• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.util;
18 
19 import com.android.ide.common.rendering.api.LayoutLog;
20 import com.android.layoutlib.bridge.Bridge;
21 import com.android.layoutlib.bridge.impl.DelegateManager;
22 import com.android.tools.layoutlib.annotations.LayoutlibDelegate;
23 
24 import android.annotation.NonNull;
25 import android.graphics.Path_Delegate;
26 
27 import java.util.ArrayList;
28 import java.util.Arrays;
29 import java.util.logging.Level;
30 import java.util.logging.Logger;
31 
32 /**
33  * Delegate that provides implementation for native methods in {@link android.util.PathParser}
34  * <p/>
35  * Through the layoutlib_create tool, selected methods of PathParser have been replaced by calls to
36  * methods of the same name in this delegate class.
37  *
38  * Most of the code has been taken from the implementation in
39  * {@code tools/base/sdk-common/src/main/java/com/android/ide/common/vectordrawable/PathParser.java}
40  * revision be6fe89a3b686db5a75e7e692a148699973957f3
41  */
42 public class PathParser_Delegate {
43 
44     private static final Logger LOGGER = Logger.getLogger("PathParser");
45 
46     // ---- Builder delegate manager ----
47     private static final DelegateManager<PathParser_Delegate> sManager =
48             new DelegateManager<PathParser_Delegate>(PathParser_Delegate.class);
49 
50     // ---- delegate data ----
51     @NonNull
52     private PathDataNode[] mPathDataNodes;
53 
getDelegate(long nativePtr)54     public static PathParser_Delegate getDelegate(long nativePtr) {
55         return sManager.getDelegate(nativePtr);
56     }
57 
PathParser_Delegate(@onNull PathDataNode[] nodes)58     private PathParser_Delegate(@NonNull PathDataNode[] nodes) {
59         mPathDataNodes = nodes;
60     }
61 
getPathDataNodes()62     public PathDataNode[] getPathDataNodes() {
63         return mPathDataNodes;
64     }
65 
66     @LayoutlibDelegate
nParseStringForPath(long pathPtr, @NonNull String pathString, int stringLength)67     /*package*/ static void nParseStringForPath(long pathPtr, @NonNull String pathString, int
68             stringLength) {
69         Path_Delegate path_delegate = Path_Delegate.getDelegate(pathPtr);
70         if (path_delegate == null) {
71             return;
72         }
73         assert pathString.length() == stringLength;
74         PathDataNode.nodesToPath(createNodesFromPathData(pathString), path_delegate);
75     }
76 
77     @LayoutlibDelegate
nCreatePathFromPathData(long outPathPtr, long pathData)78     /*package*/ static void nCreatePathFromPathData(long outPathPtr, long pathData) {
79         Path_Delegate path_delegate = Path_Delegate.getDelegate(outPathPtr);
80         PathParser_Delegate source = sManager.getDelegate(outPathPtr);
81         if (source == null || path_delegate == null) {
82             return;
83         }
84         PathDataNode.nodesToPath(source.mPathDataNodes, path_delegate);
85     }
86 
87     @LayoutlibDelegate
nCreateEmptyPathData()88     /*package*/ static long nCreateEmptyPathData() {
89         PathParser_Delegate newDelegate = new PathParser_Delegate(new PathDataNode[0]);
90         return sManager.addNewDelegate(newDelegate);
91     }
92 
93     @LayoutlibDelegate
nCreatePathData(long nativePtr)94     /*package*/ static long nCreatePathData(long nativePtr) {
95         PathParser_Delegate source = sManager.getDelegate(nativePtr);
96         if (source == null) {
97             return 0;
98         }
99         PathParser_Delegate dest = new PathParser_Delegate(deepCopyNodes(source.mPathDataNodes));
100         return sManager.addNewDelegate(dest);
101     }
102 
103     @LayoutlibDelegate
nCreatePathDataFromString(@onNull String pathString, int stringLength)104     /*package*/ static long nCreatePathDataFromString(@NonNull String pathString,
105             int stringLength) {
106         assert pathString.length() == stringLength : "Inconsistent path string length.";
107         PathDataNode[] nodes = createNodesFromPathData(pathString);
108         PathParser_Delegate delegate = new PathParser_Delegate(nodes);
