• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of some decoding functions (idct, loop filtering).
11 //
12 // Author: somnath@google.com (Somnath Banerjee)
13 //         cduvivier@google.com (Christian Duvivier)
14 
15 #include "./dsp.h"
16 
17 #if defined(WEBP_USE_SSE2)
18 
19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20 // one it seems => disable it by default. Uncomment the following to enable:
21 // #define USE_TRANSFORM_AC3
22 
23 #include <emmintrin.h>
24 #include "./common_sse2.h"
25 #include "../dec/vp8i_dec.h"
26 #include "../utils/utils.h"
27 
28 //------------------------------------------------------------------------------
29 // Transforms (Paragraph 14.4)
30 
Transform(const int16_t * in,uint8_t * dst,int do_two)31 static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
32   // This implementation makes use of 16-bit fixed point versions of two
33   // multiply constants:
34   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
35   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
36   //
37   // To be able to use signed 16-bit integers, we use the following trick to
38   // have constants within range:
39   // - Associated constants are obtained by subtracting the 16-bit fixed point
40   //   version of one:
41   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
42   //      K1 = 85267  =>  k1 =  20091
43   //      K2 = 35468  =>  k2 = -30068
44   // - The multiplication of a variable by a constant become the sum of the
45   //   variable and the multiplication of that variable by the associated
46   //   constant:
47   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
48   const __m128i k1 = _mm_set1_epi16(20091);
49   const __m128i k2 = _mm_set1_epi16(-30068);
50   __m128i T0, T1, T2, T3;
51 
52   // Load and concatenate the transform coefficients (we'll do two transforms
53   // in parallel). In the case of only one transform, the second half of the
54   // vectors will just contain random value we'll never use nor store.
55   __m128i in0, in1, in2, in3;
56   {
57     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
58     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
59     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
60     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
61     // a00 a10 a20 a30   x x x x
62     // a01 a11 a21 a31   x x x x
63     // a02 a12 a22 a32   x x x x
64     // a03 a13 a23 a33   x x x x
65     if (do_two) {
66       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
67       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
68       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
69       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
70       in0 = _mm_unpacklo_epi64(in0, inB0);
71       in1 = _mm_unpacklo_epi64(in1, inB1);
72       in2 = _mm_unpacklo_epi64(in2, inB2);
73       in3 = _mm_unpacklo_epi64(in3, inB3);
74       // a00 a10 a20 a30   b00 b10 b20 b30
75       // a01 a11 a21 a31   b01 b11 b21 b31
76       // a02 a12 a22 a32   b02 b12 b22 b32
77       // a03 a13 a23 a33   b03 b13 b23 b33
78     }
79   }
80 
81   // Vertical pass and subsequent transpose.
82   {
83     // First pass, c and d calculations are longer because of the "trick"
84     // multiplications.
85     const __m128i a = _mm_add_epi16(in0, in2);
86     const __m128i b = _mm_sub_epi16(in0, in2);
87     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
88     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
89     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
90     const __m128i c3 = _mm_sub_epi16(in1, in3);
91     const __m128i c4 = _mm_sub_epi16(c1, c2);
92     const __m128i c = _mm_add_epi16(c3, c4);
93     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
94     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
95     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
96     const __m128i d3 = _mm_add_epi16(in1, in3);
97     const __m128i d4 = _mm_add_epi16(d1, d2);
98     const __m128i d = _mm_add_epi16(d3, d4);
99 
100     // Second pass.
101     const __m128i tmp0 = _mm_add_epi16(a, d);
102     const __m128i tmp1 = _mm_add_epi16(b, c);
103     const __m128i tmp2 = _mm_sub_epi16(b, c);
104     const __m128i tmp3 = _mm_sub_epi16(a, d);
105 
106     // Transpose the two 4x4.
107     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
108   }
109 
110   // Horizontal pass and subsequent transpose.
111   {
112     // First pass, c and d calculations are longer because of the "trick"
113     // multiplications.
114     const __m128i four = _mm_set1_epi16(4);
115     const __m128i dc = _mm_add_epi16(T0, four);
116     const __m128i a =  _mm_add_epi16(dc, T2);
117     const __m128i b =  _mm_sub_epi16(dc, T2);
118     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
119     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
120     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
121     const __m128i c3 = _mm_sub_epi16(T1, T3);
122     const __m128i c4 = _mm_sub_epi16(c1, c2);
123     const __m128i c = _mm_add_epi16(c3, c4);
124     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
125     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
126     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
127     const __m128i d3 = _mm_add_epi16(T1, T3);
128     const __m128i d4 = _mm_add_epi16(d1, d2);
129     const __m128i d = _mm_add_epi16(d3, d4);
130 
131     // Second pass.
132     const __m128i tmp0 = _mm_add_epi16(a, d);
133     const __m128i tmp1 = _mm_add_epi16(b, c);
134     const __m128i tmp2 = _mm_sub_epi16(b, c);
135     const __m128i tmp3 = _mm_sub_epi16(a, d);
136     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
137     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
138     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
139     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
140 
141     // Transpose the two 4x4.
