1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_X87_ASSEMBLER_X87_H_
38 #define V8_X87_ASSEMBLER_X87_H_
39
40 #include <deque>
41
42 #include "src/assembler.h"
43 #include "src/isolate.h"
44 #include "src/utils.h"
45
46 namespace v8 {
47 namespace internal {
48
49 #define GENERAL_REGISTERS(V) \
50 V(eax) \
51 V(ecx) \
52 V(edx) \
53 V(ebx) \
54 V(esp) \
55 V(ebp) \
56 V(esi) \
57 V(edi)
58
59 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
60 V(eax) \
61 V(ecx) \
62 V(edx) \
63 V(ebx) \
64 V(esi) \
65 V(edi)
66
67 #define DOUBLE_REGISTERS(V) \
68 V(stX_0) \
69 V(stX_1) \
70 V(stX_2) \
71 V(stX_3) \
72 V(stX_4) \
73 V(stX_5) \
74 V(stX_6) \
75 V(stX_7)
76
77 #define FLOAT_REGISTERS DOUBLE_REGISTERS
78 #define SIMD128_REGISTERS DOUBLE_REGISTERS
79
80 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
81 V(stX_0) \
82 V(stX_1) \
83 V(stX_2) \
84 V(stX_3) \
85 V(stX_4) \
86 V(stX_5)
87
88 // CPU Registers.
89 //
90 // 1) We would prefer to use an enum, but enum values are assignment-
91 // compatible with int, which has caused code-generation bugs.
92 //
93 // 2) We would prefer to use a class instead of a struct but we don't like
94 // the register initialization to depend on the particular initialization
95 // order (which appears to be different on OS X, Linux, and Windows for the
96 // installed versions of C++ we tried). Using a struct permits C-style
97 // "initialization". Also, the Register objects cannot be const as this
98 // forces initialization stubs in MSVC, making us dependent on initialization
99 // order.
100 //
101 // 3) By not using an enum, we are possibly preventing the compiler from
102 // doing certain constant folds, which may significantly reduce the
103 // code generated for some assembly instructions (because they boil down
104 // to a few constants). If this is a problem, we could change the code
105 // such that we use an enum in optimized mode, and the struct in debug
106 // mode. This way we get the compile-time error checking in debug mode
107 // and best performance in optimized code.
108 //
109 struct Register {
110 enum Code {
111 #define REGISTER_CODE(R) kCode_##R,
112 GENERAL_REGISTERS(REGISTER_CODE)
113 #undef REGISTER_CODE
114 kAfterLast,
115 kCode_no_reg = -1
116 };
117
118 static const int kNumRegisters = Code::kAfterLast;
119
from_codeRegister120 static Register from_code(int code) {
121 DCHECK(code >= 0);
122 DCHECK(code < kNumRegisters);
123 Register r = {code};
124 return r;
125 }
is_validRegister126 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister127 bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister128 int code() const {
129 DCHECK(is_valid());
130 return reg_code;
131 }
bitRegister132 int bit() const {
133 DCHECK(is_valid());
134 return 1 << reg_code;
135 }
136
is_byte_registerRegister137 bool is_byte_register() const { return reg_code <= 3; }
138
139 // Unfortunately we can't make this private in a struct.
140 int reg_code;
141 };
142
143
144 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
145 GENERAL_REGISTERS(DECLARE_REGISTER)
146 #undef DECLARE_REGISTER
147 const Register no_reg = {Register::kCode_no_reg};
148
149 static const bool kSimpleFPAliasing = true;
150
151 struct X87Register {
152 enum Code {
153 #define REGISTER_CODE(R) kCode_##R,
154 DOUBLE_REGISTERS(REGISTER_CODE)
155 #undef REGISTER_CODE
156 kAfterLast,
157 kCode_no_reg = -1
158 };
159
160 static const int kMaxNumRegisters = Code::kAfterLast;
161 static const int kMaxNumAllocatableRegisters = 6;
162
from_codeX87Register163 static X87Register from_code(int code) {
164 X87Register result = {code};
165 return result;
166 }
167
is_validX87Register168 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
169
codeX87Register170 int code() const {
171 DCHECK(is_valid());
172 return reg_code;
173 }
174
isX87Register175 bool is(X87Register reg) const { return reg_code == reg.reg_code; }
176
177 int reg_code;
178 };
179
180 typedef X87Register FloatRegister;
181
182 typedef X87Register DoubleRegister;
183
184 // TODO(x87) Define SIMD registers.
