174       double frb_val = get_double_from_d_register(frb);
3175       double frt_val = std::fabs(frb_val);
3176       set_d_register_from_double(frt, frt_val);
3177       return;
3178     }
3179   }
3180   UNIMPLEMENTED();  // Not used by V8.
3181 }
3182 
3183 #if V8_TARGET_ARCH_PPC64
ExecuteExt5(Instruction * instr)3184 void Simulator::ExecuteExt5(Instruction* instr) {
3185   switch (instr->Bits(4, 2) << 2) {
3186     case RLDICL: {
3187       int ra = instr->RAValue();
3188       int rs = instr->RSValue();
3189       uintptr_t rs_val = get_register(rs);
3190       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3191       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3192       DCHECK(sh >= 0 && sh <= 63);
3193       DCHECK(mb >= 0 && mb <= 63);
3194       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3195       uintptr_t mask = 0xffffffffffffffff >> mb;
3196       result &= mask;
3197       set_register(ra, result);
3198       if (instr->Bit(0)) {  // RC bit set
3199         SetCR0(result);
3200       }
3201       return;
3202     }
3203     case RLDICR: {
3204       int ra = instr->RAValue();
3205       int rs = instr->RSValue();
3206       uintptr_t rs_val = get_register(rs);
3207       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3208       int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3209       DCHECK(sh >= 0 && sh <= 63);
3210       DCHECK(me >= 0 && me <= 63);
3211       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3212       uintptr_t mask = 0xffffffffffffffff << (63 - me);
3213       result &= mask;
3214       set_register(ra, result);
3215       if (instr->Bit(0)) {  // RC bit set
3216         SetCR0(result);
3217       }
3218       return;
3219     }
3220     case RLDIC: {
3221       int ra = instr->RAValue();
3222       int rs = instr->RSValue();
3223       uintptr_t rs_val = get_register(rs);
3224       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3225       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3226       DCHECK(sh >= 0 && sh <= 63);
3227       DCHECK(mb >= 0 && mb <= 63);
3228       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3229       uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
3230       result &= mask;
3231       set_register(ra, result);
3232       if (instr->Bit(0)) {  // RC bit set
3233         SetCR0(result);
3234       }
3235       return;
3236     }
3237     case RLDIMI: {
3238       int ra = instr->RAValue();
3239       int rs = instr->RSValue();
3240       uintptr_t rs_val = get_register(rs);
3241       intptr_t ra_val = get_register(ra);
3242       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3243       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3244       int me = 63 - sh;
3245       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3246       uintptr_t mask = 0;
3247       if (mb < me + 1) {
3248         uintptr_t bit = 0x8000000000000000 >> mb;
3249         for (; mb <= me; mb++) {
3250           mask |= bit;
3251           bit >>= 1;
3252         }
3253       } else if (mb == me + 1) {
3254         mask = 0xffffffffffffffff;
3255       } else {                                           // mb > me+1
3256         uintptr_t bit = 0x8000000000000000 >> (me + 1);  // needs to be tested
3257         mask = 0xffffffffffffffff;
3258         for (; me < mb; me++) {
3259           mask ^= bit;
3260           bit >>= 1;
3261         }
3262       }
3263       result &= mask;
3264       ra_val &= ~mask;
3265       result |= ra_val;
3266       set_register(ra, result);
3267       if (instr->Bit(0)) {  // RC bit set
3268         SetCR0(result);
3269       }
3270       return;
3271     }
3272   }
3273   switch (instr->Bits(4, 1) << 1) {
3274     case RLDCL: {
3275       int ra = instr->RAValue();
3276       int rs = instr->RSValue();
3277       int rb = instr->RBValue();
3278       uintptr_t rs_val = get_register(rs);
3279       uintptr_t rb_val = get_register(rb);
3280       int sh = (rb_val & 0x3f);
3281       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3282       DCHECK(sh >= 0 && sh <= 63);
3283       DCHECK(mb >= 0 && mb <= 63);
3284       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3285       uintptr_t mask = 0xffffffffffffffff >> mb;
3286       result &= mask;
3287       set_register(ra, result);
3288       if (instr->Bit(0)) {  // RC bit set
3289         SetCR0(result);
3290       }
3291       return;
