1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
override_version(const char * version)40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
override_visibility(elfcpp::STV visibility)70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
override_base(const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
override(const elfcpp::Sym<size,big_endian> & sym,unsigned st_shndx,bool is_ordinary,Object * object,const char * version)116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
override(Sized_symbol<size> * tosym,const elfcpp::Sym<size,big_endian> & fromsym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
symbol_to_bits(elfcpp::STB binding,bool is_dynamic,unsigned int shndx,bool is_ordinary,elfcpp::STT type)175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
216 if (!is_ordinary)
217 bits |= common_flag;
218 break;
219
220 default:
221 if (type == elfcpp::STT_COMMON)
222 bits |= common_flag;
223 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
224 bits |= common_flag;
225 else
226 bits |= def_flag;
227 break;
228 }
229
230 return bits;
231 }
232
233 // Resolve a symbol. This is called the second and subsequent times
234 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
235 // section index for SYM, possibly adjusted for many sections.
236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237 // than a special code. ORIG_ST_SHNDX is the original section index,
238 // before any munging because of discarded sections, except that all
239 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
240 // the version of SYM.
241
242 template<int size, bool big_endian>
243 void
resolve(Sized_symbol<size> * to,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,unsigned int orig_st_shndx,Object * object,const char * version)244 Symbol_table::resolve(Sized_symbol<size>* to,
245 const elfcpp::Sym<size, big_endian>& sym,
246 unsigned int st_shndx, bool is_ordinary,
247 unsigned int orig_st_shndx,
248 Object* object, const char* version)
249 {
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
255 bool to_is_ordinary;
256 if (to->source() == Symbol::FROM_OBJECT
257 && to->object() == object
258 && is_ordinary
259 && to->is_defined()
260 && to->shndx(&to_is_ordinary) == st_shndx
261 && to_is_ordinary
262 && to->value() == sym.get_st_value())
263 return;
264
265 if (parameters->target().has_resolve())
266 {
267 Sized_target<size, big_endian>* sized_target;
268 sized_target = parameters->sized_target<size, big_endian>();
269 sized_target->resolve(to, sym, object, version);
270 return;
271 }
272
273 if (!object->is_dynamic())
274 {
275 // Record that we've seen this symbol in a regular object.
276 to->set_in_reg();
277 }
278 else if (st_shndx == elfcpp::SHN_UNDEF
279 && (to->visibility() == elfcpp::STV_HIDDEN
280 || to->visibility() == elfcpp::STV_INTERNAL))
281 {
282 // The symbol is hidden, so a reference from a shared object
283 // cannot bind to it. We tried issuing a warning in this case,
284 // but that produces false positives when the symbol is
285 // actually resolved in a different shared object (PR 15574).
286 return;
287 }
288 else
289 {
290 // Record that we've seen this symbol in a dynamic object.
291 to->set_in_dyn();
292 }
293
294 // Record if we've seen this symbol in a real ELF object (i.e., the
295 // symbol is referenced from outside the world known to the plugin).
296 if (object->pluginobj() == NULL && !object->is_dynamic())
297 to->set_in_real_elf();
298
299 // If we're processing replacement files, allow new symbols to override
300 // the placeholders from the plugin objects.
301 // Treat common symbols specially since it is possible that an ELF
302 // file increased the size of the alignment.