185 typedef X87Register Simd128Register;
186
187 #define DECLARE_REGISTER(R) \
188 const DoubleRegister R = {DoubleRegister::kCode_##R};
189 DOUBLE_REGISTERS(DECLARE_REGISTER)
190 #undef DECLARE_REGISTER
191 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
192
193 enum Condition {
194 // any value < 0 is considered no_condition
195 no_condition = -1,
196
197 overflow = 0,
198 no_overflow = 1,
199 below = 2,
200 above_equal = 3,
201 equal = 4,
202 not_equal = 5,
203 below_equal = 6,
204 above = 7,
205 negative = 8,
206 positive = 9,
207 parity_even = 10,
208 parity_odd = 11,
209 less = 12,
210 greater_equal = 13,
211 less_equal = 14,
212 greater = 15,
213
214 // aliases
215 carry = below,
216 not_carry = above_equal,
217 zero = equal,
218 not_zero = not_equal,
219 sign = negative,
220 not_sign = positive
221 };
222
223
224 // Returns the equivalent of !cc.
225 // Negation of the default no_condition (-1) results in a non-default
226 // no_condition value (-2). As long as tests for no_condition check
227 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)228 inline Condition NegateCondition(Condition cc) {
229 return static_cast<Condition>(cc ^ 1);
230 }
231
232
233 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)234 inline Condition CommuteCondition(Condition cc) {
235 switch (cc) {
236 case below:
237 return above;
238 case above:
239 return below;
240 case above_equal:
241 return below_equal;
242 case below_equal:
243 return above_equal;
244 case less:
245 return greater;
246 case greater:
247 return less;
248 case greater_equal:
249 return less_equal;
250 case less_equal:
251 return greater_equal;
252 default:
253 return cc;
254 }
255 }
256
257
258 enum RoundingMode {
259 kRoundToNearest = 0x0,
260 kRoundDown = 0x1,
261 kRoundUp = 0x2,
262 kRoundToZero = 0x3
263 };
264
265
266 // -----------------------------------------------------------------------------
267 // Machine instruction Immediates
268
269 class Immediate BASE_EMBEDDED {
270 public:
271 inline explicit Immediate(int x);
272 inline explicit Immediate(const ExternalReference& ext);
273 inline explicit Immediate(Handle<Object> handle);
274 inline explicit Immediate(Smi* value);
275 inline explicit Immediate(Address addr);
276 inline explicit Immediate(Address x, RelocInfo::Mode rmode);
277
CodeRelativeOffset(Label * label)278 static Immediate CodeRelativeOffset(Label* label) {
279 return Immediate(label);
280 }
281
is_zero()282 bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()283 bool is_int8() const {
284 return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
285 }
is_uint8()286 bool is_uint8() const {
287 return v8::internal::is_uint8(x_) && RelocInfo::IsNone(rmode_);
288 }
is_int16()289 bool is_int16() const {
290 return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
291 }
is_uint16()292 bool is_uint16() const {
293 return v8::internal::is_uint16(x_) && RelocInfo::IsNone(rmode_);
294 }
295
296 private:
297 inline explicit Immediate(Label* value);
298
299 int x_;
300 RelocInfo::Mode rmode_;
301
302 friend class Operand;
303 friend class Assembler;
304 friend class MacroAssembler;
305 };
306
307
308 // -----------------------------------------------------------------------------
309 // Machine instruction Operands
310
311 enum ScaleFactor {
312 times_1 = 0,
313 times_2 = 1,
314 times_4 = 2,
315 times_8 = 3,
316 times_int_size = times_4,
317 times_half_pointer_size = times_2,
318 times_pointer_size = times_4,
319 times_twice_pointer_size = times_8
320 };
321
322
323 class Operand BASE_EMBEDDED {
324 public:
325 // reg
326 INLINE(explicit Operand(Register reg));
327
328 // [disp/r]
329 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
330
331 // [disp/r]
332 INLINE(explicit Operand(Immediate imm));
333
334 // [base + disp/r]
335 explicit Operand(Register base, int32_t disp,
336 RelocInfo::Mode rmode = RelocInfo::NONE32);
337
338 // [base + index*scale + disp/r]
339 explicit Operand(Register base,
340 Register index,
341 ScaleFactor scale,
342 int32_t disp,
343 RelocInfo::Mode rmode = RelocInfo::NONE32);
344
345 // [index*scale + disp/r]
346 explicit Operand(Register index,
347 ScaleFactor scale,
348 int32_t disp,
349 RelocInfo::Mode rmode = RelocInfo::NONE32);
350
JumpTable(Register index,ScaleFactor scale,Label * table)351 static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
352 return Operand(index, scale, reinterpret_cast<int32_t>(table),
353 RelocInfo::INTERNAL_REFERENCE);
354 }
355
StaticVariable(const ExternalReference & ext)356 static Operand StaticVariable(const ExternalReference& ext) {
357 return Operand(reinterpret_cast<int32_t>(ext.address()),
358 RelocInfo::EXTERNAL_REFERENCE);
359 }
360
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)361 static Operand StaticArray(Register index,
362 ScaleFactor scale,
363 const ExternalReference& arr) {
364 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
365 RelocInfo::EXTERNAL_REFERENCE);
366 }
367
ForCell(Handle<Cell> cell)368 static Operand ForCell(Handle<Cell> cell) {
369 AllowDeferredHandleDereference embedding_raw_address;
370 return Operand(reinterpret_cast<int32_t>(cell.location()),
371 RelocInfo::CELL);
372 }
373
ForRegisterPlusImmediate(Register base,Immediate imm)374 static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
375 return Operand(base, imm.x_, imm.rmode_);
376 }
377
378 // Returns true if this Operand is a wrapper for the specified register.