3292     }
3293   }
3294   UNIMPLEMENTED();  // Not used by V8.
3295 }
3296 #endif
3297 
3298 
ExecuteGeneric(Instruction * instr)3299 void Simulator::ExecuteGeneric(Instruction* instr) {
3300   int opcode = instr->OpcodeValue() << 26;
3301   switch (opcode) {
3302     case SUBFIC: {
3303       int rt = instr->RTValue();
3304       int ra = instr->RAValue();
3305       intptr_t ra_val = get_register(ra);
3306       int32_t im_val = instr->Bits(15, 0);
3307       im_val = SIGN_EXT_IMM16(im_val);
3308       intptr_t alu_out = im_val - ra_val;
3309       set_register(rt, alu_out);
3310       // todo - handle RC bit
3311       break;
3312     }
3313     case CMPLI: {
3314       int ra = instr->RAValue();
3315       uint32_t im_val = instr->Bits(15, 0);
3316       int cr = instr->Bits(25, 23);
3317       uint32_t bf = 0;
3318 #if V8_TARGET_ARCH_PPC64
3319       int L = instr->Bit(21);
3320       if (L) {
3321 #endif
3322         uintptr_t ra_val = get_register(ra);
3323         if (ra_val < im_val) {
3324           bf |= 0x80000000;
3325         }
3326         if (ra_val > im_val) {
3327           bf |= 0x40000000;
3328         }
3329         if (ra_val == im_val) {
3330           bf |= 0x20000000;
3331         }
3332 #if V8_TARGET_ARCH_PPC64
3333       } else {
3334         uint32_t ra_val = get_register(ra);
3335         if (ra_val < im_val) {
3336           bf |= 0x80000000;
3337         }
3338         if (ra_val > im_val) {
3339           bf |= 0x40000000;
3340         }
3341         if (ra_val == im_val) {
3342           bf |= 0x20000000;
3343         }
3344       }
3345 #endif
3346       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3347       uint32_t condition = bf >> (cr * 4);
3348       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3349       break;
3350     }
3351     case CMPI: {
3352       int ra = instr->RAValue();
3353       int32_t im_val = instr->Bits(15, 0);
3354       im_val = SIGN_EXT_IMM16(im_val);
3355       int cr = instr->Bits(25, 23);
3356       uint32_t bf = 0;
3357 #if V8_TARGET_ARCH_PPC64
3358       int L = instr->Bit(21);
3359       if (L) {
3360 #endif
3361         intptr_t ra_val = get_register(ra);
3362         if (ra_val < im_val) {
3363           bf |= 0x80000000;
3364         }
3365         if (ra_val > im_val) {
3366           bf |= 0x40000000;
3367         }
3368         if (ra_val == im_val) {
3369           bf |= 0x20000000;
3370         }
3371 #if V8_TARGET_ARCH_PPC64
3372       } else {
3373         int32_t ra_val = get_register(ra);
3374         if (ra_val < im_val) {
3375           bf |= 0x80000000;
3376         }
3377         if (ra_val > im_val) {
3378           bf |= 0x40000000;
3379         }
3380         if (ra_val == im_val) {
3381           bf |= 0x20000000;
3382         }
3383       }
3384 #endif
3385       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3386       uint32_t condition = bf >> (cr * 4);
3387       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3388       break;
3389     }
3390     case ADDIC: {
3391       int rt = instr->RTValue();
3392       int ra = instr->RAValue();
3393       uintptr_t ra_val = get_register(ra);
3394       uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3395       uintptr_t alu_out = ra_val + im_val;
3396       // Check overflow
3397       if (~ra_val < im_val) {
3398         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
3399       } else {
3400         special_reg_xer_ &= ~0xF0000000;
3401       }
3402       set_register(rt, alu_out);
3403       break;
3404     }
3405     case ADDI: {
3406       int rt = instr->RTValue();
3407       int ra = instr->RAValue();
3408       int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3409       intptr_t alu_out;
3410       if (ra == 0) {
3411         alu_out = im_val;
3412       } else {
3413         intptr_t ra_val = get_register(ra);
3414         alu_out = ra_val + im_val;
3415       }
3416       set_register(rt, alu_out);
3417       // todo - handle RC bit
3418       break;
