1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // The interleaved access vectorization is based on the paper:
38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
39 // Data for SIMD
40 //
41 // Other ideas/concepts are from:
42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43 //
44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
45 // Vectorizing Compilers.
46 //
47 //===----------------------------------------------------------------------===//
48
49 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/Analysis/CodeMetrics.h"
60 #include "llvm/Analysis/GlobalsModRef.h"
61 #include "llvm/Analysis/LoopInfo.h"
62 #include "llvm/Analysis/LoopIterator.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
66 #include "llvm/Analysis/ValueTracking.h"
67 #include "llvm/Analysis/VectorUtils.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfo.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/DiagnosticInfo.h"
73 #include "llvm/IR/Dominators.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/PatternMatch.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/IR/ValueHandle.h"
84 #include "llvm/IR/Verifier.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Transforms/Scalar.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/LoopUtils.h"
94 #include "llvm/Transforms/Utils/LoopVersioning.h"
95 #include "llvm/Transforms/Vectorize.h"
96 #include <algorithm>
97 #include <map>
98 #include <tuple>
99
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102
103 #define LV_NAME "loop-vectorize"
104 #define DEBUG_TYPE LV_NAME
105
106 STATISTIC(LoopsVectorized, "Number of loops vectorized");
107 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
108
109 static cl::opt<bool>
110 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
111 cl::desc("Enable if-conversion during vectorization."));
112
113 /// We don't vectorize loops with a known constant trip count below this number.
114 static cl::opt<unsigned> TinyTripCountVectorThreshold(
115 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
116 cl::desc("Don't vectorize loops with a constant "
117 "trip count that is smaller than this "
118 "value."));
119
120 static cl::opt<bool> MaximizeBandwidth(
121 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
122 cl::desc("Maximize bandwidth when selecting vectorization factor which "
123 "will be determined by the smallest type in loop."));
124
125 static cl::opt<bool> EnableInterleavedMemAccesses(
126 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
127 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
128
129 /// Maximum factor for an interleaved memory access.
130 static cl::opt<unsigned> MaxInterleaveGroupFactor(
131 "max-interleave-group-factor", cl::Hidden,
132 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
133 cl::init(8));
134
135 /// We don't interleave loops with a known constant trip count below this
136 /// number.
137 static const unsigned TinyTripCountInterleaveThreshold = 128;
138
139 static cl::opt<unsigned> ForceTargetNumScalarRegs(
140 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
141 cl::desc("A flag that overrides the target's number of scalar registers."));
142
143 static cl::opt<unsigned> ForceTargetNumVectorRegs(
144 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
145 cl::desc("A flag that overrides the target's number of vector registers."));
146
147 /// Maximum vectorization interleave count.
148 static const unsigned MaxInterleaveFactor = 16;
149
150 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
151 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
152 cl::desc("A flag that overrides the target's max interleave factor for "
153 "scalar loops."));
154
155 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
156 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
157 cl::desc("A flag that overrides the target's max interleave factor for "
158 "vectorized loops."));
159
160 static cl::opt<unsigned> ForceTargetInstructionCost(
161 "force-target-instruction-cost", cl::init(0), cl::Hidden,
162 cl::desc("A flag that overrides the target's expected cost for "
163 "an instruction to a single constant value. Mostly "
164 "useful for getting consistent testing."));
165
166 static cl::opt<unsigned> SmallLoopCost(
167 "small-loop-cost", cl::init(20), cl::Hidden,
168 cl::desc(
169 "The cost of a loop that is considered 'small' by the interleaver."));
170
171 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
172 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
173 cl::desc("Enable the use of the block frequency analysis to access PGO "
174 "heuristics minimizing code growth in cold regions and being more "
175 "aggressive in hot regions."));
176
177 // Runtime interleave loops for load/store throughput.
178 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
179 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
180 cl::desc(
181 "Enable runtime interleaving until load/store ports are saturated"));
182
183 /// The number of stores in a loop that are allowed to need predication.
184 static cl::opt<unsigned> NumberOfStoresToPredicate(
185 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
186 cl::desc("Max number of stores to be predicated behind an if."));
187
188 static cl::opt<bool> EnableIndVarRegisterHeur(
189 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
190 cl::desc("Count the induction variable only once when interleaving"));
191
192 static cl::opt<bool> EnableCondStoresVectorization(
193 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
194 cl::desc("Enable if predication of stores during vectorization."));
195
196 static cl::opt<unsigned> MaxNestedScalarReductionIC(
197 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
198 cl::desc("The maximum interleave count to use when interleaving a scalar "
199 "reduction in a nested loop."));
200
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203 cl::desc("The maximum allowed number of runtime memory checks with a "
204 "vectorize(enable) pragma."));
205
206 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
207 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
208 cl::desc("The maximum number of SCEV checks allowed."));
209
210 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
211 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
212 cl::desc("The maximum number of SCEV checks allowed with a "
213 "vectorize(enable) pragma"));
214
215 namespace {
216
217 // Forward declarations.
218 class LoopVectorizeHints;
219 class LoopVectorizationLegality;
220 class LoopVectorizationCostModel;
221 class LoopVectorizationRequirements;
222
223 /// \brief This modifies LoopAccessReport to initialize message with
224 /// loop-vectorizer-specific part.
225 class VectorizationReport : public LoopAccessReport {
226 public:
VectorizationReport(Instruction * I=nullptr)227 VectorizationReport(Instruction *I = nullptr)
228 : LoopAccessReport("loop not vectorized: ", I) {}
229
230 /// \brief This allows promotion of the loop-access analysis report into the
231 /// loop-vectorizer report. It modifies the message to add the
232 /// loop-vectorizer-specific part of the message.
VectorizationReport(const LoopAccessReport & R)233 explicit VectorizationReport(const LoopAccessReport &R)
234 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
235 R.getInstr()) {}
236 };
237
238 /// A helper function for converting Scalar types to vector types.
239 /// If the incoming type is void, we return void. If the VF is 1, we return
240 /// the scalar type.
ToVectorTy(Type * Scalar,unsigned VF)241 static Type *ToVectorTy(Type *Scalar, unsigned VF) {
242 if (Scalar->isVoidTy() || VF == 1)
243 return Scalar;
244 return VectorType::get(Scalar, VF);
245 }
246
247 /// A helper function that returns GEP instruction and knows to skip a
248 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
249 /// pointee types of the 'bitcast' have the same size.
250 /// For example:
251 /// bitcast double** %var to i64* - can be skipped
252 /// bitcast double** %var to i8* - can not
getGEPInstruction(Value * Ptr)253 static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
254
255 if (isa<GetElementPtrInst>(Ptr))
256 return cast<GetElementPtrInst>(Ptr);
257
258 if (isa<BitCastInst>(Ptr) &&
259 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
260 Type *BitcastTy = Ptr->getType();
261 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
262 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
263 return nullptr;
264 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
265 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
266 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
267 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
268 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
269 }
270 return nullptr;
271 }
272
273 /// InnerLoopVectorizer vectorizes loops which contain only one basic
274 /// block to a specified vectorization factor (VF).
275 /// This class performs the widening of scalars into vectors, or multiple
276 /// scalars. This class also implements the following features:
277 /// * It inserts an epilogue loop for handling loops that don't have iteration
278 /// counts that are known to be a multiple of the vectorization factor.
279 /// * It handles the code generation for reduction variables.
280 /// * Scalarization (implementation using scalars) of un-vectorizable
281 /// instructions.
282 /// InnerLoopVectorizer does not perform any vectorization-legality
283 /// checks, and relies on the caller to check for the different legality
284 /// aspects. The InnerLoopVectorizer relies on the
285 /// LoopVectorizationLegality class to provide information about the induction
286 /// and reduction variables that were found to a given vectorization factor.
287 class InnerLoopVectorizer {
288 public:
InnerLoopVectorizer(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,unsigned VecWidth,unsigned UnrollFactor)289 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
290 LoopInfo *LI, DominatorTree *DT,
291 const TargetLibraryInfo *TLI,
292 const TargetTransformInfo *TTI, AssumptionCache *AC,
293 unsigned VecWidth, unsigned UnrollFactor)
294 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
295 AC(AC), VF(VecWidth), UF(UnrollFactor),
296 Builder(PSE.getSE()->getContext()), Induction(nullptr),
297 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr),
298 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {}
299
300 // Perform the actual loop widening (vectorization).
301 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they
302 // can be validly truncated to. The cost model has assumed this truncation
303 // will happen when vectorizing. VecValuesToIgnore contains scalar values
304 // that the cost model has chosen to ignore because they will not be
305 // vectorized.
vectorize(LoopVectorizationLegality * L,const MapVector<Instruction *,uint64_t> & MinimumBitWidths,SmallPtrSetImpl<const Value * > & VecValuesToIgnore)306 void vectorize(LoopVectorizationLegality *L,
307 const MapVector<Instruction *, uint64_t> &MinimumBitWidths,
308 SmallPtrSetImpl<const Value *> &VecValuesToIgnore) {
309 MinBWs = &MinimumBitWidths;
310 ValuesNotWidened = &VecValuesToIgnore;
311 Legal = L;
312 // Create a new empty loop. Unlink the old loop and connect the new one.
313 createEmptyLoop();
314 // Widen each instruction in the old loop to a new one in the new loop.
315 // Use the Legality module to find the induction and reduction variables.
316 vectorizeLoop();
317 }
318
319 // Return true if any runtime check is added.
areSafetyChecksAdded()320 bool areSafetyChecksAdded() { return AddedSafetyChecks; }
321
~InnerLoopVectorizer()322 virtual ~InnerLoopVectorizer() {}
323
324 protected:
325 /// A small list of PHINodes.
326 typedef SmallVector<PHINode *, 4> PhiVector;
327 /// When we unroll loops we have multiple vector values for each scalar.
328 /// This data structure holds the unrolled and vectorized values that
329 /// originated from one scalar instruction.
330 typedef SmallVector<Value *, 2> VectorParts;
331
332 // When we if-convert we need to create edge masks. We have to cache values
333 // so that we don't end up with exponential recursion/IR.
334 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>
335 EdgeMaskCache;
336
337 /// Create an empty loop, based on the loop ranges of the old loop.
338 void createEmptyLoop();
339
340 /// Set up the values of the IVs correctly when exiting the vector loop.
341 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
342 Value *CountRoundDown, Value *EndValue,
343 BasicBlock *MiddleBlock);
344
345 /// Create a new induction variable inside L.
346 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
347 Value *Step, Instruction *DL);
348 /// Copy and widen the instructions from the old loop.
349 virtual void vectorizeLoop();
350
351 /// Fix a first-order recurrence. This is the second phase of vectorizing
352 /// this phi node.
353 void fixFirstOrderRecurrence(PHINode *Phi);
354
355 /// \brief The Loop exit block may have single value PHI nodes where the
356 /// incoming value is 'Undef'. While vectorizing we only handled real values
357 /// that were defined inside the loop. Here we fix the 'undef case'.
358 /// See PR14725.
359 void fixLCSSAPHIs();
360
361 /// Shrinks vector element sizes based on information in "MinBWs".
362 void truncateToMinimalBitwidths();
363
364 /// A helper function that computes the predicate of the block BB, assuming
365 /// that the header block of the loop is set to True. It returns the *entry*
366 /// mask for the block BB.
367 VectorParts createBlockInMask(BasicBlock *BB);
368 /// A helper function that computes the predicate of the edge between SRC
369 /// and DST.
370 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
371
372 /// A helper function to vectorize a single BB within the innermost loop.
373 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
374
375 /// Vectorize a single PHINode in a block. This method handles the induction
376 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
377 /// arbitrary length vectors.
378 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF,
379 unsigned VF, PhiVector *PV);
380
381 /// Insert the new loop to the loop hierarchy and pass manager
382 /// and update the analysis passes.
383 void updateAnalysis();
384
385 /// This instruction is un-vectorizable. Implement it as a sequence
386 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
387 /// scalarized instruction behind an if block predicated on the control
388 /// dependence of the instruction.
389 virtual void scalarizeInstruction(Instruction *Instr,
390 bool IfPredicateStore = false);
391
392 /// Vectorize Load and Store instructions,
393 virtual void vectorizeMemoryInstruction(Instruction *Instr);
394
395 /// Create a broadcast instruction. This method generates a broadcast
396 /// instruction (shuffle) for loop invariant values and for the induction
397 /// value. If this is the induction variable then we extend it to N, N+1, ...
398 /// this is needed because each iteration in the loop corresponds to a SIMD
399 /// element.
400 virtual Value *getBroadcastInstrs(Value *V);
401
402 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
403 /// to each vector element of Val. The sequence starts at StartIndex.
404 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
405
406 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
407 /// variable on which to base the steps, \p Step is the size of the step, and
408 /// \p EntryVal is the value from the original loop that maps to the steps.
409 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it
410 /// can be a truncate instruction).
411 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal);
412
413 /// Create a vector induction phi node based on an existing scalar one. This
414 /// currently only works for integer induction variables with a constant
415 /// step. If \p TruncType is non-null, instead of widening the original IV,
416 /// we widen a version of the IV truncated to \p TruncType.
417 void createVectorIntInductionPHI(const InductionDescriptor &II,
418 VectorParts &Entry, IntegerType *TruncType);
419
420 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the
421 /// induction variable will first be truncated to the corresponding type. The
422 /// widened values are placed in \p Entry.
423 void widenIntInduction(PHINode *IV, VectorParts &Entry,
424 TruncInst *Trunc = nullptr);
425
426 /// When we go over instructions in the basic block we rely on previous
427 /// values within the current basic block or on loop invariant values.
428 /// When we widen (vectorize) values we place them in the map. If the values
429 /// are not within the map, they have to be loop invariant, so we simply
430 /// broadcast them into a vector.
431 VectorParts &getVectorValue(Value *V);
432
433 /// Try to vectorize the interleaved access group that \p Instr belongs to.
434 void vectorizeInterleaveGroup(Instruction *Instr);
435
436 /// Generate a shuffle sequence that will reverse the vector Vec.
437 virtual Value *reverseVector(Value *Vec);
438
439 /// Returns (and creates if needed) the original loop trip count.
440 Value *getOrCreateTripCount(Loop *NewLoop);
441
442 /// Returns (and creates if needed) the trip count of the widened loop.
443 Value *getOrCreateVectorTripCount(Loop *NewLoop);
444
445 /// Emit a bypass check to see if the trip count would overflow, or we
446 /// wouldn't have enough iterations to execute one vector loop.
447 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
448 /// Emit a bypass check to see if the vector trip count is nonzero.
449 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
450 /// Emit a bypass check to see if all of the SCEV assumptions we've
451 /// had to make are correct.
452 void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
453 /// Emit bypass checks to check any memory assumptions we may have made.
454 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
455
456 /// Add additional metadata to \p To that was not present on \p Orig.
457 ///
458 /// Currently this is used to add the noalias annotations based on the
459 /// inserted memchecks. Use this for instructions that are *cloned* into the
460 /// vector loop.
461 void addNewMetadata(Instruction *To, const Instruction *Orig);
462
463 /// Add metadata from one instruction to another.
464 ///
465 /// This includes both the original MDs from \p From and additional ones (\see
466 /// addNewMetadata). Use this for *newly created* instructions in the vector
467 /// loop.
468 void addMetadata(Instruction *To, Instruction *From);
469
470 /// \brief Similar to the previous function but it adds the metadata to a
471 /// vector of instructions.
472 void addMetadata(ArrayRef<Value *> To, Instruction *From);
473
474 /// This is a helper class that holds the vectorizer state. It maps scalar
475 /// instructions to vector instructions. When the code is 'unrolled' then
476 /// then a single scalar value is mapped to multiple vector parts. The parts
477 /// are stored in the VectorPart type.
478 struct ValueMap {
479 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
480 /// are mapped.
ValueMap__anonfb91178e0111::InnerLoopVectorizer::ValueMap481 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
482
483 /// \return True if 'Key' is saved in the Value Map.
has__anonfb91178e0111::InnerLoopVectorizer::ValueMap484 bool has(Value *Key) const { return MapStorage.count(Key); }
485
486 /// Initializes a new entry in the map. Sets all of the vector parts to the
487 /// save value in 'Val'.
488 /// \return A reference to a vector with splat values.
splat__anonfb91178e0111::InnerLoopVectorizer::ValueMap489 VectorParts &splat(Value *Key, Value *Val) {
490 VectorParts &Entry = MapStorage[Key];
491 Entry.assign(UF, Val);
492 return Entry;
493 }
494
495 ///\return A reference to the value that is stored at 'Key'.
get__anonfb91178e0111::InnerLoopVectorizer::ValueMap496 VectorParts &get(Value *Key) {
497 VectorParts &Entry = MapStorage[Key];
498 if (Entry.empty())
499 Entry.resize(UF);
500 assert(Entry.size() == UF);
501 return Entry;
502 }
503
504 private:
505 /// The unroll factor. Each entry in the map stores this number of vector
506 /// elements.
507 unsigned UF;
508
509 /// Map storage. We use std::map and not DenseMap because insertions to a
510 /// dense map invalidates its iterators.
511 std::map<Value *, VectorParts> MapStorage;
512 };
513
514 /// The original loop.
515 Loop *OrigLoop;
516 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
517 /// dynamic knowledge to simplify SCEV expressions and converts them to a
518 /// more usable form.
519 PredicatedScalarEvolution &PSE;
520 /// Loop Info.
521 LoopInfo *LI;
522 /// Dominator Tree.
523 DominatorTree *DT;
524 /// Alias Analysis.
525 AliasAnalysis *AA;
526 /// Target Library Info.
527 const TargetLibraryInfo *TLI;
528 /// Target Transform Info.
529 const TargetTransformInfo *TTI;
530 /// Assumption Cache.
531 AssumptionCache *AC;
532
533 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were
534 /// used.
535 ///
536 /// This is currently only used to add no-alias metadata based on the
537 /// memchecks. The actually versioning is performed manually.
538 std::unique_ptr<LoopVersioning> LVer;
539
540 /// The vectorization SIMD factor to use. Each vector will have this many
541 /// vector elements.
542 unsigned VF;
543
544 protected:
545 /// The vectorization unroll factor to use. Each scalar is vectorized to this
546 /// many different vector instructions.
547 unsigned UF;
548
549 /// The builder that we use
550 IRBuilder<> Builder;
551
552 // --- Vectorization state ---
553
554 /// The vector-loop preheader.
555 BasicBlock *LoopVectorPreHeader;
556 /// The scalar-loop preheader.
557 BasicBlock *LoopScalarPreHeader;
558 /// Middle Block between the vector and the scalar.
559 BasicBlock *LoopMiddleBlock;
560 /// The ExitBlock of the scalar loop.
561 BasicBlock *LoopExitBlock;
562 /// The vector loop body.
563 BasicBlock *LoopVectorBody;
564 /// The scalar loop body.
565 BasicBlock *LoopScalarBody;
566 /// A list of all bypass blocks. The first block is the entry of the loop.
567 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
568
569 /// The new Induction variable which was added to the new block.
570 PHINode *Induction;
571 /// The induction variable of the old basic block.
572 PHINode *OldInduction;
573 /// Maps scalars to widened vectors.
574 ValueMap WidenMap;
575
576 /// A map of induction variables from the original loop to their
577 /// corresponding VF * UF scalarized values in the vectorized loop. The
578 /// purpose of ScalarIVMap is similar to that of WidenMap. Whereas WidenMap
579 /// maps original loop values to their vector versions in the new loop,
580 /// ScalarIVMap maps induction variables from the original loop that are not
581 /// vectorized to their scalar equivalents in the vector loop. Maintaining a
582 /// separate map for scalarized induction variables allows us to avoid
583 /// unnecessary scalar-to-vector-to-scalar conversions.
584 DenseMap<Value *, SmallVector<Value *, 8>> ScalarIVMap;
585
586 /// Store instructions that should be predicated, as a pair
587 /// <StoreInst, Predicate>
588 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores;
589 EdgeMaskCache MaskCache;
590 /// Trip count of the original loop.
591 Value *TripCount;
592 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
593 Value *VectorTripCount;
594
595 /// Map of scalar integer values to the smallest bitwidth they can be legally
596 /// represented as. The vector equivalents of these values should be truncated
597 /// to this type.
598 const MapVector<Instruction *, uint64_t> *MinBWs;
599
600 /// A set of values that should not be widened. This is taken from
601 /// VecValuesToIgnore in the cost model.
602 SmallPtrSetImpl<const Value *> *ValuesNotWidened;
603
604 LoopVectorizationLegality *Legal;
605
606 // Record whether runtime checks are added.
607 bool AddedSafetyChecks;
608 };
609
610 class InnerLoopUnroller : public InnerLoopVectorizer {
611 public:
InnerLoopUnroller(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,unsigned UnrollFactor)612 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
613 LoopInfo *LI, DominatorTree *DT,
614 const TargetLibraryInfo *TLI,
615 const TargetTransformInfo *TTI, AssumptionCache *AC,
616 unsigned UnrollFactor)
617 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1,
618 UnrollFactor) {}
619
620 private:
621 void scalarizeInstruction(Instruction *Instr,
622 bool IfPredicateStore = false) override;
623 void vectorizeMemoryInstruction(Instruction *Instr) override;
624 Value *getBroadcastInstrs(Value *V) override;
625 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
626 Value *reverseVector(Value *Vec) override;
627 };
628
629 /// \brief Look for a meaningful debug location on the instruction or it's
630 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)631 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
632 if (!I)
633 return I;
634
635 DebugLoc Empty;
636 if (I->getDebugLoc() != Empty)
637 return I;
638
639 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
640 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
641 if (OpInst->getDebugLoc() != Empty)
642 return OpInst;
643 }
644
645 return I;
646 }
647
648 /// \brief Set the debug location in the builder using the debug location in the
649 /// instruction.
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)650 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
651 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
652 B.SetCurrentDebugLocation(Inst->getDebugLoc());
653 else
654 B.SetCurrentDebugLocation(DebugLoc());
655 }
656
657 #ifndef NDEBUG
658 /// \return string containing a file name and a line # for the given loop.
getDebugLocString(const Loop * L)659 static std::string getDebugLocString(const Loop *L) {
660 std::string Result;
661 if (L) {
662 raw_string_ostream OS(Result);
663 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
664 LoopDbgLoc.print(OS);
665 else
666 // Just print the module name.
667 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
668 OS.flush();
669 }
670 return Result;
671 }
672 #endif
673
addNewMetadata(Instruction * To,const Instruction * Orig)674 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
675 const Instruction *Orig) {
676 // If the loop was versioned with memchecks, add the corresponding no-alias
677 // metadata.
678 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
679 LVer->annotateInstWithNoAlias(To, Orig);
680 }
681
addMetadata(Instruction * To,Instruction * From)682 void InnerLoopVectorizer::addMetadata(Instruction *To,
683 Instruction *From) {
684 propagateMetadata(To, From);
685 addNewMetadata(To, From);
686 }
687
addMetadata(ArrayRef<Value * > To,Instruction * From)688 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
689 Instruction *From) {
690 for (Value *V : To) {
691 if (Instruction *I = dyn_cast<Instruction>(V))
692 addMetadata(I, From);
693 }
694 }
695
696 /// \brief The group of interleaved loads/stores sharing the same stride and
697 /// close to each other.
698 ///
699 /// Each member in this group has an index starting from 0, and the largest
700 /// index should be less than interleaved factor, which is equal to the absolute
701 /// value of the access's stride.
702 ///
703 /// E.g. An interleaved load group of factor 4:
704 /// for (unsigned i = 0; i < 1024; i+=4) {
705 /// a = A[i]; // Member of index 0
706 /// b = A[i+1]; // Member of index 1
707 /// d = A[i+3]; // Member of index 3
708 /// ...
709 /// }
710 ///
711 /// An interleaved store group of factor 4:
712 /// for (unsigned i = 0; i < 1024; i+=4) {
713 /// ...
714 /// A[i] = a; // Member of index 0
715 /// A[i+1] = b; // Member of index 1
716 /// A[i+2] = c; // Member of index 2
717 /// A[i+3] = d; // Member of index 3
718 /// }
719 ///
720 /// Note: the interleaved load group could have gaps (missing members), but
721 /// the interleaved store group doesn't allow gaps.
722 class InterleaveGroup {
723 public:
InterleaveGroup(Instruction * Instr,int Stride,unsigned Align)724 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
725 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
726 assert(Align && "The alignment should be non-zero");
727
728 Factor = std::abs(Stride);
729 assert(Factor > 1 && "Invalid interleave factor");
730
731 Reverse = Stride < 0;
732 Members[0] = Instr;
733 }
734
isReverse() const735 bool isReverse() const { return Reverse; }
getFactor() const736 unsigned getFactor() const { return Factor; }
getAlignment() const737 unsigned getAlignment() const { return Align; }
getNumMembers() const738 unsigned getNumMembers() const { return Members.size(); }
739
740 /// \brief Try to insert a new member \p Instr with index \p Index and
741 /// alignment \p NewAlign. The index is related to the leader and it could be
742 /// negative if it is the new leader.
743 ///
744 /// \returns false if the instruction doesn't belong to the group.
insertMember(Instruction * Instr,int Index,unsigned NewAlign)745 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
746 assert(NewAlign && "The new member's alignment should be non-zero");
747
748 int Key = Index + SmallestKey;
749
750 // Skip if there is already a member with the same index.