379 bool is_reg(Register reg) const;
380
381 // Returns true if this Operand is a wrapper for one register.
382 bool is_reg_only() const;
383
384 // Asserts that this Operand is a wrapper for one register and returns the
385 // register.
386 Register reg() const;
387
388 private:
389 // Set the ModRM byte without an encoded 'reg' register. The
390 // register is encoded later as part of the emit_operand operation.
391 inline void set_modrm(int mod, Register rm);
392
393 inline void set_sib(ScaleFactor scale, Register index, Register base);
394 inline void set_disp8(int8_t disp);
395 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
396
397 byte buf_[6];
398 // The number of bytes in buf_.
399 unsigned int len_;
400 // Only valid if len_ > 4.
401 RelocInfo::Mode rmode_;
402
403 friend class Assembler;
404 friend class MacroAssembler;
405 };
406
407
408 // -----------------------------------------------------------------------------
409 // A Displacement describes the 32bit immediate field of an instruction which
410 // may be used together with a Label in order to refer to a yet unknown code
411 // position. Displacements stored in the instruction stream are used to describe
412 // the instruction and to chain a list of instructions using the same Label.
413 // A Displacement contains 2 different fields:
414 //
415 // next field: position of next displacement in the chain (0 = end of list)
416 // type field: instruction type
417 //
418 // A next value of null (0) indicates the end of a chain (note that there can
419 // be no displacement at position zero, because there is always at least one
420 // instruction byte before the displacement).
421 //
422 // Displacement _data field layout
423 //
424 // |31.....2|1......0|
425 // [ next | type |
426
427 class Displacement BASE_EMBEDDED {
428 public:
429 enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
430
data()431 int data() const { return data_; }
type()432 Type type() const { return TypeField::decode(data_); }
next(Label * L)433 void next(Label* L) const {
434 int n = NextField::decode(data_);
435 n > 0 ? L->link_to(n) : L->Unuse();
436 }
link_to(Label * L)437 void link_to(Label* L) { init(L, type()); }
438
Displacement(int data)439 explicit Displacement(int data) { data_ = data; }
440
Displacement(Label * L,Type type)441 Displacement(Label* L, Type type) { init(L, type); }
442
print()443 void print() {
444 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
445 NextField::decode(data_));
446 }
447
448 private:
449 int data_;
450
451 class TypeField: public BitField<Type, 0, 2> {};
452 class NextField: public BitField<int, 2, 32-2> {};
453
454 void init(Label* L, Type type);
455 };
456
457
458 class Assembler : public AssemblerBase {
459 private:
460 // We check before assembling an instruction that there is sufficient
461 // space to write an instruction and its relocation information.
462 // The relocation writer's position must be kGap bytes above the end of
463 // the generated instructions. This leaves enough space for the
464 // longest possible ia32 instruction, 15 bytes, and the longest possible
465 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
466 // (There is a 15 byte limit on ia32 instruction length that rules out some
467 // otherwise valid instructions.)
468 // This allows for a single, fast space check per instruction.
469 static const int kGap = 32;
470
471 public:
472 // Create an assembler. Instructions and relocation information are emitted
473 // into a buffer, with the instructions starting from the beginning and the
474 // relocation information starting from the end of the buffer. See CodeDesc
475 // for a detailed comment on the layout (globals.h).
