1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <utils/String8.h>
18
19 #include "Caches.h"
20 #include "ProgramCache.h"
21 #include "Properties.h"
22
23 namespace android {
24 namespace uirenderer {
25
26 ///////////////////////////////////////////////////////////////////////////////
27 // Defines
28 ///////////////////////////////////////////////////////////////////////////////
29
30 #define MODULATE_OP_NO_MODULATE 0
31 #define MODULATE_OP_MODULATE 1
32 #define MODULATE_OP_MODULATE_A8 2
33
34 #define STR(x) STR1(x)
35 #define STR1(x) #x
36
37 ///////////////////////////////////////////////////////////////////////////////
38 // Vertex shaders snippets
39 ///////////////////////////////////////////////////////////////////////////////
40
41 const char* gVS_Header_Start =
42 "#version 100\n"
43 "attribute vec4 position;\n";
44 const char* gVS_Header_Attributes_TexCoords =
45 "attribute vec2 texCoords;\n";
46 const char* gVS_Header_Attributes_Colors =
47 "attribute vec4 colors;\n";
48 const char* gVS_Header_Attributes_VertexAlphaParameters =
49 "attribute float vtxAlpha;\n";
50 const char* gVS_Header_Uniforms_TextureTransform =
51 "uniform mat4 mainTextureTransform;\n";
52 const char* gVS_Header_Uniforms =
53 "uniform mat4 projection;\n" \
54 "uniform mat4 transform;\n";
55 const char* gVS_Header_Uniforms_HasGradient =
56 "uniform mat4 screenSpace;\n";
57 const char* gVS_Header_Uniforms_HasBitmap =
58 "uniform mat4 textureTransform;\n"
59 "uniform mediump vec2 textureDimension;\n";
60 const char* gVS_Header_Uniforms_HasRoundRectClip =
61 "uniform mat4 roundRectInvTransform;\n";
62 const char* gVS_Header_Varyings_HasTexture =
63 "varying vec2 outTexCoords;\n";
64 const char* gVS_Header_Varyings_HasColors =
65 "varying vec4 outColors;\n";
66 const char* gVS_Header_Varyings_HasVertexAlpha =
67 "varying float alpha;\n";
68 const char* gVS_Header_Varyings_HasBitmap =
69 "varying highp vec2 outBitmapTexCoords;\n";
70 const char* gVS_Header_Varyings_HasGradient[6] = {
71 // Linear
72 "varying highp vec2 linear;\n",
73 "varying float linear;\n",
74
75 // Circular
76 "varying highp vec2 circular;\n",
77 "varying highp vec2 circular;\n",
78
79 // Sweep
80 "varying highp vec2 sweep;\n",
81 "varying highp vec2 sweep;\n",
82 };
83 const char* gVS_Header_Varyings_HasRoundRectClip =
84 "varying highp vec2 roundRectPos;\n";
85 const char* gVS_Main =
86 "\nvoid main(void) {\n";
87 const char* gVS_Main_OutTexCoords =
88 " outTexCoords = texCoords;\n";
89 const char* gVS_Main_OutColors =
90 " outColors = colors;\n";
91 const char* gVS_Main_OutTransformedTexCoords =
92 " outTexCoords = (mainTextureTransform * vec4(texCoords, 0.0, 1.0)).xy;\n";
93 const char* gVS_Main_OutGradient[6] = {
94 // Linear
95 " linear = vec2((screenSpace * position).x, 0.5);\n",
96 " linear = (screenSpace * position).x;\n",
97
98 // Circular
99 " circular = (screenSpace * position).xy;\n",
100 " circular = (screenSpace * position).xy;\n",
101
102 // Sweep
103 " sweep = (screenSpace * position).xy;\n",
104 " sweep = (screenSpace * position).xy;\n"
105 };
106 const char* gVS_Main_OutBitmapTexCoords =
107 " outBitmapTexCoords = (textureTransform * position).xy * textureDimension;\n";
108 const char* gVS_Main_Position =
109 " vec4 transformedPosition = projection * transform * position;\n"
110 " gl_Position = transformedPosition;\n";
111
112 const char* gVS_Main_VertexAlpha =
113 " alpha = vtxAlpha;\n";
114
115 const char* gVS_Main_HasRoundRectClip =
116 " roundRectPos = (roundRectInvTransform * transformedPosition).xy;\n";
117 const char* gVS_Footer =
118 "}\n\n";
119
120 ///////////////////////////////////////////////////////////////////////////////
121 // Fragment shaders snippets
122 ///////////////////////////////////////////////////////////////////////////////
123
124 const char* gFS_Header_Start =
125 "#version 100\n";