142     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
143                            &T2, &T3);
144   }
145 
146   // Add inverse transform to 'dst' and store.
147   {
148     const __m128i zero = _mm_setzero_si128();
149     // Load the reference(s).
150     __m128i dst0, dst1, dst2, dst3;
151     if (do_two) {
152       // Load eight bytes/pixels per line.
153       dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
154       dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
155       dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
156       dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
157     } else {
158       // Load four bytes/pixels per line.
159       dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
160       dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
161       dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
162       dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
163     }
164     // Convert to 16b.
165     dst0 = _mm_unpacklo_epi8(dst0, zero);
166     dst1 = _mm_unpacklo_epi8(dst1, zero);
167     dst2 = _mm_unpacklo_epi8(dst2, zero);
168     dst3 = _mm_unpacklo_epi8(dst3, zero);
169     // Add the inverse transform(s).
170     dst0 = _mm_add_epi16(dst0, T0);
171     dst1 = _mm_add_epi16(dst1, T1);
172     dst2 = _mm_add_epi16(dst2, T2);
173     dst3 = _mm_add_epi16(dst3, T3);
174     // Unsigned saturate to 8b.
175     dst0 = _mm_packus_epi16(dst0, dst0);
176     dst1 = _mm_packus_epi16(dst1, dst1);
177     dst2 = _mm_packus_epi16(dst2, dst2);
178     dst3 = _mm_packus_epi16(dst3, dst3);
179     // Store the results.
180     if (do_two) {
181       // Store eight bytes/pixels per line.
182       _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
183       _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
184       _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
185       _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
186     } else {
187       // Store four bytes/pixels per line.
188       WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
189       WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
190       WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
191       WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
192     }
193   }
194 }
195 
196 #if defined(USE_TRANSFORM_AC3)
197 #define MUL(a, b) (((a) * (b)) >> 16)
TransformAC3(const int16_t * in,uint8_t * dst)198 static void TransformAC3(const int16_t* in, uint8_t* dst) {
199   static const int kC1 = 20091 + (1 << 16);
200   static const int kC2 = 35468;
201   const __m128i A = _mm_set1_epi16(in[0] + 4);
202   const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
203   const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
204   const int c1 = MUL(in[1], kC2);
205   const int d1 = MUL(in[1], kC1);
206   const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
207   const __m128i B = _mm_adds_epi16(A, CD);
208   const __m128i m0 = _mm_adds_epi16(B, d4);
209   const __m128i m1 = _mm_adds_epi16(B, c4);
210   const __m128i m2 = _mm_subs_epi16(B, c4);
211   const __m128i m3 = _mm_subs_epi16(B, d4);
212   const __m128i zero = _mm_setzero_si128();
213   // Load the source pixels.
214   __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
215   __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
216   __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
217   __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
218   // Convert to 16b.
219   dst0 = _mm_unpacklo_epi8(dst0, zero);
220   dst1 = _mm_unpacklo_epi8(dst1, zero);
221   dst2 = _mm_unpacklo_epi8(dst2, zero);
222   dst3 = _mm_unpacklo_epi8(dst3, zero);
223   // Add the inverse transform.
224   dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
225   dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
226   dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
227   dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
228   // Unsigned saturate to 8b.
229   dst0 = _mm_packus_epi16(dst0, dst0);
230   dst1 = _mm_packus_epi16(dst1, dst1);
231   dst2 = _mm_packus_epi16(dst2, dst2);
232   dst3 = _mm_packus_epi16(dst3, dst3);
233   // Store the results.
234   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
235   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
236   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
237   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
238 }
239 #undef MUL
240 #endif   // USE_TRANSFORM_AC3
241 
242 //------------------------------------------------------------------------------
243 // Loop Filter (Paragraph 15)
244 
245 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
246 #define MM_ABS(p, q)  _mm_or_si128(                                            \
247     _mm_subs_epu8((q), (p)),                                                   \
248     _mm_subs_epu8((p), (q)))
249 
250 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
SignedShift8b(__m128i * const x)251 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
252   const __m128i zero = _mm_setzero_si128();
253   const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
254   const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
255   const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
256   const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
257   *x = _mm_packs_epi16(lo_1, hi_1);
258 }
259 
260 #define FLIP_SIGN_BIT2(a, b) {                                                 \
261   a = _mm_xor_si128(a, sign_bit);                                              \
262   b = _mm_xor_si128(b, sign_bit);                                              \
263 }
264 
265 #define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
266   FLIP_SIGN_BIT2(a, b);                                                        \
267   FLIP_SIGN_BIT2(c, d);                                                        \
268 }
269 
270 // input/output is uint8_t
GetNotHEV(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int hev_thresh,__m128i * const not_hev)271 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
272                                   const __m128i* const p0,
273                                   const __m128i* const q0,
274                                   const __m128i* const q1,
275                                   int hev_thresh, __m128i* const not_hev) {
276   const __m128i zero = _mm_setzero_si128();
277   const __m128i t_1 = MM_ABS(*p1, *p0);
278   const __m128i t_2 = MM_ABS(*q1, *q0);
279 
280   const __m128i h = _mm_set1_epi8(hev_thresh);
281   const __m128i t_max = _mm_max_epu8(t_1, t_2);
282 
283   const __m128i t_max_h = _mm_subs_epu8(t_max, h);
284   *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
285 }
286 
287 // input pixels are int8_t
GetBaseDelta(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,__m128i * const delta)288 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
289                                      const __m128i* const p0,
290                                      const __m128i* const q0,
291                                      const __m128i* const q1,
292                                      __m128i* const delta) {
293   // beware of addition order, for saturation!