751 if (Members.count(Key))
752 return false;
753
754 if (Key > LargestKey) {
755 // The largest index is always less than the interleave factor.
756 if (Index >= static_cast<int>(Factor))
757 return false;
758
759 LargestKey = Key;
760 } else if (Key < SmallestKey) {
761 // The largest index is always less than the interleave factor.
762 if (LargestKey - Key >= static_cast<int>(Factor))
763 return false;
764
765 SmallestKey = Key;
766 }
767
768 // It's always safe to select the minimum alignment.
769 Align = std::min(Align, NewAlign);
770 Members[Key] = Instr;
771 return true;
772 }
773
774 /// \brief Get the member with the given index \p Index
775 ///
776 /// \returns nullptr if contains no such member.
getMember(unsigned Index) const777 Instruction *getMember(unsigned Index) const {
778 int Key = SmallestKey + Index;
779 if (!Members.count(Key))
780 return nullptr;
781
782 return Members.find(Key)->second;
783 }
784
785 /// \brief Get the index for the given member. Unlike the key in the member
786 /// map, the index starts from 0.
getIndex(Instruction * Instr) const787 unsigned getIndex(Instruction *Instr) const {
788 for (auto I : Members)
789 if (I.second == Instr)
790 return I.first - SmallestKey;
791
792 llvm_unreachable("InterleaveGroup contains no such member");
793 }
794
getInsertPos() const795 Instruction *getInsertPos() const { return InsertPos; }
setInsertPos(Instruction * Inst)796 void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
797
798 private:
799 unsigned Factor; // Interleave Factor.
800 bool Reverse;
801 unsigned Align;
802 DenseMap<int, Instruction *> Members;
803 int SmallestKey;
804 int LargestKey;
805
806 // To avoid breaking dependences, vectorized instructions of an interleave
807 // group should be inserted at either the first load or the last store in
808 // program order.
809 //
810 // E.g. %even = load i32 // Insert Position
811 // %add = add i32 %even // Use of %even
812 // %odd = load i32
813 //
814 // store i32 %even
815 // %odd = add i32 // Def of %odd
816 // store i32 %odd // Insert Position
817 Instruction *InsertPos;
818 };
819
820 /// \brief Drive the analysis of interleaved memory accesses in the loop.
821 ///
822 /// Use this class to analyze interleaved accesses only when we can vectorize
823 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
824 /// on interleaved accesses is unsafe.
825 ///
826 /// The analysis collects interleave groups and records the relationships
827 /// between the member and the group in a map.
828 class InterleavedAccessInfo {
829 public:
InterleavedAccessInfo(PredicatedScalarEvolution & PSE,Loop * L,DominatorTree * DT,LoopInfo * LI)830 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
831 DominatorTree *DT, LoopInfo *LI)
832 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr),
833 RequiresScalarEpilogue(false) {}
834
~InterleavedAccessInfo()835 ~InterleavedAccessInfo() {
836 SmallSet<InterleaveGroup *, 4> DelSet;
837 // Avoid releasing a pointer twice.
838 for (auto &I : InterleaveGroupMap)
839 DelSet.insert(I.second);
840 for (auto *Ptr : DelSet)
841 delete Ptr;
842 }
843
844 /// \brief Analyze the interleaved accesses and collect them in interleave
845 /// groups. Substitute symbolic strides using \p Strides.
846 void analyzeInterleaving(const ValueToValueMap &Strides);
847
848 /// \brief Check if \p Instr belongs to any interleave group.
isInterleaved(Instruction * Instr) const849 bool isInterleaved(Instruction *Instr) const {
850 return InterleaveGroupMap.count(Instr);
851 }
852
853 /// \brief Return the maximum interleave factor of all interleaved groups.
getMaxInterleaveFactor() const854 unsigned getMaxInterleaveFactor() const {
855 unsigned MaxFactor = 1;
856 for (auto &Entry : InterleaveGroupMap)
857 MaxFactor = std::max(MaxFactor, Entry.second->getFactor());
858 return MaxFactor;
859 }
860
861 /// \brief Get the interleave group that \p Instr belongs to.
862 ///
863 /// \returns nullptr if doesn't have such group.
getInterleaveGroup(Instruction * Instr) const864 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
865 if (InterleaveGroupMap.count(Instr))
866 return InterleaveGroupMap.find(Instr)->second;
867 return nullptr;
868 }
869
870 /// \brief Returns true if an interleaved group that may access memory
871 /// out-of-bounds requires a scalar epilogue iteration for correctness.
requiresScalarEpilogue() const872 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
873
874 /// \brief Initialize the LoopAccessInfo used for dependence checking.
setLAI(const LoopAccessInfo * Info)875 void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
876
877 private:
878 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
879 /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
880 /// The interleaved access analysis can also add new predicates (for example
881 /// by versioning strides of pointers).
882 PredicatedScalarEvolution &PSE;
883 Loop *TheLoop;
884 DominatorTree *DT;
885 LoopInfo *LI;
886 const LoopAccessInfo *LAI;
887
888 /// True if the loop may contain non-reversed interleaved groups with
889 /// out-of-bounds accesses. We ensure we don't speculatively access memory
890 /// out-of-bounds by executing at least one scalar epilogue iteration.
891 bool RequiresScalarEpilogue;
892
893 /// Holds the relationships between the members and the interleave group.
894 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
895
896 /// Holds dependences among the memory accesses in the loop. It maps a source
897 /// access to a set of dependent sink accesses.
898 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
899
900 /// \brief The descriptor for a strided memory access.
901 struct StrideDescriptor {
StrideDescriptor__anonfb91178e0111::InterleavedAccessInfo::StrideDescriptor902 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
903 unsigned Align)
904 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
905
906 StrideDescriptor() = default;
907
908 // The access's stride. It is negative for a reverse access.
909 int64_t Stride = 0;
910 const SCEV *Scev = nullptr; // The scalar expression of this access
911 uint64_t Size = 0; // The size of the memory object.
912 unsigned Align = 0; // The alignment of this access.
913 };
914
915 /// \brief A type for holding instructions and their stride descriptors.
916 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry;
917
918 /// \brief Create a new interleave group with the given instruction \p Instr,
919 /// stride \p Stride and alignment \p Align.
920 ///
921 /// \returns the newly created interleave group.
createInterleaveGroup(Instruction * Instr,int Stride,unsigned Align)922 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
923 unsigned Align) {
924 assert(!InterleaveGroupMap.count(Instr) &&
925 "Already in an interleaved access group");
926 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
927 return InterleaveGroupMap[Instr];
928 }
929
930 /// \brief Release the group and remove all the relationships.
releaseGroup(InterleaveGroup * Group)931 void releaseGroup(InterleaveGroup *Group) {
932 for (unsigned i = 0; i < Group->getFactor(); i++)
933 if (Instruction *Member = Group->getMember(i))
934 InterleaveGroupMap.erase(Member);
935
936 delete Group;
937 }
938
939 /// \brief Collect all the accesses with a constant stride in program order.
940 void collectConstStrideAccesses(
941 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
942 const ValueToValueMap &Strides);
943
944 /// \brief Returns true if \p Stride is allowed in an interleaved group.
isStrided(int Stride)945 static bool isStrided(int Stride) {
946 unsigned Factor = std::abs(Stride);
947 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
948 }
949
950 /// \brief Returns true if \p BB is a predicated block.
isPredicated(BasicBlock * BB) const951 bool isPredicated(BasicBlock *BB) const {
952 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
953 }
954
955 /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
areDependencesValid() const956 bool areDependencesValid() const {
957 return LAI && LAI->getDepChecker().getDependences();
958 }
959
960 /// \brief Returns true if memory accesses \p B and \p A can be reordered, if
961 /// necessary, when constructing interleaved groups.
962 ///
963 /// \p B must precede \p A in program order. We return false if reordering is
964 /// not necessary or is prevented because \p B and \p A may be dependent.
canReorderMemAccessesForInterleavedGroups(StrideEntry * B,StrideEntry * A) const965 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *B,
966 StrideEntry *A) const {
967
968 // Code motion for interleaved accesses can potentially hoist strided loads
969 // and sink strided stores. The code below checks the legality of the
970 // following two conditions:
971 //
972 // 1. Potentially moving a strided load (A) before any store (B) that
973 // precedes A, or
974 //
975 // 2. Potentially moving a strided store (B) after any load or store (A)
976 // that B precedes.
977 //
978 // It's legal to reorder B and A if we know there isn't a dependence from B
979 // to A. Note that this determination is conservative since some
980 // dependences could potentially be reordered safely.
981
982 // B is potentially the source of a dependence.
983 auto *Src = B->first;
984 auto SrcDes = B->second;
985
986 // A is potentially the sink of a dependence.
987 auto *Sink = A->first;
988 auto SinkDes = A->second;
989
990 // Code motion for interleaved accesses can't violate WAR dependences.
991 // Thus, reordering is legal if the source isn't a write.
992 if (!Src->mayWriteToMemory())
993 return true;
994
995 // At least one of the accesses must be strided.
996 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
997 return true;
998
999 // If dependence information is not available from LoopAccessInfo,
1000 // conservatively assume the instructions can't be reordered.
1001 if (!areDependencesValid())
1002 return false;
1003
1004 // If we know there is a dependence from source to sink, assume the
1005 // instructions can't be reordered. Otherwise, reordering is legal.
1006 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1007 }
1008
1009 /// \brief Collect the dependences from LoopAccessInfo.
1010 ///
1011 /// We process the dependences once during the interleaved access analysis to
1012 /// enable constant-time dependence queries.
collectDependences()1013 void collectDependences() {
1014 if (!areDependencesValid())
1015 return;
1016 auto *Deps = LAI->getDepChecker().getDependences();
1017 for (auto Dep : *Deps)
1018 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1019 }
1020 };
1021
1022 /// Utility class for getting and setting loop vectorizer hints in the form
1023 /// of loop metadata.
1024 /// This class keeps a number of loop annotations locally (as member variables)
1025 /// and can, upon request, write them back as metadata on the loop. It will
1026 /// initially scan the loop for existing metadata, and will update the local
1027 /// values based on information in the loop.
1028 /// We cannot write all values to metadata, as the mere presence of some info,
1029 /// for example 'force', means a decision has been made. So, we need to be
1030 /// careful NOT to add them if the user hasn't specifically asked so.
1031 class LoopVectorizeHints {
1032 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE };
1033
1034 /// Hint - associates name and validation with the hint value.
1035 struct Hint {
1036 const char *Name;
1037 unsigned Value; // This may have to change for non-numeric values.
1038 HintKind Kind;
1039
Hint__anonfb91178e0111::LoopVectorizeHints::Hint1040 Hint(const char *Name, unsigned Value, HintKind Kind)
1041 : Name(Name), Value(Value), Kind(Kind) {}
1042
validate__anonfb91178e0111::LoopVectorizeHints::Hint1043 bool validate(unsigned Val) {
1044 switch (Kind) {
1045 case HK_WIDTH:
1046 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1047 case HK_UNROLL:
1048 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1049 case HK_FORCE:
1050 return (Val <= 1);
1051 }
1052 return false;
1053 }
1054 };
1055
1056 /// Vectorization width.
1057 Hint Width;
1058 /// Vectorization interleave factor.
1059 Hint Interleave;
1060 /// Vectorization forced
1061 Hint Force;
1062
1063 /// Return the loop metadata prefix.
Prefix()1064 static StringRef Prefix() { return "llvm.loop."; }
1065
1066 /// True if there is any unsafe math in the loop.
1067 bool PotentiallyUnsafe;
1068
1069 public:
1070 enum ForceKind {
1071 FK_Undefined = -1, ///< Not selected.
1072 FK_Disabled = 0, ///< Forcing disabled.
1073 FK_Enabled = 1, ///< Forcing enabled.
1074 };
1075
LoopVectorizeHints(const Loop * L,bool DisableInterleaving)1076 LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1077 : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1078 HK_WIDTH),
1079 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1080 Force("vectorize.enable", FK_Undefined, HK_FORCE),
1081 PotentiallyUnsafe(false), TheLoop(L) {
1082 // Populate values with existing loop metadata.
1083 getHintsFromMetadata();
1084
1085 // force-vector-interleave overrides DisableInterleaving.
1086 if (VectorizerParams::isInterleaveForced())
1087 Interleave.Value = VectorizerParams::VectorizationInterleave;
1088
1089 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1090 << "LV: Interleaving disabled by the pass manager\n");
1091 }
1092
1093 /// Mark the loop L as already vectorized by setting the width to 1.
setAlreadyVectorized()1094 void setAlreadyVectorized() {
1095 Width.Value = Interleave.Value = 1;
1096 Hint Hints[] = {Width, Interleave};
1097 writeHintsToMetadata(Hints);
1098 }
1099
allowVectorization(Function * F,Loop * L,bool AlwaysVectorize) const1100 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1101 if (getForce() == LoopVectorizeHints::FK_Disabled) {
1102 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1103 emitOptimizationRemarkAnalysis(F->getContext(),
1104 vectorizeAnalysisPassName(), *F,
1105 L->getStartLoc(), emitRemark());
1106 return false;
1107 }
1108
1109 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1110 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1111 emitOptimizationRemarkAnalysis(F->getContext(),
1112 vectorizeAnalysisPassName(), *F,
1113 L->getStartLoc(), emitRemark());
1114 return false;
1115 }
1116
1117 if (getWidth() == 1 && getInterleave() == 1) {
1118 // FIXME: Add a separate metadata to indicate when the loop has already
1119 // been vectorized instead of setting width and count to 1.
1120 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1121 // FIXME: Add interleave.disable metadata. This will allow
1122 // vectorize.disable to be used without disabling the pass and errors
1123 // to differentiate between disabled vectorization and a width of 1.
1124 emitOptimizationRemarkAnalysis(
1125 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
1126 "loop not vectorized: vectorization and interleaving are explicitly "
1127 "disabled, or vectorize width and interleave count are both set to "
1128 "1");
1129 return false;
1130 }
1131
1132 return true;
1133 }
1134
1135 /// Dumps all the hint information.
emitRemark() const1136 std::string emitRemark() const {
1137 VectorizationReport R;
1138 if (Force.Value == LoopVectorizeHints::FK_Disabled)
1139 R << "vectorization is explicitly disabled";
1140 else {
1141 R << "use -Rpass-analysis=loop-vectorize for more info";
1142 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1143 R << " (Force=true";
1144 if (Width.Value != 0)
1145 R << ", Vector Width=" << Width.Value;
1146 if (Interleave.Value != 0)
1147 R << ", Interleave Count=" << Interleave.Value;
1148 R << ")";
1149 }
1150 }
1151
1152 return R.str();
1153 }
1154
getWidth() const1155 unsigned getWidth() const { return Width.Value; }
getInterleave() const1156 unsigned getInterleave() const { return Interleave.Value; }
getForce() const1157 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1158
1159 /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1160 /// pass name to force the frontend to print the diagnostic.
vectorizeAnalysisPassName() const1161 const char *vectorizeAnalysisPassName() const {
1162 if (getWidth() == 1)
1163 return LV_NAME;
1164 if (getForce() == LoopVectorizeHints::FK_Disabled)
1165 return LV_NAME;
1166 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1167 return LV_NAME;
1168 return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint;
1169 }
1170
allowReordering() const1171 bool allowReordering() const {
1172 // When enabling loop hints are provided we allow the vectorizer to change
1173 // the order of operations that is given by the scalar loop. This is not
1174 // enabled by default because can be unsafe or inefficient. For example,
1175 // reordering floating-point operations will change the way round-off
1176 // error accumulates in the loop.
1177 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1178 }
1179
isPotentiallyUnsafe() const1180 bool isPotentiallyUnsafe() const {
1181 // Avoid FP vectorization if the target is unsure about proper support.
1182 // This may be related to the SIMD unit in the target not handling
1183 // IEEE 754 FP ops properly, or bad single-to-double promotions.
1184 // Otherwise, a sequence of vectorized loops, even without reduction,
1185 // could lead to different end results on the destination vectors.
1186 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1187 }
1188
setPotentiallyUnsafe()1189 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1190
1191 private:
1192 /// Find hints specified in the loop metadata and update local values.
getHintsFromMetadata()1193 void getHintsFromMetadata() {
1194 MDNode *LoopID = TheLoop->getLoopID();
1195 if (!LoopID)
1196 return;
1197
1198 // First operand should refer to the loop id itself.
1199 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1200 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1201
1202 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1203 const MDString *S = nullptr;
1204 SmallVector<Metadata *, 4> Args;
1205
1206 // The expected hint is either a MDString or a MDNode with the first
1207 // operand a MDString.
1208 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1209 if (!MD || MD->getNumOperands() == 0)
1210 continue;
1211 S = dyn_cast<MDString>(MD->getOperand(0));
1212 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1213 Args.push_back(MD->getOperand(i));
1214 } else {
1215 S = dyn_cast<MDString>(LoopID->getOperand(i));
1216 assert(Args.size() == 0 && "too many arguments for MDString");
1217 }
1218
1219 if (!S)
1220 continue;
1221
1222 // Check if the hint starts with the loop metadata prefix.
1223 StringRef Name = S->getString();
1224 if (Args.size() == 1)
1225 setHint(Name, Args[0]);
1226 }
1227 }
1228
1229 /// Checks string hint with one operand and set value if valid.
setHint(StringRef Name,Metadata * Arg)1230 void setHint(StringRef Name, Metadata *Arg) {
1231 if (!Name.startswith(Prefix()))
1232 return;
1233 Name = Name.substr(Prefix().size(), StringRef::npos);
1234
1235 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1236 if (!C)
1237 return;
1238 unsigned Val = C->getZExtValue();
1239
1240 Hint *Hints[] = {&Width, &Interleave, &Force};
1241 for (auto H : Hints) {
1242 if (Name == H->Name) {
1243 if (H->validate(Val))
1244 H->Value = Val;
1245 else
1246 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1247 break;
1248 }
1249 }
1250 }
1251
1252 /// Create a new hint from name / value pair.
createHintMetadata(StringRef Name,unsigned V) const1253 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1254 LLVMContext &Context = TheLoop->getHeader()->getContext();
1255 Metadata *MDs[] = {MDString::get(Context, Name),
1256 ConstantAsMetadata::get(
1257 ConstantInt::get(Type::getInt32Ty(Context), V))};
1258 return MDNode::get(Context, MDs);
1259 }
1260
1261 /// Matches metadata with hint name.
matchesHintMetadataName(MDNode * Node,ArrayRef<Hint> HintTypes)1262 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1263 MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1264 if (!Name)
1265 return false;
1266
1267 for (auto H : HintTypes)
1268 if (Name->getString().endswith(H.Name))
1269 return true;
1270 return false;
1271 }
1272
1273 /// Sets current hints into loop metadata, keeping other values intact.
writeHintsToMetadata(ArrayRef<Hint> HintTypes)1274 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1275 if (HintTypes.size() == 0)
1276 return;
1277
1278 // Reserve the first element to LoopID (see below).
1279 SmallVector<Metadata *, 4> MDs(1);
1280 // If the loop already has metadata, then ignore the existing operands.
1281 MDNode *LoopID = TheLoop->getLoopID();
1282 if (LoopID) {
1283 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1284 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1285 // If node in update list, ignore old value.
1286 if (!matchesHintMetadataName(Node, HintTypes))
1287 MDs.push_back(Node);
1288 }
1289 }
1290
1291 // Now, add the missing hints.
1292 for (auto H : HintTypes)
1293 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1294
1295 // Replace current metadata node with new one.
1296 LLVMContext &Context = TheLoop->getHeader()->getContext();
1297 MDNode *NewLoopID = MDNode::get(Context, MDs);
1298 // Set operand 0 to refer to the loop id itself.
1299 NewLoopID->replaceOperandWith(0, NewLoopID);
1300
1301 TheLoop->setLoopID(NewLoopID);
1302 }
1303
1304 /// The loop these hints belong to.
1305 const Loop *TheLoop;
1306 };
1307
emitAnalysisDiag(const Function * TheFunction,const Loop * TheLoop,const LoopVectorizeHints & Hints,const LoopAccessReport & Message)1308 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
1309 const LoopVectorizeHints &Hints,
1310 const LoopAccessReport &Message) {
1311 const char *Name = Hints.vectorizeAnalysisPassName();
1312 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
1313 }
1314
emitMissedWarning(Function * F,Loop * L,const LoopVectorizeHints & LH)1315 static void emitMissedWarning(Function *F, Loop *L,
1316 const LoopVectorizeHints &LH) {
1317 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1318 LH.emitRemark());
1319
1320 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1321 if (LH.getWidth() != 1)
1322 emitLoopVectorizeWarning(
1323 F->getContext(), *F, L->getStartLoc(),
1324 "failed explicitly specified loop vectorization");
1325 else if (LH.getInterleave() != 1)
1326 emitLoopInterleaveWarning(
1327 F->getContext(), *F, L->getStartLoc(),
1328 "failed explicitly specified loop interleaving");
1329 }
1330 }
1331
1332 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1333 /// to what vectorization factor.
1334 /// This class does not look at the profitability of vectorization, only the
1335 /// legality. This class has two main kinds of checks:
1336 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1337 /// will change the order of memory accesses in a way that will change the
1338 /// correctness of the program.
1339 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1340 /// checks for a number of different conditions, such as the availability of a
1341 /// single induction variable, that all types are supported and vectorize-able,
1342 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1343 /// This class is also used by InnerLoopVectorizer for identifying
1344 /// induction variable and the different reduction variables.
1345 class LoopVectorizationLegality {
1346 public:
LoopVectorizationLegality(Loop * L,PredicatedScalarEvolution & PSE,DominatorTree * DT,TargetLibraryInfo * TLI,AliasAnalysis * AA,Function * F,const TargetTransformInfo * TTI,std::function<const LoopAccessInfo & (Loop &)> * GetLAA,LoopInfo * LI,LoopVectorizationRequirements * R,LoopVectorizeHints * H)1347 LoopVectorizationLegality(
1348 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1349 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1350 const TargetTransformInfo *TTI,
1351 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1352 LoopVectorizationRequirements *R, LoopVectorizeHints *H)
1353 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F),
1354 TTI(TTI), DT(DT), GetLAA(GetLAA), LAI(nullptr),
1355 InterleaveInfo(PSE, L, DT, LI), Induction(nullptr),
1356 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R),
1357 Hints(H) {}
1358
1359 /// ReductionList contains the reduction descriptors for all
1360 /// of the reductions that were found in the loop.
1361 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1362
1363 /// InductionList saves induction variables and maps them to the
1364 /// induction descriptor.
1365 typedef MapVector<PHINode *, InductionDescriptor> InductionList;
1366
1367 /// RecurrenceSet contains the phi nodes that are recurrences other than
1368 /// inductions and reductions.
1369 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet;
1370
1371 /// Returns true if it is legal to vectorize this loop.
1372 /// This does not mean that it is profitable to vectorize this
1373 /// loop, only that it is legal to do so.
1374 bool canVectorize();
1375
1376 /// Returns the Induction variable.
getInduction()1377 PHINode *getInduction() { return Induction; }
1378
1379 /// Returns the reduction variables found in the loop.
getReductionVars()1380 ReductionList *getReductionVars() { return &Reductions; }
1381
1382 /// Returns the induction variables found in the loop.
getInductionVars()1383 InductionList *getInductionVars() { return &Inductions; }
1384
1385 /// Return the first-order recurrences found in the loop.
getFirstOrderRecurrences()1386 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1387
1388 /// Returns the widest induction type.
getWidestInductionType()1389 Type *getWidestInductionType() { return WidestIndTy; }
1390
1391 /// Returns True if V is an induction variable in this loop.
1392 bool isInductionVariable(const Value *V);
1393
1394 /// Returns True if PN is a reduction variable in this loop.
isReductionVariable(PHINode * PN)1395 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1396
1397 /// Returns True if Phi is a first-order recurrence in this loop.
1398 bool isFirstOrderRecurrence(const PHINode *Phi);
1399
1400 /// Return true if the block BB needs to be predicated in order for the loop
1401 /// to be vectorized.
1402 bool blockNeedsPredication(BasicBlock *BB);
1403
1404 /// Check if this pointer is consecutive when vectorizing. This happens
1405 /// when the last index of the GEP is the induction variable, or that the
1406 /// pointer itself is an induction variable.
1407 /// This check allows us to vectorize A[idx] into a wide load/store.
1408 /// Returns:
1409 /// 0 - Stride is unknown or non-consecutive.
1410 /// 1 - Address is consecutive.
1411 /// -1 - Address is consecutive, and decreasing.
1412 int isConsecutivePtr(Value *Ptr);
1413
1414 /// Returns true if the value V is uniform within the loop.