126 const char* gFS_Header_Extension_FramebufferFetch =
127 "#extension GL_NV_shader_framebuffer_fetch : enable\n\n";
128 const char* gFS_Header_Extension_ExternalTexture =
129 "#extension GL_OES_EGL_image_external : require\n\n";
130 const char* gFS_Header =
131 "precision mediump float;\n\n";
132 const char* gFS_Uniforms_Color =
133 "uniform vec4 color;\n";
134 const char* gFS_Uniforms_TextureSampler =
135 "uniform sampler2D baseSampler;\n";
136 const char* gFS_Uniforms_ExternalTextureSampler =
137 "uniform samplerExternalOES baseSampler;\n";
138 const char* gFS_Uniforms_GradientSampler[2] = {
139 "uniform vec2 screenSize;\n"
140 "uniform sampler2D gradientSampler;\n",
141
142 "uniform vec2 screenSize;\n"
143 "uniform vec4 startColor;\n"
144 "uniform vec4 endColor;\n"
145 };
146 const char* gFS_Uniforms_BitmapSampler =
147 "uniform sampler2D bitmapSampler;\n";
148 const char* gFS_Uniforms_BitmapExternalSampler =
149 "uniform samplerExternalOES bitmapSampler;\n";
150 const char* gFS_Uniforms_ColorOp[3] = {
151 // None
152 "",
153 // Matrix
154 "uniform mat4 colorMatrix;\n"
155 "uniform vec4 colorMatrixVector;\n",
156 // PorterDuff
157 "uniform vec4 colorBlend;\n"
158 };
159
160 const char* gFS_Uniforms_HasRoundRectClip =
161 "uniform vec4 roundRectInnerRectLTRB;\n"
162 "uniform float roundRectRadius;\n";
163
164 const char* gFS_Uniforms_ColorSpaceConversion =
165 // TODO: Should we use a 3D LUT to combine the matrix and transfer functions?
166 // 32x32x32 fp16 LUTs (for scRGB output) are large and heavy to generate...
167 "uniform mat3 colorSpaceMatrix;\n";
168
169 const char* gFS_Uniforms_TransferFunction[4] = {
170 // In this order: g, a, b, c, d, e, f
171 // See ColorSpace::TransferParameters
172 // We'll use hardware sRGB conversion as much as possible
173 "",
174 "uniform float transferFunction[7];\n",
175 "uniform float transferFunction[5];\n",
176 "uniform float transferFunctionGamma;\n"
177 };
178
179 const char* gFS_OETF[2] = {
180 R"__SHADER__(
181 vec4 OETF(const vec4 linear) {
182 return linear;
183 }
184 )__SHADER__",
185 // We expect linear data to be scRGB so we mirror the gamma function
186 R"__SHADER__(
187 vec4 OETF(const vec4 linear) {
188 return vec4(sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)), linear.a);
189 }
190 )__SHADER__"
191 };
192
193 const char* gFS_ColorConvert[3] = {
194 // Just OETF
195 R"__SHADER__(
196 vec4 colorConvert(const vec4 color) {
197 return OETF(color);
198 }
199 )__SHADER__",
200 // Full color conversion for opaque bitmaps
201 R"__SHADER__(
202 vec4 colorConvert(const vec4 color) {
203 return OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
204 }
205 )__SHADER__",
206 // Full color conversion for translucent bitmaps
207 // Note: 0.5/256=0.0019
208 R"__SHADER__(
209 vec4 colorConvert(in vec4 color) {
210 color.rgb /= color.a + 0.0019;
211 color = OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
212 color.rgb *= color.a + 0.0019;
213 return color;
214 }
215 )__SHADER__",
216 };
217
218 const char* gFS_sRGB_TransferFunctions = R"__SHADER__(
219 float OETF_sRGB(const float linear) {
220 // IEC 61966-2-1:1999
221 return linear <= 0.0031308 ? linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
222 }
223
224 vec3 OETF_sRGB(const vec3 linear) {
225 return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
226 }
227
228 float EOTF_sRGB(float srgb) {
229 // IEC 61966-2-1:1999
230 return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
231 }
232 )__SHADER__";
233
234 const char* gFS_TransferFunction[4] = {
235 // Conversion done by the texture unit (sRGB)
236 R"__SHADER__(
237 vec3 EOTF_Parametric(const vec3 x) {
238 return x;
239 }
240 )__SHADER__",
241 // Full transfer function
242 // TODO: We should probably use a 1D LUT (256x1 with texelFetch() since input is 8 bit)
243 // TODO: That would cause 3 dependent texture fetches. Is it worth it?