294   const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
295   const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
296   const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
297   const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
298   const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
299   *delta = s3;
300 }
301 
302 // input and output are int8_t
DoSimpleFilter(__m128i * const p0,__m128i * const q0,const __m128i * const fl)303 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
304                                        const __m128i* const fl) {
305   const __m128i k3 = _mm_set1_epi8(3);
306   const __m128i k4 = _mm_set1_epi8(4);
307   __m128i v3 = _mm_adds_epi8(*fl, k3);
308   __m128i v4 = _mm_adds_epi8(*fl, k4);
309 
310   SignedShift8b(&v4);                  // v4 >> 3
311   SignedShift8b(&v3);                  // v3 >> 3
312   *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
313   *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
314 }
315 
316 // Updates values of 2 pixels at MB edge during complex filtering.
317 // Update operations:
318 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
319 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
Update2Pixels(__m128i * const pi,__m128i * const qi,const __m128i * const a0_lo,const __m128i * const a0_hi)320 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
321                                       const __m128i* const a0_lo,
322                                       const __m128i* const a0_hi) {
323   const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
324   const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
325   const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
326   const __m128i sign_bit = _mm_set1_epi8(0x80);
327   *pi = _mm_adds_epi8(*pi, delta);
328   *qi = _mm_subs_epi8(*qi, delta);
329   FLIP_SIGN_BIT2(*pi, *qi);
330 }
331 
332 // input pixels are uint8_t
NeedsFilter(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,__m128i * const mask)333 static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
334                                     const __m128i* const p0,
335                                     const __m128i* const q0,
336                                     const __m128i* const q1,
337                                     int thresh, __m128i* const mask) {
338   const __m128i m_thresh = _mm_set1_epi8(thresh);
339   const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
340   const __m128i kFE = _mm_set1_epi8(0xFE);
341   const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
342   const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
343 
344   const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
345   const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
346   const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
347 
348   const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
349   *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
350 }
351 
352 //------------------------------------------------------------------------------
353 // Edge filtering functions
354 
355 // Applies filter on 2 pixels (p0 and q0)
DoFilter2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,int thresh)356 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
357                                   __m128i* const q0, __m128i* const q1,
358                                   int thresh) {
359   __m128i a, mask;
360   const __m128i sign_bit = _mm_set1_epi8(0x80);
361   // convert p1/q1 to int8_t (for GetBaseDelta)
362   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
363   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
364 
365   NeedsFilter(p1, p0, q0, q1, thresh, &mask);
366 
367   FLIP_SIGN_BIT2(*p0, *q0);
368   GetBaseDelta(&p1s, p0, q0, &q1s, &a);
369   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
370   DoSimpleFilter(p0, q0, &a);
371   FLIP_SIGN_BIT2(*p0, *q0);
372 }
373 
374 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,const __m128i * const mask,int hev_thresh)375 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
376                                   __m128i* const q0, __m128i* const q1,
377                                   const __m128i* const mask, int hev_thresh) {
378   const __m128i zero = _mm_setzero_si128();
379   const __m128i sign_bit = _mm_set1_epi8(0x80);
380   const __m128i k64 = _mm_set1_epi8(64);
381   const __m128i k3 = _mm_set1_epi8(3);
382   const __m128i k4 = _mm_set1_epi8(4);
383   __m128i not_hev;
384   __m128i t1, t2, t3;
385 
386   // compute hev mask
387   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
388 
389   // convert to signed values
390   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
391 
392   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
393   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
394   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
395   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
396   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
397   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
398   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
399 
400   t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
401   t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
402   SignedShift8b(&t2);                // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
403   SignedShift8b(&t3);                // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
404   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
405   *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
406   FLIP_SIGN_BIT2(*p0, *q0);
407 
408   // this is equivalent to signed (a + 1) >> 1 calculation
409   t2 = _mm_add_epi8(t3, sign_bit);
410   t3 = _mm_avg_epu8(t2, zero);
411   t3 = _mm_sub_epi8(t3, k64);
412 
413   t3 = _mm_and_si128(not_hev, t3);   // if !hev
414   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
415   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
416   FLIP_SIGN_BIT2(*p1, *q1);
417 }
418 
419 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6(__m128i * const p2,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,__m128i * const q2,const __m128i * const mask,int hev_thresh)420 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
421                                   __m128i* const p0, __m128i* const q0,
422                                   __m128i* const q1, __m128i* const q2,
423                                   const __m128i* const mask, int hev_thresh) {
424   const __m128i zero = _mm_setzero_si128();
425   const __m128i sign_bit = _mm_set1_epi8(0x80);
426   __m128i a, not_hev;
427 
428   // compute hev mask
429   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
430 
431   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
432   FLIP_SIGN_BIT2(*p2, *q2);
433   GetBaseDelta(p1, p0, q0, q1, &a);
434 
435   { // do simple filter on pixels with hev
436     const __m128i m = _mm_andnot_si128(not_hev, *mask);
437     const __m128i f = _mm_and_si128(a, m);
438     DoSimpleFilter(p0, q0, &f);
439   }
440 
441   { // do strong filter on pixels with not hev
442     const __m128i k9 = _mm_set1_epi16(0x0900);
443     const __m128i k63 = _mm_set1_epi16(63);
444 
445     const __m128i m = _mm_and_si128(not_hev, *mask);
446     const __m128i f = _mm_and_si128(a, m);
447 
448     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
449     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
450 
451     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
452     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
453 
454     const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
455     const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
456 
457     const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
458     const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
459 
460     const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
461     const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
462 
463     Update2Pixels(p2, q2, &a2_lo, &a2_hi);
464     Update2Pixels(p1, q1, &a1_lo, &a1_hi);
465     Update2Pixels(p0, q0, &a0_lo, &a0_hi);
466   }
467 }
468 
469 // reads 8 rows across a vertical edge.