303 if (to->source() == Symbol::FROM_OBJECT)
304 {
305 Pluginobj* obj = to->object()->pluginobj();
306 if (obj != NULL
307 && parameters->options().plugins()->in_replacement_phase())
308 {
309 bool adjust_common = false;
310 typename Sized_symbol<size>::Size_type tosize = 0;
311 typename Sized_symbol<size>::Value_type tovalue = 0;
312 if (to->is_common() && !is_ordinary && st_shndx == elfcpp::SHN_COMMON)
313 {
314 adjust_common = true;
315 tosize = to->symsize();
316 tovalue = to->value();
317 }
318 this->override(to, sym, st_shndx, is_ordinary, object, version);
319 if (adjust_common)
320 {
321 if (tosize > to->symsize())
322 to->set_symsize(tosize);
323 if (tovalue > to->value())
324 to->set_value(tovalue);
325 }
326 return;
327 }
328 }
329
330 // A new weak undefined reference, merging with an old weak
331 // reference, could be a One Definition Rule (ODR) violation --
332 // especially if the types or sizes of the references differ. We'll
333 // store such pairs and look them up later to make sure they
334 // actually refer to the same lines of code. We also check
335 // combinations of weak and strong, which might occur if one case is
336 // inline and the other is not. (Note: not all ODR violations can
337 // be found this way, and not everything this finds is an ODR
338 // violation. But it's helpful to warn about.)
339 if (parameters->options().detect_odr_violations()
340 && (sym.get_st_bind() == elfcpp::STB_WEAK
341 || to->binding() == elfcpp::STB_WEAK)
342 && orig_st_shndx != elfcpp::SHN_UNDEF
343 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
344 && to_is_ordinary
345 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
346 && to->symsize() != 0
347 && (sym.get_st_type() != to->type()
348 || sym.get_st_size() != to->symsize())
349 // C does not have a concept of ODR, so we only need to do this
350 // on C++ symbols. These have (mangled) names starting with _Z.
351 && to->name()[0] == '_' && to->name()[1] == 'Z')
352 {
353 Symbol_location fromloc
354 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
355 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
356 static_cast<off_t>(to->value()) };
357 this->candidate_odr_violations_[to->name()].insert(fromloc);
358 this->candidate_odr_violations_[to->name()].insert(toloc);
359 }
360
361 // Plugins don't provide a symbol type, so adopt the existing type
362 // if the FROM symbol is from a plugin.
363 elfcpp::STT fromtype = (object->pluginobj() != NULL
364 ? to->type()
365 : sym.get_st_type());
366 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
367 object->is_dynamic(),
368 st_shndx, is_ordinary,
369 fromtype);
370
371 bool adjust_common_sizes;
372 bool adjust_dyndef;
373 typename Sized_symbol<size>::Size_type tosize = to->symsize();
374 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
375 object, &adjust_common_sizes,
376 &adjust_dyndef))
377 {
378 elfcpp::STB tobinding = to->binding();
379 typename Sized_symbol<size>::Value_type tovalue = to->value();
380 this->override(to, sym, st_shndx, is_ordinary, object, version);
381 if (adjust_common_sizes)
382 {
383 if (tosize > to->symsize())
384 to->set_symsize(tosize);
385 if (tovalue > to->value())
386 to->set_value(tovalue);
387 }
388 if (adjust_dyndef)
389 {
390 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
391 // Remember which kind of UNDEF it was for future reference.
392 to->set_undef_binding(tobinding);
393 }
394 }
395 else
396 {
397 if (adjust_common_sizes)
398 {
399 if (sym.get_st_size() > tosize)
400 to->set_symsize(sym.get_st_size());
401 if (sym.get_st_value() > to->value())
402 to->set_value(sym.get_st_value());
403 }
404 if (adjust_dyndef)
405 {
406 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
407 // Remember which kind of UNDEF it was.
408 to->set_undef_binding(sym.get_st_bind());
409 }
410 // The ELF ABI says that even for a reference to a symbol we
411 // merge the visibility.
412 to->override_visibility(sym.get_st_visibility());
413 }
414
415 if (adjust_common_sizes && parameters->options().warn_common())
416 {
417 if (tosize > sym.get_st_size())
418 Symbol_table::report_resolve_problem(false,
419 _("common of '%s' overriding "
420 "smaller common"),
421 to, OBJECT, object);
422 else if (tosize < sym.get_st_size())
423 Symbol_table::report_resolve_problem(false,
424 _("common of '%s' overidden by "
425 "larger common"),
426 to, OBJECT, object);
427 else
428 Symbol_table::report_resolve_problem(false,
429 _("multiple common of '%s'"),
430 to, OBJECT, object);
431 }
432 }
433
434 // Handle the core of symbol resolution. This is called with the
435 // existing symbol, TO, and a bitflag describing the new symbol. This
436 // returns true if we should override the existing symbol with the new
437 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
438 // true if we should set the symbol size to the maximum of the TO and
439 // FROM sizes. It handles error conditions.