476 //
477 // If the provided buffer is NULL, the assembler allocates and grows its own
478 // buffer, and buffer_size determines the initial buffer size. The buffer is
479 // owned by the assembler and deallocated upon destruction of the assembler.
480 //
481 // If the provided buffer is not NULL, the assembler uses the provided buffer
482 // for code generation and assumes its size to be buffer_size. If the buffer
483 // is too small, a fatal error occurs. No deallocation of the buffer is done
484 // upon destruction of the assembler.
485 // TODO(vitalyr): the assembler does not need an isolate.
486 Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()487 virtual ~Assembler() { }
488
489 // GetCode emits any pending (non-emitted) code and fills the descriptor
490 // desc. GetCode() is idempotent; it returns the same result if no other
491 // Assembler functions are invoked in between GetCode() calls.
492 void GetCode(CodeDesc* desc);
493
494 // Read/Modify the code target in the branch/call instruction at pc.
495 inline static Address target_address_at(Address pc, Address constant_pool);
496 inline static void set_target_address_at(
497 Isolate* isolate, Address pc, Address constant_pool, Address target,
498 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)499 static inline Address target_address_at(Address pc, Code* code) {
500 Address constant_pool = code ? code->constant_pool() : NULL;
501 return target_address_at(pc, constant_pool);
502 }
503 static inline void set_target_address_at(
504 Isolate* isolate, Address pc, Code* code, Address target,
505 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
506 Address constant_pool = code ? code->constant_pool() : NULL;
507 set_target_address_at(isolate, pc, constant_pool, target);
508 }
509
510 // Return the code target address at a call site from the return address
511 // of that call in the instruction stream.
512 inline static Address target_address_from_return_address(Address pc);
513
514 // This sets the branch destination (which is in the instruction on x86).
515 // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)516 inline static void deserialization_set_special_target_at(
517 Isolate* isolate, Address instruction_payload, Code* code,
518 Address target) {
519 set_target_address_at(isolate, instruction_payload, code, target);
520 }
521
522 // This sets the internal reference at the pc.
523 inline static void deserialization_set_target_internal_reference_at(
524 Isolate* isolate, Address pc, Address target,
525 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
526
527 static const int kSpecialTargetSize = kPointerSize;
528
529 // Distance between the address of the code target in the call instruction
530 // and the return address
531 static const int kCallTargetAddressOffset = kPointerSize;
532
533 static const int kCallInstructionLength = 5;
534
535 // The debug break slot must be able to contain a call instruction.
536 static const int kDebugBreakSlotLength = kCallInstructionLength;
537
538 // Distance between start of patched debug break slot and the emitted address
539 // to jump to.
540 static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
541
542 // One byte opcode for test al, 0xXX.
543 static const byte kTestAlByte = 0xA8;
544 // One byte opcode for nop.
545 static const byte kNopByte = 0x90;
546
547 // One byte opcode for a short unconditional jump.
548 static const byte kJmpShortOpcode = 0xEB;
549 // One byte prefix for a short conditional jump.
550 static const byte kJccShortPrefix = 0x70;
551 static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
552 static const byte kJcShortOpcode = kJccShortPrefix | carry;
553 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
554 static const byte kJzShortOpcode = kJccShortPrefix | zero;
555
556
557 // ---------------------------------------------------------------------------
558 // Code generation
559 //
560 // - function names correspond one-to-one to ia32 instruction mnemonics
561 // - unless specified otherwise, instructions operate on 32bit operands
562 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
563 // - instructions on 16bit (word) operands/registers have a trailing '_w'
564 // - naming conflicts with C++ keywords are resolved via a trailing '_'
565
566 // NOTE ON INTERFACE: Currently, the interface is not very consistent
567 // in the sense that some operations (e.g. mov()) can be called in more
568 // the one way to generate the same instruction: The Register argument
569 // can in some cases be replaced with an Operand(Register) argument.
570 // This should be cleaned up and made more orthogonal. The questions
571 // is: should we always use Operands instead of Registers where an
572 // Operand is possible, or should we have a Register (overloaded) form
573 // instead? We must be careful to make sure that the selected instruction
574 // is obvious from the parameters to avoid hard-to-find code generation
575 // bugs.
576
577 // Insert the smallest number of nop instructions
578 // possible to align the pc offset to a multiple
579 // of m. m must be a power of 2.
580 void Align(int m);
581 // Insert the smallest number of zero bytes possible to align the pc offset
582 // to a mulitple of m. m must be a power of 2 (>= 2).
583 void DataAlign(int m);
584 void Nop(int bytes = 1);
585 // Aligns code to something that's optimal for a jump target for the platform.