Load8x4(const uint8_t * const b,int stride,__m128i * const p,__m128i * const q)470 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
471                                 __m128i* const p, __m128i* const q) {
472   // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
473   // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
474   const __m128i A0 = _mm_set_epi32(
475       WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
476       WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
477   const __m128i A1 = _mm_set_epi32(
478       WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
479       WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
480 
481   // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
482   // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
483   const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
484   const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
485 
486   // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
487   // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
488   const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
489   const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
490 
491   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
492   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
493   *p = _mm_unpacklo_epi32(C0, C1);
494   *q = _mm_unpackhi_epi32(C0, C1);
495 }
496 
Load16x4(const uint8_t * const r0,const uint8_t * const r8,int stride,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1)497 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
498                                  const uint8_t* const r8,
499                                  int stride,
500                                  __m128i* const p1, __m128i* const p0,
501                                  __m128i* const q0, __m128i* const q1) {
502   // Assume the pixels around the edge (|) are numbered as follows
503   //                00 01 | 02 03
504   //                10 11 | 12 13
505   //                 ...  |  ...
506   //                e0 e1 | e2 e3
507   //                f0 f1 | f2 f3
508   //
509   // r0 is pointing to the 0th row (00)
510   // r8 is pointing to the 8th row (80)
511 
512   // Load
513   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
514   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
515   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
516   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
517   Load8x4(r0, stride, p1, q0);
518   Load8x4(r8, stride, p0, q1);
519 
520   {
521     // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
522     // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
523     // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
524     // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
525     const __m128i t1 = *p1;
526     const __m128i t2 = *q0;
527     *p1 = _mm_unpacklo_epi64(t1, *p0);
528     *p0 = _mm_unpackhi_epi64(t1, *p0);
529     *q0 = _mm_unpacklo_epi64(t2, *q1);
530     *q1 = _mm_unpackhi_epi64(t2, *q1);
531   }
532 }
533 
Store4x4(__m128i * const x,uint8_t * dst,int stride)534 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
535   int i;
536   for (i = 0; i < 4; ++i, dst += stride) {
537     WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
538     *x = _mm_srli_si128(*x, 4);
539   }
540 }
541 
542 // Transpose back and store
Store16x4(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,uint8_t * r0,uint8_t * r8,int stride)543 static WEBP_INLINE void Store16x4(const __m128i* const p1,
544                                   const __m128i* const p0,
545                                   const __m128i* const q0,
546                                   const __m128i* const q1,
547                                   uint8_t* r0, uint8_t* r8,
548                                   int stride) {
549   __m128i t1, p1_s, p0_s, q0_s, q1_s;
550 
551   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
552   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
553   t1 = *p0;
554   p0_s = _mm_unpacklo_epi8(*p1, t1);
555   p1_s = _mm_unpackhi_epi8(*p1, t1);
556 
557   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
558   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
559   t1 = *q0;
560   q0_s = _mm_unpacklo_epi8(t1, *q1);
561   q1_s = _mm_unpackhi_epi8(t1, *q1);
562 
563   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
564   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
565   t1 = p0_s;
566   p0_s = _mm_unpacklo_epi16(t1, q0_s);
567   q0_s = _mm_unpackhi_epi16(t1, q0_s);
568 
569   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
570   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
571   t1 = p1_s;
572   p1_s = _mm_unpacklo_epi16(t1, q1_s);
573   q1_s = _mm_unpackhi_epi16(t1, q1_s);
574 
575   Store4x4(&p0_s, r0, stride);
576   r0 += 4 * stride;
577   Store4x4(&q0_s, r0, stride);
578 
579   Store4x4(&p1_s, r8, stride);
580   r8 += 4 * stride;
581   Store4x4(&q1_s, r8, stride);
582 }
583 
584 //------------------------------------------------------------------------------
585 // Simple In-loop filtering (Paragraph 15.2)
586 
SimpleVFilter16(uint8_t * p,int stride,int thresh)587 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
588   // Load
589   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
590   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
591   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
592   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
593 
594   DoFilter2(&p1, &p0, &q0, &q1, thresh);
595 
596   // Store
597   _mm_storeu_si128((__m128i*)&p[-stride], p0);
598   _mm_storeu_si128((__m128i*)&p[0], q0);
599 }
600 
SimpleHFilter16(uint8_t * p,int stride,int thresh)601 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
602   __m128i p1, p0, q0, q1;
603 
604   p -= 2;  // beginning of p1
605 
606   Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
607   DoFilter2(&p1, &p0, &q0, &q1, thresh);