109         return sManager.addNewDelegate(delegate);
110 
111     }
112 
113     @LayoutlibDelegate
nInterpolatePathData(long outDataPtr, long fromDataPtr, long toDataPtr, float fraction)114     /*package*/ static boolean nInterpolatePathData(long outDataPtr, long fromDataPtr,
115             long toDataPtr, float fraction) {
116         PathParser_Delegate out = sManager.getDelegate(outDataPtr);
117         PathParser_Delegate from = sManager.getDelegate(fromDataPtr);
118         PathParser_Delegate to = sManager.getDelegate(toDataPtr);
119         if (out == null || from == null || to == null) {
120             return false;
121         }
122         int length = from.mPathDataNodes.length;
123         if (length != to.mPathDataNodes.length) {
124             Bridge.getLog().error(LayoutLog.TAG_BROKEN,
125                     "Cannot interpolate path data with different lengths (from " + length + " to " +
126                             to.mPathDataNodes.length + ").", null);
127             return false;
128         }
129         if (out.mPathDataNodes.length != length) {
130             out.mPathDataNodes = new PathDataNode[length];
131         }
132         for (int i = 0; i < length; i++) {
133             if (out.mPathDataNodes[i] == null) {
134                 out.mPathDataNodes[i] = new PathDataNode(from.mPathDataNodes[i]);
135             }
136             out.mPathDataNodes[i].interpolatePathDataNode(from.mPathDataNodes[i],
137                         to.mPathDataNodes[i], fraction);
138         }
139         return true;
140     }
141 
142     @LayoutlibDelegate
nFinalize(long nativePtr)143     /*package*/ static void nFinalize(long nativePtr) {
144         sManager.removeJavaReferenceFor(nativePtr);
145     }
146 
147     @LayoutlibDelegate
nCanMorph(long fromDataPtr, long toDataPtr)148     /*package*/ static boolean nCanMorph(long fromDataPtr, long toDataPtr) {
149         PathParser_Delegate fromPath = PathParser_Delegate.getDelegate(fromDataPtr);
150         PathParser_Delegate toPath = PathParser_Delegate.getDelegate(toDataPtr);
151         if (fromPath == null || toPath == null || fromPath.getPathDataNodes() == null || toPath
152                 .getPathDataNodes() == null) {
153             return true;
154         }
155         return PathParser_Delegate.canMorph(fromPath.getPathDataNodes(), toPath.getPathDataNodes());
156     }
157 
158     @LayoutlibDelegate
nSetPathData(long outDataPtr, long fromDataPtr)159     /*package*/ static void nSetPathData(long outDataPtr, long fromDataPtr) {
160         PathParser_Delegate out = sManager.getDelegate(outDataPtr);
161         PathParser_Delegate from = sManager.getDelegate(fromDataPtr);
162         if (from == null || out == null) {
163             return;
164         }
165         out.mPathDataNodes = deepCopyNodes(from.mPathDataNodes);
166     }
167 
168     /**
169      * @param pathData The string representing a path, the same as "d" string in svg file.
170      *
171      * @return an array of the PathDataNode.
172      */
173     @NonNull
createNodesFromPathData(@onNull String pathData)174     public static PathDataNode[] createNodesFromPathData(@NonNull String pathData) {
175         int start = 0;
176         int end = 1;
177 
178         ArrayList<PathDataNode> list = new ArrayList<PathDataNode>();
179         while (end < pathData.length()) {
180             end = nextStart(pathData, end);
181             String s = pathData.substring(start, end).trim();
182             if (s.length() > 0) {
183                 float[] val = getFloats(s);
184                 addNode(list, s.charAt(0), val);
185             }
186 
187             start = end;
188             end++;
189         }
190         if ((end - start) == 1 && start < pathData.length()) {
191             addNode(list, pathData.charAt(start), new float[0]);
192         }
193         return list.toArray(new PathDataNode[list.size()]);
194     }
195 
196     /**
197      * @param source The array of PathDataNode to be duplicated.
198      *
199      * @return a deep copy of the <code>source</code>.
