• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // resolve.cc -- symbol resolution for gold
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30 
31 namespace gold
32 {
33 
34 // Symbol methods used in this file.
35 
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION.  Update the VERSION_ field accordingly.
38 
39 inline void
override_version(const char * version)40 Symbol::override_version(const char* version)
41 {
42   if (version == NULL)
43     {
44       // This is the case where this symbol is NAME/VERSION, and the
45       // version was not marked as hidden.  That makes it the default
46       // version, so we create NAME/NULL.  Later we see another symbol
47       // NAME/NULL, and that symbol is overriding this one.  In this
48       // case, since NAME/VERSION is the default, we make NAME/NULL
49       // override NAME/VERSION as well.  They are already the same
50       // Symbol structure.  Setting the VERSION_ field to NULL ensures
51       // that it will be output with the correct, empty, version.
52       this->version_ = version;
53     }
54   else
55     {
56       // This is the case where this symbol is NAME/VERSION_ONE, and
57       // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58       // overriding NAME.  If VERSION_ONE and VERSION_TWO are
59       // different, then this can only happen when VERSION_ONE is NULL
60       // and VERSION_TWO is not hidden.
61       gold_assert(this->version_ == version || this->version_ == NULL);
62       this->version_ = version;
63     }
64 }
65 
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
68 
69 inline void
override_visibility(elfcpp::STV visibility)70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72   // The rule for combining visibility is that we always choose the
73   // most constrained visibility.  In order of increasing constraint,
74   // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
75   // of the numeric values, so the effect is that we always want the
76   // smallest non-zero value.
77   if (visibility != elfcpp::STV_DEFAULT)
78     {
79       if (this->visibility_ == elfcpp::STV_DEFAULT)
80 	this->visibility_ = visibility;
81       else if (this->visibility_ > visibility)
82 	this->visibility_ = visibility;
83     }
84 }
85 
86 // Override the fields in Symbol.
87 
88 template<int size, bool big_endian>
89 void
override_base(const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 		      unsigned int st_shndx, bool is_ordinary,
92 		      Object* object, const char* version)
93 {
94   gold_assert(this->source_ == FROM_OBJECT);
95   this->u_.from_object.object = object;
96   this->override_version(version);
97   this->u_.from_object.shndx = st_shndx;
98   this->is_ordinary_shndx_ = is_ordinary;
99   // Don't override st_type from plugin placeholder symbols.
100   if (object->pluginobj() == NULL)
101     this->type_ = sym.get_st_type();
102   this->binding_ = sym.get_st_bind();
103   this->override_visibility(sym.get_st_visibility());
104   this->nonvis_ = sym.get_st_nonvis();
105   if (object->is_dynamic())
106     this->in_dyn_ = true;
107   else
108     this->in_reg_ = true;
109 }
110 
111 // Override the fields in Sized_symbol.
112 
113 template<int size>
114 template<bool big_endian>
115 void
override(const elfcpp::Sym<size,big_endian> & sym,unsigned st_shndx,bool is_ordinary,Object * object,const char * version)116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 			     unsigned st_shndx, bool is_ordinary,
118 			     Object* object, const char* version)
119 {
120   this->override_base(sym, st_shndx, is_ordinary, object, version);
121   this->value_ = sym.get_st_value();
122   this->symsize_ = sym.get_st_size();
123 }
124 
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION.  This handles all aliases of TOSYM.
127 
128 template<int size, bool big_endian>
129 void
override(Sized_symbol<size> * tosym,const elfcpp::Sym<size,big_endian> & fromsym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)130 Symbol_table::override(Sized_symbol<size>* tosym,
131 		       const elfcpp::Sym<size, big_endian>& fromsym,
132 		       unsigned int st_shndx, bool is_ordinary,
133 		       Object* object, const char* version)
134 {
135   tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136   if (tosym->has_alias())
137     {
138       Symbol* sym = this->weak_aliases_[tosym];
139       gold_assert(sym != NULL);
140       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141       do
142 	{
143 	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 	  sym = this->weak_aliases_[ssym];
145 	  gold_assert(sym != NULL);
146 	  ssym = this->get_sized_symbol<size>(sym);
147 	}
148       while (ssym != tosym);
149     }
150 }
151 
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157 
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161 
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165 
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170 
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173 
174 static unsigned int
symbol_to_bits(elfcpp::STB binding,bool is_dynamic,unsigned int shndx,bool is_ordinary,elfcpp::STT type)175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 	       unsigned int shndx, bool is_ordinary, elfcpp::STT type)
177 {
178   unsigned int bits;
179 
180   switch (binding)
181     {
182     case elfcpp::STB_GLOBAL:
183     case elfcpp::STB_GNU_UNIQUE:
184       bits = global_flag;
185       break;
186 
187     case elfcpp::STB_WEAK:
188       bits = weak_flag;
189       break;
190 
191     case elfcpp::STB_LOCAL:
192       // We should only see externally visible symbols in the symbol
193       // table.
