1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "ParseHelper.h"
16
17 #include <stdarg.h>
18 #include <stdio.h>
19
20 #include "glslang.h"
21 #include "preprocessor/SourceLocation.h"
22 #include "ValidateSwitch.h"
23
24 ///////////////////////////////////////////////////////////////////////
25 //
26 // Sub- vector and matrix fields
27 //
28 ////////////////////////////////////////////////////////////////////////
29
30 namespace
31 {
IsVaryingOut(TQualifier qualifier)32 bool IsVaryingOut(TQualifier qualifier)
33 {
34 switch(qualifier)
35 {
36 case EvqVaryingOut:
37 case EvqSmoothOut:
38 case EvqFlatOut:
39 case EvqCentroidOut:
40 case EvqVertexOut:
41 return true;
42
43 default: break;
44 }
45
46 return false;
47 }
48
IsVaryingIn(TQualifier qualifier)49 bool IsVaryingIn(TQualifier qualifier)
50 {
51 switch(qualifier)
52 {
53 case EvqVaryingIn:
54 case EvqSmoothIn:
55 case EvqFlatIn:
56 case EvqCentroidIn:
57 case EvqFragmentIn:
58 return true;
59
60 default: break;
61 }
62
63 return false;
64 }
65
IsVarying(TQualifier qualifier)66 bool IsVarying(TQualifier qualifier)
67 {
68 return IsVaryingIn(qualifier) || IsVaryingOut(qualifier);
69 }
70
IsAssignment(TOperator op)71 bool IsAssignment(TOperator op)
72 {
73 switch(op)
74 {
75 case EOpPostIncrement:
76 case EOpPostDecrement:
77 case EOpPreIncrement:
78 case EOpPreDecrement:
79 case EOpAssign:
80 case EOpAddAssign:
81 case EOpSubAssign:
82 case EOpMulAssign:
83 case EOpVectorTimesMatrixAssign:
84 case EOpVectorTimesScalarAssign:
85 case EOpMatrixTimesScalarAssign:
86 case EOpMatrixTimesMatrixAssign:
87 case EOpDivAssign:
88 case EOpIModAssign:
89 case EOpBitShiftLeftAssign:
90 case EOpBitShiftRightAssign:
91 case EOpBitwiseAndAssign:
92 case EOpBitwiseXorAssign:
93 case EOpBitwiseOrAssign:
94 return true;
95 default:
96 return false;
97 }
98 }
99 }
100
101 //
102 // Look at a '.' field selector string and change it into offsets
103 // for a vector.
104 //
parseVectorFields(const TString & compString,int vecSize,TVectorFields & fields,const TSourceLoc & line)105 bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc &line)
106 {
107 fields.num = (int) compString.size();
108 if (fields.num > 4) {
109 error(line, "illegal vector field selection", compString.c_str());
110 return false;
111 }
112
113 enum {
114 exyzw,
115 ergba,
116 estpq
117 } fieldSet[4];
118
119 for (int i = 0; i < fields.num; ++i) {
120 switch (compString[i]) {
121 case 'x':
122 fields.offsets[i] = 0;
123 fieldSet[i] = exyzw;
124 break;
125 case 'r':
126 fields.offsets[i] = 0;
127 fieldSet[i] = ergba;
128 break;
129 case 's':
130 fields.offsets[i] = 0;
131 fieldSet[i] = estpq;
132 break;
133 case 'y':
134 fields.offsets[i] = 1;
135 fieldSet[i] = exyzw;
136 break;
137 case 'g':
138 fields.offsets[i] = 1;
139 fieldSet[i] = ergba;
140 break;
141 case 't':
142 fields.offsets[i] = 1;
143 fieldSet[i] = estpq;
144 break;
145 case 'z':
146 fields.offsets[i] = 2;
147 fieldSet[i] = exyzw;
148 break;
149 case 'b':
150 fields.offsets[i] = 2;
151 fieldSet[i] = ergba;
152 break;
153 case 'p':
154 fields.offsets[i] = 2;
155 fieldSet[i] = estpq;
156 break;
157 case 'w':
158 fields.offsets[i] = 3;
159 fieldSet[i] = exyzw;
160 break;
161 case 'a':
162 fields.offsets[i] = 3;
163 fieldSet[i] = ergba;
164 break;
165 case 'q':
166 fields.offsets[i] = 3;
167 fieldSet[i] = estpq;
168 break;
169 default:
170 error(line, "illegal vector field selection", compString.c_str());
171 return false;
172 }
173 }
174
175 for (int i = 0; i < fields.num; ++i) {
176 if (fields.offsets[i] >= vecSize) {
177 error(line, "vector field selection out of range", compString.c_str());
178 return false;
179 }
180
181 if (i > 0) {
182 if (fieldSet[i] != fieldSet[i-1]) {
183 error(line, "illegal - vector component fields not from the same set", compString.c_str());
184 return false;
185 }
186 }
187 }
188
189 return true;
190 }
191
192
193 //
194 // Look at a '.' field selector string and change it into offsets
195 // for a matrix.
196 //
parseMatrixFields(const TString & compString,int matCols,int matRows,TMatrixFields & fields,const TSourceLoc & line)197 bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, const TSourceLoc &line)
198 {
199 fields.wholeRow = false;
200 fields.wholeCol = false;
201 fields.row = -1;
202 fields.col = -1;
203
204 if (compString.size() != 2) {
205 error(line, "illegal length of matrix field selection", compString.c_str());
206 return false;
207 }
208
209 if (compString[0] == '_') {
210 if (compString[1] < '0' || compString[1] > '3') {
211 error(line, "illegal matrix field selection", compString.c_str());
212 return false;
213 }
214 fields.wholeCol = true;
215 fields.col = compString[1] - '0';
216 } else if (compString[1] == '_') {
217 if (compString[0] < '0' || compString[0] > '3') {
218 error(line, "illegal matrix field selection", compString.c_str());
219 return false;
220 }
221 fields.wholeRow = true;
222 fields.row = compString[0] - '0';
223 } else {
224 if (compString[0] < '0' || compString[0] > '3' ||
225 compString[1] < '0' || compString[1] > '3') {
226 error(line, "illegal matrix field selection", compString.c_str());
227 return false;
228 }
229 fields.row = compString[0] - '0';
230 fields.col = compString[1] - '0';
231 }
232
233 if (fields.row >= matRows || fields.col >= matCols) {
234 error(line, "matrix field selection out of range", compString.c_str());
235 return false;
236 }
237
238 return true;
239 }
240
241 ///////////////////////////////////////////////////////////////////////
242 //
243 // Errors
244 //
245 ////////////////////////////////////////////////////////////////////////
246
247 //
248 // Track whether errors have occurred.
249 //
recover()250 void TParseContext::recover()
251 {
252 }
253
254 //
255 // Used by flex/bison to output all syntax and parsing errors.
256 //
error(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)257 void TParseContext::error(const TSourceLoc& loc,
258 const char* reason, const char* token,
259 const char* extraInfo)
260 {
261 pp::SourceLocation srcLoc(loc.first_file, loc.first_line);
262 mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
263 srcLoc, reason, token, extraInfo);
264
265 }
266
warning(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)267 void TParseContext::warning(const TSourceLoc& loc,
268 const char* reason, const char* token,
269 const char* extraInfo) {
270 pp::SourceLocation srcLoc(loc.first_file, loc.first_line);
271 mDiagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
272 srcLoc, reason, token, extraInfo);
273 }
274
trace(const char * str)275 void TParseContext::trace(const char* str)
276 {
277 mDiagnostics.writeDebug(str);
278 }
279
280 //
281 // Same error message for all places assignments don't work.
282 //
assignError(const TSourceLoc & line,const char * op,TString left,TString right)283 void TParseContext::assignError(const TSourceLoc &line, const char* op, TString left, TString right)
284 {
285 std::stringstream extraInfoStream;
286 extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
287 std::string extraInfo = extraInfoStream.str();
288 error(line, "", op, extraInfo.c_str());
289 }
290
291 //
292 // Same error message for all places unary operations don't work.
293 //
unaryOpError(const TSourceLoc & line,const char * op,TString operand)294 void TParseContext::unaryOpError(const TSourceLoc &line, const char* op, TString operand)
295 {
296 std::stringstream extraInfoStream;
297 extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
298 << " (or there is no acceptable conversion)";
299 std::string extraInfo = extraInfoStream.str();
300 error(line, " wrong operand type", op, extraInfo.c_str());
301 }
302
303 //
304 // Same error message for all binary operations don't work.
305 //
binaryOpError(const TSourceLoc & line,const char * op,TString left,TString right)306 void TParseContext::binaryOpError(const TSourceLoc &line, const char* op, TString left, TString right)
307 {
308 std::stringstream extraInfoStream;
309 extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
310 << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
311 std::string extraInfo = extraInfoStream.str();
312 error(line, " wrong operand types ", op, extraInfo.c_str());
313 }
314
precisionErrorCheck(const TSourceLoc & line,TPrecision precision,TBasicType type)315 bool TParseContext::precisionErrorCheck(const TSourceLoc &line, TPrecision precision, TBasicType type){
316 if (!mChecksPrecisionErrors)
317 return false;
318 switch( type ){
319 case EbtFloat:
320 if( precision == EbpUndefined ){
321 error( line, "No precision specified for (float)", "" );
322 return true;
323 }
324 break;
325 case EbtInt:
326 if( precision == EbpUndefined ){
327 error( line, "No precision specified (int)", "" );
328 return true;
329 }
330 break;
331 default:
332 return false;
333 }
334 return false;
335 }
336
337 //
338 // Both test and if necessary, spit out an error, to see if the node is really
339 // an l-value that can be operated on this way.
340 //
341 // Returns true if the was an error.
342 //
lValueErrorCheck(const TSourceLoc & line,const char * op,TIntermTyped * node)343 bool TParseContext::lValueErrorCheck(const TSourceLoc &line, const char* op, TIntermTyped* node)
344 {
345 TIntermSymbol* symNode = node->getAsSymbolNode();
346 TIntermBinary* binaryNode = node->getAsBinaryNode();
347
348 if (binaryNode) {
349 bool errorReturn;
350
351 switch(binaryNode->getOp()) {
352 case EOpIndexDirect:
353 case EOpIndexIndirect:
354 case EOpIndexDirectStruct:
355 case EOpIndexDirectInterfaceBlock:
356 return lValueErrorCheck(line, op, binaryNode->getLeft());
357 case EOpVectorSwizzle:
358 errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
359 if (!errorReturn) {
360 int offset[4] = {0,0,0,0};
361
362 TIntermTyped* rightNode = binaryNode->getRight();
363 TIntermAggregate *aggrNode = rightNode->getAsAggregate();
364
365 for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
366 p != aggrNode->getSequence().end(); p++) {
367 int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
368 offset[value]++;
369 if (offset[value] > 1) {
370 error(line, " l-value of swizzle cannot have duplicate components", op);
371
372 return true;
373 }
374 }
375 }
376
377 return errorReturn;
378 default:
379 break;
380 }
381 error(line, " l-value required", op);
382
383 return true;
384 }
385
386
387 const char* symbol = 0;
388 if (symNode != 0)
389 symbol = symNode->getSymbol().c_str();
390
391 const char* message = 0;
392 switch (node->getQualifier()) {
393 case EvqConstExpr: message = "can't modify a const"; break;
394 case EvqConstReadOnly: message = "can't modify a const"; break;
395 case EvqAttribute: message = "can't modify an attribute"; break;
396 case EvqFragmentIn: message = "can't modify an input"; break;
397 case EvqVertexIn: message = "can't modify an input"; break;
398 case EvqUniform: message = "can't modify a uniform"; break;
399 case EvqSmoothIn:
400 case EvqFlatIn:
401 case EvqCentroidIn:
402 case EvqVaryingIn: message = "can't modify a varying"; break;
403 case EvqInput: message = "can't modify an input"; break;
404 case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
405 case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
406 case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
407 case EvqInstanceID: message = "can't modify gl_InstanceID"; break;
408 case EvqVertexID: message = "can't modify gl_VertexID"; break;
409 default:
410
411 //
412 // Type that can't be written to?
413 //
414 if(IsSampler(node->getBasicType()))
415 {
416 message = "can't modify a sampler";
417 }
418 else if(node->getBasicType() == EbtVoid)
419 {
420 message = "can't modify void";
421 }
422 }
423
424 if (message == 0 && binaryNode == 0 && symNode == 0) {
425 error(line, " l-value required", op);
426
427 return true;
428 }
429
430
431 //
432 // Everything else is okay, no error.
433 //
434 if (message == 0)
435 return false;
436
437 //
438 // If we get here, we have an error and a message.
439 //
440 if (symNode) {
441 std::stringstream extraInfoStream;
442 extraInfoStream << "\"" << symbol << "\" (" << message << ")";
443 std::string extraInfo = extraInfoStream.str();
444 error(line, " l-value required", op, extraInfo.c_str());
445 }
446 else {
447 std::stringstream extraInfoStream;
448 extraInfoStream << "(" << message << ")";
449 std::string extraInfo = extraInfoStream.str();
450 error(line, " l-value required", op, extraInfo.c_str());
451 }
452
453 return true;
454 }
455
456 //
457 // Both test, and if necessary spit out an error, to see if the node is really
458 // a constant.
459 //
460 // Returns true if the was an error.
461 //
constErrorCheck(TIntermTyped * node)462 bool TParseContext::constErrorCheck(TIntermTyped* node)
463 {
464 if (node->getQualifier() == EvqConstExpr)
465 return false;
466
467 error(node->getLine(), "constant expression required", "");
468
469 return true;
470 }
471
472 //
473 // Both test, and if necessary spit out an error, to see if the node is really
474 // an integer.
475 //
476 // Returns true if the was an error.
477 //
integerErrorCheck(TIntermTyped * node,const char * token)478 bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
479 {
480 if (node->isScalarInt())
481 return false;
482
483 error(node->getLine(), "integer expression required", token);
484
485 return true;
486 }
487
488 //
489 // Both test, and if necessary spit out an error, to see if we are currently
490 // globally scoped.
491 //
492 // Returns true if the was an error.
493 //
globalErrorCheck(const TSourceLoc & line,bool global,const char * token)494 bool TParseContext::globalErrorCheck(const TSourceLoc &line, bool global, const char* token)
495 {
496 if (global)
497 return false;
498
499 error(line, "only allowed at global scope", token);
500
501 return true;
502 }
503
504 //
505 // For now, keep it simple: if it starts "gl_", it's reserved, independent
506 // of scope. Except, if the symbol table is at the built-in push-level,
507 // which is when we are parsing built-ins.
508 // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
509 // webgl shader.
510 //
511 // Returns true if there was an error.