244 R"__SHADER__(
245 float EOTF_Parametric(float x) {
246 return x <= transferFunction[4]
247 ? transferFunction[3] * x + transferFunction[6]
248 : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0])
249 + transferFunction[5];
250 }
251
252 vec3 EOTF_Parametric(const vec3 x) {
253 return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
254 }
255 )__SHADER__",
256 // Limited transfer function, e = f = 0.0
257 R"__SHADER__(
258 float EOTF_Parametric(float x) {
259 return x <= transferFunction[4]
260 ? transferFunction[3] * x
261 : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]);
262 }
263
264 vec3 EOTF_Parametric(const vec3 x) {
265 return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
266 }
267 )__SHADER__",
268 // Gamma transfer function, e = f = 0.0
269 R"__SHADER__(
270 vec3 EOTF_Parametric(const vec3 x) {
271 return vec3(pow(x.r, transferFunctionGamma),
272 pow(x.g, transferFunctionGamma),
273 pow(x.b, transferFunctionGamma));
274 }
275 )__SHADER__"
276 };
277
278 // Dithering must be done in the quantization space
279 // When we are writing to an sRGB framebuffer, we must do the following:
280 // EOTF(OETF(color) + dither)
281 // The dithering pattern is generated with a triangle noise generator in the range [-1.0,1.0]
282 // TODO: Handle linear fp16 render targets
283 const char* gFS_GradientFunctions = R"__SHADER__(
284 float triangleNoise(const highp vec2 n) {
285 highp vec2 p = fract(n * vec2(5.3987, 5.4421));
286 p += dot(p.yx, p.xy + vec2(21.5351, 14.3137));
287 highp float xy = p.x * p.y;
288 return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0;
289 }
290 )__SHADER__";
291
292 const char* gFS_GradientPreamble[2] = {
293 // Linear framebuffer
294 R"__SHADER__(
295 vec4 dither(const vec4 color) {
296 return color + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
297 }
298 )__SHADER__",
299 // sRGB framebuffer
300 R"__SHADER__(
301 vec4 dither(const vec4 color) {
302 vec3 dithered = sqrt(color.rgb) + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
303 return vec4(dithered * dithered, color.a);
304 }
305 )__SHADER__",
306 };
307
308 // Uses luminance coefficients from Rec.709 to choose the appropriate gamma
309 // The gamma() function assumes that bright text will be displayed on a dark
310 // background and that dark text will be displayed on bright background
311 // The gamma coefficient is chosen to thicken or thin the text accordingly
312 // The dot product used to compute the luminance could be approximated with
313 // a simple max(color.r, color.g, color.b)
314 const char* gFS_Gamma_Preamble = R"__SHADER__(
315 #define GAMMA (%.2f)
316 #define GAMMA_INV (%.2f)
317
318 float gamma(float a, const vec3 color) {
319 float luminance = dot(color, vec3(0.2126, 0.7152, 0.0722));
320 return pow(a, luminance < 0.5 ? GAMMA_INV : GAMMA);
321 }
322 )__SHADER__";
323
324 const char* gFS_Main =
325 "\nvoid main(void) {\n"
326 " vec4 fragColor;\n";
327
328 const char* gFS_Main_AddDither =
329 " fragColor = dither(fragColor);\n";
330
331 // General case
332 const char* gFS_Main_FetchColor =
333 " fragColor = color;\n";
334 const char* gFS_Main_ModulateColor =
335 " fragColor *= color.a;\n";
336 const char* gFS_Main_ApplyVertexAlphaLinearInterp =
337 " fragColor *= alpha;\n";
338 const char* gFS_Main_ApplyVertexAlphaShadowInterp =
339 // map alpha through shadow alpha sampler
340 " fragColor *= texture2D(baseSampler, vec2(alpha, 0.5)).a;\n";
341 const char* gFS_Main_FetchTexture[2] = {
342 // Don't modulate
343 " fragColor = colorConvert(texture2D(baseSampler, outTexCoords));\n",
344 // Modulate
345 " fragColor = color * colorConvert(texture2D(baseSampler, outTexCoords));\n"
346 };
347 const char* gFS_Main_FetchA8Texture[4] = {
348 // Don't modulate
349 " fragColor = texture2D(baseSampler, outTexCoords);\n",
350 " fragColor = texture2D(baseSampler, outTexCoords);\n",
351 // Modulate
352 " fragColor = color * texture2D(baseSampler, outTexCoords).a;\n",
353 " fragColor = color * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
354 };
355 const char* gFS_Main_FetchGradient[6] = {
356 // Linear
357 " vec4 gradientColor = texture2D(gradientSampler, linear);\n",
358
359 " vec4 gradientColor = mix(startColor, endColor, clamp(linear, 0.0, 1.0));\n",
360
361 // Circular
