• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18 //#define LOG_NDEBUG 0
19 
20 // This is needed for stdint.h to define INT64_MAX in C++
21 #define __STDC_LIMIT_MACROS
22 
23 #include <math.h>
24 
25 #include <algorithm>
26 
27 #include <log/log.h>
28 #include <utils/String8.h>
29 #include <utils/Thread.h>
30 #include <utils/Trace.h>
31 #include <utils/Vector.h>
32 
33 #include <ui/Fence.h>
34 
35 #include "DispSync.h"
36 #include "SurfaceFlinger.h"
37 #include "EventLog/EventLog.h"
38 
39 using std::max;
40 using std::min;
41 
42 namespace android {
43 
44 // Setting this to true enables verbose tracing that can be used to debug
45 // vsync event model or phase issues.
46 static const bool kTraceDetailedInfo = false;
47 
48 // Setting this to true adds a zero-phase tracer for correlating with hardware
49 // vsync events
50 static const bool kEnableZeroPhaseTracer = false;
51 
52 // This is the threshold used to determine when hardware vsync events are
53 // needed to re-synchronize the software vsync model with the hardware.  The
54 // error metric used is the mean of the squared difference between each
55 // present time and the nearest software-predicted vsync.
56 static const nsecs_t kErrorThreshold = 160000000000;    // 400 usec squared
57 
58 #undef LOG_TAG
59 #define LOG_TAG "DispSyncThread"
60 class DispSyncThread: public Thread {
61 public:
62 
DispSyncThread(const char * name)63     explicit DispSyncThread(const char* name):
64             mName(name),
65             mStop(false),
66             mPeriod(0),
67             mPhase(0),
68             mReferenceTime(0),
69             mWakeupLatency(0),
70             mFrameNumber(0) {}
71 
~DispSyncThread()72     virtual ~DispSyncThread() {}
73 
updateModel(nsecs_t period,nsecs_t phase,nsecs_t referenceTime)74     void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
75         if (kTraceDetailedInfo) ATRACE_CALL();
76         Mutex::Autolock lock(mMutex);
77         mPeriod = period;
78         mPhase = phase;
79         mReferenceTime = referenceTime;
80         ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64
81                 " mReferenceTime = %" PRId64, mName, ns2us(mPeriod),
82                 ns2us(mPhase), ns2us(mReferenceTime));
83         mCond.signal();
84     }
85 
stop()86     void stop() {
87         if (kTraceDetailedInfo) ATRACE_CALL();
88         Mutex::Autolock lock(mMutex);
89         mStop = true;
90         mCond.signal();
91     }
92 
threadLoop()93     virtual bool threadLoop() {
94         status_t err;
95         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
96 
97         while (true) {
98             Vector<CallbackInvocation> callbackInvocations;
99 
100             nsecs_t targetTime = 0;
101 
102             { // Scope for lock
103                 Mutex::Autolock lock(mMutex);
104 
105                 if (kTraceDetailedInfo) {
106                     ATRACE_INT64("DispSync:Frame", mFrameNumber);
107                 }
108                 ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber);
109                 ++mFrameNumber;
110 
111                 if (mStop) {
112                     return false;
113                 }
114 
115                 if (mPeriod == 0) {
116                     err = mCond.wait(mMutex);
117                     if (err != NO_ERROR) {
118                         ALOGE("error waiting for new events: %s (%d)",
119                                 strerror(-err), err);
120                         return false;
121                     }
122                     continue;
123                 }
124 
125                 targetTime = computeNextEventTimeLocked(now);
126 
127                 bool isWakeup = false;