200      */
201     @NonNull
deepCopyNodes(@onNull PathDataNode[] source)202     public static PathDataNode[] deepCopyNodes(@NonNull PathDataNode[] source) {
203         PathDataNode[] copy = new PathDataNode[source.length];
204         for (int i = 0; i < source.length; i++) {
205             copy[i] = new PathDataNode(source[i]);
206         }
207         return copy;
208     }
209 
210     /**
211      * @param nodesFrom The source path represented in an array of PathDataNode
212      * @param nodesTo The target path represented in an array of PathDataNode
213      * @return whether the <code>nodesFrom</code> can morph into <code>nodesTo</code>
214      */
canMorph(PathDataNode[] nodesFrom, PathDataNode[] nodesTo)215     public static boolean canMorph(PathDataNode[] nodesFrom, PathDataNode[] nodesTo) {
216         if (nodesFrom == null || nodesTo == null) {
217             return false;
218         }
219 
220         if (nodesFrom.length != nodesTo.length) {
221             return false;
222         }
223 
224         for (int i = 0; i < nodesFrom.length; i ++) {
225             if (nodesFrom[i].mType != nodesTo[i].mType
226                     || nodesFrom[i].mParams.length != nodesTo[i].mParams.length) {
227                 return false;
228             }
229         }
230         return true;
231     }
232 
233     /**
234      * Update the target's data to match the source.
235      * Before calling this, make sure canMorph(target, source) is true.
236      *
237      * @param target The target path represented in an array of PathDataNode
238      * @param source The source path represented in an array of PathDataNode
239      */
updateNodes(PathDataNode[] target, PathDataNode[] source)240     public static void updateNodes(PathDataNode[] target, PathDataNode[] source) {
241         for (int i = 0; i < source.length; i ++) {
242             target[i].mType = source[i].mType;
243             for (int j = 0; j < source[i].mParams.length; j ++) {
244                 target[i].mParams[j] = source[i].mParams[j];
245             }
246         }
247     }
248 
nextStart(@onNull String s, int end)249     private static int nextStart(@NonNull String s, int end) {
250         char c;
251 
252         while (end < s.length()) {
253             c = s.charAt(end);
254             // Note that 'e' or 'E' are not valid path commands, but could be
255             // used for floating point numbers' scientific notation.
256             // Therefore, when searching for next command, we should ignore 'e'
257             // and 'E'.
258             if ((((c - 'A') * (c - 'Z') <= 0) || ((c - 'a') * (c - 'z') <= 0))
259                     && c != 'e' && c != 'E') {
260                 return end;
261             }
262             end++;
263         }
264         return end;
265     }
266 
267     /**
268      * Calculate the position of the next comma or space or negative sign
269      *
270      * @param s the string to search
271      * @param start the position to start searching
272      * @param result the result of the extraction, including the position of the the starting
273      * position of next number, whether it is ending with a '-'.
274      */
extract(@onNull String s, int start, @NonNull ExtractFloatResult result)275     private static void extract(@NonNull String s, int start, @NonNull ExtractFloatResult result) {
276         // Now looking for ' ', ',', '.' or '-' from the start.
277         int currentIndex = start;
278         boolean foundSeparator = false;
279         result.mEndWithNegOrDot = false;
280         boolean secondDot = false;
281         boolean isExponential = false;
282         for (; currentIndex < s.length(); currentIndex++) {
283             boolean isPrevExponential = isExponential;
284             isExponential = false;
285             char currentChar = s.charAt(currentIndex);
286             switch (currentChar) {
287                 case ' ':
288                 case ',':
289                     foundSeparator = true;
290                     break;
291                 case '-':
292                     // The negative sign following a 'e' or 'E' is not a separator.
293                     if (currentIndex != start && !isPrevExponential) {
294                         foundSeparator = true;
295                         result.mEndWithNegOrDot = true;
296                     }
297                     break;
298                 case '.':
299                     if (!secondDot) {
300                         secondDot = true;
301                     } else {
302                         // This is the second dot, and it is considered as a separator.
303                         foundSeparator = true;
304                         result.mEndWithNegOrDot = true;
305                     }
306                     break;
307                 case 'e':
308                 case 'E':
309                     isExponential = true;
310                     break;
311             }
312             if (foundSeparator) {
313                 break;
314             }
315         }
316         // When there is nothing found, then we put the end position to the end
317         // of the string.