194       gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195       bits = global_flag;
196 
197     default:
198       // Any target which wants to handle STB_LOOS, etc., needs to
199       // define a resolve method.
200       gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201       bits = global_flag;
202     }
203 
204   if (is_dynamic)
205     bits |= dynamic_flag;
206   else
207     bits |= regular_flag;
208 
209   switch (shndx)
210     {
211     case elfcpp::SHN_UNDEF:
212       bits |= undef_flag;
213       break;
214 
215     case elfcpp::SHN_COMMON:
216       if (!is_ordinary)
217 	bits |= common_flag;
218       break;
219 
220     default:
221       if (type == elfcpp::STT_COMMON)
222 	bits |= common_flag;
223       else if (!is_ordinary && Symbol::is_common_shndx(shndx))
224 	bits |= common_flag;
225       else
226         bits |= def_flag;
227       break;
228     }
229 
230   return bits;
231 }
232 
233 // Resolve a symbol.  This is called the second and subsequent times
234 // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
235 // section index for SYM, possibly adjusted for many sections.
236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237 // than a special code.  ORIG_ST_SHNDX is the original section index,
238 // before any munging because of discarded sections, except that all
239 // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
240 // the version of SYM.
241 
242 template<int size, bool big_endian>
243 void
resolve(Sized_symbol<size> * to,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,unsigned int orig_st_shndx,Object * object,const char * version)244 Symbol_table::resolve(Sized_symbol<size>* to,
245 		      const elfcpp::Sym<size, big_endian>& sym,
246 		      unsigned int st_shndx, bool is_ordinary,
247 		      unsigned int orig_st_shndx,
248 		      Object* object, const char* version)
249 {
250   // It's possible for a symbol to be defined in an object file
251   // using .symver to give it a version, and for there to also be
252   // a linker script giving that symbol the same version.  We
253   // don't want to give a multiple-definition error for this
254   // harmless redefinition.
255   bool to_is_ordinary;
256   if (to->source() == Symbol::FROM_OBJECT
257       && to->object() == object
258       && is_ordinary
259       && to->is_defined()
260       && to->shndx(&to_is_ordinary) == st_shndx
261       && to_is_ordinary
262       && to->value() == sym.get_st_value())
263     return;
264 
265   if (parameters->target().has_resolve())
266     {
267       Sized_target<size, big_endian>* sized_target;
268       sized_target = parameters->sized_target<size, big_endian>();
269       sized_target->resolve(to, sym, object, version);
270       return;
271     }
272 
273   if (!object->is_dynamic())
274     {
275       // Record that we've seen this symbol in a regular object.
276       to->set_in_reg();
277     }
278   else if (st_shndx == elfcpp::SHN_UNDEF
279            && (to->visibility() == elfcpp::STV_HIDDEN
280                || to->visibility() == elfcpp::STV_INTERNAL))
281     {
282       // The symbol is hidden, so a reference from a shared object
283       // cannot bind to it.  We tried issuing a warning in this case,
284       // but that produces false positives when the symbol is
285       // actually resolved in a different shared object (PR 15574).
286       return;
287     }
288   else
289     {
290       // Record that we've seen this symbol in a dynamic object.
291       to->set_in_dyn();
292     }
293 
294   // Record if we've seen this symbol in a real ELF object (i.e., the
295   // symbol is referenced from outside the world known to the plugin).
296   if (object->pluginobj() == NULL && !object->is_dynamic())
297     to->set_in_real_elf();
298 
299   // If we're processing replacement files, allow new symbols to override
300   // the placeholders from the plugin objects.
301   // Treat common symbols specially since it is possible that an ELF
302   // file increased the size of the alignment.
303   if (to->source() == Symbol::FROM_OBJECT)
304     {
305       Pluginobj* obj = to->object()->pluginobj();
306       if (obj != NULL
307           && parameters->options().plugins()->in_replacement_phase())
308         {
309 	  bool adjust_common = false;
310 	  typename Sized_symbol<size>::Size_type tosize = 0;
311 	  typename Sized_symbol<size>::Value_type tovalue = 0;
312 	  if (to->is_common() && !is_ordinary && st_shndx == elfcpp::SHN_COMMON)
313 	    {
314 	      adjust_common = true;
315 	      tosize = to->symsize();
316 	      tovalue = to->value();
317 	    }
318 	  this->override(to, sym, st_shndx, is_ordinary, object, version);
319 	  if (adjust_common)
320 	    {
321 	      if (tosize > to->symsize())
322 		to->set_symsize(tosize);
323 	      if (tovalue > to->value())
324 		to->set_value(tovalue);
325 	    }
326 	  return;
327         }
328     }
329 
330   // A new weak undefined reference, merging with an old weak
331   // reference, could be a One Definition Rule (ODR) violation --
332   // especially if the types or sizes of the references differ.  We'll
333   // store such pairs and look them up later to make sure they
334   // actually refer to the same lines of code.  We also check
335   // combinations of weak and strong, which might occur if one case is
336   // inline and the other is not.  (Note: not all ODR violations can
337   // be found this way, and not everything this finds is an ODR
338   // violation.  But it's helpful to warn about.)