512 //
reservedErrorCheck(const TSourceLoc & line,const TString & identifier)513 bool TParseContext::reservedErrorCheck(const TSourceLoc &line, const TString& identifier)
514 {
515 static const char* reservedErrMsg = "reserved built-in name";
516 if (!symbolTable.atBuiltInLevel()) {
517 if (identifier.compare(0, 3, "gl_") == 0) {
518 error(line, reservedErrMsg, "gl_");
519 return true;
520 }
521 if (identifier.find("__") != TString::npos) {
522 error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
523 return true;
524 }
525 }
526
527 return false;
528 }
529
530 //
531 // Make sure there is enough data provided to the constructor to build
532 // something of the type of the constructor. Also returns the type of
533 // the constructor.
534 //
535 // Returns true if there was an error in construction.
536 //
constructorErrorCheck(const TSourceLoc & line,TIntermNode * node,TFunction & function,TOperator op,TType * type)537 bool TParseContext::constructorErrorCheck(const TSourceLoc &line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
538 {
539 *type = function.getReturnType();
540
541 bool constructingMatrix = false;
542 switch(op) {
543 case EOpConstructMat2:
544 case EOpConstructMat2x3:
545 case EOpConstructMat2x4:
546 case EOpConstructMat3x2:
547 case EOpConstructMat3:
548 case EOpConstructMat3x4:
549 case EOpConstructMat4x2:
550 case EOpConstructMat4x3:
551 case EOpConstructMat4:
552 constructingMatrix = true;
553 break;
554 default:
555 break;
556 }
557
558 //
559 // Note: It's okay to have too many components available, but not okay to have unused
560 // arguments. 'full' will go to true when enough args have been seen. If we loop
561 // again, there is an extra argument, so 'overfull' will become true.
562 //
563
564 size_t size = 0;
565 bool full = false;
566 bool overFull = false;
567 bool matrixInMatrix = false;
568 bool arrayArg = false;
569 for (size_t i = 0; i < function.getParamCount(); ++i) {
570 const TParameter& param = function.getParam(i);
571 size += param.type->getObjectSize();
572
573 if (constructingMatrix && param.type->isMatrix())
574 matrixInMatrix = true;
575 if (full)
576 overFull = true;
577 if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
578 full = true;
579 if (param.type->isArray())
580 arrayArg = true;
581 }
582
583 if(type->isArray()) {
584 if(type->getArraySize() == 0) {
585 type->setArraySize(function.getParamCount());
586 } else if(type->getArraySize() != (int)function.getParamCount()) {
587 error(line, "array constructor needs one argument per array element", "constructor");
588 return true;
589 }
590 }
591
592 if (arrayArg && op != EOpConstructStruct) {
593 error(line, "constructing from a non-dereferenced array", "constructor");
594 return true;
595 }
596
597 if (matrixInMatrix && !type->isArray()) {
598 if (function.getParamCount() != 1) {
599 error(line, "constructing matrix from matrix can only take one argument", "constructor");
600 return true;
601 }
602 }
603
604 if (overFull) {
605 error(line, "too many arguments", "constructor");
606 return true;
607 }
608
609 if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) {
610 error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
611 return true;
612 }
613
614 if (!type->isMatrix() || !matrixInMatrix) {
615 if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
616 (op == EOpConstructStruct && size < type->getObjectSize())) {
617 error(line, "not enough data provided for construction", "constructor");
618 return true;
619 }
620 }
621
622 TIntermTyped *typed = node ? node->getAsTyped() : 0;
623 if (typed == 0) {
624 error(line, "constructor argument does not have a type", "constructor");
625 return true;
626 }
627 if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
628 error(line, "cannot convert a sampler", "constructor");
629 return true;
630 }
631 if (typed->getBasicType() == EbtVoid) {
632 error(line, "cannot convert a void", "constructor");
633 return true;
634 }
635
636 return false;
637 }
638
639 // This function checks to see if a void variable has been declared and raise an error message for such a case
640 //
641 // returns true in case of an error
642 //
voidErrorCheck(const TSourceLoc & line,const TString & identifier,const TBasicType & type)643 bool TParseContext::voidErrorCheck(const TSourceLoc &line, const TString& identifier, const TBasicType& type)
644 {
645 if(type == EbtVoid) {
646 error(line, "illegal use of type 'void'", identifier.c_str());
647 return true;
648 }
649
650 return false;
651 }
652
653 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
654 //
655 // returns true in case of an error
656 //
boolErrorCheck(const TSourceLoc & line,const TIntermTyped * type)657 bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TIntermTyped* type)
658 {
659 if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
660 error(line, "boolean expression expected", "");
661 return true;
662 }
663
664 return false;
665 }
666
667 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
668 //
669 // returns true in case of an error
670 //
boolErrorCheck(const TSourceLoc & line,const TPublicType & pType)671 bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TPublicType& pType)
672 {
673 if (pType.type != EbtBool || pType.array || (pType.primarySize > 1) || (pType.secondarySize > 1)) {
674 error(line, "boolean expression expected", "");
675 return true;
676 }
677
678 return false;
679 }
680
samplerErrorCheck(const TSourceLoc & line,const TPublicType & pType,const char * reason)681 bool TParseContext::samplerErrorCheck(const TSourceLoc &line, const TPublicType& pType, const char* reason)
682 {
683 if (pType.type == EbtStruct) {
684 if (containsSampler(*pType.userDef)) {
685 error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
686
687 return true;
688 }
689
690 return false;
691 } else if (IsSampler(pType.type)) {
692 error(line, reason, getBasicString(pType.type));
693
694 return true;
695 }
696
697 return false;
698 }
699
structQualifierErrorCheck(const TSourceLoc & line,const TPublicType & pType)700 bool TParseContext::structQualifierErrorCheck(const TSourceLoc &line, const TPublicType& pType)
701 {
702 switch(pType.qualifier)
703 {
704 case EvqVaryingOut:
705 case EvqSmooth:
706 case EvqFlat:
707 case EvqCentroidOut:
708 case EvqVaryingIn:
709 case EvqSmoothIn:
710 case EvqFlatIn:
711 case EvqCentroidIn:
712 case EvqAttribute:
713 case EvqVertexIn:
714 case EvqFragmentOut:
715 if(pType.type == EbtStruct)
716 {
717 error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
718
719 return true;
720 }
721 break;
722 default:
723 break;
724 }
725
726 if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
727 return true;
728
729 // check for layout qualifier issues
730 if (pType.qualifier != EvqVertexIn && pType.qualifier != EvqFragmentOut &&
731 layoutLocationErrorCheck(line, pType.layoutQualifier))
732 {
733 return true;
734 }
735
736 return false;
737 }
738
739 // These checks are common for all declarations starting a declarator list, and declarators that follow an empty
740 // declaration.
741 //
singleDeclarationErrorCheck(const TPublicType & publicType,const TSourceLoc & identifierLocation)742 bool TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation)
743 {
744 switch(publicType.qualifier)
745 {
746 case EvqVaryingIn:
747 case EvqVaryingOut:
748 case EvqAttribute:
749 case EvqVertexIn:
750 case EvqFragmentOut:
751 if(publicType.type == EbtStruct)
752 {
753 error(identifierLocation, "cannot be used with a structure",
754 getQualifierString(publicType.qualifier));
755 return true;
756 }
757
758 default: break;
759 }
760
761 if(publicType.qualifier != EvqUniform && samplerErrorCheck(identifierLocation, publicType,
762 "samplers must be uniform"))
763 {
764 return true;
765 }
766
767 // check for layout qualifier issues
768 const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
769
770 if(layoutQualifier.matrixPacking != EmpUnspecified)
771 {
772 error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking),
773 "only valid for interface blocks");
774 return true;
775 }
776
777 if(layoutQualifier.blockStorage != EbsUnspecified)
778 {
779 error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage),
780 "only valid for interface blocks");
781 return true;
782 }
783
784 if(publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut &&
785 layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier))
786 {
787 return true;
788 }
789
790 return false;
791 }
792
layoutLocationErrorCheck(const TSourceLoc & location,const TLayoutQualifier & layoutQualifier)793 bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier)
794 {
795 if(layoutQualifier.location != -1)
796 {
797 error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs");
798 return true;
799 }
800
801 return false;
802 }
803
locationDeclaratorListCheck(const TSourceLoc & line,const TPublicType & pType)804 bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType)
805 {
806 if(pType.layoutQualifier.location != -1)
807 {
808 error(line, "location must only be specified for a single input or output variable", "location");
809 return true;
810 }
811
812 return false;
813 }
814
parameterSamplerErrorCheck(const TSourceLoc & line,TQualifier qualifier,const TType & type)815 bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc &line, TQualifier qualifier, const TType& type)
816 {
817 if ((qualifier == EvqOut || qualifier == EvqInOut) &&
818 type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
819 error(line, "samplers cannot be output parameters", type.getBasicString());
820 return true;
821 }
822
823 return false;
824 }
825
containsSampler(TType & type)826 bool TParseContext::containsSampler(TType& type)
827 {
828 if (IsSampler(type.getBasicType()))
829 return true;
830
831 if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) {
832 const TFieldList& fields = type.getStruct()->fields();
833 for(unsigned int i = 0; i < fields.size(); ++i) {
834 if (containsSampler(*fields[i]->type()))
835 return true;
836 }
837 }
838
839 return false;
840 }
841
842 //
843 // Do size checking for an array type's size.
844 //
845 // Returns true if there was an error.
846 //
arraySizeErrorCheck(const TSourceLoc & line,TIntermTyped * expr,int & size)847 bool TParseContext::arraySizeErrorCheck(const TSourceLoc &line, TIntermTyped* expr, int& size)
848 {
849 TIntermConstantUnion* constant = expr->getAsConstantUnion();
850
851 if (expr->getQualifier() != EvqConstExpr || constant == 0 || !constant->isScalarInt())
852 {
853 error(line, "array size must be a constant integer expression", "");
854 return true;
855 }
856
857 if (constant->getBasicType() == EbtUInt)
858 {
859 unsigned int uintSize = constant->getUConst(0);
860 if (uintSize > static_cast<unsigned int>(std::numeric_limits<int>::max()))
861 {
862 error(line, "array size too large", "");
863 size = 1;
864 return true;
865 }
866
867 size = static_cast<int>(uintSize);
868 }
869 else
870 {
871 size = constant->getIConst(0);
872
873 if (size < 0)
874 {
875 error(line, "array size must be non-negative", "");
876 size = 1;
877 return true;
878 }
879 }
880
881 if(size == 0)
882 {
883 error(line, "array size must be greater than zero", "");
884 return true;
885 }
886
887 return false;
888 }
889
890 //
891 // See if this qualifier can be an array.
892 //
893 // Returns true if there is an error.
894 //
arrayQualifierErrorCheck(const TSourceLoc & line,TPublicType type)895 bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc &line, TPublicType type)
896 {
897 if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConstExpr && mShaderVersion < 300)) {
898 error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
899 return true;
900 }
901
902 return false;
903 }
904
905 //
906 // See if this type can be an array.
907 //
908 // Returns true if there is an error.
909 //
arrayTypeErrorCheck(const TSourceLoc & line,TPublicType type)910 bool TParseContext::arrayTypeErrorCheck(const TSourceLoc &line, TPublicType type)
911 {
912 //
913 // Can the type be an array?
914 //
915 if (type.array) {
916 error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
917 return true;
918 }
919
920 // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
921 // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section 4.3.4).
922 if(mShaderVersion >= 300 && type.type == EbtStruct && IsVarying(type.qualifier))
923 {
924 error(line, "cannot declare arrays of structs of this qualifier",
925 TType(type).getCompleteString().c_str());
926 return true;
927 }
928
929 return false;
930 }
931
arraySetMaxSize(TIntermSymbol * node,TType * type,int size,bool updateFlag,const TSourceLoc & line)932 bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, const TSourceLoc &line)
933 {
934 bool builtIn = false;
935 TSymbol* symbol = symbolTable.find(node->getSymbol(), mShaderVersion, &builtIn);
936 if (symbol == 0) {
937 error(line, " undeclared identifier", node->getSymbol().c_str());
938 return true;
939 }
940 TVariable* variable = static_cast<TVariable*>(symbol);
941
942 type->setArrayInformationType(variable->getArrayInformationType());
943 variable->updateArrayInformationType(type);
944
945 // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers
946 // its an error
947 if (node->getSymbol() == "gl_FragData") {
948 TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", mShaderVersion, &builtIn);
949 ASSERT(fragData);
950
951 int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst();
952 if (fragDataValue <= size) {
953 error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers");
954 return true;
955 }
956 }
957
958 // we dont want to update the maxArraySize when this flag is not set, we just want to include this
959 // node type in the chain of node types so that its updated when a higher maxArraySize comes in.
960 if (!updateFlag)
961 return false;
962
963 size++;
964 variable->getType().setMaxArraySize(size);
965 type->setMaxArraySize(size);
966 TType* tt = type;
967
968 while(tt->getArrayInformationType() != 0) {
969 tt = tt->getArrayInformationType();
970 tt->setMaxArraySize(size);
971 }
972
973 return false;
974 }
975
976 //
977 // Enforce non-initializer type/qualifier rules.
978 //
979 // Returns true if there was an error.
980 //
nonInitConstErrorCheck(const TSourceLoc & line,TString & identifier,TPublicType & type,bool array)981 bool TParseContext::nonInitConstErrorCheck(const TSourceLoc &line, TString& identifier, TPublicType& type, bool array)
982 {
983 if (type.qualifier == EvqConstExpr)
984 {
985 // Make the qualifier make sense.
986 type.qualifier = EvqTemporary;
987
988 if (array)
989 {
990 error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
991 }
992 else if (type.isStructureContainingArrays())
993 {
994 error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
995 }
996 else
997 {
998 error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
999 }
1000
1001 return true;
1002 }
1003
1004 return false;
1005 }
1006
1007 //
1008 // Do semantic checking for a variable declaration that has no initializer,
1009 // and update the symbol table.
1010 //
1011 // Returns true if there was an error.
1012 //
nonInitErrorCheck(const TSourceLoc & line,const TString & identifier,TPublicType & type)1013 bool TParseContext::nonInitErrorCheck(const TSourceLoc &line, const TString& identifier, TPublicType& type)
1014 {
1015 if(type.qualifier == EvqConstExpr)
1016 {
1017 // Make the qualifier make sense.
1018 type.qualifier = EvqTemporary;
1019
1020 // Generate informative error messages for ESSL1.
1021 // In ESSL3 arrays and structures containing arrays can be constant.
1022 if(mShaderVersion < 300 && type.isStructureContainingArrays())
1023 {
1024 error(line,
1025 "structures containing arrays may not be declared constant since they cannot be initialized",
1026 identifier.c_str());
1027 }
1028 else
1029 {
1030 error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
1031 }
1032
1033 return true;
1034 }
1035 if(type.isUnsizedArray())
1036 {
1037 error(line, "implicitly sized arrays need to be initialized", identifier.c_str());
1038 return true;
1039 }
1040 return false;
1041 }
1042
1043 // Do some simple checks that are shared between all variable declarations,
1044 // and update the symbol table.