3419     }
3420     case ADDIS: {
3421       int rt = instr->RTValue();
3422       int ra = instr->RAValue();
3423       int32_t im_val = (instr->Bits(15, 0) << 16);
3424       intptr_t alu_out;
3425       if (ra == 0) {  // treat r0 as zero
3426         alu_out = im_val;
3427       } else {
3428         intptr_t ra_val = get_register(ra);
3429         alu_out = ra_val + im_val;
3430       }
3431       set_register(rt, alu_out);
3432       break;
3433     }
3434     case BCX: {
3435       ExecuteBranchConditional(instr, BC_OFFSET);
3436       break;
3437     }
3438     case BX: {
3439       int offset = (instr->Bits(25, 2) << 8) >> 6;
3440       if (instr->Bit(0) == 1) {  // LK flag set
3441         special_reg_lr_ = get_pc() + 4;
3442       }
3443       set_pc(get_pc() + offset);
3444       // todo - AA flag
3445       break;
3446     }
3447     case EXT1: {
3448       ExecuteExt1(instr);
3449       break;
3450     }
3451     case RLWIMIX: {
3452       int ra = instr->RAValue();
3453       int rs = instr->RSValue();
3454       uint32_t rs_val = get_register(rs);
3455       int32_t ra_val = get_register(ra);
3456       int sh = instr->Bits(15, 11);
3457       int mb = instr->Bits(10, 6);
3458       int me = instr->Bits(5, 1);
3459       uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3460       int mask = 0;
3461       if (mb < me + 1) {
3462         int bit = 0x80000000 >> mb;
3463         for (; mb <= me; mb++) {
3464           mask |= bit;
3465           bit >>= 1;
3466         }
3467       } else if (mb == me + 1) {
3468         mask = 0xffffffff;
3469       } else {                             // mb > me+1
3470         int bit = 0x80000000 >> (me + 1);  // needs to be tested
3471         mask = 0xffffffff;
3472         for (; me < mb; me++) {
3473           mask ^= bit;
3474           bit >>= 1;
3475         }
3476       }
3477       result &= mask;
3478       ra_val &= ~mask;
3479       result |= ra_val;
3480       set_register(ra, result);
3481       if (instr->Bit(0)) {  // RC bit set
3482         SetCR0(result);
3483       }
3484       break;
3485     }
3486     case RLWINMX:
3487     case RLWNMX: {
3488       int ra = instr->RAValue();
3489       int rs = instr->RSValue();
3490       uint32_t rs_val = get_register(rs);
3491       int sh = 0;
3492       if (opcode == RLWINMX) {
3493         sh = instr->Bits(15, 11);
3494       } else {
3495         int rb = instr->RBValue();
3496         uint32_t rb_val = get_register(rb);
3497         sh = (rb_val & 0x1f);
3498       }
3499       int mb = instr->Bits(10, 6);
3500       int me = instr->Bits(5, 1);
3501       uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3502       int mask = 0;
3503       if (mb < me + 1) {
3504         int bit = 0x80000000 >> mb;
3505         for (; mb <= me; mb++) {
3506           mask |= bit;
3507           bit >>= 1;
3508         }
3509       } else if (mb == me + 1) {
3510         mask = 0xffffffff;
3511       } else {                             // mb > me+1
3512         int bit = 0x80000000 >> (me + 1);  // needs to be tested
3513         mask = 0xffffffff;
3514         for (; me < mb; me++) {
3515           mask ^= bit;
3516           bit >>= 1;
3517         }
3518       }
3519       result &= mask;
3520       set_register(ra, result);
3521       if (instr->Bit(0)) {  // RC bit set
3522         SetCR0(result);
3523       }
3524       break;
3525     }
3526     case ORI: {
3527       int rs = instr->RSValue();
3528       int ra = instr->RAValue();
3529       intptr_t rs_val = get_register(rs);
3530       uint32_t im_val = instr->Bits(15, 0);
3531       intptr_t alu_out = rs_val | im_val;
3532       set_register(ra, alu_out);
3533       break;
3534     }
3535     case ORIS: {
3536       int rs = instr->RSValue();
3537       int ra = instr->RAValue();
3538       intptr_t rs_val = get_register(rs);
3539       uint32_t im_val = instr->Bits(15, 0);
3540       intptr_t alu_out = rs_val | (im_val << 16);
3541       set_register(ra, alu_out);