608   Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
609 }
610 
SimpleVFilter16i(uint8_t * p,int stride,int thresh)611 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
612   int k;
613   for (k = 3; k > 0; --k) {
614     p += 4 * stride;
615     SimpleVFilter16(p, stride, thresh);
616   }
617 }
618 
SimpleHFilter16i(uint8_t * p,int stride,int thresh)619 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
620   int k;
621   for (k = 3; k > 0; --k) {
622     p += 4;
623     SimpleHFilter16(p, stride, thresh);
624   }
625 }
626 
627 //------------------------------------------------------------------------------
628 // Complex In-loop filtering (Paragraph 15.3)
629 
630 #define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
631   m = MM_ABS(p1, p0);                                                          \
632   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
633   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
634 } while (0)
635 
636 #define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
637   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
638   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
639   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
640 } while (0)
641 
642 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
643   e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
644   e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
645   e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
646   e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
647 }
648 
649 #define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
650   const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
651   const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
652   p = _mm_unpacklo_epi64(U, V);                                                \
653 } while (0)
654 
655 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
656   LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
657   LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
658   LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
659   LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
660 }
661 
662 #define STOREUV(p, u, v, stride) {                                             \
663   _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
664   p = _mm_srli_si128(p, 8);                                                    \
665   _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
666 }
667 
ComplexMask(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,int ithresh,__m128i * const mask)668 static WEBP_INLINE void ComplexMask(const __m128i* const p1,
669                                     const __m128i* const p0,
670                                     const __m128i* const q0,
671                                     const __m128i* const q1,
672                                     int thresh, int ithresh,
673                                     __m128i* const mask) {
674   const __m128i it = _mm_set1_epi8(ithresh);
675   const __m128i diff = _mm_subs_epu8(*mask, it);
676   const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
677   __m128i filter_mask;
678   NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
679   *mask = _mm_and_si128(thresh_mask, filter_mask);
680 }
681 
682 // on macroblock edges
VFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)683 static void VFilter16(uint8_t* p, int stride,
684                       int thresh, int ithresh, int hev_thresh) {
685   __m128i t1;
686   __m128i mask;
687   __m128i p2, p1, p0, q0, q1, q2;
688 
689   // Load p3, p2, p1, p0
690   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
691   MAX_DIFF1(t1, p2, p1, p0, mask);
692 
693   // Load q0, q1, q2, q3
694   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
695   MAX_DIFF2(t1, q2, q1, q0, mask);
696 
697   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
698   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
699 
700   // Store
701   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
702   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
703   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
704   _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
705   _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
706   _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
707 }
708 
HFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)709 static void HFilter16(uint8_t* p, int stride,
710                       int thresh, int ithresh, int hev_thresh) {
711   __m128i mask;
712   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
713 
714   uint8_t* const b = p - 4;
715   Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
716   MAX_DIFF1(p3, p2, p1, p0, mask);
717 
718   Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
719   MAX_DIFF2(q3, q2, q1, q0, mask);
720 
721   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
722   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
723 
724   Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
725   Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
726 }
727 
728 // on three inner edges
VFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)729 static void VFilter16i(uint8_t* p, int stride,
730                        int thresh, int ithresh, int hev_thresh) {
731   int k;
732   __m128i p3, p2, p1, p0;   // loop invariants
733 
734   LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
735 
736   for (k = 3; k > 0; --k) {
737     __m128i mask, tmp1, tmp2;
738     uint8_t* const b = p + 2 * stride;   // beginning of p1
739     p += 4 * stride;
740 
741     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
742     LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
743     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
744 
745     // p3 and p2 are not just temporary variables here: they will be
746     // re-used for next span. And q2/q3 will become p1/p0 accordingly.