1045 //
1046 // Returns true if declaring the variable succeeded.
1047 //
declareVariable(const TSourceLoc & line,const TString & identifier,const TType & type,TVariable ** variable)1048 bool TParseContext::declareVariable(const TSourceLoc &line, const TString &identifier, const TType &type,
1049 TVariable **variable)
1050 {
1051 ASSERT((*variable) == nullptr);
1052
1053 // gl_LastFragData may be redeclared with a new precision qualifier
1054 if(type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
1055 {
1056 const TVariable *maxDrawBuffers =
1057 static_cast<const TVariable *>(symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
1058 if(type.getArraySize() != maxDrawBuffers->getConstPointer()->getIConst())
1059 {
1060 error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier.c_str());
1061 return false;
1062 }
1063 }
1064
1065 if(reservedErrorCheck(line, identifier))
1066 return false;
1067
1068 (*variable) = new TVariable(&identifier, type);
1069 if(!symbolTable.declare(**variable))
1070 {
1071 error(line, "redefinition", identifier.c_str());
1072 delete (*variable);
1073 (*variable) = nullptr;
1074 return false;
1075 }
1076
1077 if(voidErrorCheck(line, identifier, type.getBasicType()))
1078 return false;
1079
1080 return true;
1081 }
1082
paramErrorCheck(const TSourceLoc & line,TQualifier qualifier,TQualifier paramQualifier,TType * type)1083 bool TParseContext::paramErrorCheck(const TSourceLoc &line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
1084 {
1085 if (qualifier != EvqConstReadOnly && qualifier != EvqTemporary) {
1086 error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
1087 return true;
1088 }
1089 if (qualifier == EvqConstReadOnly && paramQualifier != EvqIn) {
1090 error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
1091 return true;
1092 }
1093
1094 if (qualifier == EvqConstReadOnly)
1095 type->setQualifier(EvqConstReadOnly);
1096 else
1097 type->setQualifier(paramQualifier);
1098
1099 return false;
1100 }
1101
extensionErrorCheck(const TSourceLoc & line,const TString & extension)1102 bool TParseContext::extensionErrorCheck(const TSourceLoc &line, const TString& extension)
1103 {
1104 const TExtensionBehavior& extBehavior = extensionBehavior();
1105 TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
1106 if (iter == extBehavior.end()) {
1107 error(line, "extension", extension.c_str(), "is not supported");
1108 return true;
1109 }
1110 // In GLSL ES, an extension's default behavior is "disable".
1111 if (iter->second == EBhDisable || iter->second == EBhUndefined) {
1112 error(line, "extension", extension.c_str(), "is disabled");
1113 return true;
1114 }
1115 if (iter->second == EBhWarn) {
1116 warning(line, "extension", extension.c_str(), "is being used");
1117 return false;
1118 }
1119
1120 return false;
1121 }
1122
functionCallLValueErrorCheck(const TFunction * fnCandidate,TIntermAggregate * aggregate)1123 bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *aggregate)
1124 {
1125 for(size_t i = 0; i < fnCandidate->getParamCount(); ++i)
1126 {
1127 TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
1128 if(qual == EvqOut || qual == EvqInOut)
1129 {
1130 TIntermTyped *node = (aggregate->getSequence())[i]->getAsTyped();
1131 if(lValueErrorCheck(node->getLine(), "assign", node))
1132 {
1133 error(node->getLine(),
1134 "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error");
1135 recover();
1136 return true;
1137 }
1138 }
1139 }
1140 return false;
1141 }
1142
es3InvariantErrorCheck(const TQualifier qualifier,const TSourceLoc & invariantLocation)1143 void TParseContext::es3InvariantErrorCheck(const TQualifier qualifier, const TSourceLoc &invariantLocation)
1144 {
1145 switch(qualifier)
1146 {
1147 case EvqVaryingOut:
1148 case EvqSmoothOut:
1149 case EvqFlatOut:
1150 case EvqCentroidOut:
1151 case EvqVertexOut:
1152 case EvqFragmentOut:
1153 break;
1154 default:
1155 error(invariantLocation, "Only out variables can be invariant.", "invariant");
1156 recover();
1157 break;
1158 }
1159 }
1160
supportsExtension(const char * extension)1161 bool TParseContext::supportsExtension(const char* extension)
1162 {
1163 const TExtensionBehavior& extbehavior = extensionBehavior();
1164 TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
1165 return (iter != extbehavior.end());
1166 }
1167
handleExtensionDirective(const TSourceLoc & line,const char * extName,const char * behavior)1168 void TParseContext::handleExtensionDirective(const TSourceLoc &line, const char* extName, const char* behavior)
1169 {
1170 pp::SourceLocation loc(line.first_file, line.first_line);
1171 mDirectiveHandler.handleExtension(loc, extName, behavior);
1172 }
1173
handlePragmaDirective(const TSourceLoc & line,const char * name,const char * value)1174 void TParseContext::handlePragmaDirective(const TSourceLoc &line, const char* name, const char* value)
1175 {
1176 pp::SourceLocation loc(line.first_file, line.first_line);
1177 mDirectiveHandler.handlePragma(loc, name, value);
1178 }
1179
1180 /////////////////////////////////////////////////////////////////////////////////
1181 //
1182 // Non-Errors.
1183 //
1184 /////////////////////////////////////////////////////////////////////////////////
1185
getNamedVariable(const TSourceLoc & location,const TString * name,const TSymbol * symbol)1186 const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
1187 const TString *name,
1188 const TSymbol *symbol)
1189 {
1190 const TVariable *variable = nullptr;
1191
1192 if(!symbol)
1193 {
1194 error(location, "undeclared identifier", name->c_str());
1195 recover();
1196 }
1197 else if(!symbol->isVariable())
1198 {
1199 error(location, "variable expected", name->c_str());
1200 recover();
1201 }
1202 else
1203 {
1204 variable = static_cast<const TVariable*>(symbol);
1205
1206 if(symbolTable.findBuiltIn(variable->getName(), mShaderVersion))
1207 {
1208 recover();
1209 }
1210
1211 // Reject shaders using both gl_FragData and gl_FragColor
1212 TQualifier qualifier = variable->getType().getQualifier();
1213 if(qualifier == EvqFragData)
1214 {
1215 mUsesFragData = true;
1216 }
1217 else if(qualifier == EvqFragColor)
1218 {
1219 mUsesFragColor = true;
1220 }
1221
1222 // This validation is not quite correct - it's only an error to write to
1223 // both FragData and FragColor. For simplicity, and because users shouldn't
1224 // be rewarded for reading from undefined variables, return an error
1225 // if they are both referenced, rather than assigned.
1226 if(mUsesFragData && mUsesFragColor)
1227 {
1228 error(location, "cannot use both gl_FragData and gl_FragColor", name->c_str());
1229 recover();
1230 }
1231 }
1232
1233 if(!variable)
1234 {
1235 TType type(EbtFloat, EbpUndefined);
1236 TVariable *fakeVariable = new TVariable(name, type);
1237 symbolTable.declare(*fakeVariable);
1238 variable = fakeVariable;
1239 }
1240
1241 return variable;
1242 }
1243
1244 //
1245 // Look up a function name in the symbol table, and make sure it is a function.
1246 //
1247 // Return the function symbol if found, otherwise 0.
1248 //
findFunction(const TSourceLoc & line,TFunction * call,bool * builtIn)1249 const TFunction* TParseContext::findFunction(const TSourceLoc &line, TFunction* call, bool *builtIn)
1250 {
1251 // First find by unmangled name to check whether the function name has been
1252 // hidden by a variable name or struct typename.
1253 const TSymbol* symbol = symbolTable.find(call->getName(), mShaderVersion, builtIn);
1254 if (symbol == 0) {
1255 symbol = symbolTable.find(call->getMangledName(), mShaderVersion, builtIn);
1256 }
1257
1258 if (symbol == 0) {
1259 error(line, "no matching overloaded function found", call->getName().c_str());
1260 return nullptr;
1261 }
1262
1263 if (!symbol->isFunction()) {
1264 error(line, "function name expected", call->getName().c_str());
1265 return nullptr;
1266 }
1267
1268 return static_cast<const TFunction*>(symbol);
1269 }
1270
1271 //
1272 // Initializers show up in several places in the grammar. Have one set of
1273 // code to handle them here.
1274 //
executeInitializer(const TSourceLoc & line,const TString & identifier,const TPublicType & pType,TIntermTyped * initializer,TIntermNode ** intermNode)1275 bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, const TPublicType& pType,
1276 TIntermTyped *initializer, TIntermNode **intermNode)
1277 {
1278 ASSERT(intermNode != nullptr);
1279 TType type = TType(pType);
1280
1281 if(type.isUnsizedArray())
1282 {
1283 // We have not checked yet whether the initializer actually is an array or not.
1284 if(initializer->isArray())
1285 {
1286 type.setArraySize(initializer->getArraySize());
1287 }
1288 else
1289 {
1290 // Having a non-array initializer for an unsized array will result in an error later,
1291 // so we don't generate an error message here.
1292 type.setArraySize(1u);
1293 }
1294 }
1295
1296 TVariable *variable = nullptr;
1297 if(!declareVariable(line, identifier, type, &variable))
1298 {
1299 return true;
1300 }
1301
1302 if(symbolTable.atGlobalLevel() && initializer->getQualifier() != EvqConstExpr)
1303 {
1304 error(line, "global variable initializers must be constant expressions", "=");
1305 return true;
1306 }
1307
1308 //
1309 // identifier must be of type constant, a global, or a temporary
1310 //
1311 TQualifier qualifier = type.getQualifier();
1312 if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConstExpr)) {
1313 error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
1314 return true;
1315 }
1316 //
1317 // test for and propagate constant
1318 //
1319
1320 if (qualifier == EvqConstExpr) {
1321 if (qualifier != initializer->getQualifier()) {
1322 std::stringstream extraInfoStream;
1323 extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
1324 std::string extraInfo = extraInfoStream.str();
1325 error(line, " assigning non-constant to", "=", extraInfo.c_str());
1326 variable->getType().setQualifier(EvqTemporary);
1327 return true;
1328 }
1329
1330 if (type != initializer->getType()) {
1331 error(line, " non-matching types for const initializer ",
1332 variable->getType().getQualifierString());
1333 variable->getType().setQualifier(EvqTemporary);
1334 return true;
1335 }
1336
1337 if (initializer->getAsConstantUnion()) {
1338 variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
1339 } else if (initializer->getAsSymbolNode()) {
1340 const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
1341 const TVariable* tVar = static_cast<const TVariable*>(symbol);
1342
1343 ConstantUnion* constArray = tVar->getConstPointer();
1344 variable->shareConstPointer(constArray);
1345 }
1346 }
1347
1348 if (!variable->isConstant()) {
1349 TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
1350 *intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
1351 if(*intermNode == nullptr) {
1352 assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
1353 return true;
1354 }
1355 } else
1356 *intermNode = nullptr;
1357
1358 return false;
1359 }
1360
addFullySpecifiedType(TQualifier qualifier,bool invariant,TLayoutQualifier layoutQualifier,const TPublicType & typeSpecifier)1361 TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool invariant, TLayoutQualifier layoutQualifier, const TPublicType &typeSpecifier)
1362 {
1363 TPublicType returnType = typeSpecifier;
1364 returnType.qualifier = qualifier;
1365 returnType.invariant = invariant;
1366 returnType.layoutQualifier = layoutQualifier;
1367
1368 if(typeSpecifier.array)
1369 {
1370 error(typeSpecifier.line, "not supported", "first-class array");
1371 recover();
1372 returnType.clearArrayness();
1373 }
1374
1375 if(mShaderVersion < 300)
1376 {
1377 if(typeSpecifier.array)
1378 {
1379 error(typeSpecifier.line, "not supported", "first-class array");
1380 returnType.clearArrayness();
1381 }
1382
1383 if(qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
1384 {
1385 error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
1386 recover();
1387 }
1388
1389 if((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) &&
1390 (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
1391 {
1392 error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
1393 recover();
1394 }
1395 }
1396 else
1397 {
1398 if(!returnType.layoutQualifier.isEmpty())
1399 {
1400 globalErrorCheck(typeSpecifier.line, symbolTable.atGlobalLevel(), "layout");
1401 }
1402
1403 if(IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || returnType.qualifier == EvqFragmentOut)
1404 {
1405 checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, typeSpecifier.line);
1406 }
1407 }
1408
1409 return returnType;
1410 }
1411
checkInputOutputTypeIsValidES3(const TQualifier qualifier,const TPublicType & type,const TSourceLoc & qualifierLocation)1412 void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
1413 const TPublicType &type,
1414 const TSourceLoc &qualifierLocation)
1415 {
1416 // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
1417 if(type.type == EbtBool)
1418 {
1419 error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
1420 }
1421
1422 // Specific restrictions apply for vertex shader inputs and fragment shader outputs.
1423 switch(qualifier)
1424 {
1425 case EvqVertexIn:
1426 // ESSL 3.00 section 4.3.4
1427 if(type.array)
1428 {
1429 error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
1430 }
1431 // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck
1432 return;
1433 case EvqFragmentOut:
1434 // ESSL 3.00 section 4.3.6
1435 if(type.isMatrix())
1436 {
1437 error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
1438 }
1439 // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck
1440 return;
1441 default:
1442 break;
1443 }
1444
1445 // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
1446 // restrictions.
1447 bool typeContainsIntegers = (type.type == EbtInt || type.type == EbtUInt ||
1448 type.isStructureContainingType(EbtInt) ||
1449 type.isStructureContainingType(EbtUInt));
1450 if(typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
1451 {
1452 error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier));
1453 }
1454
1455 if(type.type == EbtStruct)
1456 {
1457 // ESSL 3.00 sections 4.3.4 and 4.3.6.
1458 // These restrictions are only implied by the ESSL 3.00 spec, but
1459 // the ESSL 3.10 spec lists these restrictions explicitly.
1460 if(type.array)
1461 {
1462 error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier));
1463 }
1464 if(type.isStructureContainingArrays())
1465 {
1466 error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier));
1467 }
1468 if(type.isStructureContainingType(EbtStruct))
1469 {
1470 error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier));
1471 }
1472 if(type.isStructureContainingType(EbtBool))
1473 {
1474 error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier));
1475 }
1476 }
1477 }
1478
parseSingleDeclaration(TPublicType & publicType,const TSourceLoc & identifierOrTypeLocation,const TString & identifier)1479 TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType,
1480 const TSourceLoc &identifierOrTypeLocation,
1481 const TString &identifier)
1482 {
1483 TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierOrTypeLocation);
1484
1485 bool emptyDeclaration = (identifier == "");
1486
1487 mDeferredSingleDeclarationErrorCheck = emptyDeclaration;
1488
1489 if(emptyDeclaration)
1490 {
1491 if(publicType.isUnsizedArray())
1492 {
1493 // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an error.