1415 bool isUniform(Value *V);
1416
1417 /// Returns true if this instruction will remain scalar after vectorization.
isUniformAfterVectorization(Instruction * I)1418 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); }
1419
1420 /// Returns the information that we collected about runtime memory check.
getRuntimePointerChecking() const1421 const RuntimePointerChecking *getRuntimePointerChecking() const {
1422 return LAI->getRuntimePointerChecking();
1423 }
1424
getLAI() const1425 const LoopAccessInfo *getLAI() const { return LAI; }
1426
1427 /// \brief Check if \p Instr belongs to any interleaved access group.
isAccessInterleaved(Instruction * Instr)1428 bool isAccessInterleaved(Instruction *Instr) {
1429 return InterleaveInfo.isInterleaved(Instr);
1430 }
1431
1432 /// \brief Return the maximum interleave factor of all interleaved groups.
getMaxInterleaveFactor() const1433 unsigned getMaxInterleaveFactor() const {
1434 return InterleaveInfo.getMaxInterleaveFactor();
1435 }
1436
1437 /// \brief Get the interleaved access group that \p Instr belongs to.
getInterleavedAccessGroup(Instruction * Instr)1438 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1439 return InterleaveInfo.getInterleaveGroup(Instr);
1440 }
1441
1442 /// \brief Returns true if an interleaved group requires a scalar iteration
1443 /// to handle accesses with gaps.
requiresScalarEpilogue() const1444 bool requiresScalarEpilogue() const {
1445 return InterleaveInfo.requiresScalarEpilogue();
1446 }
1447
getMaxSafeDepDistBytes()1448 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1449
hasStride(Value * V)1450 bool hasStride(Value *V) { return LAI->hasStride(V); }
1451
1452 /// Returns true if the target machine supports masked store operation
1453 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedStore(Type * DataType,Value * Ptr)1454 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1455 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1456 }
1457 /// Returns true if the target machine supports masked load operation
1458 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedLoad(Type * DataType,Value * Ptr)1459 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1460 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1461 }
1462 /// Returns true if the target machine supports masked scatter operation
1463 /// for the given \p DataType.
isLegalMaskedScatter(Type * DataType)1464 bool isLegalMaskedScatter(Type *DataType) {
1465 return TTI->isLegalMaskedScatter(DataType);
1466 }
1467 /// Returns true if the target machine supports masked gather operation
1468 /// for the given \p DataType.
isLegalMaskedGather(Type * DataType)1469 bool isLegalMaskedGather(Type *DataType) {
1470 return TTI->isLegalMaskedGather(DataType);
1471 }
1472
1473 /// Returns true if vector representation of the instruction \p I
1474 /// requires mask.
isMaskRequired(const Instruction * I)1475 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
getNumStores() const1476 unsigned getNumStores() const { return LAI->getNumStores(); }
getNumLoads() const1477 unsigned getNumLoads() const { return LAI->getNumLoads(); }
getNumPredStores() const1478 unsigned getNumPredStores() const { return NumPredStores; }
1479
1480 private:
1481 /// Check if a single basic block loop is vectorizable.
1482 /// At this point we know that this is a loop with a constant trip count
1483 /// and we only need to check individual instructions.
1484 bool canVectorizeInstrs();
1485
1486 /// When we vectorize loops we may change the order in which
1487 /// we read and write from memory. This method checks if it is
1488 /// legal to vectorize the code, considering only memory constrains.
1489 /// Returns true if the loop is vectorizable
1490 bool canVectorizeMemory();
1491
1492 /// Return true if we can vectorize this loop using the IF-conversion
1493 /// transformation.
1494 bool canVectorizeWithIfConvert();
1495
1496 /// Collect the variables that need to stay uniform after vectorization.
1497 void collectLoopUniforms();
1498
1499 /// Return true if all of the instructions in the block can be speculatively
1500 /// executed. \p SafePtrs is a list of addresses that are known to be legal
1501 /// and we know that we can read from them without segfault.
1502 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1503
1504 /// Updates the vectorization state by adding \p Phi to the inductions list.
1505 /// This can set \p Phi as the main induction of the loop if \p Phi is a
1506 /// better choice for the main induction than the existing one.
1507 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1508 SmallPtrSetImpl<Value *> &AllowedExit);
1509
1510 /// Report an analysis message to assist the user in diagnosing loops that are
1511 /// not vectorized. These are handled as LoopAccessReport rather than
1512 /// VectorizationReport because the << operator of VectorizationReport returns
1513 /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message) const1514 void emitAnalysis(const LoopAccessReport &Message) const {
1515 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1516 }
1517
1518 /// \brief If an access has a symbolic strides, this maps the pointer value to
1519 /// the stride symbol.
getSymbolicStrides()1520 const ValueToValueMap *getSymbolicStrides() {
1521 // FIXME: Currently, the set of symbolic strides is sometimes queried before
1522 // it's collected. This happens from canVectorizeWithIfConvert, when the
1523 // pointer is checked to reference consecutive elements suitable for a
1524 // masked access.
1525 return LAI ? &LAI->getSymbolicStrides() : nullptr;
1526 }
1527
1528 unsigned NumPredStores;
1529
1530 /// The loop that we evaluate.
1531 Loop *TheLoop;
1532 /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1533 /// Applies dynamic knowledge to simplify SCEV expressions in the context
1534 /// of existing SCEV assumptions. The analysis will also add a minimal set
1535 /// of new predicates if this is required to enable vectorization and
1536 /// unrolling.
1537 PredicatedScalarEvolution &PSE;
1538 /// Target Library Info.
1539 TargetLibraryInfo *TLI;
1540 /// Parent function
1541 Function *TheFunction;
1542 /// Target Transform Info
1543 const TargetTransformInfo *TTI;
1544 /// Dominator Tree.
1545 DominatorTree *DT;
1546 // LoopAccess analysis.
1547 std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1548 // And the loop-accesses info corresponding to this loop. This pointer is
1549 // null until canVectorizeMemory sets it up.
1550 const LoopAccessInfo *LAI;
1551
1552 /// The interleave access information contains groups of interleaved accesses
1553 /// with the same stride and close to each other.
1554 InterleavedAccessInfo InterleaveInfo;
1555
1556 // --- vectorization state --- //
1557
1558 /// Holds the integer induction variable. This is the counter of the
1559 /// loop.
1560 PHINode *Induction;
1561 /// Holds the reduction variables.
1562 ReductionList Reductions;
1563 /// Holds all of the induction variables that we found in the loop.
1564 /// Notice that inductions don't need to start at zero and that induction
1565 /// variables can be pointers.
1566 InductionList Inductions;
1567 /// Holds the phi nodes that are first-order recurrences.
1568 RecurrenceSet FirstOrderRecurrences;
1569 /// Holds the widest induction type encountered.
1570 Type *WidestIndTy;
1571
1572 /// Allowed outside users. This holds the induction and reduction
1573 /// vars which can be accessed from outside the loop.
1574 SmallPtrSet<Value *, 4> AllowedExit;
1575 /// This set holds the variables which are known to be uniform after
1576 /// vectorization.
1577 SmallPtrSet<Instruction *, 4> Uniforms;
1578
1579 /// Can we assume the absence of NaNs.
1580 bool HasFunNoNaNAttr;
1581
1582 /// Vectorization requirements that will go through late-evaluation.
1583 LoopVectorizationRequirements *Requirements;
1584
1585 /// Used to emit an analysis of any legality issues.
1586 LoopVectorizeHints *Hints;
1587
1588 /// While vectorizing these instructions we have to generate a
1589 /// call to the appropriate masked intrinsic
1590 SmallPtrSet<const Instruction *, 8> MaskedOp;
1591 };
1592
1593 /// LoopVectorizationCostModel - estimates the expected speedups due to
1594 /// vectorization.
1595 /// In many cases vectorization is not profitable. This can happen because of
1596 /// a number of reasons. In this class we mainly attempt to predict the
1597 /// expected speedup/slowdowns due to the supported instruction set. We use the
1598 /// TargetTransformInfo to query the different backends for the cost of
1599 /// different operations.
1600 class LoopVectorizationCostModel {
1601 public:
LoopVectorizationCostModel(Loop * L,PredicatedScalarEvolution & PSE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,DemandedBits * DB,AssumptionCache * AC,const Function * F,const LoopVectorizeHints * Hints)1602 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1603 LoopInfo *LI, LoopVectorizationLegality *Legal,
1604 const TargetTransformInfo &TTI,
1605 const TargetLibraryInfo *TLI, DemandedBits *DB,
1606 AssumptionCache *AC, const Function *F,
1607 const LoopVectorizeHints *Hints)
1608 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1609 AC(AC), TheFunction(F), Hints(Hints) {}
1610
1611 /// Information about vectorization costs
1612 struct VectorizationFactor {
1613 unsigned Width; // Vector width with best cost
1614 unsigned Cost; // Cost of the loop with that width
1615 };
1616 /// \return The most profitable vectorization factor and the cost of that VF.
1617 /// This method checks every power of two up to VF. If UserVF is not ZERO
1618 /// then this vectorization factor will be selected if vectorization is
1619 /// possible.
1620 VectorizationFactor selectVectorizationFactor(bool OptForSize);
1621
1622 /// \return The size (in bits) of the smallest and widest types in the code
1623 /// that needs to be vectorized. We ignore values that remain scalar such as
1624 /// 64 bit loop indices.
1625 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1626
1627 /// \return The desired interleave count.
1628 /// If interleave count has been specified by metadata it will be returned.
1629 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1630 /// are the selected vectorization factor and the cost of the selected VF.
1631 unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1632 unsigned LoopCost);
1633
1634 /// \return The most profitable unroll factor.
1635 /// This method finds the best unroll-factor based on register pressure and
1636 /// other parameters. VF and LoopCost are the selected vectorization factor
1637 /// and the cost of the selected VF.
1638 unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
1639 unsigned LoopCost);
1640
1641 /// \brief A struct that represents some properties of the register usage
1642 /// of a loop.
1643 struct RegisterUsage {
1644 /// Holds the number of loop invariant values that are used in the loop.
1645 unsigned LoopInvariantRegs;
1646 /// Holds the maximum number of concurrent live intervals in the loop.
1647 unsigned MaxLocalUsers;
1648 /// Holds the number of instructions in the loop.
1649 unsigned NumInstructions;
1650 };
1651
1652 /// \return Returns information about the register usages of the loop for the
1653 /// given vectorization factors.
1654 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1655
1656 /// Collect values we want to ignore in the cost model.
1657 void collectValuesToIgnore();
1658
1659 private:
1660 /// The vectorization cost is a combination of the cost itself and a boolean
1661 /// indicating whether any of the contributing operations will actually
1662 /// operate on
1663 /// vector values after type legalization in the backend. If this latter value
1664 /// is
1665 /// false, then all operations will be scalarized (i.e. no vectorization has
1666 /// actually taken place).
1667 typedef std::pair<unsigned, bool> VectorizationCostTy;
1668
1669 /// Returns the expected execution cost. The unit of the cost does
1670 /// not matter because we use the 'cost' units to compare different
1671 /// vector widths. The cost that is returned is *not* normalized by
1672 /// the factor width.
1673 VectorizationCostTy expectedCost(unsigned VF);
1674
1675 /// Returns the execution time cost of an instruction for a given vector
1676 /// width. Vector width of one means scalar.
1677 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1678
1679 /// The cost-computation logic from getInstructionCost which provides
1680 /// the vector type as an output parameter.
1681 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1682
1683 /// Returns whether the instruction is a load or store and will be a emitted
1684 /// as a vector operation.
1685 bool isConsecutiveLoadOrStore(Instruction *I);
1686
1687 /// Report an analysis message to assist the user in diagnosing loops that are
1688 /// not vectorized. These are handled as LoopAccessReport rather than
1689 /// VectorizationReport because the << operator of VectorizationReport returns
1690 /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message) const1691 void emitAnalysis(const LoopAccessReport &Message) const {
1692 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1693 }
1694
1695 public:
1696 /// Map of scalar integer values to the smallest bitwidth they can be legally
1697 /// represented as. The vector equivalents of these values should be truncated
1698 /// to this type.
1699 MapVector<Instruction *, uint64_t> MinBWs;
1700
1701 /// The loop that we evaluate.
1702 Loop *TheLoop;
1703 /// Predicated scalar evolution analysis.
1704 PredicatedScalarEvolution &PSE;
1705 /// Loop Info analysis.
1706 LoopInfo *LI;
1707 /// Vectorization legality.
1708 LoopVectorizationLegality *Legal;
1709 /// Vector target information.
1710 const TargetTransformInfo &TTI;
1711 /// Target Library Info.
1712 const TargetLibraryInfo *TLI;
1713 /// Demanded bits analysis.
1714 DemandedBits *DB;
1715 /// Assumption cache.
1716 AssumptionCache *AC;
1717 const Function *TheFunction;
1718 /// Loop Vectorize Hint.
1719 const LoopVectorizeHints *Hints;
1720 /// Values to ignore in the cost model.
1721 SmallPtrSet<const Value *, 16> ValuesToIgnore;
1722 /// Values to ignore in the cost model when VF > 1.
1723 SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1724 };
1725
1726 /// \brief This holds vectorization requirements that must be verified late in
1727 /// the process. The requirements are set by legalize and costmodel. Once
1728 /// vectorization has been determined to be possible and profitable the
1729 /// requirements can be verified by looking for metadata or compiler options.
1730 /// For example, some loops require FP commutativity which is only allowed if
1731 /// vectorization is explicitly specified or if the fast-math compiler option
1732 /// has been provided.
1733 /// Late evaluation of these requirements allows helpful diagnostics to be
1734 /// composed that tells the user what need to be done to vectorize the loop. For
1735 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
1736 /// evaluation should be used only when diagnostics can generated that can be
1737 /// followed by a non-expert user.
1738 class LoopVectorizationRequirements {
1739 public:
LoopVectorizationRequirements()1740 LoopVectorizationRequirements()
1741 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
1742
addUnsafeAlgebraInst(Instruction * I)1743 void addUnsafeAlgebraInst(Instruction *I) {
1744 // First unsafe algebra instruction.
1745 if (!UnsafeAlgebraInst)
1746 UnsafeAlgebraInst = I;
1747 }
1748
addRuntimePointerChecks(unsigned Num)1749 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
1750
doesNotMeet(Function * F,Loop * L,const LoopVectorizeHints & Hints)1751 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
1752 const char *Name = Hints.vectorizeAnalysisPassName();
1753 bool Failed = false;
1754 if (UnsafeAlgebraInst && !Hints.allowReordering()) {
1755 emitOptimizationRemarkAnalysisFPCommute(
1756 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
1757 VectorizationReport() << "cannot prove it is safe to reorder "
1758 "floating-point operations");
1759 Failed = true;
1760 }
1761
1762 // Test if runtime memcheck thresholds are exceeded.
1763 bool PragmaThresholdReached =
1764 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
1765 bool ThresholdReached =
1766 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
1767 if ((ThresholdReached && !Hints.allowReordering()) ||
1768 PragmaThresholdReached) {
1769 emitOptimizationRemarkAnalysisAliasing(
1770 F->getContext(), Name, *F, L->getStartLoc(),
1771 VectorizationReport()
1772 << "cannot prove it is safe to reorder memory operations");
1773 DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1774 Failed = true;
1775 }
1776
1777 return Failed;
1778 }
1779
1780 private:
1781 unsigned NumRuntimePointerChecks;
1782 Instruction *UnsafeAlgebraInst;
1783 };
1784
addInnerLoop(Loop & L,SmallVectorImpl<Loop * > & V)1785 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1786 if (L.empty())
1787 return V.push_back(&L);
1788
1789 for (Loop *InnerL : L)
1790 addInnerLoop(*InnerL, V);
1791 }
1792
1793 /// The LoopVectorize Pass.
1794 struct LoopVectorize : public FunctionPass {
1795 /// Pass identification, replacement for typeid
1796 static char ID;
1797
LoopVectorize__anonfb91178e0111::LoopVectorize1798 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1799 : FunctionPass(ID) {
1800 Impl.DisableUnrolling = NoUnrolling;
1801 Impl.AlwaysVectorize = AlwaysVectorize;
1802 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1803 }
1804
1805 LoopVectorizePass Impl;
1806
runOnFunction__anonfb91178e0111::LoopVectorize1807 bool runOnFunction(Function &F) override {
1808 if (skipFunction(F))
1809 return false;
1810
1811 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1812 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1813 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1814 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1815 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1816 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1817 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
1818 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1819 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1820 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1821 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1822
1823 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1824 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1825
1826 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1827 GetLAA);
1828 }
1829
getAnalysisUsage__anonfb91178e0111::LoopVectorize1830 void getAnalysisUsage(AnalysisUsage &AU) const override {
1831 AU.addRequired<AssumptionCacheTracker>();
1832 AU.addRequiredID(LoopSimplifyID);
1833 AU.addRequiredID(LCSSAID);
1834 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1835 AU.addRequired<DominatorTreeWrapperPass>();
1836 AU.addRequired<LoopInfoWrapperPass>();
1837 AU.addRequired<ScalarEvolutionWrapperPass>();
1838 AU.addRequired<TargetTransformInfoWrapperPass>();
1839 AU.addRequired<AAResultsWrapperPass>();
1840 AU.addRequired<LoopAccessLegacyAnalysis>();
1841 AU.addRequired<DemandedBitsWrapperPass>();
1842 AU.addPreserved<LoopInfoWrapperPass>();
1843 AU.addPreserved<DominatorTreeWrapperPass>();
1844 AU.addPreserved<BasicAAWrapperPass>();
1845 AU.addPreserved<GlobalsAAWrapperPass>();
1846 }
1847 };
1848
1849 } // end anonymous namespace
1850
1851 //===----------------------------------------------------------------------===//
1852 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1853 // LoopVectorizationCostModel.
1854 //===----------------------------------------------------------------------===//
1855
getBroadcastInstrs(Value * V)1856 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1857 // We need to place the broadcast of invariant variables outside the loop.
1858 Instruction *Instr = dyn_cast<Instruction>(V);
1859 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1860 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1861
1862 // Place the code for broadcasting invariant variables in the new preheader.
1863 IRBuilder<>::InsertPointGuard Guard(Builder);
1864 if (Invariant)
1865 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1866
1867 // Broadcast the scalar into all locations in the vector.
1868 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1869
1870 return Shuf;
1871 }
1872
createVectorIntInductionPHI(const InductionDescriptor & II,VectorParts & Entry,IntegerType * TruncType)1873 void InnerLoopVectorizer::createVectorIntInductionPHI(
1874 const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) {
1875 Value *Start = II.getStartValue();
1876 ConstantInt *Step = II.getConstIntStepValue();
1877 assert(Step && "Can not widen an IV with a non-constant step");
1878
1879 // Construct the initial value of the vector IV in the vector loop preheader
1880 auto CurrIP = Builder.saveIP();
1881 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1882 if (TruncType) {
1883 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue());
1884 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1885 }
1886 Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1887 Value *SteppedStart = getStepVector(SplatStart, 0, Step);
1888 Builder.restoreIP(CurrIP);
1889
1890 Value *SplatVF =
1891 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(),
1892 VF * Step->getSExtValue()));
1893 // We may need to add the step a number of times, depending on the unroll
1894 // factor. The last of those goes into the PHI.
1895 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1896 &*LoopVectorBody->getFirstInsertionPt());
1897 Value *LastInduction = VecInd;
1898 for (unsigned Part = 0; Part < UF; ++Part) {
1899 Entry[Part] = LastInduction;
1900 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add");
1901 }
1902
1903 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1904 VecInd->addIncoming(LastInduction, LoopVectorBody);
1905 }
1906
widenIntInduction(PHINode * IV,VectorParts & Entry,TruncInst * Trunc)1907 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry,
1908 TruncInst *Trunc) {
1909
1910 auto II = Legal->getInductionVars()->find(IV);
1911 assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
1912
1913 auto ID = II->second;
1914 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1915
1916 // If a truncate instruction was provided, get the smaller type.
1917 auto *TruncType = Trunc ? cast<IntegerType>(Trunc->getType()) : nullptr;
1918
1919 // The step of the induction.
1920 Value *Step = nullptr;
1921
1922 // If the induction variable has a constant integer step value, go ahead and
1923 // get it now.
1924 if (ID.getConstIntStepValue())
1925 Step = ID.getConstIntStepValue();
1926
1927 // Try to create a new independent vector induction variable. If we can't
1928 // create the phi node, we will splat the scalar induction variable in each
1929 // loop iteration.
1930 if (VF > 1 && IV->getType() == Induction->getType() && Step &&
1931 !ValuesNotWidened->count(IV))
1932 return createVectorIntInductionPHI(ID, Entry, TruncType);
1933
1934 // The scalar value to broadcast. This will be derived from the canonical
1935 // induction variable.
1936 Value *ScalarIV = nullptr;
1937
1938 // Define the scalar induction variable and step values. If we were given a
1939 // truncation type, truncate the canonical induction variable and constant
1940 // step. Otherwise, derive these values from the induction descriptor.
1941 if (TruncType) {
1942 assert(Step && "Truncation requires constant integer step");
1943 auto StepInt = cast<ConstantInt>(Step)->getSExtValue();
1944 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType);
1945 Step = ConstantInt::getSigned(TruncType, StepInt);
1946 } else {
1947 ScalarIV = Induction;
1948 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1949 if (IV != OldInduction) {
1950 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType());
1951 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
1952 ScalarIV->setName("offset.idx");
1953 }
1954 if (!Step) {
1955 SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1956 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
1957 &*Builder.GetInsertPoint());
1958 }
1959 }
1960
1961 // Splat the scalar induction variable, and build the necessary step vectors.
1962 Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1963 for (unsigned Part = 0; Part < UF; ++Part)
1964 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
1965
1966 // If an induction variable is only used for counting loop iterations or
1967 // calculating addresses, it doesn't need to be widened. Create scalar steps
1968 // that can be used by instructions we will later scalarize. Note that the
1969 // addition of the scalar steps will not increase the number of instructions
1970 // in the loop in the common case prior to InstCombine. We will be trading
1971 // one vector extract for each scalar step.
1972 if (VF > 1 && ValuesNotWidened->count(IV)) {
1973 auto *EntryVal = Trunc ? cast<Value>(Trunc) : IV;
1974 buildScalarSteps(ScalarIV, Step, EntryVal);
1975 }
1976 }
1977
getStepVector(Value * Val,int StartIdx,Value * Step)1978 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1979 Value *Step) {
1980 assert(Val->getType()->isVectorTy() && "Must be a vector");
1981 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1982 "Elem must be an integer");
1983 assert(Step->getType() == Val->getType()->getScalarType() &&
1984 "Step has wrong type");
1985 // Create the types.
1986 Type *ITy = Val->getType()->getScalarType();
1987 VectorType *Ty = cast<VectorType>(Val->getType());
1988 int VLen = Ty->getNumElements();
1989 SmallVector<Constant *, 8> Indices;
1990
1991 // Create a vector of consecutive numbers from zero to VF.
1992 for (int i = 0; i < VLen; ++i)
1993 Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1994
1995 // Add the consecutive indices to the vector value.
1996 Constant *Cv = ConstantVector::get(Indices);
1997 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1998 Step = Builder.CreateVectorSplat(VLen, Step);
1999 assert(Step->getType() == Val->getType() && "Invalid step vec");
2000 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2001 // which can be found from the original scalar operations.
2002 Step = Builder.CreateMul(Cv, Step);
2003 return Builder.CreateAdd(Val, Step, "induction");
2004 }
2005
buildScalarSteps(Value * ScalarIV,Value * Step,Value * EntryVal)2006 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2007 Value *EntryVal) {
2008
2009 // We shouldn't have to build scalar steps if we aren't vectorizing.
2010 assert(VF > 1 && "VF should be greater than one");
2011
2012 // Get the value type and ensure it and the step have the same integer type.
2013 Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2014 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() &&
2015 "Val and Step should have the same integer type");
2016
2017 // Compute the scalar steps and save the results in ScalarIVMap.
2018 for (unsigned Part = 0; Part < UF; ++Part)
2019 for (unsigned I = 0; I < VF; ++I) {
2020 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + I);
2021 auto *Mul = Builder.CreateMul(StartIdx, Step);
2022 auto *Add = Builder.CreateAdd(ScalarIV, Mul);
2023 ScalarIVMap[EntryVal].push_back(Add);
2024 }
2025 }
2026
isConsecutivePtr(Value * Ptr)2027 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2028 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
2029 auto *SE = PSE.getSE();
2030 // Make sure that the pointer does not point to structs.
2031 if (Ptr->getType()->getPointerElementType()->isAggregateType())
2032 return 0;
2033
2034 // If this value is a pointer induction variable, we know it is consecutive.
2035 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
2036 if (Phi && Inductions.count(Phi)) {
2037 InductionDescriptor II = Inductions[Phi];
2038 return II.getConsecutiveDirection();
2039 }
2040
2041 GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2042 if (!Gep)
2043 return 0;
2044
2045 unsigned NumOperands = Gep->getNumOperands();
2046 Value *GpPtr = Gep->getPointerOperand();
2047 // If this GEP value is a consecutive pointer induction variable and all of
2048 // the indices are constant, then we know it is consecutive.
2049 Phi = dyn_cast<PHINode>(GpPtr);
2050 if (Phi && Inductions.count(Phi)) {
2051
2052 // Make sure that the pointer does not point to structs.
2053 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
2054 if (GepPtrType->getElementType()->isAggregateType())
2055 return 0;
2056
2057 // Make sure that all of the index operands are loop invariant.