128 
129                 if (now < targetTime) {
130                     if (kTraceDetailedInfo) ATRACE_NAME("DispSync waiting");
131 
132                     if (targetTime == INT64_MAX) {
133                         ALOGV("[%s] Waiting forever", mName);
134                         err = mCond.wait(mMutex);
135                     } else {
136                         ALOGV("[%s] Waiting until %" PRId64, mName,
137                                 ns2us(targetTime));
138                         err = mCond.waitRelative(mMutex, targetTime - now);
139                     }
140 
141                     if (err == TIMED_OUT) {
142                         isWakeup = true;
143                     } else if (err != NO_ERROR) {
144                         ALOGE("error waiting for next event: %s (%d)",
145                                 strerror(-err), err);
146                         return false;
147                     }
148                 }
149 
150                 now = systemTime(SYSTEM_TIME_MONOTONIC);
151 
152                 // Don't correct by more than 1.5 ms
153                 static const nsecs_t kMaxWakeupLatency = us2ns(1500);
154 
155                 if (isWakeup) {
156                     mWakeupLatency = ((mWakeupLatency * 63) +
157                             (now - targetTime)) / 64;
158                     mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency);
159                     if (kTraceDetailedInfo) {
160                         ATRACE_INT64("DispSync:WakeupLat", now - targetTime);
161                         ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
162                     }
163                 }
164 
165                 callbackInvocations = gatherCallbackInvocationsLocked(now);
166             }
167 
168             if (callbackInvocations.size() > 0) {
169                 fireCallbackInvocations(callbackInvocations);
170             }
171         }
172 
173         return false;
174     }
175 
addEventListener(const char * name,nsecs_t phase,const sp<DispSync::Callback> & callback)176     status_t addEventListener(const char* name, nsecs_t phase,
177             const sp<DispSync::Callback>& callback) {
178         if (kTraceDetailedInfo) ATRACE_CALL();
179         Mutex::Autolock lock(mMutex);
180 
181         for (size_t i = 0; i < mEventListeners.size(); i++) {
182             if (mEventListeners[i].mCallback == callback) {
183                 return BAD_VALUE;
184             }
185         }
186 
187         EventListener listener;
188         listener.mName = name;
189         listener.mPhase = phase;
190         listener.mCallback = callback;
191 
192         // We want to allow the firstmost future event to fire without
193         // allowing any past events to fire
194         listener.mLastEventTime = systemTime() - mPeriod / 2 + mPhase -
195                 mWakeupLatency;
196 
197         mEventListeners.push(listener);
198 
199         mCond.signal();
200 
201         return NO_ERROR;
202     }
203 
removeEventListener(const sp<DispSync::Callback> & callback)204     status_t removeEventListener(const sp<DispSync::Callback>& callback) {
205         if (kTraceDetailedInfo) ATRACE_CALL();
206         Mutex::Autolock lock(mMutex);
207 
208         for (size_t i = 0; i < mEventListeners.size(); i++) {
209             if (mEventListeners[i].mCallback == callback) {
210                 mEventListeners.removeAt(i);
211                 mCond.signal();
212                 return NO_ERROR;
213             }
214         }
215 
216         return BAD_VALUE;
217     }
218 
219     // This method is only here to handle the !SurfaceFlinger::hasSyncFramework
220     // case.