362 " vec4 gradientColor = texture2D(gradientSampler, vec2(length(circular), 0.5));\n",
363
364 " vec4 gradientColor = mix(startColor, endColor, clamp(length(circular), 0.0, 1.0));\n",
365
366 // Sweep
367 " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
368 " vec4 gradientColor = texture2D(gradientSampler, vec2(index - floor(index), 0.5));\n",
369
370 " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
371 " vec4 gradientColor = mix(startColor, endColor, clamp(index - floor(index), 0.0, 1.0));\n"
372 };
373 const char* gFS_Main_FetchBitmap =
374 " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, outBitmapTexCoords));\n";
375 const char* gFS_Main_FetchBitmapNpot =
376 " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, wrap(outBitmapTexCoords)));\n";
377 const char* gFS_Main_BlendShadersBG =
378 " fragColor = blendShaders(gradientColor, bitmapColor)";
379 const char* gFS_Main_BlendShadersGB =
380 " fragColor = blendShaders(bitmapColor, gradientColor)";
381 const char* gFS_Main_BlendShaders_Modulate[6] = {
382 // Don't modulate
383 ";\n",
384 ";\n",
385 // Modulate
386 " * color.a;\n",
387 " * color.a;\n",
388 // Modulate with alpha 8 texture
389 " * texture2D(baseSampler, outTexCoords).a;\n",
390 " * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
391 };
392 const char* gFS_Main_GradientShader_Modulate[6] = {
393 // Don't modulate
394 " fragColor = gradientColor;\n",
395 " fragColor = gradientColor;\n",
396 // Modulate
397 " fragColor = gradientColor * color.a;\n",
398 " fragColor = gradientColor * color.a;\n",
399 // Modulate with alpha 8 texture
400 " fragColor = gradientColor * texture2D(baseSampler, outTexCoords).a;\n",
401 " fragColor = gradientColor * gamma(texture2D(baseSampler, outTexCoords).a, gradientColor.rgb);\n",
402 };
403 const char* gFS_Main_BitmapShader_Modulate[6] = {
404 // Don't modulate
405 " fragColor = bitmapColor;\n",
406 " fragColor = bitmapColor;\n",
407 // Modulate
408 " fragColor = bitmapColor * color.a;\n",
409 " fragColor = bitmapColor * color.a;\n",
410 // Modulate with alpha 8 texture
411 " fragColor = bitmapColor * texture2D(baseSampler, outTexCoords).a;\n",
412 " fragColor = bitmapColor * gamma(texture2D(baseSampler, outTexCoords).a, bitmapColor.rgb);\n",
413 };
414 const char* gFS_Main_FragColor =
415 " gl_FragColor = fragColor;\n";
416 const char* gFS_Main_FragColor_HasColors =
417 " gl_FragColor *= outColors;\n";
418 const char* gFS_Main_FragColor_Blend =
419 " gl_FragColor = blendFramebuffer(fragColor, gl_LastFragColor);\n";
420 const char* gFS_Main_FragColor_Blend_Swap =
421 " gl_FragColor = blendFramebuffer(gl_LastFragColor, fragColor);\n";
422 const char* gFS_Main_ApplyColorOp[3] = {
423 // None
424 "",
425 // Matrix
426 " fragColor.rgb /= (fragColor.a + 0.0019);\n" // un-premultiply
427 " fragColor *= colorMatrix;\n"
428 " fragColor += colorMatrixVector;\n"
429 " fragColor.rgb *= (fragColor.a + 0.0019);\n", // re-premultiply
430 // PorterDuff
431 " fragColor = blendColors(colorBlend, fragColor);\n"
432 };
433
434 // Note: LTRB -> xyzw
435 const char* gFS_Main_FragColor_HasRoundRectClip =
436 " mediump vec2 fragToLT = roundRectInnerRectLTRB.xy - roundRectPos;\n"
437 " mediump vec2 fragFromRB = roundRectPos - roundRectInnerRectLTRB.zw;\n"
438
439 // divide + multiply by 128 to avoid falling out of range in length() function
440 " mediump vec2 dist = max(max(fragToLT, fragFromRB), vec2(0.0, 0.0)) / 128.0;\n"
441 " mediump float linearDist = roundRectRadius - (length(dist) * 128.0);\n"
442 " gl_FragColor *= clamp(linearDist, 0.0, 1.0);\n";
443
444 const char* gFS_Main_DebugHighlight =
445 " gl_FragColor.rgb = vec3(0.0, gl_FragColor.a, 0.0);\n";
446 const char* gFS_Footer =
447 "}\n\n";
448
449 ///////////////////////////////////////////////////////////////////////////////
450 // PorterDuff snippets
451 ///////////////////////////////////////////////////////////////////////////////
452
453 const char* gBlendOps[18] = {
454 // Clear
455 "return vec4(0.0, 0.0, 0.0, 0.0);\n",
456 // Src
457 "return src;\n",
458 // Dst
459 "return dst;\n",
460 // SrcOver
461 "return src + dst * (1.0 - src.a);\n",
462 // DstOver
463 "return dst + src * (1.0 - dst.a);\n",
464 // SrcIn
465 "return src * dst.a;\n",
466 // DstIn
467 "return dst * src.a;\n",