2058 for (unsigned i = 1; i < NumOperands; ++i)
2059 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2060 return 0;
2061
2062 InductionDescriptor II = Inductions[Phi];
2063 return II.getConsecutiveDirection();
2064 }
2065
2066 unsigned InductionOperand = getGEPInductionOperand(Gep);
2067
2068 // Check that all of the gep indices are uniform except for our induction
2069 // operand.
2070 for (unsigned i = 0; i != NumOperands; ++i)
2071 if (i != InductionOperand &&
2072 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2073 return 0;
2074
2075 // We can emit wide load/stores only if the last non-zero index is the
2076 // induction variable.
2077 const SCEV *Last = nullptr;
2078 if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep))
2079 Last = PSE.getSCEV(Gep->getOperand(InductionOperand));
2080 else {
2081 // Because of the multiplication by a stride we can have a s/zext cast.
2082 // We are going to replace this stride by 1 so the cast is safe to ignore.
2083 //
2084 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
2085 // %0 = trunc i64 %indvars.iv to i32
2086 // %mul = mul i32 %0, %Stride1
2087 // %idxprom = zext i32 %mul to i64 << Safe cast.
2088 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
2089 //
2090 Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(),
2091 Gep->getOperand(InductionOperand), Gep);
2092 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
2093 Last =
2094 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
2095 ? C->getOperand()
2096 : Last;
2097 }
2098 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
2099 const SCEV *Step = AR->getStepRecurrence(*SE);
2100
2101 // The memory is consecutive because the last index is consecutive
2102 // and all other indices are loop invariant.
2103 if (Step->isOne())
2104 return 1;
2105 if (Step->isAllOnesValue())
2106 return -1;
2107 }
2108
2109 return 0;
2110 }
2111
isUniform(Value * V)2112 bool LoopVectorizationLegality::isUniform(Value *V) {
2113 return LAI->isUniform(V);
2114 }
2115
2116 InnerLoopVectorizer::VectorParts &
getVectorValue(Value * V)2117 InnerLoopVectorizer::getVectorValue(Value *V) {
2118 assert(V != Induction && "The new induction variable should not be used.");
2119 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2120
2121 // If we have a stride that is replaced by one, do it here.
2122 if (Legal->hasStride(V))
2123 V = ConstantInt::get(V->getType(), 1);
2124
2125 // If we have this scalar in the map, return it.
2126 if (WidenMap.has(V))
2127 return WidenMap.get(V);
2128
2129 // If this scalar is unknown, assume that it is a constant or that it is
2130 // loop invariant. Broadcast V and save the value for future uses.
2131 Value *B = getBroadcastInstrs(V);
2132 return WidenMap.splat(V, B);
2133 }
2134
reverseVector(Value * Vec)2135 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2136 assert(Vec->getType()->isVectorTy() && "Invalid type");
2137 SmallVector<Constant *, 8> ShuffleMask;
2138 for (unsigned i = 0; i < VF; ++i)
2139 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2140
2141 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2142 ConstantVector::get(ShuffleMask),
2143 "reverse");
2144 }
2145
2146 // Get a mask to interleave \p NumVec vectors into a wide vector.
2147 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
2148 // E.g. For 2 interleaved vectors, if VF is 4, the mask is:
2149 // <0, 4, 1, 5, 2, 6, 3, 7>
getInterleavedMask(IRBuilder<> & Builder,unsigned VF,unsigned NumVec)2150 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
2151 unsigned NumVec) {
2152 SmallVector<Constant *, 16> Mask;
2153 for (unsigned i = 0; i < VF; i++)
2154 for (unsigned j = 0; j < NumVec; j++)
2155 Mask.push_back(Builder.getInt32(j * VF + i));
2156
2157 return ConstantVector::get(Mask);
2158 }
2159
2160 // Get the strided mask starting from index \p Start.
2161 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)>
getStridedMask(IRBuilder<> & Builder,unsigned Start,unsigned Stride,unsigned VF)2162 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
2163 unsigned Stride, unsigned VF) {
2164 SmallVector<Constant *, 16> Mask;
2165 for (unsigned i = 0; i < VF; i++)
2166 Mask.push_back(Builder.getInt32(Start + i * Stride));
2167
2168 return ConstantVector::get(Mask);
2169 }
2170
2171 // Get a mask of two parts: The first part consists of sequential integers
2172 // starting from 0, The second part consists of UNDEFs.
2173 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
getSequentialMask(IRBuilder<> & Builder,unsigned NumInt,unsigned NumUndef)2174 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
2175 unsigned NumUndef) {
2176 SmallVector<Constant *, 16> Mask;
2177 for (unsigned i = 0; i < NumInt; i++)
2178 Mask.push_back(Builder.getInt32(i));
2179
2180 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
2181 for (unsigned i = 0; i < NumUndef; i++)
2182 Mask.push_back(Undef);
2183
2184 return ConstantVector::get(Mask);
2185 }
2186
2187 // Concatenate two vectors with the same element type. The 2nd vector should
2188 // not have more elements than the 1st vector. If the 2nd vector has less
2189 // elements, extend it with UNDEFs.
ConcatenateTwoVectors(IRBuilder<> & Builder,Value * V1,Value * V2)2190 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
2191 Value *V2) {
2192 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
2193 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
2194 assert(VecTy1 && VecTy2 &&
2195 VecTy1->getScalarType() == VecTy2->getScalarType() &&
2196 "Expect two vectors with the same element type");
2197
2198 unsigned NumElts1 = VecTy1->getNumElements();
2199 unsigned NumElts2 = VecTy2->getNumElements();
2200 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
2201
2202 if (NumElts1 > NumElts2) {
2203 // Extend with UNDEFs.
2204 Constant *ExtMask =
2205 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
2206 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
2207 }
2208
2209 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
2210 return Builder.CreateShuffleVector(V1, V2, Mask);
2211 }
2212
2213 // Concatenate vectors in the given list. All vectors have the same type.
ConcatenateVectors(IRBuilder<> & Builder,ArrayRef<Value * > InputList)2214 static Value *ConcatenateVectors(IRBuilder<> &Builder,
2215 ArrayRef<Value *> InputList) {
2216 unsigned NumVec = InputList.size();
2217 assert(NumVec > 1 && "Should be at least two vectors");
2218
2219 SmallVector<Value *, 8> ResList;
2220 ResList.append(InputList.begin(), InputList.end());
2221 do {
2222 SmallVector<Value *, 8> TmpList;
2223 for (unsigned i = 0; i < NumVec - 1; i += 2) {
2224 Value *V0 = ResList[i], *V1 = ResList[i + 1];
2225 assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
2226 "Only the last vector may have a different type");
2227
2228 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
2229 }
2230
2231 // Push the last vector if the total number of vectors is odd.
2232 if (NumVec % 2 != 0)
2233 TmpList.push_back(ResList[NumVec - 1]);
2234
2235 ResList = TmpList;
2236 NumVec = ResList.size();
2237 } while (NumVec > 1);
2238
2239 return ResList[0];
2240 }
2241
2242 // Try to vectorize the interleave group that \p Instr belongs to.
2243 //
2244 // E.g. Translate following interleaved load group (factor = 3):
2245 // for (i = 0; i < N; i+=3) {
2246 // R = Pic[i]; // Member of index 0
2247 // G = Pic[i+1]; // Member of index 1
2248 // B = Pic[i+2]; // Member of index 2
2249 // ... // do something to R, G, B
2250 // }
2251 // To:
2252 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
2253 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
2254 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
2255 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
2256 //
2257 // Or translate following interleaved store group (factor = 3):
2258 // for (i = 0; i < N; i+=3) {
2259 // ... do something to R, G, B
2260 // Pic[i] = R; // Member of index 0
2261 // Pic[i+1] = G; // Member of index 1
2262 // Pic[i+2] = B; // Member of index 2
2263 // }
2264 // To:
2265 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2266 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2267 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2268 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
2269 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
vectorizeInterleaveGroup(Instruction * Instr)2270 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2271 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2272 assert(Group && "Fail to get an interleaved access group.");
2273
2274 // Skip if current instruction is not the insert position.
2275 if (Instr != Group->getInsertPos())
2276 return;
2277
2278 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2279 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2280 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2281
2282 // Prepare for the vector type of the interleaved load/store.
2283 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2284 unsigned InterleaveFactor = Group->getFactor();
2285 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2286 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
2287
2288 // Prepare for the new pointers.
2289 setDebugLocFromInst(Builder, Ptr);
2290 VectorParts &PtrParts = getVectorValue(Ptr);
2291 SmallVector<Value *, 2> NewPtrs;
2292 unsigned Index = Group->getIndex(Instr);
2293 for (unsigned Part = 0; Part < UF; Part++) {
2294 // Extract the pointer for current instruction from the pointer vector. A
2295 // reverse access uses the pointer in the last lane.
2296 Value *NewPtr = Builder.CreateExtractElement(
2297 PtrParts[Part],
2298 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
2299
2300 // Notice current instruction could be any index. Need to adjust the address
2301 // to the member of index 0.
2302 //
2303 // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
2304 // b = A[i]; // Member of index 0
2305 // Current pointer is pointed to A[i+1], adjust it to A[i].
2306 //
2307 // E.g. A[i+1] = a; // Member of index 1
2308 // A[i] = b; // Member of index 0
2309 // A[i+2] = c; // Member of index 2 (Current instruction)
2310 // Current pointer is pointed to A[i+2], adjust it to A[i].
2311 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2312
2313 // Cast to the vector pointer type.
2314 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2315 }
2316
2317 setDebugLocFromInst(Builder, Instr);
2318 Value *UndefVec = UndefValue::get(VecTy);
2319
2320 // Vectorize the interleaved load group.
2321 if (LI) {
2322 for (unsigned Part = 0; Part < UF; Part++) {
2323 Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
2324 NewPtrs[Part], Group->getAlignment(), "wide.vec");
2325
2326 for (unsigned i = 0; i < InterleaveFactor; i++) {
2327 Instruction *Member = Group->getMember(i);
2328
2329 // Skip the gaps in the group.
2330 if (!Member)
2331 continue;
2332
2333 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
2334 Value *StridedVec = Builder.CreateShuffleVector(
2335 NewLoadInstr, UndefVec, StrideMask, "strided.vec");
2336
2337 // If this member has different type, cast the result type.
2338 if (Member->getType() != ScalarTy) {
2339 VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2340 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2341 }
2342
2343 VectorParts &Entry = WidenMap.get(Member);
2344 Entry[Part] =
2345 Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2346 }
2347
2348 addMetadata(NewLoadInstr, Instr);
2349 }
2350 return;
2351 }
2352
2353 // The sub vector type for current instruction.
2354 VectorType *SubVT = VectorType::get(ScalarTy, VF);
2355
2356 // Vectorize the interleaved store group.
2357 for (unsigned Part = 0; Part < UF; Part++) {
2358 // Collect the stored vector from each member.
2359 SmallVector<Value *, 4> StoredVecs;
2360 for (unsigned i = 0; i < InterleaveFactor; i++) {
2361 // Interleaved store group doesn't allow a gap, so each index has a member
2362 Instruction *Member = Group->getMember(i);
2363 assert(Member && "Fail to get a member from an interleaved store group");
2364
2365 Value *StoredVec =
2366 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part];
2367 if (Group->isReverse())
2368 StoredVec = reverseVector(StoredVec);
2369
2370 // If this member has different type, cast it to an unified type.
2371 if (StoredVec->getType() != SubVT)
2372 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2373
2374 StoredVecs.push_back(StoredVec);
2375 }
2376
2377 // Concatenate all vectors into a wide vector.
2378 Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
2379
2380 // Interleave the elements in the wide vector.
2381 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
2382 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2383 "interleaved.vec");
2384
2385 Instruction *NewStoreInstr =
2386 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2387 addMetadata(NewStoreInstr, Instr);
2388 }
2389 }
2390
vectorizeMemoryInstruction(Instruction * Instr)2391 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2392 // Attempt to issue a wide load.
2393 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2394 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2395
2396 assert((LI || SI) && "Invalid Load/Store instruction");
2397
2398 // Try to vectorize the interleave group if this access is interleaved.
2399 if (Legal->isAccessInterleaved(Instr))
2400 return vectorizeInterleaveGroup(Instr);
2401
2402 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2403 Type *DataTy = VectorType::get(ScalarDataTy, VF);
2404 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2405 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
2406 // An alignment of 0 means target abi alignment. We need to use the scalar's
2407 // target abi alignment in such a case.
2408 const DataLayout &DL = Instr->getModule()->getDataLayout();
2409 if (!Alignment)
2410 Alignment = DL.getABITypeAlignment(ScalarDataTy);
2411 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2412 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
2413 uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
2414
2415 if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
2416 !Legal->isMaskRequired(SI))
2417 return scalarizeInstruction(Instr, true);
2418
2419 if (ScalarAllocatedSize != VectorElementSize)
2420 return scalarizeInstruction(Instr);
2421
2422 // If the pointer is loop invariant scalarize the load.
2423 if (LI && Legal->isUniform(Ptr))
2424 return scalarizeInstruction(Instr);
2425
2426 // If the pointer is non-consecutive and gather/scatter is not supported
2427 // scalarize the instruction.
2428 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2429 bool Reverse = ConsecutiveStride < 0;
2430 bool CreateGatherScatter =
2431 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) ||
2432 (SI && Legal->isLegalMaskedScatter(ScalarDataTy)));
2433
2434 if (!ConsecutiveStride && !CreateGatherScatter)
2435 return scalarizeInstruction(Instr);
2436
2437 Constant *Zero = Builder.getInt32(0);
2438 VectorParts &Entry = WidenMap.get(Instr);
2439 VectorParts VectorGep;
2440
2441 // Handle consecutive loads/stores.
2442 GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2443 if (ConsecutiveStride) {
2444 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
2445 setDebugLocFromInst(Builder, Gep);
2446 Value *PtrOperand = Gep->getPointerOperand();
2447 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
2448 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
2449
2450 // Create the new GEP with the new induction variable.
2451 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2452 Gep2->setOperand(0, FirstBasePtr);
2453 Gep2->setName("gep.indvar.base");
2454 Ptr = Builder.Insert(Gep2);
2455 } else if (Gep) {
2456 setDebugLocFromInst(Builder, Gep);
2457 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
2458 OrigLoop) &&
2459 "Base ptr must be invariant");
2460 // The last index does not have to be the induction. It can be
2461 // consecutive and be a function of the index. For example A[I+1];
2462 unsigned NumOperands = Gep->getNumOperands();
2463 unsigned InductionOperand = getGEPInductionOperand(Gep);
2464 // Create the new GEP with the new induction variable.
2465 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2466
2467 for (unsigned i = 0; i < NumOperands; ++i) {
2468 Value *GepOperand = Gep->getOperand(i);
2469 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
2470
2471 // Update last index or loop invariant instruction anchored in loop.
2472 if (i == InductionOperand ||
2473 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
2474 assert((i == InductionOperand ||
2475 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst),
2476 OrigLoop)) &&
2477 "Must be last index or loop invariant");
2478
2479 VectorParts &GEPParts = getVectorValue(GepOperand);
2480
2481 // If GepOperand is an induction variable, and there's a scalarized
2482 // version of it available, use it. Otherwise, we will need to create
2483 // an extractelement instruction.
2484 Value *Index = ScalarIVMap.count(GepOperand)
2485 ? ScalarIVMap[GepOperand][0]
2486 : Builder.CreateExtractElement(GEPParts[0], Zero);
2487
2488 Gep2->setOperand(i, Index);
2489 Gep2->setName("gep.indvar.idx");
2490 }
2491 }
2492 Ptr = Builder.Insert(Gep2);
2493 } else { // No GEP
2494 // Use the induction element ptr.
2495 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
2496 setDebugLocFromInst(Builder, Ptr);
2497 VectorParts &PtrVal = getVectorValue(Ptr);
2498 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
2499 }
2500 } else {
2501 // At this point we should vector version of GEP for Gather or Scatter
2502 assert(CreateGatherScatter && "The instruction should be scalarized");
2503 if (Gep) {
2504 // Vectorizing GEP, across UF parts. We want to get a vector value for base
2505 // and each index that's defined inside the loop, even if it is
2506 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them
2507 // scalar.
2508 SmallVector<VectorParts, 4> OpsV;
2509 for (Value *Op : Gep->operands()) {
2510 Instruction *SrcInst = dyn_cast<Instruction>(Op);
2511 if (SrcInst && OrigLoop->contains(SrcInst))
2512 OpsV.push_back(getVectorValue(Op));
2513 else
2514 OpsV.push_back(VectorParts(UF, Op));
2515 }
2516 for (unsigned Part = 0; Part < UF; ++Part) {
2517 SmallVector<Value *, 4> Ops;
2518 Value *GEPBasePtr = OpsV[0][Part];
2519 for (unsigned i = 1; i < Gep->getNumOperands(); i++)
2520 Ops.push_back(OpsV[i][Part]);
2521 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep");
2522 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds());
2523 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP");
2524
2525 NewGep =
2526 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF));
2527 VectorGep.push_back(NewGep);
2528 }
2529 } else
2530 VectorGep = getVectorValue(Ptr);
2531 }
2532
2533 VectorParts Mask = createBlockInMask(Instr->getParent());
2534 // Handle Stores:
2535 if (SI) {
2536 assert(!Legal->isUniform(SI->getPointerOperand()) &&
2537 "We do not allow storing to uniform addresses");
2538 setDebugLocFromInst(Builder, SI);
2539 // We don't want to update the value in the map as it might be used in
2540 // another expression. So don't use a reference type for "StoredVal".
2541 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
2542
2543 for (unsigned Part = 0; Part < UF; ++Part) {
2544 Instruction *NewSI = nullptr;
2545 if (CreateGatherScatter) {
2546 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr;
2547 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part],
2548 Alignment, MaskPart);
2549 } else {
2550 // Calculate the pointer for the specific unroll-part.
2551 Value *PartPtr =
2552 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2553
2554 if (Reverse) {
2555 // If we store to reverse consecutive memory locations, then we need
2556 // to reverse the order of elements in the stored value.
2557 StoredVal[Part] = reverseVector(StoredVal[Part]);
2558 // If the address is consecutive but reversed, then the
2559 // wide store needs to start at the last vector element.
2560 PartPtr =
2561 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2562 PartPtr =
2563 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2564 Mask[Part] = reverseVector(Mask[Part]);
2565 }
2566
2567 Value *VecPtr =
2568 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2569
2570 if (Legal->isMaskRequired(SI))
2571 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
2572 Mask[Part]);
2573 else
2574 NewSI =
2575 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
2576 }
2577 addMetadata(NewSI, SI);
2578 }
2579 return;
2580 }
2581
2582 // Handle loads.
2583 assert(LI && "Must have a load instruction");
2584 setDebugLocFromInst(Builder, LI);
2585 for (unsigned Part = 0; Part < UF; ++Part) {
2586 Instruction *NewLI;
2587 if (CreateGatherScatter) {
2588 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr;
2589 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart,
2590 0, "wide.masked.gather");
2591 Entry[Part] = NewLI;
2592 } else {
2593 // Calculate the pointer for the specific unroll-part.
2594 Value *PartPtr =
2595 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2596
2597 if (Reverse) {
2598 // If the address is consecutive but reversed, then the
2599 // wide load needs to start at the last vector element.
2600 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2601 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2602 Mask[Part] = reverseVector(Mask[Part]);
2603 }
2604
2605 Value *VecPtr =
2606 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2607 if (Legal->isMaskRequired(LI))
2608 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
2609 UndefValue::get(DataTy),
2610 "wide.masked.load");
2611 else
2612 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
2613 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
2614 }
2615 addMetadata(NewLI, LI);
2616 }
2617 }
2618
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)2619 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2620 bool IfPredicateStore) {
2621 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2622 // Holds vector parameters or scalars, in case of uniform vals.
2623 SmallVector<VectorParts, 4> Params;
2624
2625 setDebugLocFromInst(Builder, Instr);
2626
2627 // Find all of the vectorized parameters.
2628 for (Value *SrcOp : Instr->operands()) {
2629 // If we are accessing the old induction variable, use the new one.
2630 if (SrcOp == OldInduction) {
2631 Params.push_back(getVectorValue(SrcOp));
2632 continue;
2633 }
2634
2635 // Try using previously calculated values.
2636 auto *SrcInst = dyn_cast<Instruction>(SrcOp);
2637
2638 // If the src is an instruction that appeared earlier in the basic block,
2639 // then it should already be vectorized.
2640 if (SrcInst && OrigLoop->contains(SrcInst)) {
2641 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
2642 // The parameter is a vector value from earlier.
2643 Params.push_back(WidenMap.get(SrcInst));
2644 } else {
2645 // The parameter is a scalar from outside the loop. Maybe even a constant.
2646 VectorParts Scalars;
2647 Scalars.append(UF, SrcOp);
2648 Params.push_back(Scalars);
2649 }
2650 }
2651
2652 assert(Params.size() == Instr->getNumOperands() &&
2653 "Invalid number of operands");
2654
2655 // Does this instruction return a value ?
2656 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2657
2658 Value *UndefVec =
2659 IsVoidRetTy ? nullptr
2660 : UndefValue::get(VectorType::get(Instr->getType(), VF));
2661 // Create a new entry in the WidenMap and initialize it to Undef or Null.
2662 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
2663
2664 VectorParts Cond;
2665 if (IfPredicateStore) {
2666 assert(Instr->getParent()->getSinglePredecessor() &&
2667 "Only support single predecessor blocks");
2668 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
2669 Instr->getParent());
2670 }
2671
2672 // For each vector unroll 'part':
2673 for (unsigned Part = 0; Part < UF; ++Part) {
2674 // For each scalar that we create:
2675 for (unsigned Width = 0; Width < VF; ++Width) {
2676
2677 // Start if-block.
2678 Value *Cmp = nullptr;
2679 if (IfPredicateStore) {
2680 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2681 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
2682 ConstantInt::get(Cmp->getType(), 1));
2683 }
2684
2685 Instruction *Cloned = Instr->clone();
2686 if (!IsVoidRetTy)
2687 Cloned->setName(Instr->getName() + ".cloned");
2688 // Replace the operands of the cloned instructions with extracted scalars.
2689 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2690
2691 // If the operand is an induction variable, and there's a scalarized
2692 // version of it available, use it. Otherwise, we will need to create
2693 // an extractelement instruction if vectorizing.
2694 auto *NewOp = Params[op][Part];
2695 auto *ScalarOp = Instr->getOperand(op);
2696 if (ScalarIVMap.count(ScalarOp))
2697 NewOp = ScalarIVMap[ScalarOp][VF * Part + Width];
2698 else if (NewOp->getType()->isVectorTy())
2699 NewOp = Builder.CreateExtractElement(NewOp, Builder.getInt32(Width));
2700 Cloned->setOperand(op, NewOp);
2701 }
2702 addNewMetadata(Cloned, Instr);
2703
2704 // Place the cloned scalar in the new loop.
2705 Builder.Insert(Cloned);
2706
2707 // If we just cloned a new assumption, add it the assumption cache.
2708 if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2709 if (II->getIntrinsicID() == Intrinsic::assume)
2710 AC->registerAssumption(II);
2711
2712 // If the original scalar returns a value we need to place it in a vector
2713 // so that future users will be able to use it.
2714 if (!IsVoidRetTy)
2715 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2716 Builder.getInt32(Width));
2717 // End if-block.
2718 if (IfPredicateStore)
2719 PredicatedStores.push_back(
2720 std::make_pair(cast<StoreInst>(Cloned), Cmp));
2721 }
2722 }
2723 }
2724
createInductionVariable(Loop * L,Value * Start,Value * End,Value * Step,Instruction * DL)2725 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2726 Value *End, Value *Step,
2727 Instruction *DL) {
2728 BasicBlock *Header = L->getHeader();
2729 BasicBlock *Latch = L->getLoopLatch();
2730 // As we're just creating this loop, it's possible no latch exists
2731 // yet. If so, use the header as this will be a single block loop.
2732 if (!Latch)
2733 Latch = Header;
2734
2735 IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2736 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2737 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2738
2739 Builder.SetInsertPoint(Latch->getTerminator());
2740
2741 // Create i+1 and fill the PHINode.
2742 Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2743 Induction->addIncoming(Start, L->getLoopPreheader());
2744 Induction->addIncoming(Next, Latch);
2745 // Create the compare.
2746 Value *ICmp = Builder.CreateICmpEQ(Next, End);
2747 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2748
2749 // Now we have two terminators. Remove the old one from the block.
2750 Latch->getTerminator()->eraseFromParent();
2751
2752 return Induction;
2753 }
2754
getOrCreateTripCount(Loop * L)2755 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2756 if (TripCount)
2757 return TripCount;
2758
2759 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2760 // Find the loop boundaries.
2761 ScalarEvolution *SE = PSE.getSE();
2762 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2763 assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2764 "Invalid loop count");
2765
2766 Type *IdxTy = Legal->getWidestInductionType();
2767
2768 // The exit count might have the type of i64 while the phi is i32. This can
2769 // happen if we have an induction variable that is sign extended before the
2770 // compare. The only way that we get a backedge taken count is that the
2771 // induction variable was signed and as such will not overflow. In such a case
2772 // truncation is legal.