hasAnyEventListeners()221     bool hasAnyEventListeners() {
222         if (kTraceDetailedInfo) ATRACE_CALL();
223         Mutex::Autolock lock(mMutex);
224         return !mEventListeners.empty();
225     }
226 
227 private:
228 
229     struct EventListener {
230         const char* mName;
231         nsecs_t mPhase;
232         nsecs_t mLastEventTime;
233         sp<DispSync::Callback> mCallback;
234     };
235 
236     struct CallbackInvocation {
237         sp<DispSync::Callback> mCallback;
238         nsecs_t mEventTime;
239     };
240 
computeNextEventTimeLocked(nsecs_t now)241     nsecs_t computeNextEventTimeLocked(nsecs_t now) {
242         if (kTraceDetailedInfo) ATRACE_CALL();
243         ALOGV("[%s] computeNextEventTimeLocked", mName);
244         nsecs_t nextEventTime = INT64_MAX;
245         for (size_t i = 0; i < mEventListeners.size(); i++) {
246             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
247                     now);
248 
249             if (t < nextEventTime) {
250                 nextEventTime = t;
251             }
252         }
253 
254         ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime));
255         return nextEventTime;
256     }
257 
gatherCallbackInvocationsLocked(nsecs_t now)258     Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
259         if (kTraceDetailedInfo) ATRACE_CALL();
260         ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName,
261                 ns2us(now));
262 
263         Vector<CallbackInvocation> callbackInvocations;
264         nsecs_t onePeriodAgo = now - mPeriod;
265 
266         for (size_t i = 0; i < mEventListeners.size(); i++) {
267             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
268                     onePeriodAgo);
269 
270             if (t < now) {
271                 CallbackInvocation ci;
272                 ci.mCallback = mEventListeners[i].mCallback;
273                 ci.mEventTime = t;
274                 ALOGV("[%s] [%s] Preparing to fire", mName,
275                         mEventListeners[i].mName);
276                 callbackInvocations.push(ci);
277                 mEventListeners.editItemAt(i).mLastEventTime = t;
278             }
279         }
280 
281         return callbackInvocations;
282     }
283 
computeListenerNextEventTimeLocked(const EventListener & listener,nsecs_t baseTime)284     nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener,
285             nsecs_t baseTime) {
286         if (kTraceDetailedInfo) ATRACE_CALL();
287         ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")",
288                 mName, listener.mName, ns2us(baseTime));
289 
290         nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency;
291         ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime));
292         if (baseTime < lastEventTime) {
293             baseTime = lastEventTime;
294             ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName,
295                     ns2us(baseTime));
296         }
297 
298         baseTime -= mReferenceTime;
299         ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime));
300         nsecs_t phase = mPhase + listener.mPhase;
301         ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase));
302         baseTime -= phase;
303         ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime));
304 
305         // If our previous time is before the reference (because the reference
306         // has since been updated), the division by mPeriod will truncate
307         // towards zero instead of computing the floor. Since in all cases
308         // before the reference we want the next time to be effectively now, we
309         // set baseTime to -mPeriod so that numPeriods will be -1.
310         // When we add 1 and the phase, we will be at the correct event time for
311         // this period.
312         if (baseTime < 0) {
313             ALOGV("[%s] Correcting negative baseTime", mName);
314             baseTime = -mPeriod;
315         }
316 
317         nsecs_t numPeriods = baseTime / mPeriod;
318         ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods);
319         nsecs_t t = (numPeriods + 1) * mPeriod + phase;
320         ALOGV("[%s] t = %" PRId64, mName, ns2us(t));
321         t += mReferenceTime;
322         ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t));
323 
324         // Check that it's been slightly more than half a period since the last
325         // event so that we don't accidentally fall into double-rate vsyncs
326         if (t - listener.mLastEventTime < (3 * mPeriod / 5)) {
327             t += mPeriod;
328             ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t));
329         }
330 
331         t -= mWakeupLatency;
332         ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t));
333 
334         return t;
335     }
336 
fireCallbackInvocations(const Vector<CallbackInvocation> & callbacks)337     void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
338         if (kTraceDetailedInfo) ATRACE_CALL();
339         for (size_t i = 0; i < callbacks.size(); i++) {
340             callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
341         }
342     }
343 
344     const char* const mName;
345 
346     bool mStop;
347 
348     nsecs_t mPeriod;
349     nsecs_t mPhase;
350     nsecs_t mReferenceTime;
351     nsecs_t mWakeupLatency;
352 
353     int64_t mFrameNumber;
354 
355     Vector<EventListener> mEventListeners;
356 
357     Mutex mMutex;
358     Condition mCond;
359 };
360 
361 #undef LOG_TAG
362 #define LOG_TAG "DispSync"
363 
364 class ZeroPhaseTracer : public DispSync::Callback {
365 public:
ZeroPhaseTracer()366     ZeroPhaseTracer() : mParity(false) {}
367 
onDispSyncEvent(nsecs_t)368     virtual void onDispSyncEvent(nsecs_t /*when*/) {
369         mParity = !mParity;
370         ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
371     }
372 
373 private:
374     bool mParity;
375 };
376 
DispSync(const char * name)377 DispSync::DispSync(const char* name) :
378         mName(name),
379         mRefreshSkipCount(0),
380         mThread(new DispSyncThread(name)),
381         mIgnorePresentFences(!SurfaceFlinger::hasSyncFramework){
382 
383     mPresentTimeOffset = SurfaceFlinger::dispSyncPresentTimeOffset;
384     mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
385     // set DispSync to SCHED_FIFO to minimize jitter
386     struct sched_param param = {0};
387     param.sched_priority = 2;
388     if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, &param) != 0) {
389         ALOGE("Couldn't set SCHED_FIFO for DispSyncThread");
390     }
391 
392 
393     reset();
394     beginResync();
395 
396     if (kTraceDetailedInfo) {
397         // If we're not getting present fences then the ZeroPhaseTracer
398         // would prevent HW vsync event from ever being turned off.