586 void CodeTargetAlign();
587
588 // Stack
589 void pushad();
590 void popad();
591
592 void pushfd();
593 void popfd();
594
595 void push(const Immediate& x);
596 void push_imm32(int32_t imm32);
597 void push(Register src);
598 void push(const Operand& src);
599
600 void pop(Register dst);
601 void pop(const Operand& dst);
602
603 void enter(const Immediate& size);
604 void leave();
605
606 // Moves
mov_b(Register dst,Register src)607 void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
608 void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)609 void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
610 void mov_b(const Operand& dst, int8_t imm8);
611 void mov_b(const Operand& dst, const Immediate& src);
612 void mov_b(const Operand& dst, Register src);
613
614 void mov_w(Register dst, const Operand& src);
615 void mov_w(const Operand& dst, Register src);
616 void mov_w(const Operand& dst, int16_t imm16);
617 void mov_w(const Operand& dst, const Immediate& src);
618
619
620 void mov(Register dst, int32_t imm32);
621 void mov(Register dst, const Immediate& x);
622 void mov(Register dst, Handle<Object> handle);
623 void mov(Register dst, const Operand& src);
624 void mov(Register dst, Register src);
625 void mov(const Operand& dst, const Immediate& x);
626 void mov(const Operand& dst, Handle<Object> handle);
627 void mov(const Operand& dst, Register src);
628
movsx_b(Register dst,Register src)629 void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
630 void movsx_b(Register dst, const Operand& src);
631
movsx_w(Register dst,Register src)632 void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
633 void movsx_w(Register dst, const Operand& src);
634
movzx_b(Register dst,Register src)635 void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
636 void movzx_b(Register dst, const Operand& src);
637
movzx_w(Register dst,Register src)638 void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
639 void movzx_w(Register dst, const Operand& src);
640
641 // Flag management.
642 void cld();
643
644 // Repetitive string instructions.
645 void rep_movs();
646 void rep_stos();
647 void stos();
648
649 // Exchange
650 void xchg(Register dst, Register src);
651 void xchg(Register dst, const Operand& src);
652 void xchg_b(Register reg, const Operand& op);
653 void xchg_w(Register reg, const Operand& op);
654
655 // Lock prefix
656 void lock();
657
658 // CompareExchange
659 void cmpxchg(const Operand& dst, Register src);
660 void cmpxchg_b(const Operand& dst, Register src);
661 void cmpxchg_w(const Operand& dst, Register src);
662
663 // Arithmetics
664 void adc(Register dst, int32_t imm32);
665 void adc(Register dst, const Operand& src);
666
add(Register dst,Register src)667 void add(Register dst, Register src) { add(dst, Operand(src)); }
668 void add(Register dst, const Operand& src);
669 void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)670 void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
671 void add(const Operand& dst, const Immediate& x);
672
673 void and_(Register dst, int32_t imm32);
674 void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)675 void and_(Register dst, Register src) { and_(dst, Operand(src)); }
676 void and_(Register dst, const Operand& src);
677 void and_(const Operand& dst, Register src);
678 void and_(const Operand& dst, const Immediate& x);
679
cmpb(Register reg,Immediate imm8)680 void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
681 void cmpb(const Operand& op, Immediate imm8);
682 void cmpb(Register reg, const Operand& op);
683 void cmpb(const Operand& op, Register reg);
cmpb(Register dst,Register src)684 void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
685 void cmpb_al(const Operand& op);
686 void cmpw_ax(const Operand& op);
687 void cmpw(const Operand& dst, Immediate src);
cmpw(Register dst,Immediate src)688 void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
689 void cmpw(Register dst, const Operand& src);
cmpw(Register dst,Register src)690 void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
691 void cmpw(const Operand& dst, Register src);
692 void cmp(Register reg, int32_t imm32);
693 void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)694 void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
695 void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)696 void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
697 void cmp(const Operand& op, Register reg);
698 void cmp(const Operand& op, const Immediate& imm);
699 void cmp(const Operand& op, Handle<Object> handle);
700
701 void dec_b(Register dst);
702 void dec_b(const Operand& dst);
703
704 void dec(Register dst);
705 void dec(const Operand& dst);
706
707 void cdq();
708
idiv(Register src)709 void idiv(Register src) { idiv(Operand(src)); }
710 void idiv(const Operand& src);
div(Register src)711 void div(Register src) { div(Operand(src)); }
712 void div(const Operand& src);
713
714 // Signed multiply instructions.