440
441 bool
should_override(const Symbol * to,unsigned int frombits,elfcpp::STT fromtype,Defined defined,Object * object,bool * adjust_common_sizes,bool * adjust_dyndef)442 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
443 elfcpp::STT fromtype, Defined defined,
444 Object* object, bool* adjust_common_sizes,
445 bool* adjust_dyndef)
446 {
447 *adjust_common_sizes = false;
448 *adjust_dyndef = false;
449
450 unsigned int tobits;
451 if (to->source() == Symbol::IS_UNDEFINED)
452 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
453 to->type());
454 else if (to->source() != Symbol::FROM_OBJECT)
455 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
456 to->type());
457 else
458 {
459 bool is_ordinary;
460 unsigned int shndx = to->shndx(&is_ordinary);
461 tobits = symbol_to_bits(to->binding(),
462 to->object()->is_dynamic(),
463 shndx,
464 is_ordinary,
465 to->type());
466 }
467
468 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
469 && !to->is_placeholder())
470 Symbol_table::report_resolve_problem(true,
471 _("symbol '%s' used as both __thread "
472 "and non-__thread"),
473 to, defined, object);
474
475 // We use a giant switch table for symbol resolution. This code is
476 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
477 // cases; 3) it is easy to change the handling of a particular case.
478 // The alternative would be a series of conditionals, but it is easy
479 // to get the ordering wrong. This could also be done as a table,
480 // but that is no easier to understand than this large switch
481 // statement.
482
483 // These are the values generated by the bit codes.
484 enum
485 {
486 DEF = global_flag | regular_flag | def_flag,
487 WEAK_DEF = weak_flag | regular_flag | def_flag,
488 DYN_DEF = global_flag | dynamic_flag | def_flag,
489 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
490 UNDEF = global_flag | regular_flag | undef_flag,
491 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
492 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
493 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
494 COMMON = global_flag | regular_flag | common_flag,
495 WEAK_COMMON = weak_flag | regular_flag | common_flag,
496 DYN_COMMON = global_flag | dynamic_flag | common_flag,
497 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
498 };
499
500 switch (tobits * 16 + frombits)
501 {
502 case DEF * 16 + DEF:
503 // Two definitions of the same symbol.
504
505 // If either symbol is defined by an object included using
506 // --just-symbols, then don't warn. This is for compatibility
507 // with the GNU linker. FIXME: This is a hack.
508 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
509 || (object != NULL && object->just_symbols()))
510 return false;
511
512 if (!parameters->options().muldefs())
513 Symbol_table::report_resolve_problem(true,
514 _("multiple definition of '%s'"),
515 to, defined, object);
516 return false;
517
518 case WEAK_DEF * 16 + DEF:
519 // We've seen a weak definition, and now we see a strong
520 // definition. In the original SVR4 linker, this was treated as
521 // a multiple definition error. In the Solaris linker and the
522 // GNU linker, a weak definition followed by a regular
523 // definition causes the weak definition to be overridden. We
524 // are currently compatible with the GNU linker. In the future
525 // we should add a target specific option to change this.
526 // FIXME.
527 return true;
528
529 case DYN_DEF * 16 + DEF:
530 case DYN_WEAK_DEF * 16 + DEF:
531 // We've seen a definition in a dynamic object, and now we see a
532 // definition in a regular object. The definition in the
533 // regular object overrides the definition in the dynamic
534 // object.