2773 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2774 IdxTy->getPrimitiveSizeInBits())
2775 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2776 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2777
2778 // Get the total trip count from the count by adding 1.
2779 const SCEV *ExitCount = SE->getAddExpr(
2780 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2781
2782 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2783
2784 // Expand the trip count and place the new instructions in the preheader.
2785 // Notice that the pre-header does not change, only the loop body.
2786 SCEVExpander Exp(*SE, DL, "induction");
2787
2788 // Count holds the overall loop count (N).
2789 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2790 L->getLoopPreheader()->getTerminator());
2791
2792 if (TripCount->getType()->isPointerTy())
2793 TripCount =
2794 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2795 L->getLoopPreheader()->getTerminator());
2796
2797 return TripCount;
2798 }
2799
getOrCreateVectorTripCount(Loop * L)2800 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2801 if (VectorTripCount)
2802 return VectorTripCount;
2803
2804 Value *TC = getOrCreateTripCount(L);
2805 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2806
2807 // Now we need to generate the expression for the part of the loop that the
2808 // vectorized body will execute. This is equal to N - (N % Step) if scalar
2809 // iterations are not required for correctness, or N - Step, otherwise. Step
2810 // is equal to the vectorization factor (number of SIMD elements) times the
2811 // unroll factor (number of SIMD instructions).
2812 Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
2813 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2814
2815 // If there is a non-reversed interleaved group that may speculatively access
2816 // memory out-of-bounds, we need to ensure that there will be at least one
2817 // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2818 // the trip count, we set the remainder to be equal to the step. If the step
2819 // does not evenly divide the trip count, no adjustment is necessary since
2820 // there will already be scalar iterations. Note that the minimum iterations
2821 // check ensures that N >= Step.
2822 if (VF > 1 && Legal->requiresScalarEpilogue()) {
2823 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2824 R = Builder.CreateSelect(IsZero, Step, R);
2825 }
2826
2827 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2828
2829 return VectorTripCount;
2830 }
2831
emitMinimumIterationCountCheck(Loop * L,BasicBlock * Bypass)2832 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2833 BasicBlock *Bypass) {
2834 Value *Count = getOrCreateTripCount(L);
2835 BasicBlock *BB = L->getLoopPreheader();
2836 IRBuilder<> Builder(BB->getTerminator());
2837
2838 // Generate code to check that the loop's trip count that we computed by
2839 // adding one to the backedge-taken count will not overflow.
2840 Value *CheckMinIters = Builder.CreateICmpULT(
2841 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
2842
2843 BasicBlock *NewBB =
2844 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked");
2845 // Update dominator tree immediately if the generated block is a
2846 // LoopBypassBlock because SCEV expansions to generate loop bypass
2847 // checks may query it before the current function is finished.
2848 DT->addNewBlock(NewBB, BB);
2849 if (L->getParentLoop())
2850 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2851 ReplaceInstWithInst(BB->getTerminator(),
2852 BranchInst::Create(Bypass, NewBB, CheckMinIters));
2853 LoopBypassBlocks.push_back(BB);
2854 }
2855
emitVectorLoopEnteredCheck(Loop * L,BasicBlock * Bypass)2856 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
2857 BasicBlock *Bypass) {
2858 Value *TC = getOrCreateVectorTripCount(L);
2859 BasicBlock *BB = L->getLoopPreheader();
2860 IRBuilder<> Builder(BB->getTerminator());
2861
2862 // Now, compare the new count to zero. If it is zero skip the vector loop and
2863 // jump to the scalar loop.
2864 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
2865 "cmp.zero");
2866
2867 // Generate code to check that the loop's trip count that we computed by
2868 // adding one to the backedge-taken count will not overflow.
2869 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2870 // Update dominator tree immediately if the generated block is a
2871 // LoopBypassBlock because SCEV expansions to generate loop bypass
2872 // checks may query it before the current function is finished.
2873 DT->addNewBlock(NewBB, BB);
2874 if (L->getParentLoop())
2875 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2876 ReplaceInstWithInst(BB->getTerminator(),
2877 BranchInst::Create(Bypass, NewBB, Cmp));
2878 LoopBypassBlocks.push_back(BB);
2879 }
2880
emitSCEVChecks(Loop * L,BasicBlock * Bypass)2881 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2882 BasicBlock *BB = L->getLoopPreheader();
2883
2884 // Generate the code to check that the SCEV assumptions that we made.
2885 // We want the new basic block to start at the first instruction in a
2886 // sequence of instructions that form a check.
2887 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2888 "scev.check");
2889 Value *SCEVCheck =
2890 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
2891
2892 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2893 if (C->isZero())
2894 return;
2895
2896 // Create a new block containing the stride check.
2897 BB->setName("vector.scevcheck");
2898 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2899 // Update dominator tree immediately if the generated block is a
2900 // LoopBypassBlock because SCEV expansions to generate loop bypass
2901 // checks may query it before the current function is finished.
2902 DT->addNewBlock(NewBB, BB);
2903 if (L->getParentLoop())
2904 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2905 ReplaceInstWithInst(BB->getTerminator(),
2906 BranchInst::Create(Bypass, NewBB, SCEVCheck));
2907 LoopBypassBlocks.push_back(BB);
2908 AddedSafetyChecks = true;
2909 }
2910
emitMemRuntimeChecks(Loop * L,BasicBlock * Bypass)2911 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2912 BasicBlock *BB = L->getLoopPreheader();
2913
2914 // Generate the code that checks in runtime if arrays overlap. We put the
2915 // checks into a separate block to make the more common case of few elements
2916 // faster.
2917 Instruction *FirstCheckInst;
2918 Instruction *MemRuntimeCheck;
2919 std::tie(FirstCheckInst, MemRuntimeCheck) =
2920 Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
2921 if (!MemRuntimeCheck)
2922 return;
2923
2924 // Create a new block containing the memory check.
2925 BB->setName("vector.memcheck");
2926 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2927 // Update dominator tree immediately if the generated block is a
2928 // LoopBypassBlock because SCEV expansions to generate loop bypass
2929 // checks may query it before the current function is finished.
2930 DT->addNewBlock(NewBB, BB);
2931 if (L->getParentLoop())
2932 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2933 ReplaceInstWithInst(BB->getTerminator(),
2934 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
2935 LoopBypassBlocks.push_back(BB);
2936 AddedSafetyChecks = true;
2937
2938 // We currently don't use LoopVersioning for the actual loop cloning but we
2939 // still use it to add the noalias metadata.
2940 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2941 PSE.getSE());
2942 LVer->prepareNoAliasMetadata();
2943 }
2944
createEmptyLoop()2945 void InnerLoopVectorizer::createEmptyLoop() {
2946 /*
2947 In this function we generate a new loop. The new loop will contain
2948 the vectorized instructions while the old loop will continue to run the
2949 scalar remainder.
2950
2951 [ ] <-- loop iteration number check.
2952 / |
2953 / v
2954 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2955 | / |
2956 | / v
2957 || [ ] <-- vector pre header.
2958 |/ |
2959 | v
2960 | [ ] \
2961 | [ ]_| <-- vector loop.
2962 | |
2963 | v
2964 | -[ ] <--- middle-block.
2965 | / |
2966 | / v
2967 -|- >[ ] <--- new preheader.
2968 | |
2969 | v
2970 | [ ] \
2971 | [ ]_| <-- old scalar loop to handle remainder.
2972 \ |
2973 \ v
2974 >[ ] <-- exit block.
2975 ...
2976 */
2977
2978 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2979 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2980 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2981 assert(VectorPH && "Invalid loop structure");
2982 assert(ExitBlock && "Must have an exit block");
2983
2984 // Some loops have a single integer induction variable, while other loops
2985 // don't. One example is c++ iterators that often have multiple pointer
2986 // induction variables. In the code below we also support a case where we
2987 // don't have a single induction variable.
2988 //
2989 // We try to obtain an induction variable from the original loop as hard
2990 // as possible. However if we don't find one that:
2991 // - is an integer
2992 // - counts from zero, stepping by one
2993 // - is the size of the widest induction variable type
2994 // then we create a new one.
2995 OldInduction = Legal->getInduction();
2996 Type *IdxTy = Legal->getWidestInductionType();
2997
2998 // Split the single block loop into the two loop structure described above.
2999 BasicBlock *VecBody =
3000 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3001 BasicBlock *MiddleBlock =
3002 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3003 BasicBlock *ScalarPH =
3004 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3005
3006 // Create and register the new vector loop.
3007 Loop *Lp = new Loop();
3008 Loop *ParentLoop = OrigLoop->getParentLoop();
3009
3010 // Insert the new loop into the loop nest and register the new basic blocks
3011 // before calling any utilities such as SCEV that require valid LoopInfo.
3012 if (ParentLoop) {
3013 ParentLoop->addChildLoop(Lp);
3014 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3015 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3016 } else {
3017 LI->addTopLevelLoop(Lp);
3018 }
3019 Lp->addBasicBlockToLoop(VecBody, *LI);
3020
3021 // Find the loop boundaries.
3022 Value *Count = getOrCreateTripCount(Lp);
3023
3024 Value *StartIdx = ConstantInt::get(IdxTy, 0);
3025
3026 // We need to test whether the backedge-taken count is uint##_max. Adding one
3027 // to it will cause overflow and an incorrect loop trip count in the vector
3028 // body. In case of overflow we want to directly jump to the scalar remainder
3029 // loop.
3030 emitMinimumIterationCountCheck(Lp, ScalarPH);
3031 // Now, compare the new count to zero. If it is zero skip the vector loop and
3032 // jump to the scalar loop.
3033 emitVectorLoopEnteredCheck(Lp, ScalarPH);
3034 // Generate the code to check any assumptions that we've made for SCEV
3035 // expressions.
3036 emitSCEVChecks(Lp, ScalarPH);
3037
3038 // Generate the code that checks in runtime if arrays overlap. We put the
3039 // checks into a separate block to make the more common case of few elements
3040 // faster.
3041 emitMemRuntimeChecks(Lp, ScalarPH);
3042
3043 // Generate the induction variable.
3044 // The loop step is equal to the vectorization factor (num of SIMD elements)
3045 // times the unroll factor (num of SIMD instructions).
3046 Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3047 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3048 Induction =
3049 createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3050 getDebugLocFromInstOrOperands(OldInduction));
3051
3052 // We are going to resume the execution of the scalar loop.
3053 // Go over all of the induction variables that we found and fix the
3054 // PHIs that are left in the scalar version of the loop.
3055 // The starting values of PHI nodes depend on the counter of the last
3056 // iteration in the vectorized loop.
3057 // If we come from a bypass edge then we need to start from the original
3058 // start value.
3059
3060 // This variable saves the new starting index for the scalar loop. It is used
3061 // to test if there are any tail iterations left once the vector loop has
3062 // completed.
3063 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3064 for (auto &InductionEntry : *List) {
3065 PHINode *OrigPhi = InductionEntry.first;
3066 InductionDescriptor II = InductionEntry.second;
3067
3068 // Create phi nodes to merge from the backedge-taken check block.
3069 PHINode *BCResumeVal = PHINode::Create(
3070 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3071 Value *EndValue;
3072 if (OrigPhi == OldInduction) {
3073 // We know what the end value is.
3074 EndValue = CountRoundDown;
3075 } else {
3076 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
3077 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown,
3078 II.getStep()->getType(), "cast.crd");
3079 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3080 EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3081 EndValue->setName("ind.end");
3082 }
3083
3084 // The new PHI merges the original incoming value, in case of a bypass,
3085 // or the value at the end of the vectorized loop.
3086 BCResumeVal->addIncoming(EndValue, MiddleBlock);
3087
3088 // Fix up external users of the induction variable.
3089 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock);
3090
3091 // Fix the scalar body counter (PHI node).
3092 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3093
3094 // The old induction's phi node in the scalar body needs the truncated
3095 // value.
3096 for (BasicBlock *BB : LoopBypassBlocks)
3097 BCResumeVal->addIncoming(II.getStartValue(), BB);
3098 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3099 }
3100
3101 // Add a check in the middle block to see if we have completed
3102 // all of the iterations in the first vector loop.
3103 // If (N - N%VF) == N, then we *don't* need to run the remainder.
3104 Value *CmpN =
3105 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3106 CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3107 ReplaceInstWithInst(MiddleBlock->getTerminator(),
3108 BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3109
3110 // Get ready to start creating new instructions into the vectorized body.
3111 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3112
3113 // Save the state.
3114 LoopVectorPreHeader = Lp->getLoopPreheader();
3115 LoopScalarPreHeader = ScalarPH;
3116 LoopMiddleBlock = MiddleBlock;
3117 LoopExitBlock = ExitBlock;
3118 LoopVectorBody = VecBody;
3119 LoopScalarBody = OldBasicBlock;
3120
3121 // Keep all loop hints from the original loop on the vector loop (we'll
3122 // replace the vectorizer-specific hints below).
3123 if (MDNode *LID = OrigLoop->getLoopID())
3124 Lp->setLoopID(LID);
3125
3126 LoopVectorizeHints Hints(Lp, true);
3127 Hints.setAlreadyVectorized();
3128 }
3129
3130 // Fix up external users of the induction variable. At this point, we are
3131 // in LCSSA form, with all external PHIs that use the IV having one input value,
3132 // coming from the remainder loop. We need those PHIs to also have a correct
3133 // value for the IV when arriving directly from the middle block.
fixupIVUsers(PHINode * OrigPhi,const InductionDescriptor & II,Value * CountRoundDown,Value * EndValue,BasicBlock * MiddleBlock)3134 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3135 const InductionDescriptor &II,
3136 Value *CountRoundDown, Value *EndValue,
3137 BasicBlock *MiddleBlock) {
3138 // There are two kinds of external IV usages - those that use the value
3139 // computed in the last iteration (the PHI) and those that use the penultimate
3140 // value (the value that feeds into the phi from the loop latch).
3141 // We allow both, but they, obviously, have different values.
3142
3143 assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3144
3145 DenseMap<Value *, Value *> MissingVals;
3146
3147 // An external user of the last iteration's value should see the value that
3148 // the remainder loop uses to initialize its own IV.
3149 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3150 for (User *U : PostInc->users()) {
3151 Instruction *UI = cast<Instruction>(U);
3152 if (!OrigLoop->contains(UI)) {
3153 assert(isa<PHINode>(UI) && "Expected LCSSA form");
3154 MissingVals[UI] = EndValue;
3155 }
3156 }
3157
3158 // An external user of the penultimate value need to see EndValue - Step.
3159 // The simplest way to get this is to recompute it from the constituent SCEVs,
3160 // that is Start + (Step * (CRD - 1)).
3161 for (User *U : OrigPhi->users()) {
3162 auto *UI = cast<Instruction>(U);
3163 if (!OrigLoop->contains(UI)) {
3164 const DataLayout &DL =
3165 OrigLoop->getHeader()->getModule()->getDataLayout();
3166 assert(isa<PHINode>(UI) && "Expected LCSSA form");
3167
3168 IRBuilder<> B(MiddleBlock->getTerminator());
3169 Value *CountMinusOne = B.CreateSub(
3170 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3171 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(),
3172 "cast.cmo");
3173 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3174 Escape->setName("ind.escape");
3175 MissingVals[UI] = Escape;
3176 }
3177 }
3178
3179 for (auto &I : MissingVals) {
3180 PHINode *PHI = cast<PHINode>(I.first);
3181 // One corner case we have to handle is two IVs "chasing" each-other,
3182 // that is %IV2 = phi [...], [ %IV1, %latch ]
3183 // In this case, if IV1 has an external use, we need to avoid adding both
3184 // "last value of IV1" and "penultimate value of IV2". So, verify that we
3185 // don't already have an incoming value for the middle block.
3186 if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3187 PHI->addIncoming(I.second, MiddleBlock);
3188 }
3189 }
3190
3191 namespace {
3192 struct CSEDenseMapInfo {
canHandle__anonfb91178e0311::CSEDenseMapInfo3193 static bool canHandle(Instruction *I) {
3194 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3195 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3196 }
getEmptyKey__anonfb91178e0311::CSEDenseMapInfo3197 static inline Instruction *getEmptyKey() {
3198 return DenseMapInfo<Instruction *>::getEmptyKey();
3199 }
getTombstoneKey__anonfb91178e0311::CSEDenseMapInfo3200 static inline Instruction *getTombstoneKey() {
3201 return DenseMapInfo<Instruction *>::getTombstoneKey();
3202 }
getHashValue__anonfb91178e0311::CSEDenseMapInfo3203 static unsigned getHashValue(Instruction *I) {
3204 assert(canHandle(I) && "Unknown instruction!");
3205 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3206 I->value_op_end()));
3207 }
isEqual__anonfb91178e0311::CSEDenseMapInfo3208 static bool isEqual(Instruction *LHS, Instruction *RHS) {
3209 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3210 LHS == getTombstoneKey() || RHS == getTombstoneKey())
3211 return LHS == RHS;
3212 return LHS->isIdenticalTo(RHS);
3213 }
3214 };
3215 }
3216
3217 ///\brief Perform cse of induction variable instructions.
cse(BasicBlock * BB)3218 static void cse(BasicBlock *BB) {
3219 // Perform simple cse.
3220 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3221 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3222 Instruction *In = &*I++;
3223
3224 if (!CSEDenseMapInfo::canHandle(In))
3225 continue;
3226
3227 // Check if we can replace this instruction with any of the
3228 // visited instructions.
3229 if (Instruction *V = CSEMap.lookup(In)) {
3230 In->replaceAllUsesWith(V);
3231 In->eraseFromParent();
3232 continue;
3233 }
3234
3235 CSEMap[In] = In;
3236 }
3237 }
3238
3239 /// \brief Adds a 'fast' flag to floating point operations.
addFastMathFlag(Value * V)3240 static Value *addFastMathFlag(Value *V) {
3241 if (isa<FPMathOperator>(V)) {
3242 FastMathFlags Flags;
3243 Flags.setUnsafeAlgebra();
3244 cast<Instruction>(V)->setFastMathFlags(Flags);
3245 }
3246 return V;
3247 }
3248
3249 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
3250 /// the result needs to be inserted and/or extracted from vectors.
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract,const TargetTransformInfo & TTI)3251 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
3252 const TargetTransformInfo &TTI) {
3253 if (Ty->isVoidTy())
3254 return 0;
3255
3256 assert(Ty->isVectorTy() && "Can only scalarize vectors");
3257 unsigned Cost = 0;
3258
3259 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) {
3260 if (Insert)
3261 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I);
3262 if (Extract)
3263 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I);
3264 }
3265
3266 return Cost;
3267 }
3268
3269 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3270 // Return the cost of the instruction, including scalarization overhead if it's
3271 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3272 // i.e. either vector version isn't available, or is too expensive.
getVectorCallCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,bool & NeedToScalarize)3273 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3274 const TargetTransformInfo &TTI,
3275 const TargetLibraryInfo *TLI,
3276 bool &NeedToScalarize) {
3277 Function *F = CI->getCalledFunction();
3278 StringRef FnName = CI->getCalledFunction()->getName();
3279 Type *ScalarRetTy = CI->getType();
3280 SmallVector<Type *, 4> Tys, ScalarTys;
3281 for (auto &ArgOp : CI->arg_operands())
3282 ScalarTys.push_back(ArgOp->getType());
3283
3284 // Estimate cost of scalarized vector call. The source operands are assumed
3285 // to be vectors, so we need to extract individual elements from there,
3286 // execute VF scalar calls, and then gather the result into the vector return
3287 // value.
3288 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3289 if (VF == 1)
3290 return ScalarCallCost;
3291
3292 // Compute corresponding vector type for return value and arguments.
3293 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3294 for (Type *ScalarTy : ScalarTys)
3295 Tys.push_back(ToVectorTy(ScalarTy, VF));
3296
3297 // Compute costs of unpacking argument values for the scalar calls and
3298 // packing the return values to a vector.
3299 unsigned ScalarizationCost =
3300 getScalarizationOverhead(RetTy, true, false, TTI);
3301 for (Type *Ty : Tys)
3302 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI);
3303
3304 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3305
3306 // If we can't emit a vector call for this function, then the currently found
3307 // cost is the cost we need to return.
3308 NeedToScalarize = true;
3309 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3310 return Cost;
3311
3312 // If the corresponding vector cost is cheaper, return its cost.
3313 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3314 if (VectorCallCost < Cost) {
3315 NeedToScalarize = false;
3316 return VectorCallCost;
3317 }
3318 return Cost;
3319 }
3320
3321 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3322 // factor VF. Return the cost of the instruction, including scalarization
3323 // overhead if it's needed.
getVectorIntrinsicCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI)3324 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3325 const TargetTransformInfo &TTI,
3326 const TargetLibraryInfo *TLI) {
3327 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3328 assert(ID && "Expected intrinsic call!");
3329
3330 Type *RetTy = ToVectorTy(CI->getType(), VF);
3331 SmallVector<Type *, 4> Tys;
3332 for (Value *ArgOperand : CI->arg_operands())
3333 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
3334
3335 FastMathFlags FMF;
3336 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3337 FMF = FPMO->getFastMathFlags();
3338
3339 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF);
3340 }
3341
smallestIntegerVectorType(Type * T1,Type * T2)3342 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3343 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3344 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3345 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3346 }
largestIntegerVectorType(Type * T1,Type * T2)3347 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3348 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3349 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3350 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3351 }
3352
truncateToMinimalBitwidths()3353 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3354 // For every instruction `I` in MinBWs, truncate the operands, create a
3355 // truncated version of `I` and reextend its result. InstCombine runs
3356 // later and will remove any ext/trunc pairs.
3357 //
3358 SmallPtrSet<Value *, 4> Erased;
3359 for (const auto &KV : *MinBWs) {
3360 VectorParts &Parts = WidenMap.get(KV.first);
3361 for (Value *&I : Parts) {
3362 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3363 continue;
3364 Type *OriginalTy = I->getType();
3365 Type *ScalarTruncatedTy =
3366 IntegerType::get(OriginalTy->getContext(), KV.second);
3367 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3368 OriginalTy->getVectorNumElements());
3369 if (TruncatedTy == OriginalTy)
3370 continue;
3371
3372 IRBuilder<> B(cast<Instruction>(I));
3373 auto ShrinkOperand = [&](Value *V) -> Value * {
3374 if (auto *ZI = dyn_cast<ZExtInst>(V))
3375 if (ZI->getSrcTy() == TruncatedTy)
3376 return ZI->getOperand(0);
3377 return B.CreateZExtOrTrunc(V, TruncatedTy);
3378 };
3379
3380 // The actual instruction modification depends on the instruction type,
3381 // unfortunately.
3382 Value *NewI = nullptr;
3383 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3384 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3385 ShrinkOperand(BO->getOperand(1)));
3386 cast<BinaryOperator>(NewI)->copyIRFlags(I);
3387 } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3388 NewI =
3389 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3390 ShrinkOperand(CI->getOperand(1)));
3391 } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3392 NewI = B.CreateSelect(SI->getCondition(),
3393 ShrinkOperand(SI->getTrueValue()),
3394 ShrinkOperand(SI->getFalseValue()));
3395 } else if (auto *CI = dyn_cast<CastInst>(I)) {
3396 switch (CI->getOpcode()) {
3397 default:
3398 llvm_unreachable("Unhandled cast!");
3399 case Instruction::Trunc:
3400 NewI = ShrinkOperand(CI->getOperand(0));
3401 break;
3402 case Instruction::SExt:
3403 NewI = B.CreateSExtOrTrunc(
3404 CI->getOperand(0),
3405 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3406 break;
3407 case Instruction::ZExt:
3408 NewI = B.CreateZExtOrTrunc(
3409 CI->getOperand(0),
3410 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3411 break;
3412 }
3413 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3414 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3415 auto *O0 = B.CreateZExtOrTrunc(
3416 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3417 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3418 auto *O1 = B.CreateZExtOrTrunc(
3419 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3420
3421 NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3422 } else if (isa<LoadInst>(I)) {
3423 // Don't do anything with the operands, just extend the result.
3424 continue;
3425 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3426 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3427 auto *O0 = B.CreateZExtOrTrunc(
3428 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3429 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3430 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3431 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3432 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3433 auto *O0 = B.CreateZExtOrTrunc(
3434 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3435 NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3436 } else {
3437 llvm_unreachable("Unhandled instruction type!");
3438 }
3439
3440 // Lastly, extend the result.
3441 NewI->takeName(cast<Instruction>(I));
3442 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3443 I->replaceAllUsesWith(Res);
3444 cast<Instruction>(I)->eraseFromParent();
3445 Erased.insert(I);
3446 I = Res;
3447 }
3448 }
3449
3450 // We'll have created a bunch of ZExts that are now parentless. Clean up.
3451 for (const auto &KV : *MinBWs) {
3452 VectorParts &Parts = WidenMap.get(KV.first);
3453 for (Value *&I : Parts) {
3454 ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3455 if (Inst && Inst->use_empty()) {
3456 Value *NewI = Inst->getOperand(0);
3457 Inst->eraseFromParent();
3458 I = NewI;
3459 }
3460 }
3461 }
3462 }
3463
vectorizeLoop()3464 void InnerLoopVectorizer::vectorizeLoop() {
3465 //===------------------------------------------------===//
3466 //
3467 // Notice: any optimization or new instruction that go
3468 // into the code below should be also be implemented in
3469 // the cost-model.