747     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
748     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
749 
750     // Store
751     _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
752     _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
753     _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
754     _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
755 
756     // rotate samples
757     p1 = tmp1;
758     p0 = tmp2;
759   }
760 }
761 
HFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)762 static void HFilter16i(uint8_t* p, int stride,
763                        int thresh, int ithresh, int hev_thresh) {
764   int k;
765   __m128i p3, p2, p1, p0;   // loop invariants
766 
767   Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
768 
769   for (k = 3; k > 0; --k) {
770     __m128i mask, tmp1, tmp2;
771     uint8_t* const b = p + 2;   // beginning of p1
772 
773     p += 4;  // beginning of q0 (and next span)
774 
775     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
776     Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
777     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
778 
779     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
780     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
781 
782     Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
783 
784     // rotate samples
785     p1 = tmp1;
786     p0 = tmp2;
787   }
788 }
789 
790 // 8-pixels wide variant, for chroma filtering
VFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)791 static void VFilter8(uint8_t* u, uint8_t* v, int stride,
792                      int thresh, int ithresh, int hev_thresh) {
793   __m128i mask;
794   __m128i t1, p2, p1, p0, q0, q1, q2;
795 
796   // Load p3, p2, p1, p0
797   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
798   MAX_DIFF1(t1, p2, p1, p0, mask);
799 
800   // Load q0, q1, q2, q3
801   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
802   MAX_DIFF2(t1, q2, q1, q0, mask);
803 
804   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
805   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
806 
807   // Store
808   STOREUV(p2, u, v, -3 * stride);
809   STOREUV(p1, u, v, -2 * stride);
810   STOREUV(p0, u, v, -1 * stride);
811   STOREUV(q0, u, v, 0 * stride);
812   STOREUV(q1, u, v, 1 * stride);
813   STOREUV(q2, u, v, 2 * stride);
814 }
815 
HFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)816 static void HFilter8(uint8_t* u, uint8_t* v, int stride,
817                      int thresh, int ithresh, int hev_thresh) {
818   __m128i mask;
819   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
820 
821   uint8_t* const tu = u - 4;
822   uint8_t* const tv = v - 4;
823   Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
824   MAX_DIFF1(p3, p2, p1, p0, mask);
825 
826   Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
827   MAX_DIFF2(q3, q2, q1, q0, mask);
828 
829   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
830   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
831 
832   Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
833   Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
834 }
835 
VFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)836 static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
837                       int thresh, int ithresh, int hev_thresh) {
838   __m128i mask;
839   __m128i t1, t2, p1, p0, q0, q1;
840 
841   // Load p3, p2, p1, p0
842   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
843   MAX_DIFF1(t2, t1, p1, p0, mask);
844 
845   u += 4 * stride;
846   v += 4 * stride;
847 
848   // Load q0, q1, q2, q3
849   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
850   MAX_DIFF2(t2, t1, q1, q0, mask);
851 
852   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
853   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
854 
855   // Store
856   STOREUV(p1, u, v, -2 * stride);
857   STOREUV(p0, u, v, -1 * stride);
858   STOREUV(q0, u, v, 0 * stride);
859   STOREUV(q1, u, v, 1 * stride);
860 }
861 
HFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)862 static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
863                       int thresh, int ithresh, int hev_thresh) {
864   __m128i mask;
865   __m128i t1, t2, p1, p0, q0, q1;
866   Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
867   MAX_DIFF1(t2, t1, p1, p0, mask);
868 
869   u += 4;  // beginning of q0
870   v += 4;
871   Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
872   MAX_DIFF2(t2, t1, q1, q0, mask);
873 
874   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
875   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
876 
877   u -= 2;  // beginning of p1
878   v -= 2;
879   Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
880 }
881 
882 //------------------------------------------------------------------------------
883 // 4x4 predictions
884 
885 #define DST(x, y) dst[(x) + (y) * BPS]
886 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
887 
888 // We use the following 8b-arithmetic tricks:
889 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
890 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
891 // and:
892 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
893 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
894 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
895 
VE4(uint8_t * dst)896 static void VE4(uint8_t* dst) {    // vertical
897   const __m128i one = _mm_set1_epi8(1);
898   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
899   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
900   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
901   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
902   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
903   const __m128i b = _mm_subs_epu8(a, lsb);
904   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
905   const uint32_t vals = _mm_cvtsi128_si32(avg);
906   int i;
907   for (i = 0; i < 4; ++i) {
908     WebPUint32ToMem(dst + i * BPS, vals);
909   }
910 }
911 
LD4(uint8_t * dst)912 static void LD4(uint8_t* dst) {   // Down-Left
913   const __m128i one = _mm_set1_epi8(1);
914   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