318         result.mEndPosition = currentIndex;
319     }
320 
321     /**
322      * Parse the floats in the string. This is an optimized version of
323      * parseFloat(s.split(",|\\s"));
324      *
325      * @param s the string containing a command and list of floats
326      *
327      * @return array of floats
328      */
329     @NonNull
getFloats(@onNull String s)330     private static float[] getFloats(@NonNull String s) {
331         if (s.charAt(0) == 'z' || s.charAt(0) == 'Z') {
332             return new float[0];
333         }
334         try {
335             float[] results = new float[s.length()];
336             int count = 0;
337             int startPosition = 1;
338             int endPosition;
339 
340             ExtractFloatResult result = new ExtractFloatResult();
341             int totalLength = s.length();
342 
343             // The startPosition should always be the first character of the
344             // current number, and endPosition is the character after the current
345             // number.
346             while (startPosition < totalLength) {
347                 extract(s, startPosition, result);
348                 endPosition = result.mEndPosition;
349 
350                 if (startPosition < endPosition) {
351                     results[count++] = Float.parseFloat(
352                             s.substring(startPosition, endPosition));
353                 }
354 
355                 if (result.mEndWithNegOrDot) {
356                     // Keep the '-' or '.' sign with next number.
357                     startPosition = endPosition;
358                 } else {
359                     startPosition = endPosition + 1;
360                 }
361             }
362             return Arrays.copyOf(results, count);
363         } catch (NumberFormatException e) {
364             assert false : "error in parsing \"" + s + "\"" + e;
365             return new float[0];
366         }
367     }
368 
369 
addNode(@onNull ArrayList<PathDataNode> list, char cmd, @NonNull float[] val)370     private static void addNode(@NonNull ArrayList<PathDataNode> list, char cmd,
371             @NonNull float[] val) {
372         list.add(new PathDataNode(cmd, val));
373     }
374 
375     private static class ExtractFloatResult {
376         // We need to return the position of the next separator and whether the
377         // next float starts with a '-' or a '.'.
378         private int mEndPosition;
379         private boolean mEndWithNegOrDot;
380     }
381 
382     /**
383      * Each PathDataNode represents one command in the "d" attribute of the svg file. An array of
384      * PathDataNode can represent the whole "d" attribute.
385      */
386     public static class PathDataNode {
387         private char mType;
388         @NonNull
389         private float[] mParams;
390 
PathDataNode(char type, @NonNull float[] params)391         private PathDataNode(char type, @NonNull float[] params) {
392             mType = type;
393             mParams = params;
394         }
395 
getType()396         public char getType() {
397             return mType;
398         }
399 
400         @NonNull
getParams()401         public float[] getParams() {
402             return mParams;
403         }
404 
PathDataNode(@onNull PathDataNode n)405         private PathDataNode(@NonNull PathDataNode n) {
406             mType = n.mType;
407             mParams = Arrays.copyOf(n.mParams, n.mParams.length);
408         }
409 
410         /**
411          * Convert an array of PathDataNode to Path. Reset the passed path as needed before
412          * calling this method.
413          *
414          * @param node The source array of PathDataNode.
415          * @param path The target Path object.
416          */
nodesToPath(@onNull PathDataNode[] node, @NonNull Path_Delegate path)417         public static void nodesToPath(@NonNull PathDataNode[] node, @NonNull Path_Delegate path) {
418             float[] current = new float[6];
419             char previousCommand = 'm';
420             //noinspection ForLoopReplaceableByForEach
421             for (int i = 0; i < node.length; i++) {
422                 addCommand(path, current, previousCommand, node[i].mType, node[i].mParams);
423                 previousCommand = node[i].mType;
424             }
425         }
426 
427         /**
428          * The current PathDataNode will be interpolated between the <code>nodeFrom</code> and
429          * <code>nodeTo</code> according to the <code>fraction</code>.
430          *
431          * @param nodeFrom The start value as a PathDataNode.
432          * @param nodeTo The end value as a PathDataNode
433          * @param fraction The fraction to interpolate.