399         // Even if we're just ignoring the fences, the zero-phase tracing is
400         // not needed because any time there is an event registered we will
401         // turn on the HW vsync events.
402         if (!mIgnorePresentFences && kEnableZeroPhaseTracer) {
403             addEventListener("ZeroPhaseTracer", 0, new ZeroPhaseTracer());
404         }
405     }
406 }
407 
~DispSync()408 DispSync::~DispSync() {}
409 
reset()410 void DispSync::reset() {
411     Mutex::Autolock lock(mMutex);
412 
413     mPhase = 0;
414     mReferenceTime = 0;
415     mModelUpdated = false;
416     mNumResyncSamples = 0;
417     mFirstResyncSample = 0;
418     mNumResyncSamplesSincePresent = 0;
419     resetErrorLocked();
420 }
421 
addPresentFence(const sp<Fence> & fence)422 bool DispSync::addPresentFence(const sp<Fence>& fence) {
423     Mutex::Autolock lock(mMutex);
424 
425     mPresentFences[mPresentSampleOffset] = fence;
426     mPresentTimes[mPresentSampleOffset] = 0;
427     mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
428     mNumResyncSamplesSincePresent = 0;
429 
430     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
431         const sp<Fence>& f(mPresentFences[i]);
432         if (f != NULL) {
433             nsecs_t t = f->getSignalTime();
434             if (t < INT64_MAX) {
435                 mPresentFences[i].clear();
436                 mPresentTimes[i] = t + mPresentTimeOffset;
437             }
438         }
439     }
440 
441     updateErrorLocked();
442 
443     return !mModelUpdated || mError > kErrorThreshold;
444 }
445 
beginResync()446 void DispSync::beginResync() {
447     Mutex::Autolock lock(mMutex);
448     ALOGV("[%s] beginResync", mName);
449     mModelUpdated = false;
450     mNumResyncSamples = 0;
451 }
452 
addResyncSample(nsecs_t timestamp)453 bool DispSync::addResyncSample(nsecs_t timestamp) {
454     Mutex::Autolock lock(mMutex);
455 
456     ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp));
457 
458     size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
459     mResyncSamples[idx] = timestamp;
460     if (mNumResyncSamples == 0) {
461         mPhase = 0;
462         mReferenceTime = timestamp;
463         ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, "
464                 "mReferenceTime = %" PRId64, mName, ns2us(mPeriod),
465                 ns2us(mReferenceTime));
466         mThread->updateModel(mPeriod, mPhase, mReferenceTime);
467     }
468 
469     if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
470         mNumResyncSamples++;
471     } else {
472         mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
473     }
474 
475     updateModelLocked();
476 
477     if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
478         resetErrorLocked();
479     }
480 
481     if (mIgnorePresentFences) {
482         // If we don't have the sync framework we will never have
483         // addPresentFence called.  This means we have no way to know whether
484         // or not we're synchronized with the HW vsyncs, so we just request
485         // that the HW vsync events be turned on whenever we need to generate
486         // SW vsync events.