715 void imul(Register src); // edx:eax = eax * src.
imul(Register dst,Register src)716 void imul(Register dst, Register src) { imul(dst, Operand(src)); }
717 void imul(Register dst, const Operand& src); // dst = dst * src.
718 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
719 void imul(Register dst, const Operand& src, int32_t imm32);
720
721 void inc(Register dst);
722 void inc(const Operand& dst);
723
724 void lea(Register dst, const Operand& src);
725
726 // Unsigned multiply instruction.
727 void mul(Register src); // edx:eax = eax * reg.
728
729 void neg(Register dst);
730 void neg(const Operand& dst);
731
732 void not_(Register dst);
733 void not_(const Operand& dst);
734
735 void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)736 void or_(Register dst, Register src) { or_(dst, Operand(src)); }
737 void or_(Register dst, const Operand& src);
738 void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)739 void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
740 void or_(const Operand& dst, const Immediate& x);
741
742 void rcl(Register dst, uint8_t imm8);
743 void rcr(Register dst, uint8_t imm8);
744
ror(Register dst,uint8_t imm8)745 void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
746 void ror(const Operand& dst, uint8_t imm8);
ror_cl(Register dst)747 void ror_cl(Register dst) { ror_cl(Operand(dst)); }
748 void ror_cl(const Operand& dst);
749
sar(Register dst,uint8_t imm8)750 void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
751 void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)752 void sar_cl(Register dst) { sar_cl(Operand(dst)); }
753 void sar_cl(const Operand& dst);
754
755 void sbb(Register dst, const Operand& src);
756
shl(Register dst,uint8_t imm8)757 void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
758 void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)759 void shl_cl(Register dst) { shl_cl(Operand(dst)); }
760 void shl_cl(const Operand& dst);
761 void shld(Register dst, Register src, uint8_t shift);
762 void shld_cl(Register dst, Register src);
763
shr(Register dst,uint8_t imm8)764 void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
765 void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)766 void shr_cl(Register dst) { shr_cl(Operand(dst)); }
767 void shr_cl(const Operand& dst);
768 void shrd(Register dst, Register src, uint8_t shift);
shrd_cl(Register dst,Register src)769 void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
770 void shrd_cl(const Operand& dst, Register src);
771
sub(Register dst,const Immediate & imm)772 void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
773 void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)774 void sub(Register dst, Register src) { sub(dst, Operand(src)); }
775 void sub(Register dst, const Operand& src);
776 void sub(const Operand& dst, Register src);
777
778 void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)779 void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
780 void test(Register reg, const Operand& op);
781 void test(const Operand& op, const Immediate& imm);
test(const Operand & op,Register reg)782 void test(const Operand& op, Register reg) { test(reg, op); }
783 void test_b(Register reg, const Operand& op);
784 void test_b(Register reg, Immediate imm8);
785 void test_b(const Operand& op, Immediate imm8);
test_b(const Operand & op,Register reg)786 void test_b(const Operand& op, Register reg) { test_b(reg, op); }
test_b(Register dst,Register src)787 void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
788 void test_w(Register reg, const Operand& op);
789 void test_w(Register reg, Immediate imm16);
790 void test_w(const Operand& op, Immediate imm16);
test_w(const Operand & op,Register reg)791 void test_w(const Operand& op, Register reg) { test_w(reg, op); }
test_w(Register dst,Register src)792 void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
793
794 void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)795 void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
796 void xor_(Register dst, const Operand& src);
797 void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)798 void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
799 void xor_(const Operand& dst, const Immediate& x);
800
801 // Bit operations.
802 void bt(const Operand& dst, Register src);
bts(Register dst,Register src)803 void bts(Register dst, Register src) { bts(Operand(dst), src); }
804 void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)805 void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
806 void bsr(Register dst, const Operand& src);
bsf(Register dst,Register src)807 void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
808 void bsf(Register dst, const Operand& src);
809
810 // Miscellaneous
811 void hlt();
812 void int3();
813 void nop();
814 void ret(int imm16);
815 void ud2();
816
817 // Label operations & relative jumps (PPUM Appendix D)
818 //
819 // Takes a branch opcode (cc) and a label (L) and generates
820 // either a backward branch or a forward branch and links it
821 // to the label fixup chain. Usage:
822 //
823 // Label L; // unbound label
824 // j(cc, &L); // forward branch to unbound label
825 // bind(&L); // bind label to the current pc
826 // j(cc, &L); // backward branch to bound label
827 // bind(&L); // illegal: a label may be bound only once
828 //
829 // Note: The same Label can be used for forward and backward branches
830 // but it may be bound only once.