434          */
interpolatePathDataNode(@onNull PathDataNode nodeFrom, @NonNull PathDataNode nodeTo, float fraction)435         private void interpolatePathDataNode(@NonNull PathDataNode nodeFrom,
436                 @NonNull PathDataNode nodeTo, float fraction) {
437             for (int i = 0; i < nodeFrom.mParams.length; i++) {
438                 mParams[i] = nodeFrom.mParams[i] * (1 - fraction)
439                         + nodeTo.mParams[i] * fraction;
440             }
441         }
442 
443         @SuppressWarnings("PointlessArithmeticExpression")
addCommand(@onNull Path_Delegate path, float[] current, char previousCmd, char cmd, @NonNull float[] val)444         private static void addCommand(@NonNull Path_Delegate path, float[] current,
445                 char previousCmd, char cmd, @NonNull float[] val) {
446 
447             int incr = 2;
448             float currentX = current[0];
449             float currentY = current[1];
450             float ctrlPointX = current[2];
451             float ctrlPointY = current[3];
452             float currentSegmentStartX = current[4];
453             float currentSegmentStartY = current[5];
454             float reflectiveCtrlPointX;
455             float reflectiveCtrlPointY;
456 
457             switch (cmd) {
458                 case 'z':
459                 case 'Z':
460                     path.close();
461                     // Path is closed here, but we need to move the pen to the
462                     // closed position. So we cache the segment's starting position,
463                     // and restore it here.
464                     currentX = currentSegmentStartX;
465                     currentY = currentSegmentStartY;
466                     ctrlPointX = currentSegmentStartX;
467                     ctrlPointY = currentSegmentStartY;
468                     path.moveTo(currentX, currentY);
469                     break;
470                 case 'm':
471                 case 'M':
472                 case 'l':
473                 case 'L':
474                 case 't':
475                 case 'T':
476                     incr = 2;
477                     break;
478                 case 'h':
479                 case 'H':
480                 case 'v':
481                 case 'V':
482                     incr = 1;
483                     break;
484                 case 'c':
485                 case 'C':
486                     incr = 6;
487                     break;
488                 case 's':
489                 case 'S':
490                 case 'q':
491                 case 'Q':
492                     incr = 4;
493                     break;
494                 case 'a':
495                 case 'A':
496                     incr = 7;
497                     break;
498             }
499 
500             for (int k = 0; k < val.length; k += incr) {
501                 switch (cmd) {
502                     case 'm': // moveto - Start a new sub-path (relative)
503                         currentX += val[k + 0];
504                         currentY += val[k + 1];
505 
506                         if (k > 0) {
507                             // According to the spec, if a moveto is followed by multiple
508                             // pairs of coordinates, the subsequent pairs are treated as
509                             // implicit lineto commands.
510                             path.rLineTo(val[k + 0], val[k + 1]);
511                         } else {
512                             path.rMoveTo(val[k + 0], val[k + 1]);
513                             currentSegmentStartX = currentX;
514                             currentSegmentStartY = currentY;
515                         }
516                         break;
517                     case 'M': // moveto - Start a new sub-path
518                         currentX = val[k + 0];
519                         currentY = val[k + 1];
520 
521                         if (k > 0) {
522                             // According to the spec, if a moveto is followed by multiple
523                             // pairs of coordinates, the subsequent pairs are treated as
524                             // implicit lineto commands.