339   if (parameters->options().detect_odr_violations()
340       && (sym.get_st_bind() == elfcpp::STB_WEAK
341 	  || to->binding() == elfcpp::STB_WEAK)
342       && orig_st_shndx != elfcpp::SHN_UNDEF
343       && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
344       && to_is_ordinary
345       && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
346       && to->symsize() != 0
347       && (sym.get_st_type() != to->type()
348           || sym.get_st_size() != to->symsize())
349       // C does not have a concept of ODR, so we only need to do this
350       // on C++ symbols.  These have (mangled) names starting with _Z.
351       && to->name()[0] == '_' && to->name()[1] == 'Z')
352     {
353       Symbol_location fromloc
354           = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
355       Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
356 				static_cast<off_t>(to->value()) };
357       this->candidate_odr_violations_[to->name()].insert(fromloc);
358       this->candidate_odr_violations_[to->name()].insert(toloc);
359     }
360 
361   // Plugins don't provide a symbol type, so adopt the existing type
362   // if the FROM symbol is from a plugin.
363   elfcpp::STT fromtype = (object->pluginobj() != NULL
364 			  ? to->type()
365 			  : sym.get_st_type());
366   unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
367                                          object->is_dynamic(),
368 					 st_shndx, is_ordinary,
369                                          fromtype);
370 
371   bool adjust_common_sizes;
372   bool adjust_dyndef;
373   typename Sized_symbol<size>::Size_type tosize = to->symsize();
374   if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
375 				    object, &adjust_common_sizes,
376 				    &adjust_dyndef))
377     {
378       elfcpp::STB tobinding = to->binding();
379       typename Sized_symbol<size>::Value_type tovalue = to->value();
380       this->override(to, sym, st_shndx, is_ordinary, object, version);
381       if (adjust_common_sizes)
382 	{
383 	  if (tosize > to->symsize())
384 	    to->set_symsize(tosize);
385 	  if (tovalue > to->value())
386 	    to->set_value(tovalue);
387 	}
388       if (adjust_dyndef)
389 	{
390 	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
391 	  // Remember which kind of UNDEF it was for future reference.
392 	  to->set_undef_binding(tobinding);
393 	}
394     }
395   else
396     {
397       if (adjust_common_sizes)
398 	{
399 	  if (sym.get_st_size() > tosize)
400 	    to->set_symsize(sym.get_st_size());
401 	  if (sym.get_st_value() > to->value())
402 	    to->set_value(sym.get_st_value());
403 	}
404       if (adjust_dyndef)
405 	{
406 	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
407 	  // Remember which kind of UNDEF it was.
408 	  to->set_undef_binding(sym.get_st_bind());
409 	}
410       // The ELF ABI says that even for a reference to a symbol we
411       // merge the visibility.
412       to->override_visibility(sym.get_st_visibility());
413     }
414 
415   if (adjust_common_sizes && parameters->options().warn_common())
416     {
417       if (tosize > sym.get_st_size())
418 	Symbol_table::report_resolve_problem(false,
419 					     _("common of '%s' overriding "
420 					       "smaller common"),
421 					     to, OBJECT, object);
422       else if (tosize < sym.get_st_size())
423 	Symbol_table::report_resolve_problem(false,
424 					     _("common of '%s' overidden by "
425 					       "larger common"),
426 					     to, OBJECT, object);
427       else
428 	Symbol_table::report_resolve_problem(false,
429 					     _("multiple common of '%s'"),
430 					     to, OBJECT, object);
431     }
432 }
433 
434 // Handle the core of symbol resolution.  This is called with the
435 // existing symbol, TO, and a bitflag describing the new symbol.  This
436 // returns true if we should override the existing symbol with the new
437 // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
438 // true if we should set the symbol size to the maximum of the TO and
439 // FROM sizes.  It handles error conditions.