535 return true;
536
537 case UNDEF * 16 + DEF:
538 case WEAK_UNDEF * 16 + DEF:
539 case DYN_UNDEF * 16 + DEF:
540 case DYN_WEAK_UNDEF * 16 + DEF:
541 // We've seen an undefined reference, and now we see a
542 // definition. We use the definition.
543 return true;
544
545 case COMMON * 16 + DEF:
546 case WEAK_COMMON * 16 + DEF:
547 case DYN_COMMON * 16 + DEF:
548 case DYN_WEAK_COMMON * 16 + DEF:
549 // We've seen a common symbol and now we see a definition. The
550 // definition overrides.
551 if (parameters->options().warn_common())
552 Symbol_table::report_resolve_problem(false,
553 _("definition of '%s' overriding "
554 "common"),
555 to, defined, object);
556 return true;
557
558 case DEF * 16 + WEAK_DEF:
559 case WEAK_DEF * 16 + WEAK_DEF:
560 // We've seen a definition and now we see a weak definition. We
561 // ignore the new weak definition.
562 return false;
563
564 case DYN_DEF * 16 + WEAK_DEF:
565 case DYN_WEAK_DEF * 16 + WEAK_DEF:
566 // We've seen a dynamic definition and now we see a regular weak
567 // definition. The regular weak definition overrides.
568 return true;
569
570 case UNDEF * 16 + WEAK_DEF:
571 case WEAK_UNDEF * 16 + WEAK_DEF:
572 case DYN_UNDEF * 16 + WEAK_DEF:
573 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
574 // A weak definition of a currently undefined symbol.
575 return true;
576
577 case COMMON * 16 + WEAK_DEF:
578 case WEAK_COMMON * 16 + WEAK_DEF:
579 // A weak definition does not override a common definition.
580 return false;
581
582 case DYN_COMMON * 16 + WEAK_DEF:
583 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
584 // A weak definition does override a definition in a dynamic
585 // object.
586 if (parameters->options().warn_common())
587 Symbol_table::report_resolve_problem(false,
588 _("definition of '%s' overriding "
589 "dynamic common definition"),
590 to, defined, object);
591 return true;
592
593 case DEF * 16 + DYN_DEF:
594 case WEAK_DEF * 16 + DYN_DEF:
595 case DYN_DEF * 16 + DYN_DEF:
596 case DYN_WEAK_DEF * 16 + DYN_DEF:
597 // Ignore a dynamic definition if we already have a definition.
598 return false;
599
600 case UNDEF * 16 + DYN_DEF:
601 case DYN_UNDEF * 16 + DYN_DEF:
602 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
603 // Use a dynamic definition if we have a reference.
604 return true;
605
606 case WEAK_UNDEF * 16 + DYN_DEF:
607 // When overriding a weak undef by a dynamic definition,
608 // we need to remember that the original undef was weak.
609 *adjust_dyndef = true;
610 return true;
611
612 case COMMON * 16 + DYN_DEF:
613 case WEAK_COMMON * 16 + DYN_DEF:
614 case DYN_COMMON * 16 + DYN_DEF:
615 case DYN_WEAK_COMMON * 16 + DYN_DEF:
616 // Ignore a dynamic definition if we already have a common
617 // definition.
618 return false;
619
620 case DEF * 16 + DYN_WEAK_DEF:
621 case WEAK_DEF * 16 + DYN_WEAK_DEF:
622 case DYN_DEF * 16 + DYN_WEAK_DEF:
623 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
624 // Ignore a weak dynamic definition if we already have a
625 // definition.
626 return false;
627
628 case UNDEF * 16 + DYN_WEAK_DEF:
629 // When overriding an undef by a dynamic weak definition,
630 // we need to remember that the original undef was not weak.
631 *adjust_dyndef = true;
632 return true;
633
634 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
635 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
636 // Use a weak dynamic definition if we have a reference.
637 return true;
638
639 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
640 // When overriding a weak undef by a dynamic definition,
641 // we need to remember that the original undef was weak.