525                             path.lineTo(val[k + 0], val[k + 1]);
526                         } else {
527                             path.moveTo(val[k + 0], val[k + 1]);
528                             currentSegmentStartX = currentX;
529                             currentSegmentStartY = currentY;
530                         }
531                         break;
532                     case 'l': // lineto - Draw a line from the current point (relative)
533                         path.rLineTo(val[k + 0], val[k + 1]);
534                         currentX += val[k + 0];
535                         currentY += val[k + 1];
536                         break;
537                     case 'L': // lineto - Draw a line from the current point
538                         path.lineTo(val[k + 0], val[k + 1]);
539                         currentX = val[k + 0];
540                         currentY = val[k + 1];
541                         break;
542                     case 'h': // horizontal lineto - Draws a horizontal line (relative)
543                         path.rLineTo(val[k + 0], 0);
544                         currentX += val[k + 0];
545                         break;
546                     case 'H': // horizontal lineto - Draws a horizontal line
547                         path.lineTo(val[k + 0], currentY);
548                         currentX = val[k + 0];
549                         break;
550                     case 'v': // vertical lineto - Draws a vertical line from the current point (r)
551                         path.rLineTo(0, val[k + 0]);
552                         currentY += val[k + 0];
553                         break;
554                     case 'V': // vertical lineto - Draws a vertical line from the current point
555                         path.lineTo(currentX, val[k + 0]);
556                         currentY = val[k + 0];
557                         break;
558                     case 'c': // curveto - Draws a cubic Bézier curve (relative)
559                         path.rCubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3],
560                                 val[k + 4], val[k + 5]);
561 
562                         ctrlPointX = currentX + val[k + 2];
563                         ctrlPointY = currentY + val[k + 3];
564                         currentX += val[k + 4];
565                         currentY += val[k + 5];
566 
567                         break;
568                     case 'C': // curveto - Draws a cubic Bézier curve
569                         path.cubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3],
570                                 val[k + 4], val[k + 5]);
571                         currentX = val[k + 4];
572                         currentY = val[k + 5];
573                         ctrlPointX = val[k + 2];
574                         ctrlPointY = val[k + 3];
575                         break;
576                     case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp)
577                         reflectiveCtrlPointX = 0;
578                         reflectiveCtrlPointY = 0;
579                         if (previousCmd == 'c' || previousCmd == 's'
580                                 || previousCmd == 'C' || previousCmd == 'S') {
581                             reflectiveCtrlPointX = currentX - ctrlPointX;
582                             reflectiveCtrlPointY = currentY - ctrlPointY;
583                         }
584                         path.rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
585                                 val[k + 0], val[k + 1],
586                                 val[k + 2], val[k + 3]);
587 
588                         ctrlPointX = currentX + val[k + 0];
589                         ctrlPointY = currentY + val[k + 1];
590                         currentX += val[k + 2];
591                         currentY += val[k + 3];
592                         break;
593                     case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
594                         reflectiveCtrlPointX = currentX;
595                         reflectiveCtrlPointY = currentY;
596                         if (previousCmd == 'c' || previousCmd == 's'
597                                 || previousCmd == 'C' || previousCmd == 'S') {
598                             reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
599                             reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
600                         }
601                         path.cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
602                                 val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
603                         ctrlPointX = val[k + 0];
604                         ctrlPointY = val[k + 1];
605                         currentX = val[k + 2];
606                         currentY = val[k + 3];
607                         break;
608                     case 'q': // Draws a quadratic Bézier (relative)
609                         path.rQuadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
610                         ctrlPointX = currentX + val[k + 0];
611                         ctrlPointY = currentY + val[k + 1];
612                         currentX += val[k + 2];
613                         currentY += val[k + 3];
614                         break;
615                     case 'Q': // Draws a quadratic Bézier
616                         path.quadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
617                         ctrlPointX = val[k + 0];
618                         ctrlPointY = val[k + 1];
619                         currentX = val[k + 2];
620                         currentY = val[k + 3];
621                         break;
622                     case 't': // Draws a quadratic Bézier curve(reflective control point)(relative)