468 // SrcOut
469 "return src * (1.0 - dst.a);\n",
470 // DstOut
471 "return dst * (1.0 - src.a);\n",
472 // SrcAtop
473 "return vec4(src.rgb * dst.a + (1.0 - src.a) * dst.rgb, dst.a);\n",
474 // DstAtop
475 "return vec4(dst.rgb * src.a + (1.0 - dst.a) * src.rgb, src.a);\n",
476 // Xor
477 "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb, "
478 "src.a + dst.a - 2.0 * src.a * dst.a);\n",
479 // Plus
480 "return min(src + dst, 1.0);\n",
481 // Modulate
482 "return src * dst;\n",
483 // Screen
484 "return src + dst - src * dst;\n",
485 // Overlay
486 "return clamp(vec4(mix("
487 "2.0 * src.rgb * dst.rgb + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), "
488 "src.a * dst.a - 2.0 * (dst.a - dst.rgb) * (src.a - src.rgb) + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), "
489 "step(dst.a, 2.0 * dst.rgb)), "
490 "src.a + dst.a - src.a * dst.a), 0.0, 1.0);\n",
491 // Darken
492 "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
493 "min(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
494 // Lighten
495 "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
496 "max(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
497 };
498
499 ///////////////////////////////////////////////////////////////////////////////
500 // Constructors/destructors
501 ///////////////////////////////////////////////////////////////////////////////
502
ProgramCache(Extensions & extensions)503 ProgramCache::ProgramCache(Extensions& extensions)
504 : mHasES3(extensions.getMajorGlVersion() >= 3)
505 , mHasLinearBlending(extensions.hasLinearBlending()) {
506 }
507
~ProgramCache()508 ProgramCache::~ProgramCache() {
509 clear();
510 }
511
512 ///////////////////////////////////////////////////////////////////////////////
513 // Cache management
514 ///////////////////////////////////////////////////////////////////////////////
515
clear()516 void ProgramCache::clear() {
517 PROGRAM_LOGD("Clearing program cache");
518 mCache.clear();
519 }
520
get(const ProgramDescription & description)521 Program* ProgramCache::get(const ProgramDescription& description) {
522 programid key = description.key();
523 if (key == (PROGRAM_KEY_TEXTURE | PROGRAM_KEY_A8_TEXTURE)) {
524 // program for A8, unmodulated, texture w/o shader (black text/path textures) is equivalent
525 // to standard texture program (bitmaps, patches). Consider them equivalent.
526 key = PROGRAM_KEY_TEXTURE;
527 }
528
529 auto iter = mCache.find(key);
530 Program* program = nullptr;
531 if (iter == mCache.end()) {
532 description.log("Could not find program");
533 program = generateProgram(description, key);
534 mCache[key] = std::unique_ptr<Program>(program);
535 } else {
536 program = iter->second.get();
537 }
538 return program;
539 }
540
541 ///////////////////////////////////////////////////////////////////////////////
542 // Program generation
543 ///////////////////////////////////////////////////////////////////////////////
544
generateProgram(const ProgramDescription & description,programid key)545 Program* ProgramCache::generateProgram(const ProgramDescription& description, programid key) {
546 String8 vertexShader = generateVertexShader(description);
547 String8 fragmentShader = generateFragmentShader(description);
548
549 return new Program(description, vertexShader.string(), fragmentShader.string());
550 }
551
gradientIndex(const ProgramDescription & description)552 static inline size_t gradientIndex(const ProgramDescription& description) {
553 return description.gradientType * 2 + description.isSimpleGradient;
554 }
555
generateVertexShader(const ProgramDescription & description)556 String8 ProgramCache::generateVertexShader(const ProgramDescription& description) {
557 // Add attributes
558 String8 shader(gVS_Header_Start);
559 if (description.hasTexture || description.hasExternalTexture) {
560 shader.append(gVS_Header_Attributes_TexCoords);
561 }
562 if (description.hasVertexAlpha) {
563 shader.append(gVS_Header_Attributes_VertexAlphaParameters);
564 }
565 if (description.hasColors) {
566 shader.append(gVS_Header_Attributes_Colors);
567 }
568 // Uniforms
569 shader.append(gVS_Header_Uniforms);
570 if (description.hasTextureTransform) {
571 shader.append(gVS_Header_Uniforms_TextureTransform);
572 }
573 if (description.hasGradient) {