3542       break;
3543     }
3544     case XORI: {
3545       int rs = instr->RSValue();
3546       int ra = instr->RAValue();
3547       intptr_t rs_val = get_register(rs);
3548       uint32_t im_val = instr->Bits(15, 0);
3549       intptr_t alu_out = rs_val ^ im_val;
3550       set_register(ra, alu_out);
3551       // todo - set condition based SO bit
3552       break;
3553     }
3554     case XORIS: {
3555       int rs = instr->RSValue();
3556       int ra = instr->RAValue();
3557       intptr_t rs_val = get_register(rs);
3558       uint32_t im_val = instr->Bits(15, 0);
3559       intptr_t alu_out = rs_val ^ (im_val << 16);
3560       set_register(ra, alu_out);
3561       break;
3562     }
3563     case ANDIx: {
3564       int rs = instr->RSValue();
3565       int ra = instr->RAValue();
3566       intptr_t rs_val = get_register(rs);
3567       uint32_t im_val = instr->Bits(15, 0);
3568       intptr_t alu_out = rs_val & im_val;
3569       set_register(ra, alu_out);
3570       SetCR0(alu_out);
3571       break;
3572     }
3573     case ANDISx: {
3574       int rs = instr->RSValue();
3575       int ra = instr->RAValue();
3576       intptr_t rs_val = get_register(rs);
3577       uint32_t im_val = instr->Bits(15, 0);
3578       intptr_t alu_out = rs_val & (im_val << 16);
3579       set_register(ra, alu_out);
3580       SetCR0(alu_out);
3581       break;
3582     }
3583     case EXT2: {
3584       ExecuteExt2(instr);
3585       break;
3586     }
3587 
3588     case LWZU:
3589     case LWZ: {
3590       int ra = instr->RAValue();
3591       int rt = instr->RTValue();
3592       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3593       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3594       set_register(rt, ReadWU(ra_val + offset, instr));
3595       if (opcode == LWZU) {
3596         DCHECK(ra != 0);
3597         set_register(ra, ra_val + offset);
3598       }
3599       break;
3600     }
3601 
3602     case LBZU:
3603     case LBZ: {
3604       int ra = instr->RAValue();
3605       int rt = instr->RTValue();
3606       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3607       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3608       set_register(rt, ReadB(ra_val + offset) & 0xFF);
3609       if (opcode == LBZU) {
3610         DCHECK(ra != 0);
3611         set_register(ra, ra_val + offset);
3612       }
3613       break;
3614     }
3615 
3616     case STWU:
3617     case STW: {
3618       int ra = instr->RAValue();
3619       int rs = instr->RSValue();
3620       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3621       int32_t rs_val = get_register(rs);
3622       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3623       WriteW(ra_val + offset, rs_val, instr);
3624       if (opcode == STWU) {
3625         DCHECK(ra != 0);
3626         set_register(ra, ra_val + offset);
3627       }
3628       // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
3629       break;
3630     }
3631 
3632     case STBU:
3633     case STB: {
3634       int ra = instr->RAValue();
3635       int rs = instr->RSValue();
3636       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3637       int8_t rs_val = get_register(rs);
3638       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3639       WriteB(ra_val + offset, rs_val);
3640       if (opcode == STBU) {
3641         DCHECK(ra != 0);
3642         set_register(ra, ra_val + offset);
3643       }
3644       break;
3645     }
3646 
3647     case LHZU:
3648     case LHZ: {
3649       int ra = instr->RAValue();
3650       int rt = instr->RTValue();
3651       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3652       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3653       uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
3654       set_register(rt, result);
3655       if (opcode == LHZU) {
3656         set_register(ra, ra_val + offset);
3657       }
3658       break;
3659     }
3660 
3661     case LHA:
3662     case LHAU: {
3663       int ra = instr->RAValue();