623                         reflectiveCtrlPointX = 0;
624                         reflectiveCtrlPointY = 0;
625                         if (previousCmd == 'q' || previousCmd == 't'
626                                 || previousCmd == 'Q' || previousCmd == 'T') {
627                             reflectiveCtrlPointX = currentX - ctrlPointX;
628                             reflectiveCtrlPointY = currentY - ctrlPointY;
629                         }
630                         path.rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
631                                 val[k + 0], val[k + 1]);
632                         ctrlPointX = currentX + reflectiveCtrlPointX;
633                         ctrlPointY = currentY + reflectiveCtrlPointY;
634                         currentX += val[k + 0];
635                         currentY += val[k + 1];
636                         break;
637                     case 'T': // Draws a quadratic Bézier curve (reflective control point)
638                         reflectiveCtrlPointX = currentX;
639                         reflectiveCtrlPointY = currentY;
640                         if (previousCmd == 'q' || previousCmd == 't'
641                                 || previousCmd == 'Q' || previousCmd == 'T') {
642                             reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
643                             reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
644                         }
645                         path.quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
646                                 val[k + 0], val[k + 1]);
647                         ctrlPointX = reflectiveCtrlPointX;
648                         ctrlPointY = reflectiveCtrlPointY;
649                         currentX = val[k + 0];
650                         currentY = val[k + 1];
651                         break;
652                     case 'a': // Draws an elliptical arc
653                         // (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
654                         drawArc(path,
655                                 currentX,
656                                 currentY,
657                                 val[k + 5] + currentX,
658                                 val[k + 6] + currentY,
659                                 val[k + 0],
660                                 val[k + 1],
661                                 val[k + 2],
662                                 val[k + 3] != 0,
663                                 val[k + 4] != 0);
664                         currentX += val[k + 5];
665                         currentY += val[k + 6];
666                         ctrlPointX = currentX;
667                         ctrlPointY = currentY;
668                         break;
669                     case 'A': // Draws an elliptical arc
670                         drawArc(path,
671                                 currentX,
672                                 currentY,
673                                 val[k + 5],
674                                 val[k + 6],
675                                 val[k + 0],
676                                 val[k + 1],
677                                 val[k + 2],
678                                 val[k + 3] != 0,
679                                 val[k + 4] != 0);
680                         currentX = val[k + 5];
681                         currentY = val[k + 6];
682                         ctrlPointX = currentX;
683                         ctrlPointY = currentY;
684                         break;
685                 }
686                 previousCmd = cmd;
687             }
688             current[0] = currentX;
689             current[1] = currentY;
690             current[2] = ctrlPointX;
691             current[3] = ctrlPointY;
692             current[4] = currentSegmentStartX;
693             current[5] = currentSegmentStartY;
694         }
695 
drawArc(@onNull Path_Delegate p, float x0, float y0, float x1, float y1, float a, float b, float theta, boolean isMoreThanHalf, boolean isPositiveArc)696         private static void drawArc(@NonNull Path_Delegate p, float x0, float y0, float x1,
697                 float y1, float a, float b, float theta, boolean isMoreThanHalf,
698                 boolean isPositiveArc) {
699 
700             LOGGER.log(Level.FINE, "(" + x0 + "," + y0 + ")-(" + x1 + "," + y1
701                     + ") {" + a + " " + b + "}");
702         /* Convert rotation angle from degrees to radians */
703             double thetaD = theta * Math.PI / 180.0f;
704         /* Pre-compute rotation matrix entries */
705             double cosTheta = Math.cos(thetaD);
706             double sinTheta = Math.sin(thetaD);
707         /* Transform (x0, y0) and (x1, y1) into unit space */
708         /* using (inverse) rotation, followed by (inverse) scale */
709             double x0p = (x0 * cosTheta + y0 * sinTheta) / a;
710             double y0p = (-x0 * sinTheta + y0 * cosTheta) / b;
711             double x1p = (x1 * cosTheta + y1 * sinTheta) / a;
712             double y1p = (-x1 * sinTheta + y1 * cosTheta) / b;
713             LOGGER.log(Level.FINE, "unit space (" + x0p + "," + y0p + ")-(" + x1p
714                     + "," + y1p + ")");
715         /* Compute differences and averages */
716             double dx = x0p - x1p;
717             double dy = y0p - y1p;
718             double xm = (x0p + x1p) / 2;
719             double ym = (y0p + y1p) / 2;
720         /* Solve for intersecting unit circles */
721             double dsq = dx * dx + dy * dy;
722             if (dsq == 0.0) {
723                 LOGGER.log(Level.FINE, " Points are coincident");
724                 return; /* Points are coincident */
725             }
726             double disc = 1.0 / dsq - 1.0 / 4.0;