1494 // It is assumed that this applies to empty declarations as well.
1495 error(identifierOrTypeLocation, "empty array declaration needs to specify a size", identifier.c_str());
1496 }
1497 }
1498 else
1499 {
1500 if(singleDeclarationErrorCheck(publicType, identifierOrTypeLocation))
1501 recover();
1502
1503 if(nonInitErrorCheck(identifierOrTypeLocation, identifier, publicType))
1504 recover();
1505
1506 TVariable *variable = nullptr;
1507 if(!declareVariable(identifierOrTypeLocation, identifier, TType(publicType), &variable))
1508 recover();
1509
1510 if(variable && symbol)
1511 symbol->setId(variable->getUniqueId());
1512 }
1513
1514 return intermediate.makeAggregate(symbol, identifierOrTypeLocation);
1515 }
1516
parseSingleArrayDeclaration(TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & indexLocation,TIntermTyped * indexExpression)1517 TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType,
1518 const TSourceLoc &identifierLocation,
1519 const TString &identifier,
1520 const TSourceLoc &indexLocation,
1521 TIntermTyped *indexExpression)
1522 {
1523 mDeferredSingleDeclarationErrorCheck = false;
1524
1525 if(singleDeclarationErrorCheck(publicType, identifierLocation))
1526 recover();
1527
1528 if(nonInitErrorCheck(identifierLocation, identifier, publicType))
1529 recover();
1530
1531 if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
1532 {
1533 recover();
1534 }
1535
1536 TType arrayType(publicType);
1537
1538 int size;
1539 if(arraySizeErrorCheck(identifierLocation, indexExpression, size))
1540 {
1541 recover();
1542 }
1543 // Make the type an array even if size check failed.
1544 // This ensures useless error messages regarding the variable's non-arrayness won't follow.
1545 arrayType.setArraySize(size);
1546
1547 TVariable *variable = nullptr;
1548 if(!declareVariable(identifierLocation, identifier, arrayType, &variable))
1549 recover();
1550
1551 TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
1552 if(variable && symbol)
1553 symbol->setId(variable->getUniqueId());
1554
1555 return intermediate.makeAggregate(symbol, identifierLocation);
1556 }
1557
parseSingleInitDeclaration(const TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & initLocation,TIntermTyped * initializer)1558 TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
1559 const TSourceLoc &identifierLocation,
1560 const TString &identifier,
1561 const TSourceLoc &initLocation,
1562 TIntermTyped *initializer)
1563 {
1564 mDeferredSingleDeclarationErrorCheck = false;
1565
1566 if(singleDeclarationErrorCheck(publicType, identifierLocation))
1567 recover();
1568
1569 TIntermNode *intermNode = nullptr;
1570 if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
1571 {
1572 //
1573 // Build intermediate representation
1574 //
1575 return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr;
1576 }
1577 else
1578 {
1579 recover();
1580 return nullptr;
1581 }
1582 }
1583
parseSingleArrayInitDeclaration(TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & indexLocation,TIntermTyped * indexExpression,const TSourceLoc & initLocation,TIntermTyped * initializer)1584 TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration(TPublicType &publicType,
1585 const TSourceLoc &identifierLocation,
1586 const TString &identifier,
1587 const TSourceLoc &indexLocation,
1588 TIntermTyped *indexExpression,
1589 const TSourceLoc &initLocation,
1590 TIntermTyped *initializer)
1591 {
1592 mDeferredSingleDeclarationErrorCheck = false;
1593
1594 if(singleDeclarationErrorCheck(publicType, identifierLocation))
1595 recover();
1596
1597 if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
1598 {
1599 recover();
1600 }
1601
1602 TPublicType arrayType(publicType);
1603
1604 int size = 0;
1605 // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer.
1606 if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size))
1607 {
1608 recover();
1609 }
1610 // Make the type an array even if size check failed.
1611 // This ensures useless error messages regarding the variable's non-arrayness won't follow.
1612 arrayType.setArray(true, size);
1613
1614 // initNode will correspond to the whole of "type b[n] = initializer".
1615 TIntermNode *initNode = nullptr;
1616 if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
1617 {
1618 return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr;
1619 }
1620 else
1621 {
1622 recover();
1623 return nullptr;
1624 }
1625 }
1626
parseInvariantDeclaration(const TSourceLoc & invariantLoc,const TSourceLoc & identifierLoc,const TString * identifier,const TSymbol * symbol)1627 TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc,
1628 const TSourceLoc &identifierLoc,
1629 const TString *identifier,
1630 const TSymbol *symbol)
1631 {
1632 // invariant declaration
1633 if(globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying"))
1634 {
1635 recover();
1636 }
1637
1638 if(!symbol)
1639 {
1640 error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
1641 recover();
1642 return nullptr;
1643 }
1644 else
1645 {
1646 const TString kGlFrontFacing("gl_FrontFacing");
1647 if(*identifier == kGlFrontFacing)
1648 {
1649 error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str());
1650 recover();
1651 return nullptr;
1652 }
1653 symbolTable.addInvariantVarying(std::string(identifier->c_str()));
1654 const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
1655 ASSERT(variable);
1656 const TType &type = variable->getType();
1657 TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(),
1658 *identifier, type, identifierLoc);
1659
1660 TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc);
1661 aggregate->setOp(EOpInvariantDeclaration);
1662 return aggregate;
1663 }
1664 }
1665
parseDeclarator(TPublicType & publicType,TIntermAggregate * aggregateDeclaration,const TSourceLoc & identifierLocation,const TString & identifier)1666 TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
1667 const TSourceLoc &identifierLocation, const TString &identifier)
1668 {
1669 // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
1670 if(mDeferredSingleDeclarationErrorCheck)
1671 {
1672 if(singleDeclarationErrorCheck(publicType, identifierLocation))
1673 recover();
1674 mDeferredSingleDeclarationErrorCheck = false;
1675 }
1676
1677 if(locationDeclaratorListCheck(identifierLocation, publicType))
1678 recover();
1679
1680 if(nonInitErrorCheck(identifierLocation, identifier, publicType))
1681 recover();
1682
1683 TVariable *variable = nullptr;
1684 if(!declareVariable(identifierLocation, identifier, TType(publicType), &variable))
1685 recover();
1686
1687 TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
1688 if(variable && symbol)
1689 symbol->setId(variable->getUniqueId());
1690
1691 return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
1692 }
1693
parseArrayDeclarator(TPublicType & publicType,TIntermAggregate * aggregateDeclaration,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & arrayLocation,TIntermTyped * indexExpression)1694 TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
1695 const TSourceLoc &identifierLocation, const TString &identifier,
1696 const TSourceLoc &arrayLocation, TIntermTyped *indexExpression)
1697 {
1698 // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
1699 if(mDeferredSingleDeclarationErrorCheck)
1700 {
1701 if(singleDeclarationErrorCheck(publicType, identifierLocation))
1702 recover();
1703 mDeferredSingleDeclarationErrorCheck = false;
1704 }
1705
1706 if(locationDeclaratorListCheck(identifierLocation, publicType))
1707 recover();
1708
1709 if(nonInitErrorCheck(identifierLocation, identifier, publicType))
1710 recover();
1711
1712 if(arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType))
1713 {
1714 recover();
1715 }
1716 else
1717 {
1718 TType arrayType = TType(publicType);
1719 int size;
1720 if(arraySizeErrorCheck(arrayLocation, indexExpression, size))
1721 {
1722 recover();
1723 }
1724 arrayType.setArraySize(size);
1725
1726 TVariable *variable = nullptr;
1727 if(!declareVariable(identifierLocation, identifier, arrayType, &variable))
1728 recover();
1729
1730 TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
1731 if(variable && symbol)
1732 symbol->setId(variable->getUniqueId());
1733
1734 return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
1735 }
1736
1737 return nullptr;
1738 }
1739
parseInitDeclarator(const TPublicType & publicType,TIntermAggregate * aggregateDeclaration,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & initLocation,TIntermTyped * initializer)1740 TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration,
1741 const TSourceLoc &identifierLocation, const TString &identifier,
1742 const TSourceLoc &initLocation, TIntermTyped *initializer)
1743 {
1744 // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
1745 if(mDeferredSingleDeclarationErrorCheck)
1746 {
1747 if(singleDeclarationErrorCheck(publicType, identifierLocation))
1748 recover();
1749 mDeferredSingleDeclarationErrorCheck = false;
1750 }
1751
1752 if(locationDeclaratorListCheck(identifierLocation, publicType))
1753 recover();
1754
1755 TIntermNode *intermNode = nullptr;
1756 if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode))
1757 {
1758 //
1759 // build the intermediate representation
1760 //
1761 if(intermNode)
1762 {
1763 return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation);
1764 }
1765 else
1766 {
1767 return aggregateDeclaration;
1768 }
1769 }
1770 else
1771 {
1772 recover();
1773 return nullptr;
1774 }
1775 }
1776
parseArrayInitDeclarator(const TPublicType & publicType,TIntermAggregate * aggregateDeclaration,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & indexLocation,TIntermTyped * indexExpression,const TSourceLoc & initLocation,TIntermTyped * initializer)1777 TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType,
1778 TIntermAggregate *aggregateDeclaration,
1779 const TSourceLoc &identifierLocation,
1780 const TString &identifier,
1781 const TSourceLoc &indexLocation,
1782 TIntermTyped *indexExpression,
1783 const TSourceLoc &initLocation, TIntermTyped *initializer)
1784 {
1785 // If the declaration starting this declarator list was empty (example: int,), some checks were not performed.
1786 if(mDeferredSingleDeclarationErrorCheck)
1787 {
1788 if(singleDeclarationErrorCheck(publicType, identifierLocation))
1789 recover();
1790 mDeferredSingleDeclarationErrorCheck = false;
1791 }
1792
1793 if(locationDeclaratorListCheck(identifierLocation, publicType))
1794 recover();
1795
1796 if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
1797 {
1798 recover();
1799 }
1800
1801 TPublicType arrayType(publicType);
1802
1803 int size = 0;
1804 // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer.
1805 if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size))
1806 {
1807 recover();
1808 }
1809 // Make the type an array even if size check failed.
1810 // This ensures useless error messages regarding the variable's non-arrayness won't follow.
1811 arrayType.setArray(true, size);
1812
1813 // initNode will correspond to the whole of "b[n] = initializer".
1814 TIntermNode *initNode = nullptr;
1815 if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
1816 {
1817 if(initNode)
1818 {
1819 return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation);
1820 }
1821 else
1822 {
1823 return aggregateDeclaration;
1824 }
1825 }
1826 else
1827 {
1828 recover();
1829 return nullptr;
1830 }
1831 }
1832
parseGlobalLayoutQualifier(const TPublicType & typeQualifier)1833 void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier)
1834 {
1835 if(mShaderVersion < 300)
1836 {
1837 error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout");
1838 recover();
1839 return;
1840 }
1841
1842 if(typeQualifier.qualifier != EvqUniform)
1843 {
1844 error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
1845 recover();
1846 return;
1847 }
1848
1849 const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
1850 ASSERT(!layoutQualifier.isEmpty());
1851
1852 if(layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier))
1853 {
1854 recover();
1855 return;
1856 }
1857
1858 if(layoutQualifier.matrixPacking != EmpUnspecified)
1859 {
1860 mDefaultMatrixPacking = layoutQualifier.matrixPacking;
1861 }
1862
1863 if(layoutQualifier.blockStorage != EbsUnspecified)
1864 {
1865 mDefaultBlockStorage = layoutQualifier.blockStorage;
1866 }
1867 }
1868
addFunctionPrototypeDeclaration(const TFunction & function,const TSourceLoc & location)1869 TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, const TSourceLoc &location)
1870 {
1871 // Note: symbolTableFunction could be the same as function if this is the first declaration.
1872 // Either way the instance in the symbol table is used to track whether the function is declared
1873 // multiple times.
1874 TFunction *symbolTableFunction =
1875 static_cast<TFunction *>(symbolTable.find(function.getMangledName(), getShaderVersion()));
1876 if(symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100)
1877 {
1878 // ESSL 1.00.17 section 4.2.7.
1879 // Doesn't apply to ESSL 3.00.4: see section 4.2.3.
1880 error(location, "duplicate function prototype declarations are not allowed", "function");
1881 recover();
1882 }
1883 symbolTableFunction->setHasPrototypeDeclaration();
1884
1885 TIntermAggregate *prototype = new TIntermAggregate;
1886 prototype->setType(function.getReturnType());
1887 prototype->setName(function.getMangledName());
1888
1889 for(size_t i = 0; i < function.getParamCount(); i++)
1890 {
1891 const TParameter ¶m = function.getParam(i);
1892 if(param.name != 0)
1893 {
1894 TVariable variable(param.name, *param.type);
1895
1896 TIntermSymbol *paramSymbol = intermediate.addSymbol(
1897 variable.getUniqueId(), variable.getName(), variable.getType(), location);
1898 prototype = intermediate.growAggregate(prototype, paramSymbol, location);
1899 }
1900 else
1901 {
1902 TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location);
1903 prototype = intermediate.growAggregate(prototype, paramSymbol, location);
1904 }
1905 }
1906
1907 prototype->setOp(EOpPrototype);
1908
1909 symbolTable.pop();
1910
1911 if(!symbolTable.atGlobalLevel())
1912 {
1913 // ESSL 3.00.4 section 4.2.4.
1914 error(location, "local function prototype declarations are not allowed", "function");
1915 recover();
1916 }
1917
1918 return prototype;
1919 }
1920
addFunctionDefinition(const TFunction & function,TIntermAggregate * functionPrototype,TIntermAggregate * functionBody,const TSourceLoc & location)1921 TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, TIntermAggregate *functionPrototype, TIntermAggregate *functionBody, const TSourceLoc &location)
1922 {
1923 //?? Check that all paths return a value if return type != void ?