642 *adjust_dyndef = true;
643 return true;
644
645 case COMMON * 16 + DYN_WEAK_DEF:
646 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
647 case DYN_COMMON * 16 + DYN_WEAK_DEF:
648 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
649 // Ignore a weak dynamic definition if we already have a common
650 // definition.
651 return false;
652
653 case DEF * 16 + UNDEF:
654 case WEAK_DEF * 16 + UNDEF:
655 case UNDEF * 16 + UNDEF:
656 // A new undefined reference tells us nothing.
657 return false;
658
659 case DYN_DEF * 16 + UNDEF:
660 case DYN_WEAK_DEF * 16 + UNDEF:
661 // For a dynamic def, we need to remember which kind of undef we see.
662 *adjust_dyndef = true;
663 return false;
664
665 case WEAK_UNDEF * 16 + UNDEF:
666 case DYN_UNDEF * 16 + UNDEF:
667 case DYN_WEAK_UNDEF * 16 + UNDEF:
668 // A strong undef overrides a dynamic or weak undef.
669 return true;
670
671 case COMMON * 16 + UNDEF:
672 case WEAK_COMMON * 16 + UNDEF:
673 case DYN_COMMON * 16 + UNDEF:
674 case DYN_WEAK_COMMON * 16 + UNDEF:
675 // A new undefined reference tells us nothing.
676 return false;
677
678 case DEF * 16 + WEAK_UNDEF:
679 case WEAK_DEF * 16 + WEAK_UNDEF:
680 case UNDEF * 16 + WEAK_UNDEF:
681 case WEAK_UNDEF * 16 + WEAK_UNDEF:
682 case DYN_UNDEF * 16 + WEAK_UNDEF:
683 case COMMON * 16 + WEAK_UNDEF:
684 case WEAK_COMMON * 16 + WEAK_UNDEF:
685 case DYN_COMMON * 16 + WEAK_UNDEF:
686 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
687 // A new weak undefined reference tells us nothing unless the
688 // exisiting symbol is a dynamic weak reference.
689 return false;
690
691 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
692 // A new weak reference overrides an existing dynamic weak reference.
693 // This is necessary because a dynamic weak reference remembers
694 // the old binding, which may not be weak. If we keeps the existing
695 // dynamic weak reference, the weakness may be dropped in the output.
696 return true;
697
698 case DYN_DEF * 16 + WEAK_UNDEF:
699 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
700 // For a dynamic def, we need to remember which kind of undef we see.
701 *adjust_dyndef = true;
702 return false;
703
704 case DEF * 16 + DYN_UNDEF:
705 case WEAK_DEF * 16 + DYN_UNDEF:
706 case DYN_DEF * 16 + DYN_UNDEF:
707 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
708 case UNDEF * 16 + DYN_UNDEF:
709 case WEAK_UNDEF * 16 + DYN_UNDEF:
710 case DYN_UNDEF * 16 + DYN_UNDEF:
711 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
712 case COMMON * 16 + DYN_UNDEF:
713 case WEAK_COMMON * 16 + DYN_UNDEF:
714 case DYN_COMMON * 16 + DYN_UNDEF:
715 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
716 // A new dynamic undefined reference tells us nothing.
717 return false;
718
719 case DEF * 16 + DYN_WEAK_UNDEF:
720 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
721 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
722 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
723 case UNDEF * 16 + DYN_WEAK_UNDEF:
724 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
725 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
726 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
727 case COMMON * 16 + DYN_WEAK_UNDEF:
728 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
729 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
730 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
731 // A new weak dynamic undefined reference tells us nothing.
732 return false;
733
734 case DEF * 16 + COMMON:
735 // A common symbol does not override a definition.