3470 //
3471 //===------------------------------------------------===//
3472 Constant *Zero = Builder.getInt32(0);
3473
3474 // In order to support recurrences we need to be able to vectorize Phi nodes.
3475 // Phi nodes have cycles, so we need to vectorize them in two stages. First,
3476 // we create a new vector PHI node with no incoming edges. We use this value
3477 // when we vectorize all of the instructions that use the PHI. Next, after
3478 // all of the instructions in the block are complete we add the new incoming
3479 // edges to the PHI. At this point all of the instructions in the basic block
3480 // are vectorized, so we can use them to construct the PHI.
3481 PhiVector PHIsToFix;
3482
3483 // Scan the loop in a topological order to ensure that defs are vectorized
3484 // before users.
3485 LoopBlocksDFS DFS(OrigLoop);
3486 DFS.perform(LI);
3487
3488 // Vectorize all of the blocks in the original loop.
3489 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
3490 vectorizeBlockInLoop(BB, &PHIsToFix);
3491
3492 // Insert truncates and extends for any truncated instructions as hints to
3493 // InstCombine.
3494 if (VF > 1)
3495 truncateToMinimalBitwidths();
3496
3497 // At this point every instruction in the original loop is widened to a
3498 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI
3499 // nodes are currently empty because we did not want to introduce cycles.
3500 // This is the second stage of vectorizing recurrences.
3501 for (PHINode *Phi : PHIsToFix) {
3502 assert(Phi && "Unable to recover vectorized PHI");
3503
3504 // Handle first-order recurrences that need to be fixed.
3505 if (Legal->isFirstOrderRecurrence(Phi)) {
3506 fixFirstOrderRecurrence(Phi);
3507 continue;
3508 }
3509
3510 // If the phi node is not a first-order recurrence, it must be a reduction.
3511 // Get it's reduction variable descriptor.
3512 assert(Legal->isReductionVariable(Phi) &&
3513 "Unable to find the reduction variable");
3514 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
3515
3516 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3517 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3518 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3519 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3520 RdxDesc.getMinMaxRecurrenceKind();
3521 setDebugLocFromInst(Builder, ReductionStartValue);
3522
3523 // We need to generate a reduction vector from the incoming scalar.
3524 // To do so, we need to generate the 'identity' vector and override
3525 // one of the elements with the incoming scalar reduction. We need
3526 // to do it in the vector-loop preheader.
3527 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
3528
3529 // This is the vector-clone of the value that leaves the loop.
3530 VectorParts &VectorExit = getVectorValue(LoopExitInst);
3531 Type *VecTy = VectorExit[0]->getType();
3532
3533 // Find the reduction identity variable. Zero for addition, or, xor,
3534 // one for multiplication, -1 for And.
3535 Value *Identity;
3536 Value *VectorStart;
3537 if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3538 RK == RecurrenceDescriptor::RK_FloatMinMax) {
3539 // MinMax reduction have the start value as their identify.
3540 if (VF == 1) {
3541 VectorStart = Identity = ReductionStartValue;
3542 } else {
3543 VectorStart = Identity =
3544 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3545 }
3546 } else {
3547 // Handle other reduction kinds:
3548 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3549 RK, VecTy->getScalarType());
3550 if (VF == 1) {
3551 Identity = Iden;
3552 // This vector is the Identity vector where the first element is the
3553 // incoming scalar reduction.
3554 VectorStart = ReductionStartValue;
3555 } else {
3556 Identity = ConstantVector::getSplat(VF, Iden);
3557
3558 // This vector is the Identity vector where the first element is the
3559 // incoming scalar reduction.
3560 VectorStart =
3561 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3562 }
3563 }
3564
3565 // Fix the vector-loop phi.
3566
3567 // Reductions do not have to start at zero. They can start with
3568 // any loop invariant values.
3569 VectorParts &VecRdxPhi = WidenMap.get(Phi);
3570 BasicBlock *Latch = OrigLoop->getLoopLatch();
3571 Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3572 VectorParts &Val = getVectorValue(LoopVal);
3573 for (unsigned part = 0; part < UF; ++part) {
3574 // Make sure to add the reduction stat value only to the
3575 // first unroll part.
3576 Value *StartVal = (part == 0) ? VectorStart : Identity;
3577 cast<PHINode>(VecRdxPhi[part])
3578 ->addIncoming(StartVal, LoopVectorPreHeader);
3579 cast<PHINode>(VecRdxPhi[part])
3580 ->addIncoming(Val[part], LoopVectorBody);
3581 }
3582
3583 // Before each round, move the insertion point right between
3584 // the PHIs and the values we are going to write.
3585 // This allows us to write both PHINodes and the extractelement
3586 // instructions.
3587 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3588
3589 VectorParts RdxParts = getVectorValue(LoopExitInst);
3590 setDebugLocFromInst(Builder, LoopExitInst);
3591
3592 // If the vector reduction can be performed in a smaller type, we truncate
3593 // then extend the loop exit value to enable InstCombine to evaluate the
3594 // entire expression in the smaller type.
3595 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3596 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3597 Builder.SetInsertPoint(LoopVectorBody->getTerminator());
3598 for (unsigned part = 0; part < UF; ++part) {
3599 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3600 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3601 : Builder.CreateZExt(Trunc, VecTy);
3602 for (Value::user_iterator UI = RdxParts[part]->user_begin();
3603 UI != RdxParts[part]->user_end();)
3604 if (*UI != Trunc) {
3605 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
3606 RdxParts[part] = Extnd;
3607 } else {
3608 ++UI;
3609 }
3610 }
3611 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3612 for (unsigned part = 0; part < UF; ++part)
3613 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3614 }
3615
3616 // Reduce all of the unrolled parts into a single vector.
3617 Value *ReducedPartRdx = RdxParts[0];
3618 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3619 setDebugLocFromInst(Builder, ReducedPartRdx);
3620 for (unsigned part = 1; part < UF; ++part) {
3621 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3622 // Floating point operations had to be 'fast' to enable the reduction.
3623 ReducedPartRdx = addFastMathFlag(
3624 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
3625 ReducedPartRdx, "bin.rdx"));
3626 else
3627 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
3628 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
3629 }
3630
3631 if (VF > 1) {
3632 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
3633 // and vector ops, reducing the set of values being computed by half each
3634 // round.
3635 assert(isPowerOf2_32(VF) &&
3636 "Reduction emission only supported for pow2 vectors!");
3637 Value *TmpVec = ReducedPartRdx;
3638 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
3639 for (unsigned i = VF; i != 1; i >>= 1) {
3640 // Move the upper half of the vector to the lower half.
3641 for (unsigned j = 0; j != i / 2; ++j)
3642 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
3643
3644 // Fill the rest of the mask with undef.
3645 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
3646 UndefValue::get(Builder.getInt32Ty()));
3647
3648 Value *Shuf = Builder.CreateShuffleVector(
3649 TmpVec, UndefValue::get(TmpVec->getType()),
3650 ConstantVector::get(ShuffleMask), "rdx.shuf");
3651
3652 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3653 // Floating point operations had to be 'fast' to enable the reduction.
3654 TmpVec = addFastMathFlag(Builder.CreateBinOp(
3655 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
3656 else
3657 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
3658 TmpVec, Shuf);
3659 }
3660
3661 // The result is in the first element of the vector.
3662 ReducedPartRdx =
3663 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3664
3665 // If the reduction can be performed in a smaller type, we need to extend
3666 // the reduction to the wider type before we branch to the original loop.
3667 if (Phi->getType() != RdxDesc.getRecurrenceType())
3668 ReducedPartRdx =
3669 RdxDesc.isSigned()
3670 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3671 : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3672 }
3673
3674 // Create a phi node that merges control-flow from the backedge-taken check
3675 // block and the middle block.
3676 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3677 LoopScalarPreHeader->getTerminator());
3678 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3679 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3680 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3681
3682 // Now, we need to fix the users of the reduction variable
3683 // inside and outside of the scalar remainder loop.
3684 // We know that the loop is in LCSSA form. We need to update the
3685 // PHI nodes in the exit blocks.
3686 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3687 LEE = LoopExitBlock->end();
3688 LEI != LEE; ++LEI) {
3689 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3690 if (!LCSSAPhi)
3691 break;
3692
3693 // All PHINodes need to have a single entry edge, or two if
3694 // we already fixed them.
3695 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3696
3697 // We found our reduction value exit-PHI. Update it with the
3698 // incoming bypass edge.
3699 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
3700 // Add an edge coming from the bypass.
3701 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3702 break;
3703 }
3704 } // end of the LCSSA phi scan.
3705
3706 // Fix the scalar loop reduction variable with the incoming reduction sum
3707 // from the vector body and from the backedge value.
3708 int IncomingEdgeBlockIdx =
3709 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3710 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3711 // Pick the other block.
3712 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3713 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3714 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3715 } // end of for each Phi in PHIsToFix.
3716
3717 fixLCSSAPHIs();
3718
3719 // Make sure DomTree is updated.
3720 updateAnalysis();
3721
3722 // Predicate any stores.
3723 for (auto KV : PredicatedStores) {
3724 BasicBlock::iterator I(KV.first);
3725 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI);
3726 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
3727 /*BranchWeights=*/nullptr, DT, LI);
3728 I->moveBefore(T);
3729 I->getParent()->setName("pred.store.if");
3730 BB->setName("pred.store.continue");
3731 }
3732 DEBUG(DT->verifyDomTree());
3733 // Remove redundant induction instructions.
3734 cse(LoopVectorBody);
3735 }
3736
fixFirstOrderRecurrence(PHINode * Phi)3737 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3738
3739 // This is the second phase of vectorizing first-order recurrences. An
3740 // overview of the transformation is described below. Suppose we have the
3741 // following loop.
3742 //
3743 // for (int i = 0; i < n; ++i)
3744 // b[i] = a[i] - a[i - 1];
3745 //
3746 // There is a first-order recurrence on "a". For this loop, the shorthand
3747 // scalar IR looks like:
3748 //
3749 // scalar.ph:
3750 // s_init = a[-1]
3751 // br scalar.body
3752 //
3753 // scalar.body:
3754 // i = phi [0, scalar.ph], [i+1, scalar.body]
3755 // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3756 // s2 = a[i]
3757 // b[i] = s2 - s1
3758 // br cond, scalar.body, ...
3759 //
3760 // In this example, s1 is a recurrence because it's value depends on the
3761 // previous iteration. In the first phase of vectorization, we created a
3762 // temporary value for s1. We now complete the vectorization and produce the
3763 // shorthand vector IR shown below (for VF = 4, UF = 1).
3764 //
3765 // vector.ph:
3766 // v_init = vector(..., ..., ..., a[-1])
3767 // br vector.body
3768 //
3769 // vector.body
3770 // i = phi [0, vector.ph], [i+4, vector.body]
3771 // v1 = phi [v_init, vector.ph], [v2, vector.body]
3772 // v2 = a[i, i+1, i+2, i+3];
3773 // v3 = vector(v1(3), v2(0, 1, 2))
3774 // b[i, i+1, i+2, i+3] = v2 - v3
3775 // br cond, vector.body, middle.block
3776 //
3777 // middle.block:
3778 // x = v2(3)
3779 // br scalar.ph
3780 //
3781 // scalar.ph:
3782 // s_init = phi [x, middle.block], [a[-1], otherwise]
3783 // br scalar.body
3784 //
3785 // After execution completes the vector loop, we extract the next value of
3786 // the recurrence (x) to use as the initial value in the scalar loop.
3787
3788 // Get the original loop preheader and single loop latch.
3789 auto *Preheader = OrigLoop->getLoopPreheader();
3790 auto *Latch = OrigLoop->getLoopLatch();
3791
3792 // Get the initial and previous values of the scalar recurrence.
3793 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3794 auto *Previous = Phi->getIncomingValueForBlock(Latch);
3795
3796 // Create a vector from the initial value.
3797 auto *VectorInit = ScalarInit;
3798 if (VF > 1) {
3799 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3800 VectorInit = Builder.CreateInsertElement(
3801 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3802 Builder.getInt32(VF - 1), "vector.recur.init");
3803 }
3804
3805 // We constructed a temporary phi node in the first phase of vectorization.
3806 // This phi node will eventually be deleted.
3807 auto &PhiParts = getVectorValue(Phi);
3808 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0]));
3809
3810 // Create a phi node for the new recurrence. The current value will either be
3811 // the initial value inserted into a vector or loop-varying vector value.
3812 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3813 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3814
3815 // Get the vectorized previous value. We ensured the previous values was an
3816 // instruction when detecting the recurrence.
3817 auto &PreviousParts = getVectorValue(Previous);
3818
3819 // Set the insertion point to be after this instruction. We ensured the
3820 // previous value dominated all uses of the phi when detecting the
3821 // recurrence.
3822 Builder.SetInsertPoint(
3823 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1])));
3824
3825 // We will construct a vector for the recurrence by combining the values for
3826 // the current and previous iterations. This is the required shuffle mask.
3827 SmallVector<Constant *, 8> ShuffleMask(VF);
3828 ShuffleMask[0] = Builder.getInt32(VF - 1);
3829 for (unsigned I = 1; I < VF; ++I)
3830 ShuffleMask[I] = Builder.getInt32(I + VF - 1);
3831
3832 // The vector from which to take the initial value for the current iteration
3833 // (actual or unrolled). Initially, this is the vector phi node.
3834 Value *Incoming = VecPhi;
3835
3836 // Shuffle the current and previous vector and update the vector parts.
3837 for (unsigned Part = 0; Part < UF; ++Part) {
3838 auto *Shuffle =
3839 VF > 1
3840 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part],
3841 ConstantVector::get(ShuffleMask))
3842 : Incoming;
3843 PhiParts[Part]->replaceAllUsesWith(Shuffle);
3844 cast<Instruction>(PhiParts[Part])->eraseFromParent();
3845 PhiParts[Part] = Shuffle;
3846 Incoming = PreviousParts[Part];
3847 }
3848
3849 // Fix the latch value of the new recurrence in the vector loop.
3850 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3851
3852 // Extract the last vector element in the middle block. This will be the
3853 // initial value for the recurrence when jumping to the scalar loop.
3854 auto *Extract = Incoming;
3855 if (VF > 1) {
3856 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3857 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1),
3858 "vector.recur.extract");
3859 }
3860
3861 // Fix the initial value of the original recurrence in the scalar loop.
3862 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3863 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3864 for (auto *BB : predecessors(LoopScalarPreHeader)) {
3865 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit;
3866 Start->addIncoming(Incoming, BB);
3867 }
3868
3869 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
3870 Phi->setName("scalar.recur");
3871
3872 // Finally, fix users of the recurrence outside the loop. The users will need
3873 // either the last value of the scalar recurrence or the last value of the
3874 // vector recurrence we extracted in the middle block. Since the loop is in
3875 // LCSSA form, we just need to find the phi node for the original scalar
3876 // recurrence in the exit block, and then add an edge for the middle block.
3877 for (auto &I : *LoopExitBlock) {
3878 auto *LCSSAPhi = dyn_cast<PHINode>(&I);
3879 if (!LCSSAPhi)
3880 break;
3881 if (LCSSAPhi->getIncomingValue(0) == Phi) {
3882 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock);
3883 break;
3884 }
3885 }
3886 }
3887
fixLCSSAPHIs()3888 void InnerLoopVectorizer::fixLCSSAPHIs() {
3889 for (Instruction &LEI : *LoopExitBlock) {
3890 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI);
3891 if (!LCSSAPhi)
3892 break;
3893 if (LCSSAPhi->getNumIncomingValues() == 1)
3894 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3895 LoopMiddleBlock);
3896 }
3897 }
3898
3899 InnerLoopVectorizer::VectorParts
createEdgeMask(BasicBlock * Src,BasicBlock * Dst)3900 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3901 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
3902 "Invalid edge");
3903
3904 // Look for cached value.
3905 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
3906 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3907 if (ECEntryIt != MaskCache.end())
3908 return ECEntryIt->second;
3909
3910 VectorParts SrcMask = createBlockInMask(Src);
3911
3912 // The terminator has to be a branch inst!
3913 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3914 assert(BI && "Unexpected terminator found");
3915
3916 if (BI->isConditional()) {
3917 VectorParts EdgeMask = getVectorValue(BI->getCondition());
3918
3919 if (BI->getSuccessor(0) != Dst)
3920 for (unsigned part = 0; part < UF; ++part)
3921 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3922
3923 for (unsigned part = 0; part < UF; ++part)
3924 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3925
3926 MaskCache[Edge] = EdgeMask;
3927 return EdgeMask;
3928 }
3929
3930 MaskCache[Edge] = SrcMask;
3931 return SrcMask;
3932 }
3933
3934 InnerLoopVectorizer::VectorParts
createBlockInMask(BasicBlock * BB)3935 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3936 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3937
3938 // Loop incoming mask is all-one.
3939 if (OrigLoop->getHeader() == BB) {
3940 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3941 return getVectorValue(C);
3942 }
3943
3944 // This is the block mask. We OR all incoming edges, and with zero.
3945 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3946 VectorParts BlockMask = getVectorValue(Zero);
3947
3948 // For each pred:
3949 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3950 VectorParts EM = createEdgeMask(*it, BB);
3951 for (unsigned part = 0; part < UF; ++part)
3952 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3953 }
3954
3955 return BlockMask;
3956 }
3957
widenPHIInstruction(Instruction * PN,InnerLoopVectorizer::VectorParts & Entry,unsigned UF,unsigned VF,PhiVector * PV)3958 void InnerLoopVectorizer::widenPHIInstruction(
3959 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF,
3960 unsigned VF, PhiVector *PV) {
3961 PHINode *P = cast<PHINode>(PN);
3962 // Handle recurrences.
3963 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
3964 for (unsigned part = 0; part < UF; ++part) {
3965 // This is phase one of vectorizing PHIs.
3966 Type *VecTy =
3967 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
3968 Entry[part] = PHINode::Create(
3969 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
3970 }
3971 PV->push_back(P);
3972 return;
3973 }
3974
3975 setDebugLocFromInst(Builder, P);
3976 // Check for PHI nodes that are lowered to vector selects.
3977 if (P->getParent() != OrigLoop->getHeader()) {
3978 // We know that all PHIs in non-header blocks are converted into
3979 // selects, so we don't have to worry about the insertion order and we
3980 // can just use the builder.
3981 // At this point we generate the predication tree. There may be
3982 // duplications since this is a simple recursive scan, but future
3983 // optimizations will clean it up.
3984
3985 unsigned NumIncoming = P->getNumIncomingValues();
3986
3987 // Generate a sequence of selects of the form:
3988 // SELECT(Mask3, In3,
3989 // SELECT(Mask2, In2,
3990 // ( ...)))
3991 for (unsigned In = 0; In < NumIncoming; In++) {
3992 VectorParts Cond =
3993 createEdgeMask(P->getIncomingBlock(In), P->getParent());
3994 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3995
3996 for (unsigned part = 0; part < UF; ++part) {
3997 // We might have single edge PHIs (blocks) - use an identity
3998 // 'select' for the first PHI operand.
3999 if (In == 0)
4000 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]);
4001 else
4002 // Select between the current value and the previous incoming edge
4003 // based on the incoming mask.
4004 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part],
4005 "predphi");
4006 }
4007 }
4008 return;
4009 }
4010
4011 // This PHINode must be an induction variable.
4012 // Make sure that we know about it.
4013 assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
4014
4015 InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4016 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4017
4018 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4019 // which can be found from the original scalar operations.
4020 switch (II.getKind()) {
4021 case InductionDescriptor::IK_NoInduction:
4022 llvm_unreachable("Unknown induction");
4023 case InductionDescriptor::IK_IntInduction:
4024 return widenIntInduction(P, Entry);
4025 case InductionDescriptor::IK_PtrInduction:
4026 // Handle the pointer induction variable case.
4027 assert(P->getType()->isPointerTy() && "Unexpected type.");
4028 // This is the normalized GEP that starts counting at zero.
4029 Value *PtrInd = Induction;
4030 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4031 // This is the vector of results. Notice that we don't generate
4032 // vector geps because scalar geps result in better code.
4033 for (unsigned part = 0; part < UF; ++part) {
4034 if (VF == 1) {
4035 int EltIndex = part;
4036 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
4037 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4038 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4039 SclrGep->setName("next.gep");
4040 Entry[part] = SclrGep;
4041 continue;
4042 }
4043
4044 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
4045 for (unsigned int i = 0; i < VF; ++i) {
4046 int EltIndex = i + part * VF;
4047 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
4048 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4049 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4050 SclrGep->setName("next.gep");
4051 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
4052 Builder.getInt32(i), "insert.gep");
4053 }
4054 Entry[part] = VecVal;
4055 }
4056 return;
4057 }
4058 }
4059
vectorizeBlockInLoop(BasicBlock * BB,PhiVector * PV)4060 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
4061 // For each instruction in the old loop.
4062 for (Instruction &I : *BB) {
4063 VectorParts &Entry = WidenMap.get(&I);
4064
4065 switch (I.getOpcode()) {
4066 case Instruction::Br:
4067 // Nothing to do for PHIs and BR, since we already took care of the
4068 // loop control flow instructions.
4069 continue;
4070 case Instruction::PHI: {
4071 // Vectorize PHINodes.
4072 widenPHIInstruction(&I, Entry, UF, VF, PV);
4073 continue;
4074 } // End of PHI.
4075
4076 case Instruction::Add:
4077 case Instruction::FAdd:
4078 case Instruction::Sub:
4079 case Instruction::FSub:
4080 case Instruction::Mul:
4081 case Instruction::FMul:
4082 case Instruction::UDiv:
4083 case Instruction::SDiv:
4084 case Instruction::FDiv:
4085 case Instruction::URem:
4086 case Instruction::SRem:
4087 case Instruction::FRem:
4088 case Instruction::Shl:
4089 case Instruction::LShr:
4090 case Instruction::AShr:
4091 case Instruction::And:
4092 case Instruction::Or:
4093 case Instruction::Xor: {
4094 // Just widen binops.
4095 auto *BinOp = cast<BinaryOperator>(&I);
4096 setDebugLocFromInst(Builder, BinOp);
4097 VectorParts &A = getVectorValue(BinOp->getOperand(0));
4098 VectorParts &B = getVectorValue(BinOp->getOperand(1));
4099
4100 // Use this vector value for all users of the original instruction.
4101 for (unsigned Part = 0; Part < UF; ++Part) {
4102 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
4103
4104 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4105 VecOp->copyIRFlags(BinOp);
4106
4107 Entry[Part] = V;
4108 }
4109
4110 addMetadata(Entry, BinOp);
4111 break;
4112 }
4113 case Instruction::Select: {
4114 // Widen selects.
4115 // If the selector is loop invariant we can create a select
4116 // instruction with a scalar condition. Otherwise, use vector-select.
4117 auto *SE = PSE.getSE();
4118 bool InvariantCond =
4119 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4120 setDebugLocFromInst(Builder, &I);
4121
4122 // The condition can be loop invariant but still defined inside the
4123 // loop. This means that we can't just use the original 'cond' value.
4124 // We have to take the 'vectorized' value and pick the first lane.
4125 // Instcombine will make this a no-op.
4126 VectorParts &Cond = getVectorValue(I.getOperand(0));
4127 VectorParts &Op0 = getVectorValue(I.getOperand(1));
4128 VectorParts &Op1 = getVectorValue(I.getOperand(2));
4129
4130 Value *ScalarCond =
4131 (VF == 1)
4132 ? Cond[0]
4133 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
4134
4135 for (unsigned Part = 0; Part < UF; ++Part) {
4136 Entry[Part] = Builder.CreateSelect(
4137 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]);
4138 }
4139
4140 addMetadata(Entry, &I);
4141 break;
4142 }
4143
4144 case Instruction::ICmp:
4145 case Instruction::FCmp: {
4146 // Widen compares. Generate vector compares.
4147 bool FCmp = (I.getOpcode() == Instruction::FCmp);
4148 auto *Cmp = dyn_cast<CmpInst>(&I);
4149 setDebugLocFromInst(Builder, Cmp);
4150 VectorParts &A = getVectorValue(Cmp->getOperand(0));
4151 VectorParts &B = getVectorValue(Cmp->getOperand(1));
4152 for (unsigned Part = 0; Part < UF; ++Part) {
4153 Value *C = nullptr;
4154 if (FCmp) {
4155 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
4156 cast<FCmpInst>(C)->copyFastMathFlags(Cmp);
4157 } else {
4158 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
4159 }
4160 Entry[Part] = C;
4161 }
4162
4163 addMetadata(Entry, &I);
4164 break;
4165 }
4166
4167 case Instruction::Store:
4168 case Instruction::Load:
4169 vectorizeMemoryInstruction(&I);
4170 break;
4171 case Instruction::ZExt:
4172 case Instruction::SExt:
4173 case Instruction::FPToUI:
4174 case Instruction::FPToSI:
4175 case Instruction::FPExt:
4176 case Instruction::PtrToInt:
4177 case Instruction::IntToPtr:
4178 case Instruction::SIToFP:
4179 case Instruction::UIToFP:
4180 case Instruction::Trunc:
4181 case Instruction::FPTrunc:
4182 case Instruction::BitCast: {
4183 auto *CI = dyn_cast<CastInst>(&I);
4184 setDebugLocFromInst(Builder, CI);
4185
4186 // Optimize the special case where the source is a constant integer
4187 // induction variable. Notice that we can only optimize the 'trunc' case
4188 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
4189 // (c) other casts depend on pointer size.