440 
441 bool
should_override(const Symbol * to,unsigned int frombits,elfcpp::STT fromtype,Defined defined,Object * object,bool * adjust_common_sizes,bool * adjust_dyndef)442 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
443 			      elfcpp::STT fromtype, Defined defined,
444 			      Object* object, bool* adjust_common_sizes,
445 			      bool* adjust_dyndef)
446 {
447   *adjust_common_sizes = false;
448   *adjust_dyndef = false;
449 
450   unsigned int tobits;
451   if (to->source() == Symbol::IS_UNDEFINED)
452     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
453 			    to->type());
454   else if (to->source() != Symbol::FROM_OBJECT)
455     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
456 			    to->type());
457   else
458     {
459       bool is_ordinary;
460       unsigned int shndx = to->shndx(&is_ordinary);
461       tobits = symbol_to_bits(to->binding(),
462 			      to->object()->is_dynamic(),
463 			      shndx,
464 			      is_ordinary,
465 			      to->type());
466     }
467 
468   if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
469       && !to->is_placeholder())
470     Symbol_table::report_resolve_problem(true,
471 					 _("symbol '%s' used as both __thread "
472 					   "and non-__thread"),
473 					 to, defined, object);
474 
475   // We use a giant switch table for symbol resolution.  This code is
476   // unwieldy, but: 1) it is efficient; 2) we definitely handle all
477   // cases; 3) it is easy to change the handling of a particular case.
478   // The alternative would be a series of conditionals, but it is easy
479   // to get the ordering wrong.  This could also be done as a table,
480   // but that is no easier to understand than this large switch
481   // statement.
482 
483   // These are the values generated by the bit codes.
484   enum
485   {
486     DEF =              global_flag | regular_flag | def_flag,
487     WEAK_DEF =         weak_flag   | regular_flag | def_flag,
488     DYN_DEF =          global_flag | dynamic_flag | def_flag,
489     DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
490     UNDEF =            global_flag | regular_flag | undef_flag,
491     WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
492     DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
493     DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
494     COMMON =           global_flag | regular_flag | common_flag,
495     WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
496     DYN_COMMON =       global_flag | dynamic_flag | common_flag,
497     DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
498   };
499 
500   switch (tobits * 16 + frombits)
501     {
502     case DEF * 16 + DEF:
503       // Two definitions of the same symbol.
504 
505       // If either symbol is defined by an object included using
506       // --just-symbols, then don't warn.  This is for compatibility
507       // with the GNU linker.  FIXME: This is a hack.
508       if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
509           || (object != NULL && object->just_symbols()))
510         return false;
511 
512       if (!parameters->options().muldefs())
513 	Symbol_table::report_resolve_problem(true,
514 					     _("multiple definition of '%s'"),
515 					     to, defined, object);
516       return false;
517 
518     case WEAK_DEF * 16 + DEF:
519       // We've seen a weak definition, and now we see a strong
520       // definition.  In the original SVR4 linker, this was treated as
521       // a multiple definition error.  In the Solaris linker and the
522       // GNU linker, a weak definition followed by a regular
523       // definition causes the weak definition to be overridden.  We
524       // are currently compatible with the GNU linker.  In the future
525       // we should add a target specific option to change this.
526       // FIXME.
527       return true;
528 
529     case DYN_DEF * 16 + DEF:
530     case DYN_WEAK_DEF * 16 + DEF:
531       // We've seen a definition in a dynamic object, and now we see a
532       // definition in a regular object.  The definition in the
533       // regular object overrides the definition in the dynamic
534       // object.
535       return true;
536 
537     case UNDEF * 16 + DEF:
538     case WEAK_UNDEF * 16 + DEF:
539     case DYN_UNDEF * 16 + DEF:
540     case DYN_WEAK_UNDEF * 16 + DEF:
541       // We've seen an undefined reference, and now we see a
542       // definition.  We use the definition.
543       return true;
544 
545     case COMMON * 16 + DEF:
546     case WEAK_COMMON * 16 + DEF:
547     case DYN_COMMON * 16 + DEF:
548     case DYN_WEAK_COMMON * 16 + DEF:
549       // We've seen a common symbol and now we see a definition.  The
550       // definition overrides.
551       if (parameters->options().warn_common())
552 	Symbol_table::report_resolve_problem(false,
553 					     _("definition of '%s' overriding "
554 					       "common"),
555 					     to, defined, object);
556       return true;
557 
558     case DEF * 16 + WEAK_DEF:
559     case WEAK_DEF * 16 + WEAK_DEF:
560       // We've seen a definition and now we see a weak definition.  We
561       // ignore the new weak definition.
562       return false;
563 
564     case DYN_DEF * 16 + WEAK_DEF:
565     case DYN_WEAK_DEF * 16 + WEAK_DEF:
566       // We've seen a dynamic definition and now we see a regular weak
567       // definition.  The regular weak definition overrides.
568       return true;
569 
570     case UNDEF * 16 + WEAK_DEF:
571     case WEAK_UNDEF * 16 + WEAK_DEF:
572     case DYN_UNDEF * 16 + WEAK_DEF:
573     case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
574       // A weak definition of a currently undefined symbol.