1924 // May be best done as post process phase on intermediate code
1925 if(mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
1926 {
1927 error(location, "function does not return a value:", "", function.getName().c_str());
1928 recover();
1929 }
1930
1931 TIntermAggregate *aggregate = intermediate.growAggregate(functionPrototype, functionBody, location);
1932 intermediate.setAggregateOperator(aggregate, EOpFunction, location);
1933 aggregate->setName(function.getMangledName().c_str());
1934 aggregate->setType(function.getReturnType());
1935
1936 // store the pragma information for debug and optimize and other vendor specific
1937 // information. This information can be queried from the parse tree
1938 aggregate->setOptimize(pragma().optimize);
1939 aggregate->setDebug(pragma().debug);
1940
1941 if(functionBody && functionBody->getAsAggregate())
1942 aggregate->setEndLine(functionBody->getAsAggregate()->getEndLine());
1943
1944 symbolTable.pop();
1945 return aggregate;
1946 }
1947
parseFunctionPrototype(const TSourceLoc & location,TFunction * function,TIntermAggregate ** aggregateOut)1948 void TParseContext::parseFunctionPrototype(const TSourceLoc &location, TFunction *function, TIntermAggregate **aggregateOut)
1949 {
1950 const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion());
1951
1952 if(builtIn)
1953 {
1954 error(location, "built-in functions cannot be redefined", function->getName().c_str());
1955 recover();
1956 }
1957
1958 TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
1959 //
1960 // Note: 'prevDec' could be 'function' if this is the first time we've seen function
1961 // as it would have just been put in the symbol table. Otherwise, we're looking up
1962 // an earlier occurance.
1963 //
1964 if(prevDec->isDefined())
1965 {
1966 // Then this function already has a body.
1967 error(location, "function already has a body", function->getName().c_str());
1968 recover();
1969 }
1970 prevDec->setDefined();
1971 //
1972 // Overload the unique ID of the definition to be the same unique ID as the declaration.
1973 // Eventually we will probably want to have only a single definition and just swap the
1974 // arguments to be the definition's arguments.
1975 //
1976 function->setUniqueId(prevDec->getUniqueId());
1977
1978 // Raise error message if main function takes any parameters or return anything other than void
1979 if(function->getName() == "main")
1980 {
1981 if(function->getParamCount() > 0)
1982 {
1983 error(location, "function cannot take any parameter(s)", function->getName().c_str());
1984 recover();
1985 }
1986 if(function->getReturnType().getBasicType() != EbtVoid)
1987 {
1988 error(location, "", function->getReturnType().getBasicString(), "main function cannot return a value");
1989 recover();
1990 }
1991 }
1992
1993 //
1994 // Remember the return type for later checking for RETURN statements.
1995 //
1996 mCurrentFunctionType = &(prevDec->getReturnType());
1997 mFunctionReturnsValue = false;
1998
1999 //
2000 // Insert parameters into the symbol table.
2001 // If the parameter has no name, it's not an error, just don't insert it
2002 // (could be used for unused args).
2003 //
2004 // Also, accumulate the list of parameters into the HIL, so lower level code
2005 // knows where to find parameters.
2006 //
2007 TIntermAggregate *paramNodes = new TIntermAggregate;
2008 for(size_t i = 0; i < function->getParamCount(); i++)
2009 {
2010 const TParameter ¶m = function->getParam(i);
2011 if(param.name != 0)
2012 {
2013 TVariable *variable = new TVariable(param.name, *param.type);
2014 //
2015 // Insert the parameters with name in the symbol table.
2016 //
2017 if(!symbolTable.declare(*variable))
2018 {
2019 error(location, "redefinition", variable->getName().c_str());
2020 recover();
2021 paramNodes = intermediate.growAggregate(
2022 paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
2023 continue;
2024 }
2025
2026 //
2027 // Add the parameter to the HIL
2028 //
2029 TIntermSymbol *symbol = intermediate.addSymbol(
2030 variable->getUniqueId(), variable->getName(), variable->getType(), location);
2031
2032 paramNodes = intermediate.growAggregate(paramNodes, symbol, location);
2033 }
2034 else
2035 {
2036 paramNodes = intermediate.growAggregate(
2037 paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
2038 }
2039 }
2040 intermediate.setAggregateOperator(paramNodes, EOpParameters, location);
2041 *aggregateOut = paramNodes;
2042 setLoopNestingLevel(0);
2043 }
2044
parseFunctionDeclarator(const TSourceLoc & location,TFunction * function)2045 TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
2046 {
2047 //
2048 // We don't know at this point whether this is a function definition or a prototype.
2049 // The definition production code will check for redefinitions.
2050 // In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
2051 //
2052 // Return types and parameter qualifiers must match in all redeclarations, so those are checked
2053 // here.
2054 //
2055 TFunction *prevDec = static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
2056 if(getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str()))
2057 {
2058 // With ESSL 3.00, names of built-in functions cannot be redeclared as functions.
2059 // Therefore overloading or redefining builtin functions is an error.
2060 error(location, "Name of a built-in function cannot be redeclared as function", function->getName().c_str());
2061 }
2062 else if(prevDec)
2063 {
2064 if(prevDec->getReturnType() != function->getReturnType())
2065 {
2066 error(location, "overloaded functions must have the same return type",
2067 function->getReturnType().getBasicString());
2068 recover();
2069 }
2070 for(size_t i = 0; i < prevDec->getParamCount(); ++i)
2071 {
2072 if(prevDec->getParam(i).type->getQualifier() != function->getParam(i).type->getQualifier())
2073 {
2074 error(location, "overloaded functions must have the same parameter qualifiers",
2075 function->getParam(i).type->getQualifierString());
2076 recover();
2077 }
2078 }
2079 }
2080
2081 //
2082 // Check for previously declared variables using the same name.
2083 //
2084 TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
2085 if(prevSym)
2086 {
2087 if(!prevSym->isFunction())
2088 {
2089 error(location, "redefinition", function->getName().c_str(), "function");
2090 recover();
2091 }
2092 }
2093
2094 // We're at the inner scope level of the function's arguments and body statement.
2095 // Add the function prototype to the surrounding scope instead.
2096 symbolTable.getOuterLevel()->insert(*function);
2097
2098 //
2099 // If this is a redeclaration, it could also be a definition, in which case, we want to use the
2100 // variable names from this one, and not the one that's
2101 // being redeclared. So, pass back up this declaration, not the one in the symbol table.
2102 //
2103 return function;
2104 }
2105
addConstructorFunc(const TPublicType & publicTypeIn)2106 TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn)
2107 {
2108 TPublicType publicType = publicTypeIn;
2109 TOperator op = EOpNull;
2110 if(publicType.userDef)
2111 {
2112 op = EOpConstructStruct;
2113 }
2114 else
2115 {
2116 op = TypeToConstructorOperator(TType(publicType));
2117 if(op == EOpNull)
2118 {
2119 error(publicType.line, "cannot construct this type", getBasicString(publicType.type));
2120 recover();
2121 publicType.type = EbtFloat;
2122 op = EOpConstructFloat;
2123 }
2124 }
2125
2126 TString tempString;
2127 TType type(publicType);
2128 return new TFunction(&tempString, type, op);
2129 }
2130
2131 // This function is used to test for the correctness of the parameters passed to various constructor functions
2132 // and also convert them to the right datatype if it is allowed and required.
2133 //
2134 // Returns 0 for an error or the constructed node (aggregate or typed) for no error.
2135 //
addConstructor(TIntermNode * arguments,const TType * type,TOperator op,TFunction * fnCall,const TSourceLoc & line)2136 TIntermTyped* TParseContext::addConstructor(TIntermNode* arguments, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc &line)
2137 {
2138 TIntermAggregate *aggregateArguments = arguments->getAsAggregate();
2139
2140 if(!aggregateArguments)
2141 {
2142 aggregateArguments = new TIntermAggregate;
2143 aggregateArguments->getSequence().push_back(arguments);
2144 }
2145
2146 if(type->isArray())
2147 {
2148 // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
2149 // the array.
2150 for(TIntermNode *&argNode : aggregateArguments->getSequence())
2151 {
2152 const TType &argType = argNode->getAsTyped()->getType();
2153 // It has already been checked that the argument is not an array.
2154 ASSERT(!argType.isArray());
2155 if(!argType.sameElementType(*type))
2156 {
2157 error(line, "Array constructor argument has an incorrect type", "Error");
2158 return nullptr;
2159 }
2160 }
2161 }
2162 else if(op == EOpConstructStruct)
2163 {
2164 const TFieldList &fields = type->getStruct()->fields();
2165 TIntermSequence &args = aggregateArguments->getSequence();
2166
2167 for(size_t i = 0; i < fields.size(); i++)
2168 {
2169 if(args[i]->getAsTyped()->getType() != *fields[i]->type())
2170 {
2171 error(line, "Structure constructor arguments do not match structure fields", "Error");
2172 recover();
2173
2174 return nullptr;
2175 }
2176 }
2177 }
2178
2179 // Turn the argument list itself into a constructor
2180 TIntermAggregate *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line);
2181 TIntermTyped *constConstructor = foldConstConstructor(constructor, *type);
2182 if(constConstructor)
2183 {
2184 return constConstructor;
2185 }
2186
2187 return constructor;
2188 }
2189
foldConstConstructor(TIntermAggregate * aggrNode,const TType & type)2190 TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
2191 {
2192 aggrNode->setType(type);
2193 if (aggrNode->isConstantFoldable()) {
2194 bool returnVal = false;
2195 ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
2196 if (aggrNode->getSequence().size() == 1) {
2197 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
2198 }
2199 else {
2200 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
2201 }
2202 if (returnVal)
2203 return nullptr;
2204
2205 return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
2206 }
2207
2208 return nullptr;
2209 }
2210
2211 //
2212 // This function returns the tree representation for the vector field(s) being accessed from contant vector.
2213 // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
2214 // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
2215 // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
2216 // a constant matrix.
2217 //
addConstVectorNode(TVectorFields & fields,TIntermTyped * node,const TSourceLoc & line)2218 TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc &line)
2219 {
2220 TIntermTyped* typedNode;
2221 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
2222
2223 ConstantUnion *unionArray;
2224 if (tempConstantNode) {
2225 unionArray = tempConstantNode->getUnionArrayPointer();
2226
2227 if (!unionArray) {
2228 return node;
2229 }
2230 } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
2231 error(line, "Cannot offset into the vector", "Error");
2232 recover();
2233
2234 return nullptr;
2235 }
2236
2237 ConstantUnion* constArray = new ConstantUnion[fields.num];
2238
2239 int objSize = static_cast<int>(node->getType().getObjectSize());
2240 for (int i = 0; i < fields.num; i++) {
2241 if (fields.offsets[i] >= objSize) {
2242 std::stringstream extraInfoStream;
2243 extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
2244 std::string extraInfo = extraInfoStream.str();
2245 error(line, "", "[", extraInfo.c_str());
2246 recover();
2247 fields.offsets[i] = 0;
2248 }
2249
2250 constArray[i] = unionArray[fields.offsets[i]];
2251
2252 }
2253 typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
2254 return typedNode;
2255 }
2256
2257 //
2258 // This function returns the column being accessed from a constant matrix. The values are retrieved from
2259 // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
2260 // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
2261 // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
2262 //
addConstMatrixNode(int index,TIntermTyped * node,const TSourceLoc & line)2263 TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc &line)
2264 {
2265 TIntermTyped* typedNode;
2266 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
2267
2268 if (index >= node->getType().getNominalSize()) {
2269 std::stringstream extraInfoStream;
2270 extraInfoStream << "matrix field selection out of range '" << index << "'";
2271 std::string extraInfo = extraInfoStream.str();
2272 error(line, "", "[", extraInfo.c_str());
2273 recover();
2274 index = 0;
2275 }
2276
2277 if (tempConstantNode) {
2278 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
2279 int size = tempConstantNode->getType().getNominalSize();
2280 typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
2281 } else {
2282 error(line, "Cannot offset into the matrix", "Error");
2283 recover();
2284
2285 return nullptr;
2286 }
2287
2288 return typedNode;
2289 }
2290
2291
2292 //
2293 // This function returns an element of an array accessed from a constant array. The values are retrieved from
2294 // the symbol table and parse-tree is built for the type of the element. The input
2295 // to the function could either be a symbol node (a[0] where a is a constant array)that represents a
2296 // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
2297 //
addConstArrayNode(int index,TIntermTyped * node,const TSourceLoc & line)2298 TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc &line)
2299 {
2300 TIntermTyped* typedNode;
2301 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
2302 TType arrayElementType = node->getType();
2303 arrayElementType.clearArrayness();
2304
2305 if (index >= node->getType().getArraySize()) {
2306 std::stringstream extraInfoStream;
2307 extraInfoStream << "array field selection out of range '" << index << "'";
2308 std::string extraInfo = extraInfoStream.str();
2309 error(line, "", "[", extraInfo.c_str());
2310 recover();
2311 index = 0;
2312 }
2313
2314 size_t arrayElementSize = arrayElementType.getObjectSize();
2315
2316 if (tempConstantNode) {
2317 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
2318 typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
2319 } else {
2320 error(line, "Cannot offset into the array", "Error");
2321 recover();
2322
2323 return nullptr;
2324 }
2325
2326 return typedNode;
2327 }
2328
2329
2330 //
2331 // This function returns the value of a particular field inside a constant structure from the symbol table.
2332 // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
2333 // function and returns the parse-tree with the values of the embedded/nested struct.