4190 auto ID = Legal->getInductionVars()->lookup(OldInduction);
4191 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction &&
4192 ID.getConstIntStepValue()) {
4193 widenIntInduction(OldInduction, Entry, cast<TruncInst>(CI));
4194 addMetadata(Entry, &I);
4195 break;
4196 }
4197
4198 /// Vectorize casts.
4199 Type *DestTy =
4200 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4201
4202 VectorParts &A = getVectorValue(CI->getOperand(0));
4203 for (unsigned Part = 0; Part < UF; ++Part)
4204 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
4205 addMetadata(Entry, &I);
4206 break;
4207 }
4208
4209 case Instruction::Call: {
4210 // Ignore dbg intrinsics.
4211 if (isa<DbgInfoIntrinsic>(I))
4212 break;
4213 setDebugLocFromInst(Builder, &I);
4214
4215 Module *M = BB->getParent()->getParent();
4216 auto *CI = cast<CallInst>(&I);
4217
4218 StringRef FnName = CI->getCalledFunction()->getName();
4219 Function *F = CI->getCalledFunction();
4220 Type *RetTy = ToVectorTy(CI->getType(), VF);
4221 SmallVector<Type *, 4> Tys;
4222 for (Value *ArgOperand : CI->arg_operands())
4223 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4224
4225 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4226 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
4227 ID == Intrinsic::lifetime_start)) {
4228 scalarizeInstruction(&I);
4229 break;
4230 }
4231 // The flag shows whether we use Intrinsic or a usual Call for vectorized
4232 // version of the instruction.
4233 // Is it beneficial to perform intrinsic call compared to lib call?
4234 bool NeedToScalarize;
4235 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4236 bool UseVectorIntrinsic =
4237 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4238 if (!UseVectorIntrinsic && NeedToScalarize) {
4239 scalarizeInstruction(&I);
4240 break;
4241 }
4242
4243 for (unsigned Part = 0; Part < UF; ++Part) {
4244 SmallVector<Value *, 4> Args;
4245 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4246 Value *Arg = CI->getArgOperand(i);
4247 // Some intrinsics have a scalar argument - don't replace it with a
4248 // vector.
4249 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
4250 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
4251 Arg = VectorArg[Part];
4252 }
4253 Args.push_back(Arg);
4254 }
4255
4256 Function *VectorF;
4257 if (UseVectorIntrinsic) {
4258 // Use vector version of the intrinsic.
4259 Type *TysForDecl[] = {CI->getType()};
4260 if (VF > 1)
4261 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4262 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4263 } else {
4264 // Use vector version of the library call.
4265 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4266 assert(!VFnName.empty() && "Vector function name is empty.");
4267 VectorF = M->getFunction(VFnName);
4268 if (!VectorF) {
4269 // Generate a declaration
4270 FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4271 VectorF =
4272 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4273 VectorF->copyAttributesFrom(F);
4274 }
4275 }
4276 assert(VectorF && "Can't create vector function.");
4277
4278 SmallVector<OperandBundleDef, 1> OpBundles;
4279 CI->getOperandBundlesAsDefs(OpBundles);
4280 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4281
4282 if (isa<FPMathOperator>(V))
4283 V->copyFastMathFlags(CI);
4284
4285 Entry[Part] = V;
4286 }
4287
4288 addMetadata(Entry, &I);
4289 break;
4290 }
4291
4292 default:
4293 // All other instructions are unsupported. Scalarize them.
4294 scalarizeInstruction(&I);
4295 break;
4296 } // end of switch.
4297 } // end of for_each instr.
4298 }
4299
updateAnalysis()4300 void InnerLoopVectorizer::updateAnalysis() {
4301 // Forget the original basic block.
4302 PSE.getSE()->forgetLoop(OrigLoop);
4303
4304 // Update the dominator tree information.
4305 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
4306 "Entry does not dominate exit.");
4307
4308 // We don't predicate stores by this point, so the vector body should be a
4309 // single loop.
4310 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
4311
4312 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody);
4313 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
4314 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
4315 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
4316
4317 DEBUG(DT->verifyDomTree());
4318 }
4319
4320 /// \brief Check whether it is safe to if-convert this phi node.
4321 ///
4322 /// Phi nodes with constant expressions that can trap are not safe to if
4323 /// convert.
canIfConvertPHINodes(BasicBlock * BB)4324 static bool canIfConvertPHINodes(BasicBlock *BB) {
4325 for (Instruction &I : *BB) {
4326 auto *Phi = dyn_cast<PHINode>(&I);
4327 if (!Phi)
4328 return true;
4329 for (Value *V : Phi->incoming_values())
4330 if (auto *C = dyn_cast<Constant>(V))
4331 if (C->canTrap())
4332 return false;
4333 }
4334 return true;
4335 }
4336
canVectorizeWithIfConvert()4337 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
4338 if (!EnableIfConversion) {
4339 emitAnalysis(VectorizationReport() << "if-conversion is disabled");
4340 return false;
4341 }
4342
4343 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
4344
4345 // A list of pointers that we can safely read and write to.
4346 SmallPtrSet<Value *, 8> SafePointes;
4347
4348 // Collect safe addresses.
4349 for (BasicBlock *BB : TheLoop->blocks()) {
4350 if (blockNeedsPredication(BB))
4351 continue;
4352
4353 for (Instruction &I : *BB) {
4354 if (auto *LI = dyn_cast<LoadInst>(&I))
4355 SafePointes.insert(LI->getPointerOperand());
4356 else if (auto *SI = dyn_cast<StoreInst>(&I))
4357 SafePointes.insert(SI->getPointerOperand());
4358 }
4359 }
4360
4361 // Collect the blocks that need predication.
4362 BasicBlock *Header = TheLoop->getHeader();
4363 for (BasicBlock *BB : TheLoop->blocks()) {
4364 // We don't support switch statements inside loops.
4365 if (!isa<BranchInst>(BB->getTerminator())) {
4366 emitAnalysis(VectorizationReport(BB->getTerminator())
4367 << "loop contains a switch statement");
4368 return false;
4369 }
4370
4371 // We must be able to predicate all blocks that need to be predicated.
4372 if (blockNeedsPredication(BB)) {
4373 if (!blockCanBePredicated(BB, SafePointes)) {
4374 emitAnalysis(VectorizationReport(BB->getTerminator())
4375 << "control flow cannot be substituted for a select");
4376 return false;
4377 }
4378 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
4379 emitAnalysis(VectorizationReport(BB->getTerminator())
4380 << "control flow cannot be substituted for a select");
4381 return false;
4382 }
4383 }
4384
4385 // We can if-convert this loop.
4386 return true;
4387 }
4388
canVectorize()4389 bool LoopVectorizationLegality::canVectorize() {
4390 // We must have a loop in canonical form. Loops with indirectbr in them cannot
4391 // be canonicalized.
4392 if (!TheLoop->getLoopPreheader()) {
4393 emitAnalysis(VectorizationReport()
4394 << "loop control flow is not understood by vectorizer");
4395 return false;
4396 }
4397
4398 // We can only vectorize innermost loops.
4399 if (!TheLoop->empty()) {
4400 emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
4401 return false;
4402 }
4403
4404 // We must have a single backedge.
4405 if (TheLoop->getNumBackEdges() != 1) {
4406 emitAnalysis(VectorizationReport()
4407 << "loop control flow is not understood by vectorizer");
4408 return false;
4409 }
4410
4411 // We must have a single exiting block.
4412 if (!TheLoop->getExitingBlock()) {
4413 emitAnalysis(VectorizationReport()
4414 << "loop control flow is not understood by vectorizer");
4415 return false;
4416 }
4417
4418 // We only handle bottom-tested loops, i.e. loop in which the condition is
4419 // checked at the end of each iteration. With that we can assume that all
4420 // instructions in the loop are executed the same number of times.
4421 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
4422 emitAnalysis(VectorizationReport()
4423 << "loop control flow is not understood by vectorizer");
4424 return false;
4425 }
4426
4427 // We need to have a loop header.
4428 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
4429 << '\n');
4430
4431 // Check if we can if-convert non-single-bb loops.
4432 unsigned NumBlocks = TheLoop->getNumBlocks();
4433 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
4434 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
4435 return false;
4436 }
4437
4438 // ScalarEvolution needs to be able to find the exit count.
4439 const SCEV *ExitCount = PSE.getBackedgeTakenCount();
4440 if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
4441 emitAnalysis(VectorizationReport()
4442 << "could not determine number of loop iterations");
4443 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
4444 return false;
4445 }
4446
4447 // Check if we can vectorize the instructions and CFG in this loop.
4448 if (!canVectorizeInstrs()) {
4449 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
4450 return false;
4451 }
4452
4453 // Go over each instruction and look at memory deps.
4454 if (!canVectorizeMemory()) {
4455 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
4456 return false;
4457 }
4458
4459 // Collect all of the variables that remain uniform after vectorization.
4460 collectLoopUniforms();
4461
4462 DEBUG(dbgs() << "LV: We can vectorize this loop"
4463 << (LAI->getRuntimePointerChecking()->Need
4464 ? " (with a runtime bound check)"
4465 : "")
4466 << "!\n");
4467
4468 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
4469
4470 // If an override option has been passed in for interleaved accesses, use it.
4471 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
4472 UseInterleaved = EnableInterleavedMemAccesses;
4473
4474 // Analyze interleaved memory accesses.
4475 if (UseInterleaved)
4476 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
4477
4478 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
4479 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
4480 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
4481
4482 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
4483 emitAnalysis(VectorizationReport()
4484 << "Too many SCEV assumptions need to be made and checked "
4485 << "at runtime");
4486 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
4487 return false;
4488 }
4489
4490 // Okay! We can vectorize. At this point we don't have any other mem analysis
4491 // which may limit our maximum vectorization factor, so just return true with
4492 // no restrictions.
4493 return true;
4494 }
4495
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)4496 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
4497 if (Ty->isPointerTy())
4498 return DL.getIntPtrType(Ty);
4499
4500 // It is possible that char's or short's overflow when we ask for the loop's
4501 // trip count, work around this by changing the type size.
4502 if (Ty->getScalarSizeInBits() < 32)
4503 return Type::getInt32Ty(Ty->getContext());
4504
4505 return Ty;
4506 }
4507
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)4508 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
4509 Ty0 = convertPointerToIntegerType(DL, Ty0);
4510 Ty1 = convertPointerToIntegerType(DL, Ty1);
4511 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
4512 return Ty0;
4513 return Ty1;
4514 }
4515
4516 /// \brief Check that the instruction has outside loop users and is not an
4517 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & AllowedExit)4518 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
4519 SmallPtrSetImpl<Value *> &AllowedExit) {
4520 // Reduction and Induction instructions are allowed to have exit users. All
4521 // other instructions must not have external users.
4522 if (!AllowedExit.count(Inst))
4523 // Check that all of the users of the loop are inside the BB.
4524 for (User *U : Inst->users()) {
4525 Instruction *UI = cast<Instruction>(U);
4526 // This user may be a reduction exit value.
4527 if (!TheLoop->contains(UI)) {
4528 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
4529 return true;
4530 }
4531 }
4532 return false;
4533 }
4534
addInductionPhi(PHINode * Phi,const InductionDescriptor & ID,SmallPtrSetImpl<Value * > & AllowedExit)4535 void LoopVectorizationLegality::addInductionPhi(
4536 PHINode *Phi, const InductionDescriptor &ID,
4537 SmallPtrSetImpl<Value *> &AllowedExit) {
4538 Inductions[Phi] = ID;
4539 Type *PhiTy = Phi->getType();
4540 const DataLayout &DL = Phi->getModule()->getDataLayout();
4541
4542 // Get the widest type.
4543 if (!WidestIndTy)
4544 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
4545 else
4546 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
4547
4548 // Int inductions are special because we only allow one IV.
4549 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
4550 ID.getConstIntStepValue() &&
4551 ID.getConstIntStepValue()->isOne() &&
4552 isa<Constant>(ID.getStartValue()) &&
4553 cast<Constant>(ID.getStartValue())->isNullValue()) {
4554
4555 // Use the phi node with the widest type as induction. Use the last
4556 // one if there are multiple (no good reason for doing this other
4557 // than it is expedient). We've checked that it begins at zero and
4558 // steps by one, so this is a canonical induction variable.
4559 if (!Induction || PhiTy == WidestIndTy)
4560 Induction = Phi;
4561 }
4562
4563 // Both the PHI node itself, and the "post-increment" value feeding
4564 // back into the PHI node may have external users.
4565 AllowedExit.insert(Phi);
4566 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
4567
4568 DEBUG(dbgs() << "LV: Found an induction variable.\n");
4569 return;
4570 }
4571
canVectorizeInstrs()4572 bool LoopVectorizationLegality::canVectorizeInstrs() {
4573 BasicBlock *Header = TheLoop->getHeader();
4574
4575 // Look for the attribute signaling the absence of NaNs.
4576 Function &F = *Header->getParent();
4577 HasFunNoNaNAttr =
4578 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
4579
4580 // For each block in the loop.
4581 for (BasicBlock *BB : TheLoop->blocks()) {
4582 // Scan the instructions in the block and look for hazards.
4583 for (Instruction &I : *BB) {
4584 if (auto *Phi = dyn_cast<PHINode>(&I)) {
4585 Type *PhiTy = Phi->getType();
4586 // Check that this PHI type is allowed.
4587 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
4588 !PhiTy->isPointerTy()) {
4589 emitAnalysis(VectorizationReport(Phi)
4590 << "loop control flow is not understood by vectorizer");
4591 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
4592 return false;
4593 }
4594
4595 // If this PHINode is not in the header block, then we know that we
4596 // can convert it to select during if-conversion. No need to check if
4597 // the PHIs in this block are induction or reduction variables.
4598 if (BB != Header) {
4599 // Check that this instruction has no outside users or is an
4600 // identified reduction value with an outside user.
4601 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
4602 continue;
4603 emitAnalysis(VectorizationReport(Phi)
4604 << "value could not be identified as "
4605 "an induction or reduction variable");
4606 return false;
4607 }
4608
4609 // We only allow if-converted PHIs with exactly two incoming values.
4610 if (Phi->getNumIncomingValues() != 2) {
4611 emitAnalysis(VectorizationReport(Phi)
4612 << "control flow not understood by vectorizer");
4613 DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
4614 return false;
4615 }
4616
4617 RecurrenceDescriptor RedDes;
4618 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
4619 if (RedDes.hasUnsafeAlgebra())
4620 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
4621 AllowedExit.insert(RedDes.getLoopExitInstr());
4622 Reductions[Phi] = RedDes;
4623 continue;
4624 }
4625
4626 InductionDescriptor ID;
4627 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) {
4628 addInductionPhi(Phi, ID, AllowedExit);
4629 continue;
4630 }
4631
4632 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) {
4633 FirstOrderRecurrences.insert(Phi);
4634 continue;
4635 }
4636
4637 // As a last resort, coerce the PHI to a AddRec expression
4638 // and re-try classifying it a an induction PHI.
4639 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) {
4640 addInductionPhi(Phi, ID, AllowedExit);
4641 continue;
4642 }
4643
4644 emitAnalysis(VectorizationReport(Phi)
4645 << "value that could not be identified as "
4646 "reduction is used outside the loop");
4647 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
4648 return false;
4649 } // end of PHI handling
4650
4651 // We handle calls that:
4652 // * Are debug info intrinsics.
4653 // * Have a mapping to an IR intrinsic.
4654 // * Have a vector version available.
4655 auto *CI = dyn_cast<CallInst>(&I);
4656 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
4657 !isa<DbgInfoIntrinsic>(CI) &&
4658 !(CI->getCalledFunction() && TLI &&
4659 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
4660 emitAnalysis(VectorizationReport(CI)
4661 << "call instruction cannot be vectorized");
4662 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
4663 return false;
4664 }
4665
4666 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
4667 // second argument is the same (i.e. loop invariant)
4668 if (CI && hasVectorInstrinsicScalarOpd(
4669 getVectorIntrinsicIDForCall(CI, TLI), 1)) {
4670 auto *SE = PSE.getSE();
4671 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
4672 emitAnalysis(VectorizationReport(CI)
4673 << "intrinsic instruction cannot be vectorized");
4674 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
4675 return false;
4676 }
4677 }
4678
4679 // Check that the instruction return type is vectorizable.
4680 // Also, we can't vectorize extractelement instructions.
4681 if ((!VectorType::isValidElementType(I.getType()) &&
4682 !I.getType()->isVoidTy()) ||
4683 isa<ExtractElementInst>(I)) {
4684 emitAnalysis(VectorizationReport(&I)
4685 << "instruction return type cannot be vectorized");
4686 DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
4687 return false;
4688 }
4689
4690 // Check that the stored type is vectorizable.
4691 if (auto *ST = dyn_cast<StoreInst>(&I)) {
4692 Type *T = ST->getValueOperand()->getType();
4693 if (!VectorType::isValidElementType(T)) {
4694 emitAnalysis(VectorizationReport(ST)
4695 << "store instruction cannot be vectorized");
4696 return false;
4697 }
4698
4699 // FP instructions can allow unsafe algebra, thus vectorizable by
4700 // non-IEEE-754 compliant SIMD units.
4701 // This applies to floating-point math operations and calls, not memory
4702 // operations, shuffles, or casts, as they don't change precision or
4703 // semantics.
4704 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
4705 !I.hasUnsafeAlgebra()) {
4706 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
4707 Hints->setPotentiallyUnsafe();
4708 }
4709
4710 // Reduction instructions are allowed to have exit users.
4711 // All other instructions must not have external users.
4712 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
4713 emitAnalysis(VectorizationReport(&I)
4714 << "value cannot be used outside the loop");
4715 return false;
4716 }
4717
4718 } // next instr.
4719 }
4720
4721 if (!Induction) {
4722 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
4723 if (Inductions.empty()) {
4724 emitAnalysis(VectorizationReport()
4725 << "loop induction variable could not be identified");
4726 return false;
4727 }
4728 }
4729
4730 // Now we know the widest induction type, check if our found induction
4731 // is the same size. If it's not, unset it here and InnerLoopVectorizer
4732 // will create another.
4733 if (Induction && WidestIndTy != Induction->getType())
4734 Induction = nullptr;
4735
4736 return true;
4737 }
4738
collectLoopUniforms()4739 void LoopVectorizationLegality::collectLoopUniforms() {
4740 // We now know that the loop is vectorizable!
4741 // Collect variables that will remain uniform after vectorization.
4742
4743 // If V is not an instruction inside the current loop, it is a Value
4744 // outside of the scope which we are interesting in.
4745 auto isOutOfScope = [&](Value *V) -> bool {
4746 Instruction *I = dyn_cast<Instruction>(V);
4747 return (!I || !TheLoop->contains(I));
4748 };
4749
4750 SetVector<Instruction *> Worklist;
4751 BasicBlock *Latch = TheLoop->getLoopLatch();
4752 // Start with the conditional branch.
4753 if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) {
4754 Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0));
4755 Worklist.insert(Cmp);
4756 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
4757 }
4758
4759 // Also add all consecutive pointer values; these values will be uniform
4760 // after vectorization (and subsequent cleanup).
4761 for (auto *BB : TheLoop->blocks()) {
4762 for (auto &I : *BB) {
4763 if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) {
4764 Worklist.insert(&I);
4765 DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n");
4766 }
4767 }
4768 }
4769
4770 // Expand Worklist in topological order: whenever a new instruction
4771 // is added , its users should be either already inside Worklist, or
4772 // out of scope. It ensures a uniform instruction will only be used
4773 // by uniform instructions or out of scope instructions.
4774 unsigned idx = 0;
4775 do {
4776 Instruction *I = Worklist[idx++];
4777
4778 for (auto OV : I->operand_values()) {
4779 if (isOutOfScope(OV))
4780 continue;
4781 auto *OI = cast<Instruction>(OV);
4782 if (all_of(OI->users(), [&](User *U) -> bool {
4783 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U));
4784 })) {
4785 Worklist.insert(OI);
4786 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
4787 }
4788 }
4789 } while (idx != Worklist.size());
4790
4791 // For an instruction to be added into Worklist above, all its users inside
4792 // the current loop should be already added into Worklist. This condition
4793 // cannot be true for phi instructions which is always in a dependence loop.
4794 // Because any instruction in the dependence cycle always depends on others
4795 // in the cycle to be added into Worklist first, the result is no ones in
4796 // the cycle will be added into Worklist in the end.
4797 // That is why we process PHI separately.
4798 for (auto &Induction : *getInductionVars()) {
4799 auto *PN = Induction.first;
4800 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
4801 if (all_of(PN->users(),
4802 [&](User *U) -> bool {
4803 return U == UpdateV || isOutOfScope(U) ||
4804 Worklist.count(cast<Instruction>(U));
4805 }) &&
4806 all_of(UpdateV->users(), [&](User *U) -> bool {
4807 return U == PN || isOutOfScope(U) ||
4808 Worklist.count(cast<Instruction>(U));
4809 })) {
4810 Worklist.insert(cast<Instruction>(PN));
4811 Worklist.insert(cast<Instruction>(UpdateV));
4812 DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n");
4813 DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n");
4814 }
4815 }
4816
4817 Uniforms.insert(Worklist.begin(), Worklist.end());
4818 }
4819
canVectorizeMemory()4820 bool LoopVectorizationLegality::canVectorizeMemory() {
4821 LAI = &(*GetLAA)(*TheLoop);
4822 InterleaveInfo.setLAI(LAI);
4823 auto &OptionalReport = LAI->getReport();
4824 if (OptionalReport)
4825 emitAnalysis(VectorizationReport(*OptionalReport));
4826 if (!LAI->canVectorizeMemory())
4827 return false;
4828
4829 if (LAI->hasStoreToLoopInvariantAddress()) {
4830 emitAnalysis(
4831 VectorizationReport()
4832 << "write to a loop invariant address could not be vectorized");
4833 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4834 return false;
4835 }
4836
4837 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
4838 PSE.addPredicate(LAI->getPSE().getUnionPredicate());
4839
4840 return true;
4841 }
4842
isInductionVariable(const Value * V)4843 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4844 Value *In0 = const_cast<Value *>(V);
4845 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4846 if (!PN)
4847 return false;
4848
4849 return Inductions.count(PN);
4850 }
4851
isFirstOrderRecurrence(const PHINode * Phi)4852 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
4853 return FirstOrderRecurrences.count(Phi);
4854 }
4855
blockNeedsPredication(BasicBlock * BB)4856 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
4857 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
4858 }
4859
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs)4860 bool LoopVectorizationLegality::blockCanBePredicated(
4861 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
4862 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4863
4864 for (Instruction &I : *BB) {
4865 // Check that we don't have a constant expression that can trap as operand.
4866 for (Value *Operand : I.operands()) {
4867 if (auto *C = dyn_cast<Constant>(Operand))
4868 if (C->canTrap())
4869 return false;
4870 }
4871 // We might be able to hoist the load.
4872 if (I.mayReadFromMemory()) {
4873 auto *LI = dyn_cast<LoadInst>(&I);
4874 if (!LI)
4875 return false;
4876 if (!SafePtrs.count(LI->getPointerOperand())) {
4877 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) ||
4878 isLegalMaskedGather(LI->getType())) {
4879 MaskedOp.insert(LI);
4880 continue;
4881 }
4882 // !llvm.mem.parallel_loop_access implies if-conversion safety.
4883 if (IsAnnotatedParallel)
4884 continue;
4885 return false;
4886 }
4887 }
4888
4889 // We don't predicate stores at the moment.
4890 if (I.mayWriteToMemory()) {
4891 auto *SI = dyn_cast<StoreInst>(&I);
4892 // We only support predication of stores in basic blocks with one
4893 // predecessor.
4894 if (!SI)
4895 return false;
4896
4897 // Build a masked store if it is legal for the target.
4898 if (isLegalMaskedStore(SI->getValueOperand()->getType(),
4899 SI->getPointerOperand()) ||
4900 isLegalMaskedScatter(SI->getValueOperand()->getType())) {
4901 MaskedOp.insert(SI);
4902 continue;
4903 }
4904
4905 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
4906 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
4907
4908 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
4909 !isSinglePredecessor)
4910 return false;
4911 }
4912 if (I.mayThrow())
4913 return false;
4914
4915 // The instructions below can trap.
4916 switch (I.getOpcode()) {
4917 default:
4918 continue;
4919 case Instruction::UDiv:
4920 case Instruction::SDiv:
4921 case Instruction::URem:
4922 case Instruction::SRem:
4923 return false;
4924 }
4925 }
4926
4927 return true;
4928 }
4929
collectConstStrideAccesses(MapVector<Instruction *,StrideDescriptor> & AccessStrideInfo,const ValueToValueMap & Strides)4930 void InterleavedAccessInfo::collectConstStrideAccesses(
4931 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
4932 const ValueToValueMap &Strides) {
4933
4934 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
4935
4936 // Since it's desired that the load/store instructions be maintained in
4937 // "program order" for the interleaved access analysis, we have to visit the
4938 // blocks in the loop in reverse postorder (i.e., in a topological order).