3664       int rt = instr->RTValue();
3665       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3666       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3667       intptr_t result = ReadH(ra_val + offset, instr);
3668       set_register(rt, result);
3669       if (opcode == LHAU) {
3670         set_register(ra, ra_val + offset);
3671       }
3672       break;
3673     }
3674 
3675     case STHU:
3676     case STH: {
3677       int ra = instr->RAValue();
3678       int rs = instr->RSValue();
3679       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3680       int16_t rs_val = get_register(rs);
3681       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3682       WriteH(ra_val + offset, rs_val, instr);
3683       if (opcode == STHU) {
3684         DCHECK(ra != 0);
3685         set_register(ra, ra_val + offset);
3686       }
3687       break;
3688     }
3689 
3690     case LMW:
3691     case STMW: {
3692       UNIMPLEMENTED();
3693       break;
3694     }
3695 
3696     case LFSU:
3697     case LFS: {
3698       int frt = instr->RTValue();
3699       int ra = instr->RAValue();
3700       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3701       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3702       int32_t val = ReadW(ra_val + offset, instr);
3703       float* fptr = reinterpret_cast<float*>(&val);
3704       set_d_register_from_double(frt, static_cast<double>(*fptr));
3705       if (opcode == LFSU) {
3706         DCHECK(ra != 0);
3707         set_register(ra, ra_val + offset);
3708       }
3709       break;
3710     }
3711 
3712     case LFDU:
3713     case LFD: {
3714       int frt = instr->RTValue();
3715       int ra = instr->RAValue();
3716       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3717       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3718       int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset));
3719       set_d_register(frt, *dptr);
3720       if (opcode == LFDU) {
3721         DCHECK(ra != 0);
3722         set_register(ra, ra_val + offset);
3723       }
3724       break;
3725     }
3726 
3727     case STFSU: {
3728       case STFS:
3729         int frs = instr->RSValue();
3730         int ra = instr->RAValue();
3731         int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3732         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3733         float frs_val = static_cast<float>(get_double_from_d_register(frs));
3734         int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
3735         WriteW(ra_val + offset, *p, instr);
3736         if (opcode == STFSU) {
3737           DCHECK(ra != 0);
3738           set_register(ra, ra_val + offset);
3739         }
3740         break;
3741     }
3742 
3743     case STFDU:
3744     case STFD: {
3745       int frs = instr->RSValue();
3746       int ra = instr->RAValue();
3747       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3748       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3749       int64_t frs_val = get_d_register(frs);
3750       WriteDW(ra_val + offset, frs_val);
3751       if (opcode == STFDU) {
3752         DCHECK(ra != 0);
3753         set_register(ra, ra_val + offset);
3754       }
3755       break;
3756     }
3757 
3758     case EXT3: {
3759       ExecuteExt3(instr);
3760       break;
3761     }
3762     case EXT4: {
3763       ExecuteExt4(instr);
3764       break;
3765     }
3766 
3767 #if V8_TARGET_ARCH_PPC64
3768     case EXT5: {
3769       ExecuteExt5(instr);
3770       break;
3771     }
3772     case LD: {
3773       int ra = instr->RAValue();
3774       int rt = instr->RTValue();
3775       int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3776       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3777       switch (instr->Bits(1, 0)) {
3778         case 0: {  // ld
3779           intptr_t* result = ReadDW(ra_val + offset);
3780           set_register(rt, *result);
3781           break;
3782         }
3783         case 1: {  // ldu