574 shader.append(gVS_Header_Uniforms_HasGradient);
575 }
576 if (description.hasBitmap) {
577 shader.append(gVS_Header_Uniforms_HasBitmap);
578 }
579 if (description.hasRoundRectClip) {
580 shader.append(gVS_Header_Uniforms_HasRoundRectClip);
581 }
582 // Varyings
583 if (description.hasTexture || description.hasExternalTexture) {
584 shader.append(gVS_Header_Varyings_HasTexture);
585 }
586 if (description.hasVertexAlpha) {
587 shader.append(gVS_Header_Varyings_HasVertexAlpha);
588 }
589 if (description.hasColors) {
590 shader.append(gVS_Header_Varyings_HasColors);
591 }
592 if (description.hasGradient) {
593 shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
594 }
595 if (description.hasBitmap) {
596 shader.append(gVS_Header_Varyings_HasBitmap);
597 }
598 if (description.hasRoundRectClip) {
599 shader.append(gVS_Header_Varyings_HasRoundRectClip);
600 }
601
602 // Begin the shader
603 shader.append(gVS_Main); {
604 if (description.hasTextureTransform) {
605 shader.append(gVS_Main_OutTransformedTexCoords);
606 } else if (description.hasTexture || description.hasExternalTexture) {
607 shader.append(gVS_Main_OutTexCoords);
608 }
609 if (description.hasVertexAlpha) {
610 shader.append(gVS_Main_VertexAlpha);
611 }
612 if (description.hasColors) {
613 shader.append(gVS_Main_OutColors);
614 }
615 if (description.hasBitmap) {
616 shader.append(gVS_Main_OutBitmapTexCoords);
617 }
618 // Output transformed position
619 shader.append(gVS_Main_Position);
620 if (description.hasGradient) {
621 shader.append(gVS_Main_OutGradient[gradientIndex(description)]);
622 }
623 if (description.hasRoundRectClip) {
624 shader.append(gVS_Main_HasRoundRectClip);
625 }
626 }
627 // End the shader
628 shader.append(gVS_Footer);
629
630 PROGRAM_LOGD("*** Generated vertex shader:\n\n%s", shader.string());
631
632 return shader;
633 }
634
shaderOp(const ProgramDescription & description,String8 & shader,const int modulateOp,const char ** snippets)635 static bool shaderOp(const ProgramDescription& description, String8& shader,
636 const int modulateOp, const char** snippets) {
637 int op = description.hasAlpha8Texture ? MODULATE_OP_MODULATE_A8 : modulateOp;
638 op = op * 2 + description.hasGammaCorrection;
639 shader.append(snippets[op]);
640 return description.hasAlpha8Texture;
641 }
642
generateFragmentShader(const ProgramDescription & description)643 String8 ProgramCache::generateFragmentShader(const ProgramDescription& description) {
644 String8 shader(gFS_Header_Start);
645
646 const bool blendFramebuffer = description.framebufferMode >= SkBlendMode::kPlus;
647 if (blendFramebuffer) {
648 shader.append(gFS_Header_Extension_FramebufferFetch);
649 }
650 if (description.hasExternalTexture
651 || (description.hasBitmap && description.isShaderBitmapExternal)) {
652 shader.append(gFS_Header_Extension_ExternalTexture);
653 }
654
655 shader.append(gFS_Header);
656
657 // Varyings
658 if (description.hasTexture || description.hasExternalTexture) {
659 shader.append(gVS_Header_Varyings_HasTexture);
660 }
661 if (description.hasVertexAlpha) {
662 shader.append(gVS_Header_Varyings_HasVertexAlpha);
663 }
664 if (description.hasColors) {
665 shader.append(gVS_Header_Varyings_HasColors);
666 }
667 if (description.hasGradient) {
668 shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
669 }
670 if (description.hasBitmap) {
671 shader.append(gVS_Header_Varyings_HasBitmap);
672 }
673 if (description.hasRoundRectClip) {
674 shader.append(gVS_Header_Varyings_HasRoundRectClip);
675 }
676
677 // Uniforms
678 int modulateOp = MODULATE_OP_NO_MODULATE;
679 const bool singleColor = !description.hasTexture && !description.hasExternalTexture &&
680 !description.hasGradient && !description.hasBitmap;
681
682 if (description.modulate || singleColor) {
683 shader.append(gFS_Uniforms_Color);
684 if (!singleColor) modulateOp = MODULATE_OP_MODULATE;
685 }
686 if (description.hasTexture || description.useShadowAlphaInterp) {
687 shader.append(gFS_Uniforms_TextureSampler);
688 } else if (description.hasExternalTexture) {
689 shader.append(gFS_Uniforms_ExternalTextureSampler);
690 }
691 if (description.hasGradient) {
692 shader.append(gFS_Uniforms_GradientSampler[description.isSimpleGradient]);
693 }
694 if (description.hasRoundRectClip) {