736 if (parameters->options().warn_common())
737 Symbol_table::report_resolve_problem(false,
738 _("common '%s' overridden by "
739 "previous definition"),
740 to, defined, object);
741 return false;
742
743 case WEAK_DEF * 16 + COMMON:
744 case DYN_DEF * 16 + COMMON:
745 case DYN_WEAK_DEF * 16 + COMMON:
746 // A common symbol does override a weak definition or a dynamic
747 // definition.
748 return true;
749
750 case UNDEF * 16 + COMMON:
751 case WEAK_UNDEF * 16 + COMMON:
752 case DYN_UNDEF * 16 + COMMON:
753 case DYN_WEAK_UNDEF * 16 + COMMON:
754 // A common symbol is a definition for a reference.
755 return true;
756
757 case COMMON * 16 + COMMON:
758 // Set the size to the maximum.
759 *adjust_common_sizes = true;
760 return false;
761
762 case WEAK_COMMON * 16 + COMMON:
763 // I'm not sure just what a weak common symbol means, but
764 // presumably it can be overridden by a regular common symbol.
765 return true;
766
767 case DYN_COMMON * 16 + COMMON:
768 case DYN_WEAK_COMMON * 16 + COMMON:
769 // Use the real common symbol, but adjust the size if necessary.
770 *adjust_common_sizes = true;
771 return true;
772
773 case DEF * 16 + WEAK_COMMON:
774 case WEAK_DEF * 16 + WEAK_COMMON:
775 case DYN_DEF * 16 + WEAK_COMMON:
776 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
777 // Whatever a weak common symbol is, it won't override a
778 // definition.
779 return false;
780
781 case UNDEF * 16 + WEAK_COMMON:
782 case WEAK_UNDEF * 16 + WEAK_COMMON:
783 case DYN_UNDEF * 16 + WEAK_COMMON:
784 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
785 // A weak common symbol is better than an undefined symbol.
786 return true;
787
788 case COMMON * 16 + WEAK_COMMON:
789 case WEAK_COMMON * 16 + WEAK_COMMON:
790 case DYN_COMMON * 16 + WEAK_COMMON:
791 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
792 // Ignore a weak common symbol in the presence of a real common
793 // symbol.
794 return false;
795
796 case DEF * 16 + DYN_COMMON:
797 case WEAK_DEF * 16 + DYN_COMMON:
798 case DYN_DEF * 16 + DYN_COMMON:
799 case DYN_WEAK_DEF * 16 + DYN_COMMON:
800 // Ignore a dynamic common symbol in the presence of a
801 // definition.
802 return false;
803
804 case UNDEF * 16 + DYN_COMMON:
805 case WEAK_UNDEF * 16 + DYN_COMMON:
806 case DYN_UNDEF * 16 + DYN_COMMON:
807 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
808 // A dynamic common symbol is a definition of sorts.
809 return true;
810
811 case COMMON * 16 + DYN_COMMON:
812 case WEAK_COMMON * 16 + DYN_COMMON:
813 case DYN_COMMON * 16 + DYN_COMMON:
814 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
815 // Set the size to the maximum.
816 *adjust_common_sizes = true;
817 return false;
818
819 case DEF * 16 + DYN_WEAK_COMMON:
820 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
821 case DYN_DEF * 16 + DYN_WEAK_COMMON:
822 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
823 // A common symbol is ignored in the face of a definition.
824 return false;
825
826 case UNDEF * 16 + DYN_WEAK_COMMON:
827 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
828 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
829 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
830 // I guess a weak common symbol is better than a definition.
831 return true;
832
833 case COMMON * 16 + DYN_WEAK_COMMON:
834 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
835 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
836 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
837 // Set the size to the maximum.
838 *adjust_common_sizes = true;
839 return false;
840
841 default:
842 gold_unreachable();
843 }
844 }
845
846 // Issue an error or warning due to symbol resolution. IS_ERROR
847 // indicates an error rather than a warning. MSG is the error
848 // message; it is expected to have a %s for the symbol name. TO is
849 // the existing symbol. DEFINED/OBJECT is where the new symbol was
850 // found.