3784           intptr_t* result = ReadDW(ra_val + offset);
3785           set_register(rt, *result);
3786           DCHECK(ra != 0);
3787           set_register(ra, ra_val + offset);
3788           break;
3789         }
3790         case 2: {  // lwa
3791           intptr_t result = ReadW(ra_val + offset, instr);
3792           set_register(rt, result);
3793           break;
3794         }
3795       }
3796       break;
3797     }
3798 
3799     case STD: {
3800       int ra = instr->RAValue();
3801       int rs = instr->RSValue();
3802       int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3803       int64_t rs_val = get_register(rs);
3804       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3805       WriteDW(ra_val + offset, rs_val);
3806       if (instr->Bit(0) == 1) {  // This is the STDU form
3807         DCHECK(ra != 0);
3808         set_register(ra, ra_val + offset);
3809       }
3810       break;
3811     }
3812 #endif
3813 
3814     default: {
3815       UNIMPLEMENTED();
3816       break;
3817     }
3818   }
3819 }  // NOLINT
3820 
3821 
Trace(Instruction * instr)3822 void Simulator::Trace(Instruction* instr) {
3823   disasm::NameConverter converter;
3824   disasm::Disassembler dasm(converter);
3825   // use a reasonably large buffer
3826   v8::internal::EmbeddedVector<char, 256> buffer;
3827   dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
3828   PrintF("%05d  %08" V8PRIxPTR "  %s\n", icount_,
3829          reinterpret_cast<intptr_t>(instr), buffer.start());
3830 }
3831 
3832 
3833 // Executes the current instruction.
ExecuteInstruction(Instruction * instr)3834 void Simulator::ExecuteInstruction(Instruction* instr) {
3835   if (v8::internal::FLAG_check_icache) {
3836     CheckICache(isolate_->simulator_i_cache(), instr);
3837   }
3838   pc_modified_ = false;
3839   if (::v8::internal::FLAG_trace_sim) {
3840     Trace(instr);
3841   }
3842   int opcode = instr->OpcodeValue() << 26;
3843   if (opcode == TWI) {
3844     SoftwareInterrupt(instr);
3845   } else {
3846     ExecuteGeneric(instr);
3847   }
3848   if (!pc_modified_) {
3849     set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
3850   }
3851 }
3852 
3853 
Execute()3854 void Simulator::Execute() {
3855   // Get the PC to simulate. Cannot use the accessor here as we need the
3856   // raw PC value and not the one used as input to arithmetic instructions.
3857   intptr_t program_counter = get_pc();
3858 
3859   if (::v8::internal::FLAG_stop_sim_at == 0) {
3860     // Fast version of the dispatch loop without checking whether the simulator
3861     // should be stopping at a particular executed instruction.
3862     while (program_counter != end_sim_pc) {
3863       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3864       icount_++;
3865       ExecuteInstruction(instr);
3866       program_counter = get_pc();
3867     }
3868   } else {
3869     // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3870     // we reach the particular instuction count.
3871     while (program_counter != end_sim_pc) {
3872       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3873       icount_++;
3874       if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3875         PPCDebugger dbg(this);
3876         dbg.Debug();
3877       } else {
3878         ExecuteInstruction(instr);
3879       }
3880       program_counter = get_pc();
3881     }
3882   }
3883 }
3884 
3885 
CallInternal(byte * entry)3886 void Simulator::CallInternal(byte* entry) {
3887   // Adjust JS-based stack limit to C-based stack limit.
3888   isolate_->stack_guard()->AdjustStackLimitForSimulator();
3889 
3890   // Prepare to execute the code at entry
3891   if (ABI_USES_FUNCTION_DESCRIPTORS) {
3892     // entry is the function descriptor
3893     set_pc(*(reinterpret_cast<intptr_t*>(entry)));
3894   } else {
3895     // entry is the instruction address
3896     set_pc(reinterpret_cast<intptr_t>(entry));
3897   }
3898 
3899   if (ABI_CALL_VIA_IP) {
3900     // Put target address in ip (for JS prologue).