831
832 void bind(Label* L); // binds an unbound label L to the current code position
833
834 // Calls
835 void call(Label* L);
836 void call(byte* entry, RelocInfo::Mode rmode);
837 int CallSize(const Operand& adr);
call(Register reg)838 void call(Register reg) { call(Operand(reg)); }
839 void call(const Operand& adr);
840 int CallSize(Handle<Code> code, RelocInfo::Mode mode);
841 void call(Handle<Code> code,
842 RelocInfo::Mode rmode,
843 TypeFeedbackId id = TypeFeedbackId::None());
844
845 // Jumps
846 // unconditional jump to L
847 void jmp(Label* L, Label::Distance distance = Label::kFar);
848 void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)849 void jmp(Register reg) { jmp(Operand(reg)); }
850 void jmp(const Operand& adr);
851 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
852
853 // Conditional jumps
854 void j(Condition cc,
855 Label* L,
856 Label::Distance distance = Label::kFar);
857 void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
858 void j(Condition cc, Handle<Code> code,
859 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
860
861 // Floating-point operations
862 void fld(int i);
863 void fstp(int i);
864
865 void fld1();
866 void fldz();
867 void fldpi();
868 void fldln2();
869
870 void fld_s(const Operand& adr);
871 void fld_d(const Operand& adr);
872
873 void fstp_s(const Operand& adr);
874 void fst_s(const Operand& adr);
875 void fstp_d(const Operand& adr);
876 void fst_d(const Operand& adr);
877
878 void fild_s(const Operand& adr);
879 void fild_d(const Operand& adr);
880
881 void fist_s(const Operand& adr);
882
883 void fistp_s(const Operand& adr);
884 void fistp_d(const Operand& adr);
885
886 // The fisttp instructions require SSE3.
887 void fisttp_s(const Operand& adr);
888 void fisttp_d(const Operand& adr);
889
890 void fabs();
891 void fchs();
892 void fsqrt();
893 void fcos();
894 void fsin();
895 void fptan();
896 void fyl2x();
897 void f2xm1();
898 void fscale();
899 void fninit();
900
901 void fadd(int i);
902 void fadd_i(int i);
903 void fadd_d(const Operand& adr);
904 void fsub(int i);
905 void fsub_i(int i);
906 void fsub_d(const Operand& adr);
907 void fsubr_d(const Operand& adr);
908 void fmul(int i);
909 void fmul_d(const Operand& adr);
910 void fmul_i(int i);
911 void fdiv(int i);
912 void fdiv_d(const Operand& adr);
913 void fdivr_d(const Operand& adr);
914 void fdiv_i(int i);
915
916 void fisub_s(const Operand& adr);
917
918 void faddp(int i = 1);
919 void fsubp(int i = 1);
920 void fsubr(int i = 1);
921 void fsubrp(int i = 1);
922 void fmulp(int i = 1);
923 void fdivp(int i = 1);
924 void fprem();
925 void fprem1();
926
927 void fxch(int i = 1);
928 void fincstp();
929 void ffree(int i = 0);
930
931 void ftst();
932 void fxam();
933 void fucomp(int i);
934 void fucompp();
935 void fucomi(int i);
936 void fucomip();
937 void fcompp();
938 void fnstsw_ax();
939 void fldcw(const Operand& adr);
940 void fnstcw(const Operand& adr);
941 void fwait();
942 void fnclex();
943 void fnsave(const Operand& adr);
944 void frstor(const Operand& adr);
945
946 void frndint();
947
948 void sahf();
949 void setcc(Condition cc, Register reg);
950
951 void cpuid();
952
953 // TODO(lrn): Need SFENCE for movnt?
954
955 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)956 int SizeOfCodeGeneratedSince(Label* label) {
957 return pc_offset() - label->pos();
958 }
959
960 // Mark generator continuation.
961 void RecordGeneratorContinuation();
962
963 // Mark address of a debug break slot.
964 void RecordDebugBreakSlot(RelocInfo::Mode mode);
965
966 // Record a comment relocation entry that can be used by a disassembler.
967 // Use --code-comments to enable.
968 void RecordComment(const char* msg);
969
970 // Record a deoptimization reason that can be used by a log or cpu profiler.
971 // Use --trace-deopt to enable.
972 void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
973 int id);
974
975 // Writes a single byte or word of data in the code stream. Used for
976 // inline tables, e.g., jump-tables.
977 void db(uint8_t data);
978 void dd(uint32_t data);
979 void dq(uint64_t data);
dp(uintptr_t data)980 void dp(uintptr_t data) { dd(data); }
981 void dd(Label* label);
982
983 // Check if there is less than kGap bytes available in the buffer.