2334 //
addConstStruct(const TString & identifier,TIntermTyped * node,const TSourceLoc & line)2335 TIntermTyped* TParseContext::addConstStruct(const TString& identifier, TIntermTyped* node, const TSourceLoc &line)
2336 {
2337 const TFieldList &fields = node->getType().getStruct()->fields();
2338 TIntermTyped *typedNode;
2339 size_t instanceSize = 0;
2340 TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
2341
2342 for(size_t index = 0; index < fields.size(); ++index) {
2343 if (fields[index]->name() == identifier) {
2344 break;
2345 } else {
2346 instanceSize += fields[index]->type()->getObjectSize();
2347 }
2348 }
2349
2350 if (tempConstantNode) {
2351 ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
2352
2353 typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
2354 } else {
2355 error(line, "Cannot offset into the structure", "Error");
2356 recover();
2357
2358 return nullptr;
2359 }
2360
2361 return typedNode;
2362 }
2363
2364 //
2365 // Interface/uniform blocks
2366 //
addInterfaceBlock(const TPublicType & typeQualifier,const TSourceLoc & nameLine,const TString & blockName,TFieldList * fieldList,const TString * instanceName,const TSourceLoc & instanceLine,TIntermTyped * arrayIndex,const TSourceLoc & arrayIndexLine)2367 TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList,
2368 const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine)
2369 {
2370 if(reservedErrorCheck(nameLine, blockName))
2371 recover();
2372
2373 if(typeQualifier.qualifier != EvqUniform)
2374 {
2375 error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform");
2376 recover();
2377 }
2378
2379 TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
2380 if(layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier))
2381 {
2382 recover();
2383 }
2384
2385 if(blockLayoutQualifier.matrixPacking == EmpUnspecified)
2386 {
2387 blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking;
2388 }
2389
2390 if(blockLayoutQualifier.blockStorage == EbsUnspecified)
2391 {
2392 blockLayoutQualifier.blockStorage = mDefaultBlockStorage;
2393 }
2394
2395 TSymbol* blockNameSymbol = new TSymbol(&blockName);
2396 if(!symbolTable.declare(*blockNameSymbol)) {
2397 error(nameLine, "redefinition", blockName.c_str(), "interface block name");
2398 recover();
2399 }
2400
2401 // check for sampler types and apply layout qualifiers
2402 for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) {
2403 TField* field = (*fieldList)[memberIndex];
2404 TType* fieldType = field->type();
2405 if(IsSampler(fieldType->getBasicType())) {
2406 error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks");
2407 recover();
2408 }
2409
2410 const TQualifier qualifier = fieldType->getQualifier();
2411 switch(qualifier)
2412 {
2413 case EvqGlobal:
2414 case EvqUniform:
2415 break;
2416 default:
2417 error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier));
2418 recover();
2419 break;
2420 }
2421
2422 // check layout qualifiers
2423 TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
2424 if(layoutLocationErrorCheck(field->line(), fieldLayoutQualifier))
2425 {
2426 recover();
2427 }
2428
2429 if(fieldLayoutQualifier.blockStorage != EbsUnspecified)
2430 {
2431 error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
2432 recover();
2433 }
2434
2435 if(fieldLayoutQualifier.matrixPacking == EmpUnspecified)
2436 {
2437 fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
2438 }
2439 else if(!fieldType->isMatrix())
2440 {
2441 error(field->line(), "invalid layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "can only be used on matrix types");
2442 recover();
2443 }
2444
2445 fieldType->setLayoutQualifier(fieldLayoutQualifier);
2446 }
2447
2448 // add array index
2449 int arraySize = 0;
2450 if(arrayIndex)
2451 {
2452 if(arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize))
2453 recover();
2454 }
2455
2456 TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
2457 TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize);
2458
2459 TString symbolName = "";
2460 int symbolId = 0;
2461
2462 if(!instanceName)
2463 {
2464 // define symbols for the members of the interface block
2465 for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
2466 {
2467 TField* field = (*fieldList)[memberIndex];
2468 TType* fieldType = field->type();
2469
2470 // set parent pointer of the field variable
2471 fieldType->setInterfaceBlock(interfaceBlock);
2472
2473 TVariable* fieldVariable = new TVariable(&field->name(), *fieldType);
2474 fieldVariable->setQualifier(typeQualifier.qualifier);
2475
2476 if(!symbolTable.declare(*fieldVariable)) {
2477 error(field->line(), "redefinition", field->name().c_str(), "interface block member name");
2478 recover();
2479 }
2480 }
2481 }
2482 else
2483 {
2484 // add a symbol for this interface block
2485 TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
2486 instanceTypeDef->setQualifier(typeQualifier.qualifier);
2487
2488 if(!symbolTable.declare(*instanceTypeDef)) {
2489 error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name");
2490 recover();
2491 }
2492
2493 symbolId = instanceTypeDef->getUniqueId();
2494 symbolName = instanceTypeDef->getName();
2495 }
2496
2497 TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine);
2498 aggregate->setOp(EOpDeclaration);
2499
2500 exitStructDeclaration();
2501 return aggregate;
2502 }
2503
2504 //
2505 // Parse an array index expression
2506 //
addIndexExpression(TIntermTyped * baseExpression,const TSourceLoc & location,TIntermTyped * indexExpression)2507 TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression)
2508 {
2509 TIntermTyped *indexedExpression = nullptr;
2510
2511 if(!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
2512 {
2513 if(baseExpression->getAsSymbolNode())
2514 {
2515 error(location, " left of '[' is not of type array, matrix, or vector ",
2516 baseExpression->getAsSymbolNode()->getSymbol().c_str());
2517 }
2518 else
2519 {
2520 error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
2521 }
2522 recover();
2523 }
2524
2525 TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
2526
2527 if(indexExpression->getQualifier() == EvqConstExpr && indexConstantUnion)
2528 {
2529 int index = indexConstantUnion->getIConst(0);
2530 if(index < 0)
2531 {
2532 std::stringstream infoStream;
2533 infoStream << index;
2534 std::string info = infoStream.str();
2535 error(location, "negative index", info.c_str());
2536 recover();
2537 index = 0;
2538 }
2539 if(baseExpression->getType().getQualifier() == EvqConstExpr)
2540 {
2541 if(baseExpression->isArray())
2542 {
2543 // constant folding for arrays
2544 indexedExpression = addConstArrayNode(index, baseExpression, location);
2545 }
2546 else if(baseExpression->isVector())
2547 {
2548 // constant folding for vectors
2549 TVectorFields fields;
2550 fields.num = 1;
2551 fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
2552 indexedExpression = addConstVectorNode(fields, baseExpression, location);
2553 }
2554 else if(baseExpression->isMatrix())
2555 {
2556 // constant folding for matrices
2557 indexedExpression = addConstMatrixNode(index, baseExpression, location);
2558 }
2559 }
2560 else
2561 {
2562 int safeIndex = -1;
2563
2564 if(baseExpression->isArray())
2565 {
2566 if(index >= baseExpression->getType().getArraySize())
2567 {
2568 std::stringstream extraInfoStream;
2569 extraInfoStream << "array index out of range '" << index << "'";
2570 std::string extraInfo = extraInfoStream.str();
2571 error(location, "", "[", extraInfo.c_str());
2572 recover();
2573 safeIndex = baseExpression->getType().getArraySize() - 1;
2574 }
2575 }
2576 else if((baseExpression->isVector() || baseExpression->isMatrix()) &&
2577 baseExpression->getType().getNominalSize() <= index)
2578 {
2579 std::stringstream extraInfoStream;
2580 extraInfoStream << "field selection out of range '" << index << "'";
2581 std::string extraInfo = extraInfoStream.str();
2582 error(location, "", "[", extraInfo.c_str());
2583 recover();
2584 safeIndex = baseExpression->getType().getNominalSize() - 1;
2585 }
2586
2587 // Don't modify the data of the previous constant union, because it can point
2588 // to builtins, like gl_MaxDrawBuffers. Instead use a new sanitized object.
2589 if(safeIndex != -1)
2590 {
2591 ConstantUnion *safeConstantUnion = new ConstantUnion();
2592 safeConstantUnion->setIConst(safeIndex);
2593 indexConstantUnion->replaceConstantUnion(safeConstantUnion);
2594 }
2595
2596 indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
2597 }
2598 }
2599 else
2600 {
2601 if(baseExpression->isInterfaceBlock())
2602 {
2603 error(location, "",
2604 "[", "array indexes for interface blocks arrays must be constant integral expressions");
2605 recover();
2606 }
2607 else if(baseExpression->getQualifier() == EvqFragmentOut)
2608 {
2609 error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions");
2610 recover();
2611 }
2612
2613 indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
2614 }
2615
2616 if(indexedExpression == 0)
2617 {
2618 ConstantUnion *unionArray = new ConstantUnion[1];
2619 unionArray->setFConst(0.0f);
2620 indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConstExpr), location);
2621 }
2622 else if(baseExpression->isArray())
2623 {
2624 const TType &baseType = baseExpression->getType();
2625 if(baseType.getStruct())
2626 {
2627 TType copyOfType(baseType.getStruct());
2628 indexedExpression->setType(copyOfType);
2629 }
2630 else if(baseType.isInterfaceBlock())
2631 {
2632 TType copyOfType(baseType.getInterfaceBlock(), EvqTemporary, baseType.getLayoutQualifier(), 0);
2633 indexedExpression->setType(copyOfType);
2634 }
2635 else
2636 {
2637 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
2638 EvqTemporary, static_cast<unsigned char>(baseExpression->getNominalSize()),
2639 static_cast<unsigned char>(baseExpression->getSecondarySize())));
2640 }
2641
2642 if(baseExpression->getType().getQualifier() == EvqConstExpr)
2643 {
2644 indexedExpression->getTypePointer()->setQualifier(EvqConstExpr);
2645 }
2646 }
2647 else if(baseExpression->isMatrix())
2648 {
2649 TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary;
2650 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
2651 qualifier, static_cast<unsigned char>(baseExpression->getSecondarySize())));
2652 }
2653 else if(baseExpression->isVector())
2654 {
2655 TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary;
2656 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
2657 }
2658 else
2659 {
2660 indexedExpression->setType(baseExpression->getType());
2661 }
2662
2663 return indexedExpression;
2664 }
2665
addFieldSelectionExpression(TIntermTyped * baseExpression,const TSourceLoc & dotLocation,const TString & fieldString,const TSourceLoc & fieldLocation)2666 TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation,
2667 const TString &fieldString, const TSourceLoc &fieldLocation)
2668 {
2669 TIntermTyped *indexedExpression = nullptr;
2670
2671 if(baseExpression->isArray())
2672 {
2673 error(fieldLocation, "cannot apply dot operator to an array", ".");
2674 recover();
2675 }
2676
2677 if(baseExpression->isVector())
2678 {
2679 TVectorFields fields;
2680 if(!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation))
2681 {
2682 fields.num = 1;
2683 fields.offsets[0] = 0;
2684 recover();
2685 }
2686
2687 if(baseExpression->getAsConstantUnion())
2688 {
2689 // constant folding for vector fields
2690 indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation);
2691 if(indexedExpression == 0)
2692 {
2693 recover();
2694 indexedExpression = baseExpression;
2695 }
2696 else
2697 {
2698 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
2699 EvqConstExpr, (unsigned char)(fieldString).size()));
2700 }
2701 }
2702 else
2703 {
2704 TString vectorString = fieldString;
2705 TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation);
2706 indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation);
2707 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
2708 baseExpression->getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary, (unsigned char)vectorString.size()));
2709 }
2710 }
2711 else if(baseExpression->isMatrix())
2712 {
2713 TMatrixFields fields;
2714 if(!parseMatrixFields(fieldString, baseExpression->getNominalSize(), baseExpression->getSecondarySize(), fields, fieldLocation))
2715 {
2716 fields.wholeRow = false;
2717 fields.wholeCol = false;
2718 fields.row = 0;
2719 fields.col = 0;
2720 recover();
2721 }
2722
2723 if(fields.wholeRow || fields.wholeCol)
2724 {
2725 error(dotLocation, " non-scalar fields not implemented yet", ".");
2726 recover();
2727 ConstantUnion *unionArray = new ConstantUnion[1];
2728 unionArray->setIConst(0);
2729 TIntermTyped *index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr),
2730 fieldLocation);
2731 indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
2732 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),
2733 EvqTemporary, static_cast<unsigned char>(baseExpression->getNominalSize()),
2734 static_cast<unsigned char>(baseExpression->getSecondarySize())));
2735 }
2736 else
2737 {
2738 ConstantUnion *unionArray = new ConstantUnion[1];
2739 unionArray->setIConst(fields.col * baseExpression->getSecondarySize() + fields.row);
2740 TIntermTyped *index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr),
2741 fieldLocation);
2742 indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
2743 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision()));
2744 }
2745 }
2746 else if(baseExpression->getBasicType() == EbtStruct)
2747 {
2748 bool fieldFound = false;
2749 const TFieldList &fields = baseExpression->getType().getStruct()->fields();
2750 if(fields.empty())
2751 {
2752 error(dotLocation, "structure has no fields", "Internal Error");
2753 recover();
2754 indexedExpression = baseExpression;
2755 }
2756 else
2757 {
2758 unsigned int i;
2759 for(i = 0; i < fields.size(); ++i)
2760 {
2761 if(fields[i]->name() == fieldString)
2762 {
2763 fieldFound = true;
2764 break;
2765 }
2766 }
2767 if(fieldFound)
2768 {
2769 if(baseExpression->getType().getQualifier() == EvqConstExpr)
2770 {
2771 indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation);
2772 if(indexedExpression == 0)
2773 {
2774 recover();
2775 indexedExpression = baseExpression;
2776 }
2777 else
2778 {
2779 indexedExpression->setType(*fields[i]->type());
2780 // change the qualifier of the return type, not of the structure field
2781 // as the structure definition is shared between various structures.