3901     set_register(r12, get_pc());
3902   }
3903 
3904   // Put down marker for end of simulation. The simulator will stop simulation
3905   // when the PC reaches this value. By saving the "end simulation" value into
3906   // the LR the simulation stops when returning to this call point.
3907   special_reg_lr_ = end_sim_pc;
3908 
3909   // Remember the values of non-volatile registers.
3910   intptr_t r2_val = get_register(r2);
3911   intptr_t r13_val = get_register(r13);
3912   intptr_t r14_val = get_register(r14);
3913   intptr_t r15_val = get_register(r15);
3914   intptr_t r16_val = get_register(r16);
3915   intptr_t r17_val = get_register(r17);
3916   intptr_t r18_val = get_register(r18);
3917   intptr_t r19_val = get_register(r19);
3918   intptr_t r20_val = get_register(r20);
3919   intptr_t r21_val = get_register(r21);
3920   intptr_t r22_val = get_register(r22);
3921   intptr_t r23_val = get_register(r23);
3922   intptr_t r24_val = get_register(r24);
3923   intptr_t r25_val = get_register(r25);
3924   intptr_t r26_val = get_register(r26);
3925   intptr_t r27_val = get_register(r27);
3926   intptr_t r28_val = get_register(r28);
3927   intptr_t r29_val = get_register(r29);
3928   intptr_t r30_val = get_register(r30);
3929   intptr_t r31_val = get_register(fp);
3930 
3931   // Set up the non-volatile registers with a known value. To be able to check
3932   // that they are preserved properly across JS execution.
3933   intptr_t callee_saved_value = icount_;
3934   set_register(r2, callee_saved_value);
3935   set_register(r13, callee_saved_value);
3936   set_register(r14, callee_saved_value);
3937   set_register(r15, callee_saved_value);
3938   set_register(r16, callee_saved_value);
3939   set_register(r17, callee_saved_value);
3940   set_register(r18, callee_saved_value);
3941   set_register(r19, callee_saved_value);
3942   set_register(r20, callee_saved_value);
3943   set_register(r21, callee_saved_value);
3944   set_register(r22, callee_saved_value);
3945   set_register(r23, callee_saved_value);
3946   set_register(r24, callee_saved_value);
3947   set_register(r25, callee_saved_value);
3948   set_register(r26, callee_saved_value);
3949   set_register(r27, callee_saved_value);
3950   set_register(r28, callee_saved_value);
3951   set_register(r29, callee_saved_value);
3952   set_register(r30, callee_saved_value);
3953   set_register(fp, callee_saved_value);
3954 
3955   // Start the simulation
3956   Execute();
3957 
3958   // Check that the non-volatile registers have been preserved.
3959   if (ABI_TOC_REGISTER != 2) {
3960     CHECK_EQ(callee_saved_value, get_register(r2));
3961   }
3962   if (ABI_TOC_REGISTER != 13) {
3963     CHECK_EQ(callee_saved_value, get_register(r13));
3964   }
3965   CHECK_EQ(callee_saved_value, get_register(r14));
3966   CHECK_EQ(callee_saved_value, get_register(r15));
3967   CHECK_EQ(callee_saved_value, get_register(r16));
3968   CHECK_EQ(callee_saved_value, get_register(r17));
3969   CHECK_EQ(callee_saved_value, get_register(r18));
3970   CHECK_EQ(callee_saved_value, get_register(r19));
3971   CHECK_EQ(callee_saved_value, get_register(r20));
3972   CHECK_EQ(callee_saved_value, get_register(r21));
3973   CHECK_EQ(callee_saved_value, get_register(r22));
3974   CHECK_EQ(callee_saved_value, get_register(r23));
3975   CHECK_EQ(callee_saved_value, get_register(r24));
3976   CHECK_EQ(callee_saved_value, get_register(r25));
3977   CHECK_EQ(callee_saved_value, get_register(r26));
3978   CHECK_EQ(callee_saved_value, get_register(r27));
3979   CHECK_EQ(callee_saved_value, get_register(r28));
3980   CHECK_EQ(callee_saved_value, get_register(r29));
3981   CHECK_EQ(callee_saved_value, get_register(r30));
3982   CHECK_EQ(callee_saved_value, get_register(fp));
3983 
3984   // Restore non-volatile registers with the original value.