695 shader.append(gFS_Uniforms_HasRoundRectClip);
696 }
697
698 if (description.hasGammaCorrection) {
699 shader.appendFormat(gFS_Gamma_Preamble, Properties::textGamma, 1.0f / Properties::textGamma);
700 }
701
702 if (description.hasBitmap) {
703 if (description.isShaderBitmapExternal) {
704 shader.append(gFS_Uniforms_BitmapExternalSampler);
705 } else {
706 shader.append(gFS_Uniforms_BitmapSampler);
707 }
708 }
709 shader.append(gFS_Uniforms_ColorOp[static_cast<int>(description.colorOp)]);
710
711 if (description.hasColorSpaceConversion) {
712 shader.append(gFS_Uniforms_ColorSpaceConversion);
713 }
714 shader.append(gFS_Uniforms_TransferFunction[static_cast<int>(description.transferFunction)]);
715
716 // Generate required functions
717 if (description.hasGradient && description.hasBitmap) {
718 generateBlend(shader, "blendShaders", description.shadersMode);
719 }
720 if (description.colorOp == ProgramDescription::ColorFilterMode::Blend) {
721 generateBlend(shader, "blendColors", description.colorMode);
722 }
723 if (blendFramebuffer) {
724 generateBlend(shader, "blendFramebuffer", description.framebufferMode);
725 }
726 if (description.useShaderBasedWrap) {
727 generateTextureWrap(shader, description.bitmapWrapS, description.bitmapWrapT);
728 }
729 if (description.hasGradient || description.hasLinearTexture
730 || description.hasColorSpaceConversion) {
731 shader.append(gFS_sRGB_TransferFunctions);
732 }
733 if (description.hasBitmap || ((description.hasTexture || description.hasExternalTexture) &&
734 !description.hasAlpha8Texture)) {
735 shader.append(gFS_TransferFunction[static_cast<int>(description.transferFunction)]);
736 shader.append(gFS_OETF[(description.hasLinearTexture || description.hasColorSpaceConversion)
737 && !mHasLinearBlending]);
738 shader.append(gFS_ColorConvert[description.hasColorSpaceConversion
739 ? 1 + description.hasTranslucentConversion : 0]);
740 }
741 if (description.hasGradient) {
742 shader.append(gFS_GradientFunctions);
743 shader.append(gFS_GradientPreamble[mHasLinearBlending]);
744 }
745
746 // Begin the shader
747 shader.append(gFS_Main); {
748 // Stores the result in fragColor directly
749 if (description.hasTexture || description.hasExternalTexture) {
750 if (description.hasAlpha8Texture) {
751 if (!description.hasGradient && !description.hasBitmap) {
752 shader.append(
753 gFS_Main_FetchA8Texture[modulateOp * 2 + description.hasGammaCorrection]);
754 }
755 } else {
756 shader.append(gFS_Main_FetchTexture[modulateOp]);
757 }
758 } else {
759 if (!description.hasGradient && !description.hasBitmap) {
760 shader.append(gFS_Main_FetchColor);
761 }
762 }
763 if (description.hasGradient) {
764 shader.append(gFS_Main_FetchGradient[gradientIndex(description)]);
765 }
766 if (description.hasBitmap) {
767 if (!description.useShaderBasedWrap) {
768 shader.append(gFS_Main_FetchBitmap);
769 } else {
770 shader.append(gFS_Main_FetchBitmapNpot);
771 }
772 }
773 bool applyModulate = false;
774 // Case when we have two shaders set
775 if (description.hasGradient && description.hasBitmap) {
776 if (description.isBitmapFirst) {
777 shader.append(gFS_Main_BlendShadersBG);
778 } else {
779 shader.append(gFS_Main_BlendShadersGB);
780 }
781 applyModulate = shaderOp(description, shader, modulateOp,
782 gFS_Main_BlendShaders_Modulate);
783 } else {
784 if (description.hasGradient) {
785 applyModulate = shaderOp(description, shader, modulateOp,
786 gFS_Main_GradientShader_Modulate);
787 } else if (description.hasBitmap) {
788 applyModulate = shaderOp(description, shader, modulateOp,
789 gFS_Main_BitmapShader_Modulate);
790 }
791 }
792
793 if (description.modulate && applyModulate) {
794 shader.append(gFS_Main_ModulateColor);
795 }
796
797 // Apply the color op if needed
798 shader.append(gFS_Main_ApplyColorOp[static_cast<int>(description.colorOp)]);
799
800 if (description.hasVertexAlpha) {
801 if (description.useShadowAlphaInterp) {
802 shader.append(gFS_Main_ApplyVertexAlphaShadowInterp);
803 } else {
804 shader.append(gFS_Main_ApplyVertexAlphaLinearInterp);
805 }
806 }
807
808 if (description.hasGradient) {
809 shader.append(gFS_Main_AddDither);
810 }
811
812 // Output the fragment
813 if (!blendFramebuffer) {
814 shader.append(gFS_Main_FragColor);
815 } else {
816 shader.append(!description.swapSrcDst ?