915   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
916   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
917   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
918   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
919   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
920   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
921   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
922   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
923   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
924   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
925   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
926 }
927 
VR4(uint8_t * dst)928 static void VR4(uint8_t* dst) {   // Vertical-Right
929   const __m128i one = _mm_set1_epi8(1);
930   const int I = dst[-1 + 0 * BPS];
931   const int J = dst[-1 + 1 * BPS];
932   const int K = dst[-1 + 2 * BPS];
933   const int X = dst[-1 - BPS];
934   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
935   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
936   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
937   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
938   const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
939   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
940   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
941   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
942   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
943   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
944   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
945   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
946   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
947 
948   // these two are hard to implement in SSE2, so we keep the C-version:
949   DST(0, 2) = AVG3(J, I, X);
950   DST(0, 3) = AVG3(K, J, I);
951 }
952 
VL4(uint8_t * dst)953 static void VL4(uint8_t* dst) {   // Vertical-Left
954   const __m128i one = _mm_set1_epi8(1);
955   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
956   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
957   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
958   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
959   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
960   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
961   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
962   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
963   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
964   const __m128i abbc = _mm_or_si128(ab, bc);
965   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
966   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
967   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
968   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
969   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
970   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
971   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
972 
973   // these two are hard to get and irregular
974   DST(3, 2) = (extra_out >> 0) & 0xff;
975   DST(3, 3) = (extra_out >> 8) & 0xff;
976 }
977 
RD4(uint8_t * dst)978 static void RD4(uint8_t* dst) {   // Down-right
979   const __m128i one = _mm_set1_epi8(1);
980   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
981   const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
982   const uint32_t I = dst[-1 + 0 * BPS];
983   const uint32_t J = dst[-1 + 1 * BPS];
984   const uint32_t K = dst[-1 + 2 * BPS];
985   const uint32_t L = dst[-1 + 3 * BPS];
986   const __m128i LKJI_____ =
987       _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
988   const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
989   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
990   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
991   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
992   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
993   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
994   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
995   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
996   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
997   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
998   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
999 }
1000 
1001 #undef DST
1002 #undef AVG3
1003 
1004 //------------------------------------------------------------------------------
1005 // Luma 16x16
1006 
TrueMotion(uint8_t * dst,int size)1007 static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) {
1008   const uint8_t* top = dst - BPS;
1009   const __m128i zero = _mm_setzero_si128();
1010   int y;
1011   if (size == 4) {
1012     const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
1013     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1014     for (y = 0; y < 4; ++y, dst += BPS) {
1015       const int val = dst[-1] - top[-1];
1016       const __m128i base = _mm_set1_epi16(val);
1017       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1018       WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
1019     }
1020   } else if (size == 8) {
1021     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1022     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1023     for (y = 0; y < 8; ++y, dst += BPS) {
1024       const int val = dst[-1] - top[-1];
1025       const __m128i base = _mm_set1_epi16(val);
1026       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1027       _mm_storel_epi64((__m128i*)dst, out);
1028     }
1029   } else {
1030     const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1031     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1032     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1033     for (y = 0; y < 16; ++y, dst += BPS) {
1034       const int val = dst[-1] - top[-1];
1035       const __m128i base = _mm_set1_epi16(val);
1036       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1037       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1038       const __m128i out = _mm_packus_epi16(out_0, out_1);
1039       _mm_storeu_si128((__m128i*)dst, out);
1040     }
1041   }
1042 }
1043 
TM4(uint8_t * dst)1044 static void TM4(uint8_t* dst)   { TrueMotion(dst, 4); }