3985   set_register(r2, r2_val);
3986   set_register(r13, r13_val);
3987   set_register(r14, r14_val);
3988   set_register(r15, r15_val);
3989   set_register(r16, r16_val);
3990   set_register(r17, r17_val);
3991   set_register(r18, r18_val);
3992   set_register(r19, r19_val);
3993   set_register(r20, r20_val);
3994   set_register(r21, r21_val);
3995   set_register(r22, r22_val);
3996   set_register(r23, r23_val);
3997   set_register(r24, r24_val);
3998   set_register(r25, r25_val);
3999   set_register(r26, r26_val);
4000   set_register(r27, r27_val);
4001   set_register(r28, r28_val);
4002   set_register(r29, r29_val);
4003   set_register(r30, r30_val);
4004   set_register(fp, r31_val);
4005 }
4006 
4007 
Call(byte * entry,int argument_count,...)4008 intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
4009   va_list parameters;
4010   va_start(parameters, argument_count);
4011   // Set up arguments
4012 
4013   // First eight arguments passed in registers r3-r10.
4014   int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
4015   int stack_arg_count = argument_count - reg_arg_count;
4016   for (int i = 0; i < reg_arg_count; i++) {
4017     set_register(i + 3, va_arg(parameters, intptr_t));
4018   }
4019 
4020   // Remaining arguments passed on stack.
4021   intptr_t original_stack = get_register(sp);
4022   // Compute position of stack on entry to generated code.
4023   intptr_t entry_stack =
4024       (original_stack -
4025        (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
4026   if (base::OS::ActivationFrameAlignment() != 0) {
4027     entry_stack &= -base::OS::ActivationFrameAlignment();
4028   }
4029   // Store remaining arguments on stack, from low to high memory.
4030   // +2 is a hack for the LR slot + old SP on PPC
4031   intptr_t* stack_argument =
4032       reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
4033   for (int i = 0; i < stack_arg_count; i++) {
4034     stack_argument[i] = va_arg(parameters, intptr_t);
4035   }
4036   va_end(parameters);
4037   set_register(sp, entry_stack);
4038 
4039   CallInternal(entry);
4040 
4041   // Pop stack passed arguments.
4042   CHECK_EQ(entry_stack, get_register(sp));
4043   set_register(sp, original_stack);
4044 
4045   intptr_t result = get_register(r3);
4046   return result;
4047 }
4048 
4049 
CallFP(byte * entry,double d0,double d1)4050 void Simulator::CallFP(byte* entry, double d0, double d1) {
4051   set_d_register_from_double(1, d0);
4052   set_d_register_from_double(2, d1);
4053   CallInternal(entry);
4054 }
4055 
4056 
CallFPReturnsInt(byte * entry,double d0,double d1)4057 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
4058   CallFP(entry, d0, d1);
4059   int32_t result = get_register(r3);
4060   return result;
4061 }
4062 
4063 
CallFPReturnsDouble(byte * entry,double d0,double d1)4064 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
4065   CallFP(entry, d0, d1);
4066   return get_double_from_d_register(1);
4067 }
4068 
4069 
PushAddress(uintptr_t address)4070 uintptr_t Simulator::PushAddress(uintptr_t address) {
4071   uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
4072   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
4073   *stack_slot = address;
4074   set_register(sp, new_sp);
4075   return new_sp;
4076 }
4077 
4078 
PopAddress()4079 uintptr_t Simulator::PopAddress() {
4080   uintptr_t current_sp = get_register(sp);
4081   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
4082   uintptr_t address = *stack_slot;
4083   set_register(sp, current_sp + sizeof(uintptr_t));
4084   return address;
4085 }
4086 }  // namespace internal
4087 }  // namespace v8
4088 
4089 #endif  // USE_SIMULATOR
4090 #endif  // V8_TARGET_ARCH_PPC
4091