575       return true;
576 
577     case COMMON * 16 + WEAK_DEF:
578     case WEAK_COMMON * 16 + WEAK_DEF:
579       // A weak definition does not override a common definition.
580       return false;
581 
582     case DYN_COMMON * 16 + WEAK_DEF:
583     case DYN_WEAK_COMMON * 16 + WEAK_DEF:
584       // A weak definition does override a definition in a dynamic
585       // object.
586       if (parameters->options().warn_common())
587 	Symbol_table::report_resolve_problem(false,
588 					     _("definition of '%s' overriding "
589 					       "dynamic common definition"),
590 					     to, defined, object);
591       return true;
592 
593     case DEF * 16 + DYN_DEF:
594     case WEAK_DEF * 16 + DYN_DEF:
595     case DYN_DEF * 16 + DYN_DEF:
596     case DYN_WEAK_DEF * 16 + DYN_DEF:
597       // Ignore a dynamic definition if we already have a definition.
598       return false;
599 
600     case UNDEF * 16 + DYN_DEF:
601     case DYN_UNDEF * 16 + DYN_DEF:
602     case DYN_WEAK_UNDEF * 16 + DYN_DEF:
603       // Use a dynamic definition if we have a reference.
604       return true;
605 
606     case WEAK_UNDEF * 16 + DYN_DEF:
607       // When overriding a weak undef by a dynamic definition,
608       // we need to remember that the original undef was weak.
609       *adjust_dyndef = true;
610       return true;
611 
612     case COMMON * 16 + DYN_DEF:
613     case WEAK_COMMON * 16 + DYN_DEF:
614     case DYN_COMMON * 16 + DYN_DEF:
615     case DYN_WEAK_COMMON * 16 + DYN_DEF:
616       // Ignore a dynamic definition if we already have a common
617       // definition.
618       return false;
619 
620     case DEF * 16 + DYN_WEAK_DEF:
621     case WEAK_DEF * 16 + DYN_WEAK_DEF:
622     case DYN_DEF * 16 + DYN_WEAK_DEF:
623     case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
624       // Ignore a weak dynamic definition if we already have a
625       // definition.
626       return false;
627 
628     case UNDEF * 16 + DYN_WEAK_DEF:
629       // When overriding an undef by a dynamic weak definition,
630       // we need to remember that the original undef was not weak.
631       *adjust_dyndef = true;
632       return true;
633 
634     case DYN_UNDEF * 16 + DYN_WEAK_DEF:
635     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
636       // Use a weak dynamic definition if we have a reference.
637       return true;
638 
639     case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
640       // When overriding a weak undef by a dynamic definition,
641       // we need to remember that the original undef was weak.
642       *adjust_dyndef = true;
643       return true;
644 
645     case COMMON * 16 + DYN_WEAK_DEF:
646     case WEAK_COMMON * 16 + DYN_WEAK_DEF:
647     case DYN_COMMON * 16 + DYN_WEAK_DEF:
648     case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
649       // Ignore a weak dynamic definition if we already have a common
650       // definition.
651       return false;
652 
653     case DEF * 16 + UNDEF:
654     case WEAK_DEF * 16 + UNDEF:
655     case UNDEF * 16 + UNDEF:
656       // A new undefined reference tells us nothing.
657       return false;
658 
659     case DYN_DEF * 16 + UNDEF:
660     case DYN_WEAK_DEF * 16 + UNDEF:
661       // For a dynamic def, we need to remember which kind of undef we see.
662       *adjust_dyndef = true;
663       return false;
664 
665     case WEAK_UNDEF * 16 + UNDEF:
666     case DYN_UNDEF * 16 + UNDEF:
667     case DYN_WEAK_UNDEF * 16 + UNDEF:
668       // A strong undef overrides a dynamic or weak undef.
669       return true;
670 
671     case COMMON * 16 + UNDEF:
672     case WEAK_COMMON * 16 + UNDEF:
673     case DYN_COMMON * 16 + UNDEF:
674     case DYN_WEAK_COMMON * 16 + UNDEF:
675       // A new undefined reference tells us nothing.
676       return false;
677 
678     case DEF * 16 + WEAK_UNDEF:
679     case WEAK_DEF * 16 + WEAK_UNDEF:
680     case UNDEF * 16 + WEAK_UNDEF:
681     case WEAK_UNDEF * 16 + WEAK_UNDEF:
682     case DYN_UNDEF * 16 + WEAK_UNDEF:
683     case COMMON * 16 + WEAK_UNDEF:
684     case WEAK_COMMON * 16 + WEAK_UNDEF:
685     case DYN_COMMON * 16 + WEAK_UNDEF:
686     case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
687       // A new weak undefined reference tells us nothing unless the
688       // exisiting symbol is a dynamic weak reference.
689       return false;
690 
691     case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
692       // A new weak reference overrides an existing dynamic weak reference.