984 // If this is the case, we need to grow the buffer before emitting
985 // an instruction or relocation information.
buffer_overflow()986 inline bool buffer_overflow() const {
987 return pc_ >= reloc_info_writer.pos() - kGap;
988 }
989
990 // Get the number of bytes available in the buffer.
available_space()991 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
992
993 static bool IsNop(Address addr);
994
relocation_writer_size()995 int relocation_writer_size() {
996 return (buffer_ + buffer_size_) - reloc_info_writer.pos();
997 }
998
999 // Avoid overflows for displacements etc.
1000 static const int kMaximalBufferSize = 512*MB;
1001
byte_at(int pos)1002 byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1003 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1004
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1005 void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1006 ConstantPoolEntry::Access access,
1007 ConstantPoolEntry::Type type) {
1008 // No embedded constant pool support.
1009 UNREACHABLE();
1010 }
1011
1012 protected:
addr_at(int pos)1013 byte* addr_at(int pos) { return buffer_ + pos; }
1014
1015
1016 private:
long_at(int pos)1017 uint32_t long_at(int pos) {
1018 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1019 }
long_at_put(int pos,uint32_t x)1020 void long_at_put(int pos, uint32_t x) {
1021 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1022 }
1023
1024 // code emission
1025 void GrowBuffer();
1026 inline void emit(uint32_t x);
1027 inline void emit(Handle<Object> handle);
1028 inline void emit(uint32_t x,
1029 RelocInfo::Mode rmode,
1030 TypeFeedbackId id = TypeFeedbackId::None());
1031 inline void emit(Handle<Code> code,
1032 RelocInfo::Mode rmode,
1033 TypeFeedbackId id = TypeFeedbackId::None());
1034 inline void emit(const Immediate& x);
1035 inline void emit_b(Immediate x);
1036 inline void emit_w(const Immediate& x);
1037 inline void emit_q(uint64_t x);
1038
1039 // Emit the code-object-relative offset of the label's position
1040 inline void emit_code_relative_offset(Label* label);
1041
1042 // instruction generation
1043 void emit_arith_b(int op1, int op2, Register dst, int imm8);
1044
1045 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1046 // with a given destination expression and an immediate operand. It attempts
1047 // to use the shortest encoding possible.
1048 // sel specifies the /n in the modrm byte (see the Intel PRM).
1049 void emit_arith(int sel, Operand dst, const Immediate& x);
1050
1051 void emit_operand(Register reg, const Operand& adr);
1052
1053 void emit_label(Label* label);
1054
1055 void emit_farith(int b1, int b2, int i);
1056
1057 // labels
1058 void print(Label* L);
1059 void bind_to(Label* L, int pos);
1060
1061 // displacements
1062 inline Displacement disp_at(Label* L);
1063 inline void disp_at_put(Label* L, Displacement disp);
1064 inline void emit_disp(Label* L, Displacement::Type type);
1065 inline void emit_near_disp(Label* L);
1066
1067 // record reloc info for current pc_
1068 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1069
1070 friend class CodePatcher;
1071 friend class EnsureSpace;
1072
1073 // Internal reference positions, required for (potential) patching in
1074 // GrowBuffer(); contains only those internal references whose labels
1075 // are already bound.
1076 std::deque<int> internal_reference_positions_;
1077
1078 // code generation
1079 RelocInfoWriter reloc_info_writer;
1080 };
1081
1082
1083 // Helper class that ensures that there is enough space for generating
1084 // instructions and relocation information. The constructor makes
1085 // sure that there is enough space and (in debug mode) the destructor
1086 // checks that we did not generate too much.
1087 class EnsureSpace BASE_EMBEDDED {
1088 public:
EnsureSpace(Assembler * assembler)1089 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1090 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1091 #ifdef DEBUG
1092 space_before_ = assembler_->available_space();
1093 #endif
1094 }
1095
1096 #ifdef DEBUG
~EnsureSpace()1097 ~EnsureSpace() {
1098 int bytes_generated = space_before_ - assembler_->available_space();
1099 DCHECK(bytes_generated < assembler_->kGap);
1100 }
1101 #endif
1102
1103 private:
1104 Assembler* assembler_;
1105 #ifdef DEBUG
1106 int space_before_;
1107 #endif
1108 };
1109
1110 } // namespace internal
1111 } // namespace v8
1112
1113 #endif // V8_X87_ASSEMBLER_X87_H_
1114