817 gFS_Main_FragColor_Blend : gFS_Main_FragColor_Blend_Swap);
818 }
819 if (description.hasColors) {
820 shader.append(gFS_Main_FragColor_HasColors);
821 }
822 if (description.hasRoundRectClip) {
823 shader.append(gFS_Main_FragColor_HasRoundRectClip);
824 }
825 if (description.hasDebugHighlight) {
826 shader.append(gFS_Main_DebugHighlight);
827 }
828 }
829 // End the shader
830 shader.append(gFS_Footer);
831
832 #if DEBUG_PROGRAMS
833 PROGRAM_LOGD("*** Generated fragment shader:\n\n");
834 printLongString(shader);
835 #endif
836
837 return shader;
838 }
839
generateBlend(String8 & shader,const char * name,SkBlendMode mode)840 void ProgramCache::generateBlend(String8& shader, const char* name, SkBlendMode mode) {
841 shader.append("\nvec4 ");
842 shader.append(name);
843 shader.append("(vec4 src, vec4 dst) {\n");
844 shader.append(" ");
845 shader.append(gBlendOps[(int)mode]);
846 shader.append("}\n");
847 }
848
generateTextureWrap(String8 & shader,GLenum wrapS,GLenum wrapT)849 void ProgramCache::generateTextureWrap(String8& shader, GLenum wrapS, GLenum wrapT) {
850 shader.append("\nhighp vec2 wrap(highp vec2 texCoords) {\n");
851 if (wrapS == GL_MIRRORED_REPEAT) {
852 shader.append(" highp float xMod2 = mod(texCoords.x, 2.0);\n");
853 shader.append(" if (xMod2 > 1.0) xMod2 = 2.0 - xMod2;\n");
854 }
855 if (wrapT == GL_MIRRORED_REPEAT) {
856 shader.append(" highp float yMod2 = mod(texCoords.y, 2.0);\n");
857 shader.append(" if (yMod2 > 1.0) yMod2 = 2.0 - yMod2;\n");
858 }
859 shader.append(" return vec2(");
860 switch (wrapS) {
861 case GL_CLAMP_TO_EDGE:
862 shader.append("texCoords.x");
863 break;
864 case GL_REPEAT:
865 shader.append("mod(texCoords.x, 1.0)");
866 break;
867 case GL_MIRRORED_REPEAT:
868 shader.append("xMod2");
869 break;
870 }
871 shader.append(", ");
872 switch (wrapT) {
873 case GL_CLAMP_TO_EDGE:
874 shader.append("texCoords.y");
875 break;
876 case GL_REPEAT:
877 shader.append("mod(texCoords.y, 1.0)");
878 break;
879 case GL_MIRRORED_REPEAT:
880 shader.append("yMod2");
881 break;
882 }
883 shader.append(");\n");
884 shader.append("}\n");
885 }
886
printLongString(const String8 & shader) const887 void ProgramCache::printLongString(const String8& shader) const {
888 ssize_t index = 0;
889 ssize_t lastIndex = 0;
890 const char* str = shader.string();
891 while ((index = shader.find("\n", index)) > -1) {
892 String8 line(str, index - lastIndex);
893 if (line.length() == 0) line.append("\n");
894 ALOGD("%s", line.string());
895 index++;
896 str += (index - lastIndex);
897 lastIndex = index;
898 }
899 }
900
901 }; // namespace uirenderer
902 }; // namespace android
903