693       // This is necessary because a dynamic weak reference remembers
694       // the old binding, which may not be weak.  If we keeps the existing
695       // dynamic weak reference, the weakness may be dropped in the output.
696       return true;
697 
698     case DYN_DEF * 16 + WEAK_UNDEF:
699     case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
700       // For a dynamic def, we need to remember which kind of undef we see.
701       *adjust_dyndef = true;
702       return false;
703 
704     case DEF * 16 + DYN_UNDEF:
705     case WEAK_DEF * 16 + DYN_UNDEF:
706     case DYN_DEF * 16 + DYN_UNDEF:
707     case DYN_WEAK_DEF * 16 + DYN_UNDEF:
708     case UNDEF * 16 + DYN_UNDEF:
709     case WEAK_UNDEF * 16 + DYN_UNDEF:
710     case DYN_UNDEF * 16 + DYN_UNDEF:
711     case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
712     case COMMON * 16 + DYN_UNDEF:
713     case WEAK_COMMON * 16 + DYN_UNDEF:
714     case DYN_COMMON * 16 + DYN_UNDEF:
715     case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
716       // A new dynamic undefined reference tells us nothing.
717       return false;
718 
719     case DEF * 16 + DYN_WEAK_UNDEF:
720     case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
721     case DYN_DEF * 16 + DYN_WEAK_UNDEF:
722     case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
723     case UNDEF * 16 + DYN_WEAK_UNDEF:
724     case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
725     case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
726     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
727     case COMMON * 16 + DYN_WEAK_UNDEF:
728     case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
729     case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
730     case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
731       // A new weak dynamic undefined reference tells us nothing.
732       return false;
733 
734     case DEF * 16 + COMMON:
735       // A common symbol does not override a definition.
736       if (parameters->options().warn_common())
737 	Symbol_table::report_resolve_problem(false,
738 					     _("common '%s' overridden by "
739 					       "previous definition"),
740 					     to, defined, object);
741       return false;
742 
743     case WEAK_DEF * 16 + COMMON:
744     case DYN_DEF * 16 + COMMON:
745     case DYN_WEAK_DEF * 16 + COMMON:
746       // A common symbol does override a weak definition or a dynamic
747       // definition.
748       return true;
749 
750     case UNDEF * 16 + COMMON:
751     case WEAK_UNDEF * 16 + COMMON:
752     case DYN_UNDEF * 16 + COMMON:
753     case DYN_WEAK_UNDEF * 16 + COMMON:
754       // A common symbol is a definition for a reference.
755       return true;
756 
757     case COMMON * 16 + COMMON:
758       // Set the size to the maximum.
759       *adjust_common_sizes = true;
760       return false;
761 
762     case WEAK_COMMON * 16 + COMMON:
763       // I'm not sure just what a weak common symbol means, but
764       // presumably it can be overridden by a regular common symbol.
765       return true;
766 
767     case DYN_COMMON * 16 + COMMON:
768     case DYN_WEAK_COMMON * 16 + COMMON:
769       // Use the real common symbol, but adjust the size if necessary.
770       *adjust_common_sizes = true;
771       return true;
772 
773     case DEF * 16 + WEAK_COMMON:
774     case WEAK_DEF * 16 + WEAK_COMMON:
775     case DYN_DEF * 16 + WEAK_COMMON:
776     case DYN_WEAK_DEF * 16 + WEAK_COMMON:
777       // Whatever a weak common symbol is, it won't override a
778       // definition.
779       return false;
780 
781     case UNDEF * 16 + WEAK_COMMON:
782     case WEAK_UNDEF * 16 + WEAK_COMMON:
783     case DYN_UNDEF * 16 + WEAK_COMMON:
784     case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
785       // A weak common symbol is better than an undefined symbol.
786       return true;
787 
788     case COMMON * 16 + WEAK_COMMON:
789     case WEAK_COMMON * 16 + WEAK_COMMON:
790     case DYN_COMMON * 16 + WEAK_COMMON:
791     case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
792       // Ignore a weak common symbol in the presence of a real common
793       // symbol.
794       return false;
795 
796     case DEF * 16 + DYN_COMMON:
797     case WEAK_DEF * 16 + DYN_COMMON:
798     case DYN_DEF * 16 + DYN_COMMON:
799     case DYN_WEAK_DEF * 16 + DYN_COMMON:
800       // Ignore a dynamic common symbol in the presence of a
801       // definition.
802       return false;
803 
804     case UNDEF * 16 + DYN_COMMON:
805     case WEAK_UNDEF * 16 + DYN_COMMON:
806     case DYN_UNDEF * 16 + DYN_COMMON:
807     case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
808       // A dynamic common symbol is a definition of sorts.