487         return mThread->hasAnyEventListeners();
488     }
489 
490     // Check against kErrorThreshold / 2 to add some hysteresis before having to
491     // resync again
492     bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2);
493     ALOGV("[%s] addResyncSample returning %s", mName,
494             modelLocked ? "locked" : "unlocked");
495     return !modelLocked;
496 }
497 
endResync()498 void DispSync::endResync() {
499 }
500 
addEventListener(const char * name,nsecs_t phase,const sp<Callback> & callback)501 status_t DispSync::addEventListener(const char* name, nsecs_t phase,
502         const sp<Callback>& callback) {
503     Mutex::Autolock lock(mMutex);
504     return mThread->addEventListener(name, phase, callback);
505 }
506 
setRefreshSkipCount(int count)507 void DispSync::setRefreshSkipCount(int count) {
508     Mutex::Autolock lock(mMutex);
509     ALOGD("setRefreshSkipCount(%d)", count);
510     mRefreshSkipCount = count;
511     updateModelLocked();
512 }
513 
removeEventListener(const sp<Callback> & callback)514 status_t DispSync::removeEventListener(const sp<Callback>& callback) {
515     Mutex::Autolock lock(mMutex);
516     return mThread->removeEventListener(callback);
517 }
518 
setPeriod(nsecs_t period)519 void DispSync::setPeriod(nsecs_t period) {
520     Mutex::Autolock lock(mMutex);
521     mPeriod = period;
522     mPhase = 0;
523     mReferenceTime = 0;
524     mThread->updateModel(mPeriod, mPhase, mReferenceTime);
525 }
526 
getPeriod()527 nsecs_t DispSync::getPeriod() {
528     // lock mutex as mPeriod changes multiple times in updateModelLocked
529     Mutex::Autolock lock(mMutex);
530     return mPeriod;
531 }
532 
updateModelLocked()533 void DispSync::updateModelLocked() {
534     ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples);
535     if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
536         ALOGV("[%s] Computing...", mName);
537         nsecs_t durationSum = 0;
538         nsecs_t minDuration = INT64_MAX;
539         nsecs_t maxDuration = 0;
540         for (size_t i = 1; i < mNumResyncSamples; i++) {
541             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
542             size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
543             nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev];
544             durationSum += duration;
545             minDuration = min(minDuration, duration);
546             maxDuration = max(maxDuration, duration);
547         }
548 
549         // Exclude the min and max from the average
550         durationSum -= minDuration + maxDuration;
551         mPeriod = durationSum / (mNumResyncSamples - 3);
552 
553         ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod));
554 
555         double sampleAvgX = 0;
556         double sampleAvgY = 0;
557         double scale = 2.0 * M_PI / double(mPeriod);
558         // Intentionally skip the first sample
559         for (size_t i = 1; i < mNumResyncSamples; i++) {
560             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
561             nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
562             double samplePhase = double(sample % mPeriod) * scale;
563             sampleAvgX += cos(samplePhase);
564             sampleAvgY += sin(samplePhase);
565         }
566 
567         sampleAvgX /= double(mNumResyncSamples - 1);
568         sampleAvgY /= double(mNumResyncSamples - 1);
569 
570         mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
571 
572         ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase));
573 
574         if (mPhase < -(mPeriod / 2)) {
575             mPhase += mPeriod;
576             ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase));
577         }
578 
579         if (kTraceDetailedInfo) {
580             ATRACE_INT64("DispSync:Period", mPeriod);
581             ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2);
582         }
583 
584         // Artificially inflate the period if requested.