851
852 // FIXME: We should have better location information here. When the
853 // symbol is defined, we should be able to pull the location from the
854 // debug info if there is any.
855
856 void
report_resolve_problem(bool is_error,const char * msg,const Symbol * to,Defined defined,Object * object)857 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
858 const Symbol* to, Defined defined,
859 Object* object)
860 {
861 std::string demangled(to->demangled_name());
862 size_t len = strlen(msg) + demangled.length() + 10;
863 char* buf = new char[len];
864 snprintf(buf, len, msg, demangled.c_str());
865
866 const char* objname;
867 switch (defined)
868 {
869 case OBJECT:
870 objname = object->name().c_str();
871 break;
872 case COPY:
873 objname = _("COPY reloc");
874 break;
875 case DEFSYM:
876 case UNDEFINED:
877 objname = _("command line");
878 break;
879 case SCRIPT:
880 objname = _("linker script");
881 break;
882 case PREDEFINED:
883 case INCREMENTAL_BASE:
884 objname = _("linker defined");
885 break;
886 default:
887 gold_unreachable();
888 }
889
890 if (is_error)
891 gold_error("%s: %s", objname, buf);
892 else
893 gold_warning("%s: %s", objname, buf);
894
895 delete[] buf;
896
897 if (to->source() == Symbol::FROM_OBJECT)
898 objname = to->object()->name().c_str();
899 else
900 objname = _("command line");
901 gold_info("%s: %s: previous definition here", program_name, objname);
902 }
903
904 // A special case of should_override which is only called for a strong
905 // defined symbol from a regular object file. This is used when
906 // defining special symbols.
907
908 bool
should_override_with_special(const Symbol * to,elfcpp::STT fromtype,Defined defined)909 Symbol_table::should_override_with_special(const Symbol* to,
910 elfcpp::STT fromtype,
911 Defined defined)
912 {
913 bool adjust_common_sizes;
914 bool adjust_dyn_def;
915 unsigned int frombits = global_flag | regular_flag | def_flag;
916 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
917 NULL, &adjust_common_sizes,
918 &adjust_dyn_def);
919 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
920 return ret;
921 }
922
923 // Override symbol base with a special symbol.
924
925 void
override_base_with_special(const Symbol * from)926 Symbol::override_base_with_special(const Symbol* from)
927 {
928 bool same_name = this->name_ == from->name_;
929 gold_assert(same_name || this->has_alias());
930
931 // If we are overriding an undef, remember the original binding.
932 if (this->is_undefined())
933 this->set_undef_binding(this->binding_);
934
935 this->source_ = from->source_;
936 switch (from->source_)
937 {
938 case FROM_OBJECT:
939 this->u_.from_object = from->u_.from_object;
940 break;
941 case IN_OUTPUT_DATA:
942 this->u_.in_output_data = from->u_.in_output_data;
943 break;
944 case IN_OUTPUT_SEGMENT:
945 this->u_.in_output_segment = from->u_.in_output_segment;
946 break;
947 case IS_CONSTANT:
948 case IS_UNDEFINED:
949 break;
950 default:
951 gold_unreachable();
952 break;
953 }
954
955 if (same_name)
956 {
957 // When overriding a versioned symbol with a special symbol, we
958 // may be changing the version. This will happen if we see a
959 // special symbol such as "_end" defined in a shared object with
960 // one version (from a version script), but we want to define it
961 // here with a different version (from a different version
962 // script).
963 this->version_ = from->version_;
964 }
965 this->type_ = from->type_;
966 this->binding_ = from->binding_;
967 this->override_visibility(from->visibility_);
968 this->nonvis_ = from->nonvis_;
969
970 // Special symbols are always considered to be regular symbols.
971 this->in_reg_ = true;
972
973 if (from->needs_dynsym_entry_)
974 this->needs_dynsym_entry_ = true;
975 if (from->needs_dynsym_value_)
976 this->needs_dynsym_value_ = true;
977
978 this->is_predefined_ = from->is_predefined_;
979
980 // We shouldn't see these flags. If we do, we need to handle them
981 // somehow.