727             if (disc < 0.0) {
728                 LOGGER.log(Level.FINE, "Points are too far apart " + dsq);
729                 float adjust = (float) (Math.sqrt(dsq) / 1.99999);
730                 drawArc(p, x0, y0, x1, y1, a * adjust, b * adjust, theta,
731                         isMoreThanHalf, isPositiveArc);
732                 return; /* Points are too far apart */
733             }
734             double s = Math.sqrt(disc);
735             double sdx = s * dx;
736             double sdy = s * dy;
737             double cx;
738             double cy;
739             if (isMoreThanHalf == isPositiveArc) {
740                 cx = xm - sdy;
741                 cy = ym + sdx;
742             } else {
743                 cx = xm + sdy;
744                 cy = ym - sdx;
745             }
746 
747             double eta0 = Math.atan2((y0p - cy), (x0p - cx));
748             LOGGER.log(Level.FINE, "eta0 = Math.atan2( " + (y0p - cy) + " , "
749                     + (x0p - cx) + ") = " + Math.toDegrees(eta0));
750 
751             double eta1 = Math.atan2((y1p - cy), (x1p - cx));
752             LOGGER.log(Level.FINE, "eta1 = Math.atan2( " + (y1p - cy) + " , "
753                     + (x1p - cx) + ") = " + Math.toDegrees(eta1));
754             double sweep = (eta1 - eta0);
755             if (isPositiveArc != (sweep >= 0)) {
756                 if (sweep > 0) {
757                     sweep -= 2 * Math.PI;
758                 } else {
759                     sweep += 2 * Math.PI;
760                 }
761             }
762 
763             cx *= a;
764             cy *= b;
765             double tcx = cx;
766             cx = cx * cosTheta - cy * sinTheta;
767             cy = tcx * sinTheta + cy * cosTheta;
768             LOGGER.log(
769                     Level.FINE,
770                     "cx, cy, a, b, x0, y0, thetaD, eta0, sweep = " + cx + " , "
771                             + cy + " , " + a + " , " + b + " , " + x0 + " , " + y0
772                             + " , " + Math.toDegrees(thetaD) + " , "
773                             + Math.toDegrees(eta0) + " , " + Math.toDegrees(sweep));
774 
775             arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep);
776         }
777 
778         /**
779          * Converts an arc to cubic Bezier segments and records them in p.
780          *
781          * @param p The target for the cubic Bezier segments
782          * @param cx The x coordinate center of the ellipse
783          * @param cy The y coordinate center of the ellipse
784          * @param a The radius of the ellipse in the horizontal direction
785          * @param b The radius of the ellipse in the vertical direction
786          * @param e1x E(eta1) x coordinate of the starting point of the arc
787          * @param e1y E(eta2) y coordinate of the starting point of the arc
788          * @param theta The angle that the ellipse bounding rectangle makes with the horizontal
789          * plane
790          * @param start The start angle of the arc on the ellipse
791          * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse
792          */
arcToBezier(@onNull Path_Delegate p, double cx, double cy, double a, double b, double e1x, double e1y, double theta, double start, double sweep)793         private static void arcToBezier(@NonNull Path_Delegate p, double cx, double cy, double a,
794                 double b, double e1x, double e1y, double theta, double start,
795                 double sweep) {
796             // Taken from equations at:
797             // http://spaceroots.org/documents/ellipse/node8.html
798             // and http://www.spaceroots.org/documents/ellipse/node22.html
799             // Maximum of 45 degrees per cubic Bezier segment
800             int numSegments = (int) Math.ceil(Math.abs(sweep * 4 / Math.PI));
801 
802 
803             double eta1 = start;
804             double cosTheta = Math.cos(theta);
805             double sinTheta = Math.sin(theta);
806             double cosEta1 = Math.cos(eta1);
807             double sinEta1 = Math.sin(eta1);
808             double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1);
809             double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1);
810 
811             double anglePerSegment = sweep / numSegments;
812             for (int i = 0; i < numSegments; i++) {
813                 double eta2 = eta1 + anglePerSegment;
814                 double sinEta2 = Math.sin(eta2);
815                 double cosEta2 = Math.cos(eta2);
816                 double e2x = cx + (a * cosTheta * cosEta2)
817                         - (b * sinTheta * sinEta2);
818                 double e2y = cy + (a * sinTheta * cosEta2)
819                         + (b * cosTheta * sinEta2);
820                 double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2;
821                 double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2;
822                 double tanDiff2 = Math.tan((eta2 - eta1) / 2);
823                 double alpha = Math.sin(eta2 - eta1)
824                         * (Math.sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3;
825                 double q1x = e1x + alpha * ep1x;
826                 double q1y = e1y + alpha * ep1y;
827                 double q2x = e2x - alpha * ep2x;
828                 double q2y = e2y - alpha * ep2y;
829 
830                 p.cubicTo((float) q1x,
831                         (float) q1y,
832                         (float) q2x,
833                         (float) q2y,
834                         (float) e2x,
835                         (float) e2y);
836                 eta1 = eta2;
837                 e1x = e2x;
838                 e1y = e2y;
839                 ep1x = ep2x;
840                 ep1y = ep2y;
841             }
842         }
843     }
844 }
845