809       return true;
810 
811     case COMMON * 16 + DYN_COMMON:
812     case WEAK_COMMON * 16 + DYN_COMMON:
813     case DYN_COMMON * 16 + DYN_COMMON:
814     case DYN_WEAK_COMMON * 16 + DYN_COMMON:
815       // Set the size to the maximum.
816       *adjust_common_sizes = true;
817       return false;
818 
819     case DEF * 16 + DYN_WEAK_COMMON:
820     case WEAK_DEF * 16 + DYN_WEAK_COMMON:
821     case DYN_DEF * 16 + DYN_WEAK_COMMON:
822     case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
823       // A common symbol is ignored in the face of a definition.
824       return false;
825 
826     case UNDEF * 16 + DYN_WEAK_COMMON:
827     case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
828     case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
829     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
830       // I guess a weak common symbol is better than a definition.
831       return true;
832 
833     case COMMON * 16 + DYN_WEAK_COMMON:
834     case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
835     case DYN_COMMON * 16 + DYN_WEAK_COMMON:
836     case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
837       // Set the size to the maximum.
838       *adjust_common_sizes = true;
839       return false;
840 
841     default:
842       gold_unreachable();
843     }
844 }
845 
846 // Issue an error or warning due to symbol resolution.  IS_ERROR
847 // indicates an error rather than a warning.  MSG is the error
848 // message; it is expected to have a %s for the symbol name.  TO is
849 // the existing symbol.  DEFINED/OBJECT is where the new symbol was
850 // found.
851 
852 // FIXME: We should have better location information here.  When the
853 // symbol is defined, we should be able to pull the location from the
854 // debug info if there is any.
855 
856 void
report_resolve_problem(bool is_error,const char * msg,const Symbol * to,Defined defined,Object * object)857 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
858 				     const Symbol* to, Defined defined,
859 				     Object* object)
860 {
861   std::string demangled(to->demangled_name());
862   size_t len = strlen(msg) + demangled.length() + 10;
863   char* buf = new char[len];
864   snprintf(buf, len, msg, demangled.c_str());
865 
866   const char* objname;
867   switch (defined)
868     {
869     case OBJECT:
870       objname = object->name().c_str();
871       break;
872     case COPY:
873       objname = _("COPY reloc");
874       break;
875     case DEFSYM:
876     case UNDEFINED:
877       objname = _("command line");
878       break;
879     case SCRIPT:
880       objname = _("linker script");
881       break;
882     case PREDEFINED:
883     case INCREMENTAL_BASE:
884       objname = _("linker defined");
885       break;
886     default:
887       gold_unreachable();
888     }
889 
890   if (is_error)
891     gold_error("%s: %s", objname, buf);
892   else
893     gold_warning("%s: %s", objname, buf);
894 
895   delete[] buf;
896 
897   if (to->source() == Symbol::FROM_OBJECT)
898     objname = to->object()->name().c_str();
899   else
900     objname = _("command line");
901   gold_info("%s: %s: previous definition here", program_name, objname);
902 }
903 
904 // A special case of should_override which is only called for a strong
905 // defined symbol from a regular object file.  This is used when
906 // defining special symbols.
907 
908 bool
should_override_with_special(const Symbol * to,elfcpp::STT fromtype,Defined defined)909 Symbol_table::should_override_with_special(const Symbol* to,
910 					   elfcpp::STT fromtype,
911 					   Defined defined)
912 {
913   bool adjust_common_sizes;
914   bool adjust_dyn_def;
915   unsigned int frombits = global_flag | regular_flag | def_flag;
916   bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
917 					   NULL, &adjust_common_sizes,
918 					   &adjust_dyn_def);
919   gold_assert(!adjust_common_sizes && !adjust_dyn_def);
920   return ret;
921 }
922 
923 // Override symbol base with a special symbol.
924 
925 void
override_base_with_special(const Symbol * from)926 Symbol::override_base_with_special(const Symbol* from)
927 {
928   bool same_name = this->name_ == from->name_;
929   gold_assert(same_name || this->has_alias());
930 
931   // If we are overriding an undef, remember the original binding.
932   if (this->is_undefined())
933     this->set_undef_binding(this->binding_);
934 
935   this->source_ = from->source_;
936   switch (from->source_)
937     {
938     case FROM_OBJECT:
939       this->u_.from_object = from->u_.from_object;
940       break;
941     case IN_OUTPUT_DATA:
942       this->u_.in_output_data = from->u_.in_output_data;
943       break;
944     case IN_OUTPUT_SEGMENT:
945       this->u_.in_output_segment = from->u_.in_output_segment;
946       break;
947     case IS_CONSTANT:
948     case IS_UNDEFINED:
949       break;
950     default:
951       gold_unreachable();
952       break;
953     }
954 
955   if (same_name)
956     {
957       // When overriding a versioned symbol with a special symbol, we
958       // may be changing the version.  This will happen if we see a
959       // special symbol such as "_end" defined in a shared object with
960       // one version (from a version script), but we want to define it
961       // here with a different version (from a different version
962       // script).