TM8uv(uint8_t * dst)1045 static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); }
TM16(uint8_t * dst)1046 static void TM16(uint8_t* dst)  { TrueMotion(dst, 16); }
1047 
VE16(uint8_t * dst)1048 static void VE16(uint8_t* dst) {
1049   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1050   int j;
1051   for (j = 0; j < 16; ++j) {
1052     _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1053   }
1054 }
1055 
HE16(uint8_t * dst)1056 static void HE16(uint8_t* dst) {     // horizontal
1057   int j;
1058   for (j = 16; j > 0; --j) {
1059     const __m128i values = _mm_set1_epi8(dst[-1]);
1060     _mm_storeu_si128((__m128i*)dst, values);
1061     dst += BPS;
1062   }
1063 }
1064 
Put16(uint8_t v,uint8_t * dst)1065 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
1066   int j;
1067   const __m128i values = _mm_set1_epi8(v);
1068   for (j = 0; j < 16; ++j) {
1069     _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1070   }
1071 }
1072 
DC16(uint8_t * dst)1073 static void DC16(uint8_t* dst) {    // DC
1074   const __m128i zero = _mm_setzero_si128();
1075   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1076   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1077   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1078   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1079   int left = 0;
1080   int j;
1081   for (j = 0; j < 16; ++j) {
1082     left += dst[-1 + j * BPS];
1083   }
1084   {
1085     const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1086     Put16(DC >> 5, dst);
1087   }
1088 }
1089 
DC16NoTop(uint8_t * dst)1090 static void DC16NoTop(uint8_t* dst) {   // DC with top samples not available
1091   int DC = 8;
1092   int j;
1093   for (j = 0; j < 16; ++j) {
1094     DC += dst[-1 + j * BPS];
1095   }
1096   Put16(DC >> 4, dst);
1097 }
1098 
DC16NoLeft(uint8_t * dst)1099 static void DC16NoLeft(uint8_t* dst) {  // DC with left samples not available
1100   const __m128i zero = _mm_setzero_si128();
1101   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1102   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1103   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1104   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1105   const int DC = _mm_cvtsi128_si32(sum) + 8;
1106   Put16(DC >> 4, dst);
1107 }
1108 
DC16NoTopLeft(uint8_t * dst)1109 static void DC16NoTopLeft(uint8_t* dst) {  // DC with no top and left samples
1110   Put16(0x80, dst);
1111 }
1112 
1113 //------------------------------------------------------------------------------
1114 // Chroma
1115 
VE8uv(uint8_t * dst)1116 static void VE8uv(uint8_t* dst) {    // vertical
1117   int j;
1118   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1119   for (j = 0; j < 8; ++j) {
1120     _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1121   }
1122 }
1123 
HE8uv(uint8_t * dst)1124 static void HE8uv(uint8_t* dst) {    // horizontal
1125   int j;
1126   for (j = 0; j < 8; ++j) {
1127     const __m128i values = _mm_set1_epi8(dst[-1]);
1128     _mm_storel_epi64((__m128i*)dst, values);
1129     dst += BPS;
1130   }
1131 }
1132 
1133 // helper for chroma-DC predictions
Put8x8uv(uint8_t v,uint8_t * dst)1134 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
1135   int j;
1136   const __m128i values = _mm_set1_epi8(v);
1137   for (j = 0; j < 8; ++j) {
1138     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1139   }
1140 }
1141 
DC8uv(uint8_t * dst)1142 static void DC8uv(uint8_t* dst) {     // DC
1143   const __m128i zero = _mm_setzero_si128();
1144   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1145   const __m128i sum = _mm_sad_epu8(top, zero);
1146   int left = 0;
1147   int j;
1148   for (j = 0; j < 8; ++j) {
1149     left += dst[-1 + j * BPS];
1150   }
1151   {
1152     const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1153     Put8x8uv(DC >> 4, dst);
1154   }
1155 }
1156 
DC8uvNoLeft(uint8_t * dst)1157 static void DC8uvNoLeft(uint8_t* dst) {   // DC with no left samples
1158   const __m128i zero = _mm_setzero_si128();
1159   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1160   const __m128i sum = _mm_sad_epu8(top, zero);
1161   const int DC = _mm_cvtsi128_si32(sum) + 4;
1162   Put8x8uv(DC >> 3, dst);
1163 }
1164 
DC8uvNoTop(uint8_t * dst)1165 static void DC8uvNoTop(uint8_t* dst) {  // DC with no top samples
1166   int dc0 = 4;
1167   int i;
1168   for (i = 0; i < 8; ++i) {
1169     dc0 += dst[-1 + i * BPS];
1170   }
1171   Put8x8uv(dc0 >> 3, dst);
1172 }
1173 
DC8uvNoTopLeft(uint8_t * dst)1174 static void DC8uvNoTopLeft(uint8_t* dst) {    // DC with nothing
1175   Put8x8uv(0x80, dst);
1176 }
1177 
1178 //------------------------------------------------------------------------------
1179 // Entry point
1180 
1181 extern void VP8DspInitSSE2(void);
1182 
VP8DspInitSSE2(void)1183 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1184   VP8Transform = Transform;
1185 #if defined(USE_TRANSFORM_AC3)
1186   VP8TransformAC3 = TransformAC3;
1187 #endif
1188 
1189   VP8VFilter16 = VFilter16;
1190   VP8HFilter16 = HFilter16;
1191   VP8VFilter8 = VFilter8;
1192   VP8HFilter8 = HFilter8;
1193   VP8VFilter16i = VFilter16i;
1194   VP8HFilter16i = HFilter16i;
1195   VP8VFilter8i = VFilter8i;
1196   VP8HFilter8i = HFilter8i;
1197 
1198   VP8SimpleVFilter16 = SimpleVFilter16;
1199   VP8SimpleHFilter16 = SimpleHFilter16;
1200   VP8SimpleVFilter16i = SimpleVFilter16i;
1201   VP8SimpleHFilter16i = SimpleHFilter16i;
1202 
1203   VP8PredLuma4[1] = TM4;
1204   VP8PredLuma4[2] = VE4;
1205   VP8PredLuma4[4] = RD4;
1206   VP8PredLuma4[5] = VR4;
1207   VP8PredLuma4[6] = LD4;
1208   VP8PredLuma4[7] = VL4;
1209 
1210   VP8PredLuma16[0] = DC16;
1211   VP8PredLuma16[1] = TM16;
1212   VP8PredLuma16[2] = VE16;
1213   VP8PredLuma16[3] = HE16;
1214   VP8PredLuma16[4] = DC16NoTop;
1215   VP8PredLuma16[5] = DC16NoLeft;
1216   VP8PredLuma16[6] = DC16NoTopLeft;
1217 
1218   VP8PredChroma8[0] = DC8uv;
1219   VP8PredChroma8[1] = TM8uv;
1220   VP8PredChroma8[2] = VE8uv;
1221   VP8PredChroma8[3] = HE8uv;
1222   VP8PredChroma8[4] = DC8uvNoTop;
1223   VP8PredChroma8[5] = DC8uvNoLeft;
1224   VP8PredChroma8[6] = DC8uvNoTopLeft;
1225 }
1226 
1227 #else  // !WEBP_USE_SSE2
1228 
1229 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1230 
1231 #endif  // WEBP_USE_SSE2
1232