982 gold_assert(!from->is_forwarder_);
983 gold_assert(!from->has_plt_offset());
984 gold_assert(!from->has_warning_);
985 gold_assert(!from->is_copied_from_dynobj_);
986 gold_assert(!from->is_forced_local_);
987 }
988
989 // Override a symbol with a special symbol.
990
991 template<int size>
992 void
override_with_special(const Sized_symbol<size> * from)993 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
994 {
995 this->override_base_with_special(from);
996 this->value_ = from->value_;
997 this->symsize_ = from->symsize_;
998 }
999
1000 // Override TOSYM with the special symbol FROMSYM. This handles all
1001 // aliases of TOSYM.
1002
1003 template<int size>
1004 void
override_with_special(Sized_symbol<size> * tosym,const Sized_symbol<size> * fromsym)1005 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1006 const Sized_symbol<size>* fromsym)
1007 {
1008 tosym->override_with_special(fromsym);
1009 if (tosym->has_alias())
1010 {
1011 Symbol* sym = this->weak_aliases_[tosym];
1012 gold_assert(sym != NULL);
1013 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1014 do
1015 {
1016 ssym->override_with_special(fromsym);
1017 sym = this->weak_aliases_[ssym];
1018 gold_assert(sym != NULL);
1019 ssym = this->get_sized_symbol<size>(sym);
1020 }
1021 while (ssym != tosym);
1022 }
1023 if (tosym->binding() == elfcpp::STB_LOCAL
1024 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1025 || tosym->visibility() == elfcpp::STV_INTERNAL)
1026 && (tosym->binding() == elfcpp::STB_GLOBAL
1027 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1028 || tosym->binding() == elfcpp::STB_WEAK)
1029 && !parameters->options().relocatable()))
1030 this->force_local(tosym);
1031 }
1032
1033 // Instantiate the templates we need. We could use the configure
1034 // script to restrict this to only the ones needed for implemented
1035 // targets.
1036
1037 // We have to instantiate both big and little endian versions because
1038 // these are used by other templates that depends on size only.
1039
1040 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1041 template
1042 void
1043 Symbol_table::resolve<32, false>(
1044 Sized_symbol<32>* to,
1045 const elfcpp::Sym<32, false>& sym,
1046 unsigned int st_shndx,
1047 bool is_ordinary,
1048 unsigned int orig_st_shndx,
1049 Object* object,
1050 const char* version);
1051
1052 template
1053 void
1054 Symbol_table::resolve<32, true>(
1055 Sized_symbol<32>* to,
1056 const elfcpp::Sym<32, true>& sym,
1057 unsigned int st_shndx,
1058 bool is_ordinary,
1059 unsigned int orig_st_shndx,
1060 Object* object,
1061 const char* version);
1062 #endif
1063
1064 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1065 template
1066 void
1067 Symbol_table::resolve<64, false>(
1068 Sized_symbol<64>* to,
1069 const elfcpp::Sym<64, false>& sym,
1070 unsigned int st_shndx,
1071 bool is_ordinary,
1072 unsigned int orig_st_shndx,
1073 Object* object,
1074 const char* version);
1075
1076 template
1077 void
1078 Symbol_table::resolve<64, true>(
1079 Sized_symbol<64>* to,
1080 const elfcpp::Sym<64, true>& sym,
1081 unsigned int st_shndx,
1082 bool is_ordinary,
1083 unsigned int orig_st_shndx,
1084 Object* object,
1085 const char* version);
1086 #endif
1087
1088 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1089 template
1090 void
1091 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1092 const Sized_symbol<32>*);
1093 #endif
1094
1095 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1096 template
1097 void
1098 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1099 const Sized_symbol<64>*);
1100 #endif
1101
1102 } // End namespace gold.
1103