963       this->version_ = from->version_;
964     }
965   this->type_ = from->type_;
966   this->binding_ = from->binding_;
967   this->override_visibility(from->visibility_);
968   this->nonvis_ = from->nonvis_;
969 
970   // Special symbols are always considered to be regular symbols.
971   this->in_reg_ = true;
972 
973   if (from->needs_dynsym_entry_)
974     this->needs_dynsym_entry_ = true;
975   if (from->needs_dynsym_value_)
976     this->needs_dynsym_value_ = true;
977 
978   this->is_predefined_ = from->is_predefined_;
979 
980   // We shouldn't see these flags.  If we do, we need to handle them
981   // somehow.
982   gold_assert(!from->is_forwarder_);
983   gold_assert(!from->has_plt_offset());
984   gold_assert(!from->has_warning_);
985   gold_assert(!from->is_copied_from_dynobj_);
986   gold_assert(!from->is_forced_local_);
987 }
988 
989 // Override a symbol with a special symbol.
990 
991 template<int size>
992 void
override_with_special(const Sized_symbol<size> * from)993 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
994 {
995   this->override_base_with_special(from);
996   this->value_ = from->value_;
997   this->symsize_ = from->symsize_;
998 }
999 
1000 // Override TOSYM with the special symbol FROMSYM.  This handles all
1001 // aliases of TOSYM.
1002 
1003 template<int size>
1004 void
override_with_special(Sized_symbol<size> * tosym,const Sized_symbol<size> * fromsym)1005 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1006 				    const Sized_symbol<size>* fromsym)
1007 {
1008   tosym->override_with_special(fromsym);
1009   if (tosym->has_alias())
1010     {
1011       Symbol* sym = this->weak_aliases_[tosym];
1012       gold_assert(sym != NULL);
1013       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1014       do
1015 	{
1016 	  ssym->override_with_special(fromsym);
1017 	  sym = this->weak_aliases_[ssym];
1018 	  gold_assert(sym != NULL);
1019 	  ssym = this->get_sized_symbol<size>(sym);
1020 	}
1021       while (ssym != tosym);
1022     }
1023   if (tosym->binding() == elfcpp::STB_LOCAL
1024       || ((tosym->visibility() == elfcpp::STV_HIDDEN
1025 	   || tosym->visibility() == elfcpp::STV_INTERNAL)
1026 	  && (tosym->binding() == elfcpp::STB_GLOBAL
1027 	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1028 	      || tosym->binding() == elfcpp::STB_WEAK)
1029 	  && !parameters->options().relocatable()))
1030     this->force_local(tosym);
1031 }
1032 
1033 // Instantiate the templates we need.  We could use the configure
1034 // script to restrict this to only the ones needed for implemented
1035 // targets.
1036 
1037 // We have to instantiate both big and little endian versions because
1038 // these are used by other templates that depends on size only.
1039 
1040 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1041 template
1042 void
1043 Symbol_table::resolve<32, false>(
1044     Sized_symbol<32>* to,
1045     const elfcpp::Sym<32, false>& sym,
1046     unsigned int st_shndx,
1047     bool is_ordinary,
1048     unsigned int orig_st_shndx,
1049     Object* object,
1050     const char* version);
1051 
1052 template
1053 void
1054 Symbol_table::resolve<32, true>(
1055     Sized_symbol<32>* to,
1056     const elfcpp::Sym<32, true>& sym,
1057     unsigned int st_shndx,
1058     bool is_ordinary,
1059     unsigned int orig_st_shndx,
1060     Object* object,
1061     const char* version);
1062 #endif
1063 
1064 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1065 template
1066 void
1067 Symbol_table::resolve<64, false>(
1068     Sized_symbol<64>* to,
1069     const elfcpp::Sym<64, false>& sym,
1070     unsigned int st_shndx,
1071     bool is_ordinary,
1072     unsigned int orig_st_shndx,
1073     Object* object,
1074     const char* version);
1075 
1076 template
1077 void
1078 Symbol_table::resolve<64, true>(
1079     Sized_symbol<64>* to,
1080     const elfcpp::Sym<64, true>& sym,
1081     unsigned int st_shndx,
1082     bool is_ordinary,
1083     unsigned int orig_st_shndx,
1084     Object* object,
1085     const char* version);
1086 #endif
1087 
1088 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1089 template
1090 void
1091 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1092 					const Sized_symbol<32>*);
1093 #endif
1094 
1095 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1096 template
1097 void
1098 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1099 					const Sized_symbol<64>*);
1100 #endif
1101 
1102 } // End namespace gold.
1103