2782 indexedExpression->getTypePointer()->setQualifier(EvqConstExpr);
2783 }
2784 }
2785 else
2786 {
2787 TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
2788 index->setLine(fieldLocation);
2789 indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation);
2790 indexedExpression->setType(*fields[i]->type());
2791 }
2792 }
2793 else
2794 {
2795 error(dotLocation, " no such field in structure", fieldString.c_str());
2796 recover();
2797 indexedExpression = baseExpression;
2798 }
2799 }
2800 }
2801 else if(baseExpression->isInterfaceBlock())
2802 {
2803 bool fieldFound = false;
2804 const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
2805 if(fields.empty())
2806 {
2807 error(dotLocation, "interface block has no fields", "Internal Error");
2808 recover();
2809 indexedExpression = baseExpression;
2810 }
2811 else
2812 {
2813 unsigned int i;
2814 for(i = 0; i < fields.size(); ++i)
2815 {
2816 if(fields[i]->name() == fieldString)
2817 {
2818 fieldFound = true;
2819 break;
2820 }
2821 }
2822 if(fieldFound)
2823 {
2824 ConstantUnion *unionArray = new ConstantUnion[1];
2825 unionArray->setIConst(i);
2826 TIntermTyped *index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
2827 indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index,
2828 dotLocation);
2829 indexedExpression->setType(*fields[i]->type());
2830 }
2831 else
2832 {
2833 error(dotLocation, " no such field in interface block", fieldString.c_str());
2834 recover();
2835 indexedExpression = baseExpression;
2836 }
2837 }
2838 }
2839 else
2840 {
2841 if(mShaderVersion < 300)
2842 {
2843 error(dotLocation, " field selection requires structure, vector, or matrix on left hand side",
2844 fieldString.c_str());
2845 }
2846 else
2847 {
2848 error(dotLocation,
2849 " field selection requires structure, vector, matrix, or interface block on left hand side",
2850 fieldString.c_str());
2851 }
2852 recover();
2853 indexedExpression = baseExpression;
2854 }
2855
2856 return indexedExpression;
2857 }
2858
parseLayoutQualifier(const TString & qualifierType,const TSourceLoc & qualifierTypeLine)2859 TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine)
2860 {
2861 TLayoutQualifier qualifier;
2862
2863 qualifier.location = -1;
2864 qualifier.matrixPacking = EmpUnspecified;
2865 qualifier.blockStorage = EbsUnspecified;
2866
2867 if(qualifierType == "shared")
2868 {
2869 qualifier.blockStorage = EbsShared;
2870 }
2871 else if(qualifierType == "packed")
2872 {
2873 qualifier.blockStorage = EbsPacked;
2874 }
2875 else if(qualifierType == "std140")
2876 {
2877 qualifier.blockStorage = EbsStd140;
2878 }
2879 else if(qualifierType == "row_major")
2880 {
2881 qualifier.matrixPacking = EmpRowMajor;
2882 }
2883 else if(qualifierType == "column_major")
2884 {
2885 qualifier.matrixPacking = EmpColumnMajor;
2886 }
2887 else if(qualifierType == "location")
2888 {
2889 error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument");
2890 recover();
2891 }
2892 else
2893 {
2894 error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
2895 recover();
2896 }
2897
2898 return qualifier;
2899 }
2900
parseLayoutQualifier(const TString & qualifierType,const TSourceLoc & qualifierTypeLine,const TString & intValueString,int intValue,const TSourceLoc & intValueLine)2901 TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine)
2902 {
2903 TLayoutQualifier qualifier;
2904
2905 qualifier.location = -1;
2906 qualifier.matrixPacking = EmpUnspecified;
2907 qualifier.blockStorage = EbsUnspecified;
2908
2909 if (qualifierType != "location")
2910 {
2911 error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments");
2912 recover();
2913 }
2914 else
2915 {
2916 // must check that location is non-negative
2917 if (intValue < 0)
2918 {
2919 error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative");
2920 recover();
2921 }
2922 else
2923 {
2924 qualifier.location = intValue;
2925 }
2926 }
2927
2928 return qualifier;
2929 }
2930
joinLayoutQualifiers(TLayoutQualifier leftQualifier,TLayoutQualifier rightQualifier)2931 TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier)
2932 {
2933 TLayoutQualifier joinedQualifier = leftQualifier;
2934
2935 if (rightQualifier.location != -1)
2936 {
2937 joinedQualifier.location = rightQualifier.location;
2938 }
2939 if(rightQualifier.matrixPacking != EmpUnspecified)
2940 {
2941 joinedQualifier.matrixPacking = rightQualifier.matrixPacking;
2942 }
2943 if(rightQualifier.blockStorage != EbsUnspecified)
2944 {
2945 joinedQualifier.blockStorage = rightQualifier.blockStorage;
2946 }
2947
2948 return joinedQualifier;
2949 }
2950
2951
joinInterpolationQualifiers(const TSourceLoc & interpolationLoc,TQualifier interpolationQualifier,const TSourceLoc & storageLoc,TQualifier storageQualifier)2952 TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier,
2953 const TSourceLoc &storageLoc, TQualifier storageQualifier)
2954 {
2955 TQualifier mergedQualifier = EvqSmoothIn;
2956
2957 if(storageQualifier == EvqFragmentIn) {
2958 if(interpolationQualifier == EvqSmooth)
2959 mergedQualifier = EvqSmoothIn;
2960 else if(interpolationQualifier == EvqFlat)
2961 mergedQualifier = EvqFlatIn;
2962 else UNREACHABLE(interpolationQualifier);
2963 }
2964 else if(storageQualifier == EvqCentroidIn) {
2965 if(interpolationQualifier == EvqSmooth)
2966 mergedQualifier = EvqCentroidIn;
2967 else if(interpolationQualifier == EvqFlat)
2968 mergedQualifier = EvqFlatIn;
2969 else UNREACHABLE(interpolationQualifier);
2970 }
2971 else if(storageQualifier == EvqVertexOut) {
2972 if(interpolationQualifier == EvqSmooth)
2973 mergedQualifier = EvqSmoothOut;
2974 else if(interpolationQualifier == EvqFlat)
2975 mergedQualifier = EvqFlatOut;
2976 else UNREACHABLE(interpolationQualifier);
2977 }
2978 else if(storageQualifier == EvqCentroidOut) {
2979 if(interpolationQualifier == EvqSmooth)
2980 mergedQualifier = EvqCentroidOut;
2981 else if(interpolationQualifier == EvqFlat)
2982 mergedQualifier = EvqFlatOut;
2983 else UNREACHABLE(interpolationQualifier);
2984 }
2985 else {
2986 error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getQualifierString(interpolationQualifier));
2987 recover();
2988
2989 mergedQualifier = storageQualifier;
2990 }
2991
2992 TPublicType type;
2993 type.setBasic(EbtVoid, mergedQualifier, storageLoc);
2994 return type;
2995 }
2996
addStructDeclaratorList(const TPublicType & typeSpecifier,TFieldList * fieldList)2997 TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, TFieldList *fieldList)
2998 {
2999 if(voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type))
3000 {
3001 recover();
3002 }
3003
3004 for(unsigned int i = 0; i < fieldList->size(); ++i)
3005 {
3006 //
3007 // Careful not to replace already known aspects of type, like array-ness
3008 //
3009 TType *type = (*fieldList)[i]->type();
3010 type->setBasicType(typeSpecifier.type);
3011 type->setNominalSize(typeSpecifier.primarySize);
3012 type->setSecondarySize(typeSpecifier.secondarySize);
3013 type->setPrecision(typeSpecifier.precision);
3014 type->setQualifier(typeSpecifier.qualifier);
3015 type->setLayoutQualifier(typeSpecifier.layoutQualifier);
3016
3017 // don't allow arrays of arrays
3018 if(type->isArray())
3019 {
3020 if(arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier))
3021 recover();
3022 }
3023 if(typeSpecifier.array)
3024 type->setArraySize(typeSpecifier.arraySize);
3025 if(typeSpecifier.userDef)
3026 {
3027 type->setStruct(typeSpecifier.userDef->getStruct());
3028 }
3029
3030 if(structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i]))
3031 {
3032 recover();
3033 }
3034 }
3035
3036 return fieldList;
3037 }
3038
addStructure(const TSourceLoc & structLine,const TSourceLoc & nameLine,const TString * structName,TFieldList * fieldList)3039 TPublicType TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine,
3040 const TString *structName, TFieldList *fieldList)
3041 {
3042 TStructure *structure = new TStructure(structName, fieldList);
3043 TType *structureType = new TType(structure);
3044
3045 // Store a bool in the struct if we're at global scope, to allow us to
3046 // skip the local struct scoping workaround in HLSL.
3047 structure->setUniqueId(TSymbolTableLevel::nextUniqueId());
3048 structure->setAtGlobalScope(symbolTable.atGlobalLevel());
3049
3050 if(!structName->empty())
3051 {
3052 if(reservedErrorCheck(nameLine, *structName))
3053 {
3054 recover();
3055 }
3056 TVariable *userTypeDef = new TVariable(structName, *structureType, true);
3057 if(!symbolTable.declare(*userTypeDef))
3058 {
3059 error(nameLine, "redefinition", structName->c_str(), "struct");
3060 recover();
3061 }
3062 }
3063
3064 // ensure we do not specify any storage qualifiers on the struct members
3065 for(unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
3066 {
3067 const TField &field = *(*fieldList)[typeListIndex];
3068 const TQualifier qualifier = field.type()->getQualifier();
3069 switch(qualifier)
3070 {
3071 case EvqGlobal:
3072 case EvqTemporary:
3073 break;
3074 default:
3075 error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier));
3076 recover();
3077 break;
3078 }
3079 }
3080
3081 TPublicType publicType;
3082 publicType.setBasic(EbtStruct, EvqTemporary, structLine);
3083 publicType.userDef = structureType;
3084 exitStructDeclaration();
3085
3086 return publicType;
3087 }
3088
enterStructDeclaration(const TSourceLoc & line,const TString & identifier)3089 bool TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString& identifier)
3090 {
3091 ++mStructNestingLevel;
3092
3093 // Embedded structure definitions are not supported per GLSL ES spec.
3094 // They aren't allowed in GLSL either, but we need to detect this here
3095 // so we don't rely on the GLSL compiler to catch it.
3096 if (mStructNestingLevel > 1) {
3097 error(line, "", "Embedded struct definitions are not allowed");
3098 return true;
3099 }
3100
3101 return false;
3102 }
3103
exitStructDeclaration()3104 void TParseContext::exitStructDeclaration()
3105 {
3106 --mStructNestingLevel;
3107 }
3108
structNestingErrorCheck(const TSourceLoc & line,const TField & field)3109 bool TParseContext::structNestingErrorCheck(const TSourceLoc &line, const TField &field)
3110 {
3111 static const int kWebGLMaxStructNesting = 4;
3112
3113 if(field.type()->getBasicType() != EbtStruct)
3114 {
3115 return false;
3116 }
3117
3118 // We're already inside a structure definition at this point, so add
3119 // one to the field's struct nesting.
3120 if(1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
3121 {
3122 std::stringstream reasonStream;
3123 reasonStream << "Reference of struct type "
3124 << field.type()->getStruct()->name().c_str()
3125 << " exceeds maximum allowed nesting level of "
3126 << kWebGLMaxStructNesting;
3127 std::string reason = reasonStream.str();
3128 error(line, reason.c_str(), field.name().c_str(), "");
3129 return true;
3130 }
3131
3132 return false;
3133 }
3134
createUnaryMath(TOperator op,TIntermTyped * child,const TSourceLoc & loc,const TType * funcReturnType)3135 TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType)
3136 {
3137 if(child == nullptr)
3138 {
3139 return nullptr;
3140 }
3141
3142 switch(op)
3143 {
3144 case EOpLogicalNot:
3145 if(child->getBasicType() != EbtBool ||
3146 child->isMatrix() ||
3147 child->isArray() ||
3148 child->isVector())
3149 {
3150 return nullptr;
3151 }
3152 break;
3153 case EOpBitwiseNot:
3154 if((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
3155 child->isMatrix() ||
3156 child->isArray())
3157 {
3158 return nullptr;
3159 }
3160 break;
3161 case EOpPostIncrement:
3162 case EOpPreIncrement:
3163 case EOpPostDecrement:
3164 case EOpPreDecrement:
3165 case EOpNegative:
3166 if(child->getBasicType() == EbtStruct ||
3167 child->getBasicType() == EbtBool ||
3168 child->isArray())
3169 {
3170 return nullptr;
3171 }
3172 // Operators for built-ins are already type checked against their prototype.
3173 default:
3174 break;
3175 }
3176
3177 return intermediate.addUnaryMath(op, child, loc, funcReturnType);
3178 }
3179
addUnaryMath(TOperator op,TIntermTyped * child,const TSourceLoc & loc)3180 TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
3181 {
3182 TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
3183 if(node == nullptr)
3184 {
3185 unaryOpError(loc, getOperatorString(op), child->getCompleteString());
3186 recover();
3187 return child;
3188 }
3189 return node;
3190 }
3191
addUnaryMathLValue(TOperator op,TIntermTyped * child,const TSourceLoc & loc)3192 TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
3193 {
3194 if(lValueErrorCheck(loc, getOperatorString(op), child))
3195 recover();
3196 return addUnaryMath(op, child, loc);
3197 }
3198
binaryOpCommonCheck(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & loc)3199 bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
3200 {
3201 if(left->isArray() || right->isArray())
3202 {
3203 if(mShaderVersion < 300)
3204 {
3205 error(loc, "Invalid operation for arrays", getOperatorString(op));
3206 return false;
3207 }
3208
3209 if(left->isArray() != right->isArray())
3210 {
3211 error(loc, "array / non-array mismatch", getOperatorString(op));
3212 return false;
3213 }
3214
3215 switch(op)
3216 {
3217 case EOpEqual:
3218 case EOpNotEqual:
3219 case EOpAssign:
3220 case EOpInitialize:
3221 break;
3222 default:
3223 error(loc, "Invalid operation for arrays", getOperatorString(op));
3224 return false;
3225 }
3226 // At this point, size of implicitly sized arrays should be resolved.
3227 if(left->getArraySize() != right->getArraySize())
3228 {
3229 error(loc, "array size mismatch", getOperatorString(op));
3230 return false;
3231 }
3232 }
3233
3234 // Check ops which require integer / ivec parameters
3235 bool isBitShift = false;
3236 switch(op)
3237 {
3238 case EOpBitShiftLeft:
3239 case EOpBitShiftRight:
3240 case EOpBitShiftLeftAssign:
3241 case EOpBitShiftRightAssign:
3242 // Unsigned can be bit-shifted by signed and vice versa, but we need to
3243 // check that the basic type is an integer type.
3244 isBitShift = true;
3245 if(!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
3246 {
3247 return false;
3248 }
3249 break;
3250 case EOpBitwiseAnd:
3251 case EOpBitwiseXor:
3252 case EOpBitwiseOr:
3253 case EOpBitwiseAndAssign:
3254 case EOpBitwiseXorAssign:
3255 case EOpBitwiseOrAssign:
3256 // It is enough to check the type of only one operand, since later it
3257 // is checked that the operand types match.
3258 if(!IsInteger(left->getBasicType()))
3259 {
3260 return false;
3261 }
3262 break;
3263 default:
3264 break;
3265 }
3266
3267 // GLSL ES 1.00 and 3.00 do not support implicit type casting.
3268 // So the basic type should usually match.
3269 if(!isBitShift && left->getBasicType() != right->getBasicType())
3270 {
3271 return false;
3272 }
3273
3274 // Check that type sizes match exactly on ops that require that.
3275 // Also check restrictions for structs that contain arrays or samplers.
3276 switch(op)
3277 {
3278 case EOpAssign:
3279 case EOpInitialize:
3280 case EOpEqual:
3281 case EOpNotEqual:
3282 // ESSL 1.00 sections 5.7, 5.8, 5.9
3283 if(mShaderVersion < 300 && left->getType().isStructureContainingArrays())
3284 {
3285 error(loc, "undefined operation for structs containing arrays", getOperatorString(op));
3286 return false;
3287 }
3288 // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
3289 // we interpret the spec so that this extends to structs containing samplers,
3290 // similarly to ESSL 1.00 spec.
3291 if((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
3292 left->getType().isStructureContainingSamplers())
3293 {
3294 error(loc, "undefined operation for structs containing samplers", getOperatorString(op));
3295 return false;
3296 }
3297 case EOpLessThan:
3298 case EOpGreaterThan:
3299 case EOpLessThanEqual:
3300 case EOpGreaterThanEqual:
3301 if((left->getNominalSize() != right->getNominalSize()) ||
3302 (left->getSecondarySize() != right->getSecondarySize()))
3303 {
3304 return false;
3305 }
3306 break;
3307 case EOpAdd:
3308 case EOpSub:
3309 case EOpDiv:
3310 case EOpIMod:
3311 case EOpBitShiftLeft:
3312 case EOpBitShiftRight:
3313 case EOpBitwiseAnd:
3314 case EOpBitwiseXor:
3315 case EOpBitwiseOr:
3316 case EOpAddAssign:
3317 case EOpSubAssign:
3318 case EOpDivAssign:
3319 case EOpIModAssign:
3320 case EOpBitShiftLeftAssign:
3321 case EOpBitShiftRightAssign:
3322 case EOpBitwiseAndAssign:
3323 case EOpBitwiseXorAssign:
3324 case EOpBitwiseOrAssign:
3325 if((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
3326 {
3327 return false;
3328 }
3329
3330 // Are the sizes compatible?