585         mPeriod += mPeriod * mRefreshSkipCount;
586 
587         mThread->updateModel(mPeriod, mPhase, mReferenceTime);
588         mModelUpdated = true;
589     }
590 }
591 
updateErrorLocked()592 void DispSync::updateErrorLocked() {
593     if (!mModelUpdated) {
594         return;
595     }
596 
597     // Need to compare present fences against the un-adjusted refresh period,
598     // since they might arrive between two events.
599     nsecs_t period = mPeriod / (1 + mRefreshSkipCount);
600 
601     int numErrSamples = 0;
602     nsecs_t sqErrSum = 0;
603 
604     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
605         nsecs_t sample = mPresentTimes[i] - mReferenceTime;
606         if (sample > mPhase) {
607             nsecs_t sampleErr = (sample - mPhase) % period;
608             if (sampleErr > period / 2) {
609                 sampleErr -= period;
610             }
611             sqErrSum += sampleErr * sampleErr;
612             numErrSamples++;
613         }
614     }
615 
616     if (numErrSamples > 0) {
617         mError = sqErrSum / numErrSamples;
618     } else {
619         mError = 0;
620     }
621 
622     if (kTraceDetailedInfo) {
623         ATRACE_INT64("DispSync:Error", mError);
624     }
625 }
626 
resetErrorLocked()627 void DispSync::resetErrorLocked() {
628     mPresentSampleOffset = 0;
629     mError = 0;
630     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
631         mPresentFences[i].clear();
632         mPresentTimes[i] = 0;
633     }
634 }
635 
computeNextRefresh(int periodOffset) const636 nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
637     Mutex::Autolock lock(mMutex);
638     nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
639     nsecs_t phase = mReferenceTime + mPhase;
640     return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
641 }
642 
dump(String8 & result) const643 void DispSync::dump(String8& result) const {
644     Mutex::Autolock lock(mMutex);
645     result.appendFormat("present fences are %s\n",
646             mIgnorePresentFences ? "ignored" : "used");
647     result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n",
648             mPeriod, 1000000000.0 / mPeriod, mRefreshSkipCount);
649     result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase);
650     result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n",
651             mError, sqrt(mError));
652     result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n",
653             mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
654     result.appendFormat("mNumResyncSamples: %zd (max %d)\n",
655             mNumResyncSamples, MAX_RESYNC_SAMPLES);
656 
657     result.appendFormat("mResyncSamples:\n");
658     nsecs_t previous = -1;
659     for (size_t i = 0; i < mNumResyncSamples; i++) {
660         size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
661         nsecs_t sampleTime = mResyncSamples[idx];
662         if (i == 0) {
663             result.appendFormat("  %" PRId64 "\n", sampleTime);
664         } else {
665             result.appendFormat("  %" PRId64 " (+%" PRId64 ")\n",
666                     sampleTime, sampleTime - previous);
667         }
668         previous = sampleTime;
669     }
670 
671     result.appendFormat("mPresentFences / mPresentTimes [%d]:\n",
672             NUM_PRESENT_SAMPLES);
673     nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
674     previous = 0;
675     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
676         size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
677         bool signaled = mPresentFences[idx] == NULL;
678         nsecs_t presentTime = mPresentTimes[idx];
679         if (!signaled) {
680             result.appendFormat("  [unsignaled fence]\n");
681         } else if (presentTime == 0) {
682             result.appendFormat("  0\n");
683         } else if (previous == 0) {
684             result.appendFormat("  %" PRId64 "  (%.3f ms ago)\n", presentTime,
685                     (now - presentTime) / 1000000.0);
686         } else {
687             result.appendFormat("  %" PRId64 " (+%" PRId64 " / %.3f)  (%.3f ms ago)\n",
688                     presentTime, presentTime - previous,
689                     (presentTime - previous) / (double) mPeriod,
690                     (now - presentTime) / 1000000.0);
691         }
692         previous = presentTime;
693     }
694 
695     result.appendFormat("current monotonic time: %" PRId64 "\n", now);
696 }
697 
698 } // namespace android
699