3331 if(left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize())
3332 {
3333 // If the nominal sizes of operands do not match:
3334 // One of them must be a scalar.
3335 if(!left->isScalar() && !right->isScalar())
3336 return false;
3337
3338 // In the case of compound assignment other than multiply-assign,
3339 // the right side needs to be a scalar. Otherwise a vector/matrix
3340 // would be assigned to a scalar. A scalar can't be shifted by a
3341 // vector either.
3342 if(!right->isScalar() && (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
3343 return false;
3344 }
3345 break;
3346 default:
3347 break;
3348 }
3349
3350 return true;
3351 }
3352
addSwitch(TIntermTyped * init,TIntermAggregate * statementList,const TSourceLoc & loc)3353 TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc)
3354 {
3355 TBasicType switchType = init->getBasicType();
3356 if((switchType != EbtInt && switchType != EbtUInt) ||
3357 init->isMatrix() ||
3358 init->isArray() ||
3359 init->isVector())
3360 {
3361 error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch");
3362 recover();
3363 return nullptr;
3364 }
3365
3366 if(statementList)
3367 {
3368 if(!ValidateSwitch::validate(switchType, this, statementList, loc))
3369 {
3370 recover();
3371 return nullptr;
3372 }
3373 }
3374
3375 TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc);
3376 if(node == nullptr)
3377 {
3378 error(loc, "erroneous switch statement", "switch");
3379 recover();
3380 return nullptr;
3381 }
3382 return node;
3383 }
3384
addCase(TIntermTyped * condition,const TSourceLoc & loc)3385 TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
3386 {
3387 if(mSwitchNestingLevel == 0)
3388 {
3389 error(loc, "case labels need to be inside switch statements", "case");
3390 recover();
3391 return nullptr;
3392 }
3393 if(condition == nullptr)
3394 {
3395 error(loc, "case label must have a condition", "case");
3396 recover();
3397 return nullptr;
3398 }
3399 if((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
3400 condition->isMatrix() ||
3401 condition->isArray() ||
3402 condition->isVector())
3403 {
3404 error(condition->getLine(), "case label must be a scalar integer", "case");
3405 recover();
3406 }
3407 TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
3408 if(conditionConst == nullptr)
3409 {
3410 error(condition->getLine(), "case label must be constant", "case");
3411 recover();
3412 }
3413 TIntermCase *node = intermediate.addCase(condition, loc);
3414 if(node == nullptr)
3415 {
3416 error(loc, "erroneous case statement", "case");
3417 recover();
3418 return nullptr;
3419 }
3420 return node;
3421 }
3422
addDefault(const TSourceLoc & loc)3423 TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
3424 {
3425 if(mSwitchNestingLevel == 0)
3426 {
3427 error(loc, "default labels need to be inside switch statements", "default");
3428 recover();
3429 return nullptr;
3430 }
3431 TIntermCase *node = intermediate.addCase(nullptr, loc);
3432 if(node == nullptr)
3433 {
3434 error(loc, "erroneous default statement", "default");
3435 recover();
3436 return nullptr;
3437 }
3438 return node;
3439 }
createAssign(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & loc)3440 TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
3441 {
3442 if(binaryOpCommonCheck(op, left, right, loc))
3443 {
3444 return intermediate.addAssign(op, left, right, loc);
3445 }
3446 return nullptr;
3447 }
3448
addAssign(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & loc)3449 TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
3450 {
3451 TIntermTyped *node = createAssign(op, left, right, loc);
3452 if(node == nullptr)
3453 {
3454 assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
3455 recover();
3456 return left;
3457 }
3458 return node;
3459 }
3460
addBinaryMathInternal(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & loc)3461 TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right,
3462 const TSourceLoc &loc)
3463 {
3464 if(!binaryOpCommonCheck(op, left, right, loc))
3465 return nullptr;
3466
3467 switch(op)
3468 {
3469 case EOpEqual:
3470 case EOpNotEqual:
3471 break;
3472 case EOpLessThan:
3473 case EOpGreaterThan:
3474 case EOpLessThanEqual:
3475 case EOpGreaterThanEqual:
3476 ASSERT(!left->isArray() && !right->isArray());
3477 if(left->isMatrix() || left->isVector() ||
3478 left->getBasicType() == EbtStruct)
3479 {
3480 return nullptr;
3481 }
3482 break;
3483 case EOpLogicalOr:
3484 case EOpLogicalXor:
3485 case EOpLogicalAnd:
3486 ASSERT(!left->isArray() && !right->isArray());
3487 if(left->getBasicType() != EbtBool ||
3488 left->isMatrix() || left->isVector())
3489 {
3490 return nullptr;
3491 }
3492 break;
3493 case EOpAdd:
3494 case EOpSub:
3495 case EOpDiv:
3496 case EOpMul:
3497 ASSERT(!left->isArray() && !right->isArray());
3498 if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
3499 {
3500 return nullptr;
3501 }
3502 break;
3503 case EOpIMod:
3504 ASSERT(!left->isArray() && !right->isArray());
3505 // Note that this is only for the % operator, not for mod()
3506 if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
3507 {
3508 return nullptr;
3509 }
3510 break;
3511 // Note that for bitwise ops, type checking is done in promote() to
3512 // share code between ops and compound assignment
3513 default:
3514 break;
3515 }
3516
3517 return intermediate.addBinaryMath(op, left, right, loc);
3518 }
3519
addBinaryMath(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & loc)3520 TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
3521 {
3522 TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
3523 if(node == 0)
3524 {
3525 binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString());
3526 recover();
3527 return left;
3528 }
3529 return node;
3530 }
3531
addBinaryMathBooleanResult(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & loc)3532 TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc)
3533 {
3534 TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
3535 if(node == 0)
3536 {
3537 binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString());
3538 recover();
3539 ConstantUnion *unionArray = new ConstantUnion[1];
3540 unionArray->setBConst(false);
3541 return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConstExpr), loc);
3542 }
3543 return node;
3544 }
3545
addBranch(TOperator op,const TSourceLoc & loc)3546 TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
3547 {
3548 switch(op)
3549 {
3550 case EOpContinue:
3551 if(mLoopNestingLevel <= 0)
3552 {
3553 error(loc, "continue statement only allowed in loops", "");
3554 recover();
3555 }
3556 break;
3557 case EOpBreak:
3558 if(mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
3559 {
3560 error(loc, "break statement only allowed in loops and switch statements", "");
3561 recover();
3562 }
3563 break;
3564 case EOpReturn:
3565 if(mCurrentFunctionType->getBasicType() != EbtVoid)
3566 {
3567 error(loc, "non-void function must return a value", "return");
3568 recover();
3569 }
3570 break;
3571 default:
3572 // No checks for discard
3573 break;
3574 }
3575 return intermediate.addBranch(op, loc);
3576 }
3577
addBranch(TOperator op,TIntermTyped * returnValue,const TSourceLoc & loc)3578 TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc)
3579 {
3580 ASSERT(op == EOpReturn);
3581 mFunctionReturnsValue = true;
3582 if(mCurrentFunctionType->getBasicType() == EbtVoid)
3583 {
3584 error(loc, "void function cannot return a value", "return");
3585 recover();
3586 }
3587 else if(*mCurrentFunctionType != returnValue->getType())
3588 {
3589 error(loc, "function return is not matching type:", "return");
3590 recover();
3591 }
3592 return intermediate.addBranch(op, returnValue, loc);
3593 }
3594
addFunctionCallOrMethod(TFunction * fnCall,TIntermNode * paramNode,TIntermNode * thisNode,const TSourceLoc & loc,bool * fatalError)3595 TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *paramNode, TIntermNode *thisNode, const TSourceLoc &loc, bool *fatalError)
3596 {
3597 *fatalError = false;
3598 TOperator op = fnCall->getBuiltInOp();
3599 TIntermTyped *callNode = nullptr;
3600
3601 if(thisNode != nullptr)
3602 {
3603 ConstantUnion *unionArray = new ConstantUnion[1];
3604 int arraySize = 0;
3605 TIntermTyped *typedThis = thisNode->getAsTyped();
3606 if(fnCall->getName() != "length")
3607 {
3608 error(loc, "invalid method", fnCall->getName().c_str());
3609 recover();
3610 }
3611 else if(paramNode != nullptr)
3612 {
3613 error(loc, "method takes no parameters", "length");
3614 recover();
3615 }
3616 else if(typedThis == nullptr || !typedThis->isArray())
3617 {
3618 error(loc, "length can only be called on arrays", "length");
3619 recover();
3620 }
3621 else
3622 {
3623 arraySize = typedThis->getArraySize();
3624 if(typedThis->getAsSymbolNode() == nullptr)
3625 {
3626 // This code path can be hit with expressions like these:
3627 // (a = b).length()
3628 // (func()).length()
3629 // (int[3](0, 1, 2)).length()
3630 // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid expression.
3631 // It allows "An array name with the length method applied" in contrast to GLSL 4.4 spec section 5.9
3632 // which allows "An array, vector or matrix expression with the length method applied".
3633 error(loc, "length can only be called on array names, not on array expressions", "length");
3634 recover();
3635 }
3636 }
3637 unionArray->setIConst(arraySize);
3638 callNode = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr), loc);
3639 }
3640 else if(op != EOpNull)
3641 {
3642 //
3643 // Then this should be a constructor.
3644 // Don't go through the symbol table for constructors.
3645 // Their parameters will be verified algorithmically.
3646 //
3647 TType type(EbtVoid, EbpUndefined); // use this to get the type back
3648 if(!constructorErrorCheck(loc, paramNode, *fnCall, op, &type))
3649 {
3650 //
3651 // It's a constructor, of type 'type'.
3652 //
3653 callNode = addConstructor(paramNode, &type, op, fnCall, loc);
3654 }
3655
3656 if(callNode == nullptr)
3657 {
3658 recover();
3659 callNode = intermediate.setAggregateOperator(nullptr, op, loc);
3660 }
3661 }
3662 else
3663 {
3664 //
3665 // Not a constructor. Find it in the symbol table.
3666 //
3667 const TFunction *fnCandidate;
3668 bool builtIn;
3669 fnCandidate = findFunction(loc, fnCall, &builtIn);
3670 if(fnCandidate)
3671 {
3672 //
3673 // A declared function.
3674 //
3675 if(builtIn && !fnCandidate->getExtension().empty() &&
3676 extensionErrorCheck(loc, fnCandidate->getExtension()))
3677 {
3678 recover();
3679 }
3680 op = fnCandidate->getBuiltInOp();
3681 if(builtIn && op != EOpNull)
3682 {
3683 //
3684 // A function call mapped to a built-in operation.
3685 //
3686 if(fnCandidate->getParamCount() == 1)
3687 {
3688 //
3689 // Treat it like a built-in unary operator.
3690 //
3691 callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, &fnCandidate->getReturnType());
3692 if(callNode == nullptr)
3693 {
3694 std::stringstream extraInfoStream;
3695 extraInfoStream << "built in unary operator function. Type: "
3696 << static_cast<TIntermTyped*>(paramNode)->getCompleteString();
3697 std::string extraInfo = extraInfoStream.str();
3698 error(paramNode->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str());
3699 *fatalError = true;
3700 return nullptr;
3701 }
3702 }
3703 else
3704 {
3705 TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, op, loc);
3706 aggregate->setType(fnCandidate->getReturnType());
3707
3708 // Some built-in functions have out parameters too.
3709 functionCallLValueErrorCheck(fnCandidate, aggregate);
3710
3711 callNode = aggregate;
3712
3713 if(fnCandidate->getParamCount() == 2)
3714 {
3715 TIntermSequence ¶meters = paramNode->getAsAggregate()->getSequence();
3716 TIntermTyped *left = parameters[0]->getAsTyped();
3717 TIntermTyped *right = parameters[1]->getAsTyped();
3718
3719 TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
3720 TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
3721 if (leftTempConstant && rightTempConstant)
3722 {
3723 TIntermTyped *typedReturnNode = leftTempConstant->fold(op, rightTempConstant, infoSink());
3724
3725 if(typedReturnNode)
3726 {
3727 callNode = typedReturnNode;
3728 }
3729 }
3730 }
3731 }
3732 }
3733 else
3734 {
3735 // This is a real function call
3736
3737 TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc);
3738 aggregate->setType(fnCandidate->getReturnType());
3739
3740 // this is how we know whether the given function is a builtIn function or a user defined function
3741 // if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also
3742 // if builtIn == true, it's definitely a builtIn function with EOpNull
3743 if(!builtIn)
3744 aggregate->setUserDefined();
3745 aggregate->setName(fnCandidate->getMangledName());
3746
3747 callNode = aggregate;
3748
3749 functionCallLValueErrorCheck(fnCandidate, aggregate);
3750 }
3751 }
3752 else
3753 {
3754 // error message was put out by findFunction()
3755 // Put on a dummy node for error recovery
3756 ConstantUnion *unionArray = new ConstantUnion[1];
3757 unionArray->setFConst(0.0f);
3758 callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConstExpr), loc);
3759 recover();
3760 }
3761 }
3762 delete fnCall;
3763 return callNode;
3764 }
3765
addTernarySelection(TIntermTyped * cond,TIntermTyped * trueBlock,TIntermTyped * falseBlock,const TSourceLoc & loc)3766 TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock, const TSourceLoc &loc)
3767 {
3768 if(boolErrorCheck(loc, cond))
3769 recover();
3770
3771 if(trueBlock->getType() != falseBlock->getType())
3772 {
3773 binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString());
3774 recover();
3775 return falseBlock;
3776 }
3777 // ESSL1 sections 5.2 and 5.7:
3778 // ESSL3 section 5.7:
3779 // Ternary operator is not among the operators allowed for structures/arrays.
3780 if(trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct)
3781 {
3782 error(loc, "ternary operator is not allowed for structures or arrays", ":");
3783 recover();
3784 return falseBlock;
3785 }
3786 return intermediate.addSelection(cond, trueBlock, falseBlock, loc);
3787 }
3788
3789 //
3790 // Parse an array of strings using yyparse.
3791 //
3792 // Returns 0 for success.
3793 //
PaParseStrings(int count,const char * const string[],const int length[],TParseContext * context)3794 int PaParseStrings(int count, const char* const string[], const int length[],
3795 TParseContext* context) {
3796 if ((count == 0) || !string)
3797 return 1;
3798
3799 if (glslang_initialize(context))
3800 return 1;
3801
3802 int error = glslang_scan(count, string, length, context);
3803 if (!error)
3804 error = glslang_parse(context);
3805
3806 glslang_finalize(context);
3807
3808 return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
3809 }
3810
3811
3812
3813