4939 // Such an ordering will ensure that any load/store that may be executed
4940 // before a second load/store will precede the second load/store in
4941 // AccessStrideInfo.
4942 LoopBlocksDFS DFS(TheLoop);
4943 DFS.perform(LI);
4944 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
4945 for (auto &I : *BB) {
4946 auto *LI = dyn_cast<LoadInst>(&I);
4947 auto *SI = dyn_cast<StoreInst>(&I);
4948 if (!LI && !SI)
4949 continue;
4950
4951 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
4952 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides);
4953
4954 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
4955 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4956 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
4957
4958 // An alignment of 0 means target ABI alignment.
4959 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
4960 if (!Align)
4961 Align = DL.getABITypeAlignment(PtrTy->getElementType());
4962
4963 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
4964 }
4965 }
4966
4967 // Analyze interleaved accesses and collect them into interleaved load and
4968 // store groups.
4969 //
4970 // When generating code for an interleaved load group, we effectively hoist all
4971 // loads in the group to the location of the first load in program order. When
4972 // generating code for an interleaved store group, we sink all stores to the
4973 // location of the last store. This code motion can change the order of load
4974 // and store instructions and may break dependences.
4975 //
4976 // The code generation strategy mentioned above ensures that we won't violate
4977 // any write-after-read (WAR) dependences.
4978 //
4979 // E.g., for the WAR dependence: a = A[i]; // (1)
4980 // A[i] = b; // (2)
4981 //
4982 // The store group of (2) is always inserted at or below (2), and the load
4983 // group of (1) is always inserted at or above (1). Thus, the instructions will
4984 // never be reordered. All other dependences are checked to ensure the
4985 // correctness of the instruction reordering.
4986 //
4987 // The algorithm visits all memory accesses in the loop in bottom-up program
4988 // order. Program order is established by traversing the blocks in the loop in
4989 // reverse postorder when collecting the accesses.
4990 //
4991 // We visit the memory accesses in bottom-up order because it can simplify the
4992 // construction of store groups in the presence of write-after-write (WAW)
4993 // dependences.
4994 //
4995 // E.g., for the WAW dependence: A[i] = a; // (1)
4996 // A[i] = b; // (2)
4997 // A[i + 1] = c; // (3)
4998 //
4999 // We will first create a store group with (3) and (2). (1) can't be added to
5000 // this group because it and (2) are dependent. However, (1) can be grouped
5001 // with other accesses that may precede it in program order. Note that a
5002 // bottom-up order does not imply that WAW dependences should not be checked.
analyzeInterleaving(const ValueToValueMap & Strides)5003 void InterleavedAccessInfo::analyzeInterleaving(
5004 const ValueToValueMap &Strides) {
5005 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
5006
5007 // Holds all accesses with a constant stride.
5008 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
5009 collectConstStrideAccesses(AccessStrideInfo, Strides);
5010
5011 if (AccessStrideInfo.empty())
5012 return;
5013
5014 // Collect the dependences in the loop.
5015 collectDependences();
5016
5017 // Holds all interleaved store groups temporarily.
5018 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
5019 // Holds all interleaved load groups temporarily.
5020 SmallSetVector<InterleaveGroup *, 4> LoadGroups;
5021
5022 // Search the load-load/write-write pair B-A in bottom-up order and try to
5023 // insert B into the interleave group of A according to 3 rules:
5024 // 1. A and B have the same stride.
5025 // 2. A and B have the same memory object size.
5026 // 3. B belongs to the group according to the distance.
5027 for (auto AI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
5028 AI != E; ++AI) {
5029 Instruction *A = AI->first;
5030 StrideDescriptor DesA = AI->second;
5031
5032 // Initialize a group for A if it has an allowable stride. Even if we don't
5033 // create a group for A, we continue with the bottom-up algorithm to ensure
5034 // we don't break any of A's dependences.
5035 InterleaveGroup *Group = nullptr;
5036 if (isStrided(DesA.Stride)) {
5037 Group = getInterleaveGroup(A);
5038 if (!Group) {
5039 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n');
5040 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align);
5041 }
5042 if (A->mayWriteToMemory())
5043 StoreGroups.insert(Group);
5044 else
5045 LoadGroups.insert(Group);
5046 }
5047
5048 for (auto BI = std::next(AI); BI != E; ++BI) {
5049 Instruction *B = BI->first;
5050 StrideDescriptor DesB = BI->second;
5051
5052 // Our code motion strategy implies that we can't have dependences
5053 // between accesses in an interleaved group and other accesses located
5054 // between the first and last member of the group. Note that this also
5055 // means that a group can't have more than one member at a given offset.
5056 // The accesses in a group can have dependences with other accesses, but
5057 // we must ensure we don't extend the boundaries of the group such that
5058 // we encompass those dependent accesses.
5059 //
5060 // For example, assume we have the sequence of accesses shown below in a
5061 // stride-2 loop:
5062 //
5063 // (1, 2) is a group | A[i] = a; // (1)
5064 // | A[i-1] = b; // (2) |
5065 // A[i-3] = c; // (3)
5066 // A[i] = d; // (4) | (2, 4) is not a group
5067 //
5068 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
5069 // but not with (4). If we did, the dependent access (3) would be within
5070 // the boundaries of the (2, 4) group.
5071 if (!canReorderMemAccessesForInterleavedGroups(&*BI, &*AI)) {
5072
5073 // If a dependence exists and B is already in a group, we know that B
5074 // must be a store since B precedes A and WAR dependences are allowed.
5075 // Thus, B would be sunk below A. We release B's group to prevent this
5076 // illegal code motion. B will then be free to form another group with
5077 // instructions that precede it.
5078 if (isInterleaved(B)) {
5079 InterleaveGroup *StoreGroup = getInterleaveGroup(B);
5080 StoreGroups.remove(StoreGroup);
5081 releaseGroup(StoreGroup);
5082 }
5083
5084 // If a dependence exists and B is not already in a group (or it was
5085 // and we just released it), A might be hoisted above B (if A is a
5086 // load) or another store might be sunk below B (if A is a store). In
5087 // either case, we can't add additional instructions to A's group. A
5088 // will only form a group with instructions that it precedes.
5089 break;
5090 }
5091
5092 // At this point, we've checked for illegal code motion. If either A or B
5093 // isn't strided, there's nothing left to do.
5094 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
5095 continue;
5096
5097 // Ignore if B is already in a group or B is a different memory operation.
5098 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory())
5099 continue;
5100
5101 // Check the rule 1 and 2.
5102 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size)
5103 continue;
5104
5105 // Calculate the distance and prepare for the rule 3.
5106 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>(
5107 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev));
5108 if (!DistToA)
5109 continue;
5110
5111 int64_t DistanceToA = DistToA->getAPInt().getSExtValue();
5112
5113 // Skip if the distance is not multiple of size as they are not in the
5114 // same group.
5115 if (DistanceToA % static_cast<int64_t>(DesA.Size))
5116 continue;
5117
5118 // If either A or B is in a predicated block, we prevent adding them to a
5119 // group. We may be able to relax this limitation in the future once we
5120 // handle more complicated blocks.
5121 if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
5122 continue;
5123
5124 // The index of B is the index of A plus the related index to A.
5125 int IndexB =
5126 Group->getIndex(A) + DistanceToA / static_cast<int64_t>(DesA.Size);
5127
5128 // Try to insert B into the group.
5129 if (Group->insertMember(B, IndexB, DesB.Align)) {
5130 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n'
5131 << " into the interleave group with" << *A << '\n');
5132 InterleaveGroupMap[B] = Group;
5133
5134 // Set the first load in program order as the insert position.
5135 if (B->mayReadFromMemory())
5136 Group->setInsertPos(B);
5137 }
5138 } // Iteration on instruction B
5139 } // Iteration on instruction A
5140
5141 // Remove interleaved store groups with gaps.
5142 for (InterleaveGroup *Group : StoreGroups)
5143 if (Group->getNumMembers() != Group->getFactor())
5144 releaseGroup(Group);
5145
5146 // If there is a non-reversed interleaved load group with gaps, we will need
5147 // to execute at least one scalar epilogue iteration. This will ensure that
5148 // we don't speculatively access memory out-of-bounds. Note that we only need
5149 // to look for a member at index factor - 1, since every group must have a
5150 // member at index zero.
5151 for (InterleaveGroup *Group : LoadGroups)
5152 if (!Group->getMember(Group->getFactor() - 1)) {
5153 if (Group->isReverse()) {
5154 releaseGroup(Group);
5155 } else {
5156 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
5157 RequiresScalarEpilogue = true;
5158 }
5159 }
5160 }
5161
5162 LoopVectorizationCostModel::VectorizationFactor
selectVectorizationFactor(bool OptForSize)5163 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
5164 // Width 1 means no vectorize
5165 VectorizationFactor Factor = {1U, 0U};
5166 if (OptForSize && Legal->getRuntimePointerChecking()->Need) {
5167 emitAnalysis(
5168 VectorizationReport()
5169 << "runtime pointer checks needed. Enable vectorization of this "
5170 "loop with '#pragma clang loop vectorize(enable)' when "
5171 "compiling with -Os/-Oz");
5172 DEBUG(dbgs()
5173 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
5174 return Factor;
5175 }
5176
5177 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
5178 emitAnalysis(
5179 VectorizationReport()
5180 << "store that is conditionally executed prevents vectorization");
5181 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
5182 return Factor;
5183 }
5184
5185 // Find the trip count.
5186 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5187 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5188
5189 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5190 unsigned SmallestType, WidestType;
5191 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5192 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5193 unsigned MaxSafeDepDist = -1U;
5194
5195 // Get the maximum safe dependence distance in bits computed by LAA. If the
5196 // loop contains any interleaved accesses, we divide the dependence distance
5197 // by the maximum interleave factor of all interleaved groups. Note that
5198 // although the division ensures correctness, this is a fairly conservative
5199 // computation because the maximum distance computed by LAA may not involve
5200 // any of the interleaved accesses.
5201 if (Legal->getMaxSafeDepDistBytes() != -1U)
5202 MaxSafeDepDist =
5203 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor();
5204
5205 WidestRegister =
5206 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist);
5207 unsigned MaxVectorSize = WidestRegister / WidestType;
5208
5209 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
5210 << WidestType << " bits.\n");
5211 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister
5212 << " bits.\n");
5213
5214 if (MaxVectorSize == 0) {
5215 DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5216 MaxVectorSize = 1;
5217 }
5218
5219 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
5220 " into one vector!");
5221
5222 unsigned VF = MaxVectorSize;
5223 if (MaximizeBandwidth && !OptForSize) {
5224 // Collect all viable vectorization factors.
5225 SmallVector<unsigned, 8> VFs;
5226 unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5227 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
5228 VFs.push_back(VS);
5229
5230 // For each VF calculate its register usage.
5231 auto RUs = calculateRegisterUsage(VFs);
5232
5233 // Select the largest VF which doesn't require more registers than existing
5234 // ones.
5235 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
5236 for (int i = RUs.size() - 1; i >= 0; --i) {
5237 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
5238 VF = VFs[i];
5239 break;
5240 }
5241 }
5242 }
5243
5244 // If we optimize the program for size, avoid creating the tail loop.
5245 if (OptForSize) {
5246 // If we are unable to calculate the trip count then don't try to vectorize.
5247 if (TC < 2) {
5248 emitAnalysis(
5249 VectorizationReport()
5250 << "unable to calculate the loop count due to complex control flow");
5251 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
5252 return Factor;
5253 }
5254
5255 // Find the maximum SIMD width that can fit within the trip count.
5256 VF = TC % MaxVectorSize;
5257
5258 if (VF == 0)
5259 VF = MaxVectorSize;
5260 else {
5261 // If the trip count that we found modulo the vectorization factor is not
5262 // zero then we require a tail.
5263 emitAnalysis(VectorizationReport()
5264 << "cannot optimize for size and vectorize at the "
5265 "same time. Enable vectorization of this loop "
5266 "with '#pragma clang loop vectorize(enable)' "
5267 "when compiling with -Os/-Oz");
5268 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
5269 return Factor;
5270 }
5271 }
5272
5273 int UserVF = Hints->getWidth();
5274 if (UserVF != 0) {
5275 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
5276 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
5277
5278 Factor.Width = UserVF;
5279 return Factor;
5280 }
5281
5282 float Cost = expectedCost(1).first;
5283 #ifndef NDEBUG
5284 const float ScalarCost = Cost;
5285 #endif /* NDEBUG */
5286 unsigned Width = 1;
5287 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5288
5289 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5290 // Ignore scalar width, because the user explicitly wants vectorization.
5291 if (ForceVectorization && VF > 1) {
5292 Width = 2;
5293 Cost = expectedCost(Width).first / (float)Width;
5294 }
5295
5296 for (unsigned i = 2; i <= VF; i *= 2) {
5297 // Notice that the vector loop needs to be executed less times, so
5298 // we need to divide the cost of the vector loops by the width of
5299 // the vector elements.
5300 VectorizationCostTy C = expectedCost(i);
5301 float VectorCost = C.first / (float)i;
5302 DEBUG(dbgs() << "LV: Vector loop of width " << i
5303 << " costs: " << (int)VectorCost << ".\n");
5304 if (!C.second && !ForceVectorization) {
5305 DEBUG(
5306 dbgs() << "LV: Not considering vector loop of width " << i
5307 << " because it will not generate any vector instructions.\n");
5308 continue;
5309 }
5310 if (VectorCost < Cost) {
5311 Cost = VectorCost;
5312 Width = i;
5313 }
5314 }
5315
5316 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5317 << "LV: Vectorization seems to be not beneficial, "
5318 << "but was forced by a user.\n");
5319 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5320 Factor.Width = Width;
5321 Factor.Cost = Width * Cost;
5322 return Factor;
5323 }
5324
5325 std::pair<unsigned, unsigned>
getSmallestAndWidestTypes()5326 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5327 unsigned MinWidth = -1U;
5328 unsigned MaxWidth = 8;
5329 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5330
5331 // For each block.
5332 for (BasicBlock *BB : TheLoop->blocks()) {
5333 // For each instruction in the loop.
5334 for (Instruction &I : *BB) {
5335 Type *T = I.getType();
5336
5337 // Skip ignored values.
5338 if (ValuesToIgnore.count(&I))
5339 continue;
5340
5341 // Only examine Loads, Stores and PHINodes.
5342 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5343 continue;
5344
5345 // Examine PHI nodes that are reduction variables. Update the type to
5346 // account for the recurrence type.
5347 if (auto *PN = dyn_cast<PHINode>(&I)) {
5348 if (!Legal->isReductionVariable(PN))
5349 continue;
5350 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
5351 T = RdxDesc.getRecurrenceType();
5352 }
5353
5354 // Examine the stored values.
5355 if (auto *ST = dyn_cast<StoreInst>(&I))
5356 T = ST->getValueOperand()->getType();
5357
5358 // Ignore loaded pointer types and stored pointer types that are not
5359 // consecutive. However, we do want to take consecutive stores/loads of
5360 // pointer vectors into account.
5361 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I))
5362 continue;
5363
5364 MinWidth = std::min(MinWidth,
5365 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5366 MaxWidth = std::max(MaxWidth,
5367 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5368 }
5369 }
5370
5371 return {MinWidth, MaxWidth};
5372 }
5373
selectInterleaveCount(bool OptForSize,unsigned VF,unsigned LoopCost)5374 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
5375 unsigned VF,
5376 unsigned LoopCost) {
5377
5378 // -- The interleave heuristics --
5379 // We interleave the loop in order to expose ILP and reduce the loop overhead.
5380 // There are many micro-architectural considerations that we can't predict
5381 // at this level. For example, frontend pressure (on decode or fetch) due to
5382 // code size, or the number and capabilities of the execution ports.
5383 //
5384 // We use the following heuristics to select the interleave count:
5385 // 1. If the code has reductions, then we interleave to break the cross
5386 // iteration dependency.
5387 // 2. If the loop is really small, then we interleave to reduce the loop
5388 // overhead.
5389 // 3. We don't interleave if we think that we will spill registers to memory
5390 // due to the increased register pressure.
5391
5392 // When we optimize for size, we don't interleave.
5393 if (OptForSize)
5394 return 1;
5395
5396 // We used the distance for the interleave count.
5397 if (Legal->getMaxSafeDepDistBytes() != -1U)
5398 return 1;
5399
5400 // Do not interleave loops with a relatively small trip count.
5401 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5402 if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
5403 return 1;
5404
5405 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5406 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5407 << " registers\n");
5408
5409 if (VF == 1) {
5410 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5411 TargetNumRegisters = ForceTargetNumScalarRegs;
5412 } else {
5413 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5414 TargetNumRegisters = ForceTargetNumVectorRegs;
5415 }
5416
5417 RegisterUsage R = calculateRegisterUsage({VF})[0];
5418 // We divide by these constants so assume that we have at least one
5419 // instruction that uses at least one register.
5420 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5421 R.NumInstructions = std::max(R.NumInstructions, 1U);
5422
5423 // We calculate the interleave count using the following formula.
5424 // Subtract the number of loop invariants from the number of available
5425 // registers. These registers are used by all of the interleaved instances.
5426 // Next, divide the remaining registers by the number of registers that is
5427 // required by the loop, in order to estimate how many parallel instances
5428 // fit without causing spills. All of this is rounded down if necessary to be
5429 // a power of two. We want power of two interleave count to simplify any
5430 // addressing operations or alignment considerations.
5431 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5432 R.MaxLocalUsers);
5433
5434 // Don't count the induction variable as interleaved.
5435 if (EnableIndVarRegisterHeur)
5436 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5437 std::max(1U, (R.MaxLocalUsers - 1)));
5438
5439 // Clamp the interleave ranges to reasonable counts.
5440 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5441
5442 // Check if the user has overridden the max.
5443 if (VF == 1) {
5444 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5445 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5446 } else {
5447 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5448 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5449 }
5450
5451 // If we did not calculate the cost for VF (because the user selected the VF)
5452 // then we calculate the cost of VF here.
5453 if (LoopCost == 0)
5454 LoopCost = expectedCost(VF).first;
5455
5456 // Clamp the calculated IC to be between the 1 and the max interleave count
5457 // that the target allows.
5458 if (IC > MaxInterleaveCount)
5459 IC = MaxInterleaveCount;
5460 else if (IC < 1)
5461 IC = 1;
5462
5463 // Interleave if we vectorized this loop and there is a reduction that could
5464 // benefit from interleaving.
5465 if (VF > 1 && Legal->getReductionVars()->size()) {
5466 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5467 return IC;
5468 }
5469
5470 // Note that if we've already vectorized the loop we will have done the
5471 // runtime check and so interleaving won't require further checks.
5472 bool InterleavingRequiresRuntimePointerCheck =
5473 (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5474
5475 // We want to interleave small loops in order to reduce the loop overhead and
5476 // potentially expose ILP opportunities.
5477 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5478 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5479 // We assume that the cost overhead is 1 and we use the cost model
5480 // to estimate the cost of the loop and interleave until the cost of the
5481 // loop overhead is about 5% of the cost of the loop.
5482 unsigned SmallIC =
5483 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5484
5485 // Interleave until store/load ports (estimated by max interleave count) are
5486 // saturated.
5487 unsigned NumStores = Legal->getNumStores();
5488 unsigned NumLoads = Legal->getNumLoads();
5489 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5490 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5491
5492 // If we have a scalar reduction (vector reductions are already dealt with
5493 // by this point), we can increase the critical path length if the loop
5494 // we're interleaving is inside another loop. Limit, by default to 2, so the
5495 // critical path only gets increased by one reduction operation.
5496 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) {
5497 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5498 SmallIC = std::min(SmallIC, F);
5499 StoresIC = std::min(StoresIC, F);
5500 LoadsIC = std::min(LoadsIC, F);
5501 }
5502
5503 if (EnableLoadStoreRuntimeInterleave &&
5504 std::max(StoresIC, LoadsIC) > SmallIC) {
5505 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5506 return std::max(StoresIC, LoadsIC);
5507 }
5508
5509 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5510 return SmallIC;
5511 }
5512
5513 // Interleave if this is a large loop (small loops are already dealt with by
5514 // this point) that could benefit from interleaving.
5515 bool HasReductions = (Legal->getReductionVars()->size() > 0);
5516 if (TTI.enableAggressiveInterleaving(HasReductions)) {
5517 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5518 return IC;
5519 }
5520
5521 DEBUG(dbgs() << "LV: Not Interleaving.\n");
5522 return 1;
5523 }
5524
5525 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
calculateRegisterUsage(ArrayRef<unsigned> VFs)5526 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5527 // This function calculates the register usage by measuring the highest number
5528 // of values that are alive at a single location. Obviously, this is a very
5529 // rough estimation. We scan the loop in a topological order in order and
5530 // assign a number to each instruction. We use RPO to ensure that defs are
5531 // met before their users. We assume that each instruction that has in-loop
5532 // users starts an interval. We record every time that an in-loop value is
5533 // used, so we have a list of the first and last occurrences of each
5534 // instruction. Next, we transpose this data structure into a multi map that
5535 // holds the list of intervals that *end* at a specific location. This multi
5536 // map allows us to perform a linear search. We scan the instructions linearly
5537 // and record each time that a new interval starts, by placing it in a set.
5538 // If we find this value in the multi-map then we remove it from the set.
5539 // The max register usage is the maximum size of the set.
5540 // We also search for instructions that are defined outside the loop, but are
5541 // used inside the loop. We need this number separately from the max-interval
5542 // usage number because when we unroll, loop-invariant values do not take
5543 // more register.
5544 LoopBlocksDFS DFS(TheLoop);
5545 DFS.perform(LI);
5546
5547 RegisterUsage RU;
5548 RU.NumInstructions = 0;
5549
5550 // Each 'key' in the map opens a new interval. The values
5551 // of the map are the index of the 'last seen' usage of the
5552 // instruction that is the key.
5553 typedef DenseMap<Instruction *, unsigned> IntervalMap;
5554 // Maps instruction to its index.
5555 DenseMap<unsigned, Instruction *> IdxToInstr;
5556 // Marks the end of each interval.
5557 IntervalMap EndPoint;
5558 // Saves the list of instruction indices that are used in the loop.
5559 SmallSet<Instruction *, 8> Ends;
5560 // Saves the list of values that are used in the loop but are
5561 // defined outside the loop, such as arguments and constants.
5562 SmallPtrSet<Value *, 8> LoopInvariants;
5563
5564 unsigned Index = 0;
5565 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5566 RU.NumInstructions += BB->size();
5567 for (Instruction &I : *BB) {
5568 IdxToInstr[Index++] = &I;
5569
5570 // Save the end location of each USE.
5571 for (Value *U : I.operands()) {
5572 auto *Instr = dyn_cast<Instruction>(U);
5573
5574 // Ignore non-instruction values such as arguments, constants, etc.
5575 if (!Instr)
5576 continue;
5577
5578 // If this instruction is outside the loop then record it and continue.
5579 if (!TheLoop->contains(Instr)) {
5580 LoopInvariants.insert(Instr);
5581 continue;
5582 }
5583
5584 // Overwrite previous end points.
5585 EndPoint[Instr] = Index;
5586 Ends.insert(Instr);
5587 }
5588 }
5589 }
5590
5591 // Saves the list of intervals that end with the index in 'key'.
5592 typedef SmallVector<Instruction *, 2> InstrList;
5593 DenseMap<unsigned, InstrList> TransposeEnds;
5594
5595 // Transpose the EndPoints to a list of values that end at each index.
5596 for (auto &Interval : EndPoint)
5597 TransposeEnds[Interval.second].push_back(Interval.first);
5598
5599 SmallSet<Instruction *, 8> OpenIntervals;
5600
5601 // Get the size of the widest register.
5602 unsigned MaxSafeDepDist = -1U;
5603 if (Legal->getMaxSafeDepDistBytes() != -1U)
5604 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5605 unsigned WidestRegister =
5606 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5607 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5608
5609 SmallVector<RegisterUsage, 8> RUs(VFs.size());
5610 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
5611
5612 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5613
5614 // A lambda that gets the register usage for the given type and VF.
5615 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5616 if (Ty->isTokenTy())
5617 return 0U;
5618 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5619 return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5620 };
5621
5622 for (unsigned int i = 0; i < Index; ++i) {
5623 Instruction *I = IdxToInstr[i];
5624 // Ignore instructions that are never used within the loop.
5625 if (!Ends.count(I))
5626 continue;
5627
5628 // Remove all of the instructions that end at this location.
5629 InstrList &List = TransposeEnds[i];
5630 for (Instruction *ToRemove : List)
5631 OpenIntervals.erase(ToRemove);
5632
5633 // Skip ignored values.
5634 if (ValuesToIgnore.count(I))
5635 continue;
5636
5637 // For each VF find the maximum usage of registers.
5638 for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5639 if (VFs[j] == 1) {
5640 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
5641 continue;
5642 }
5643
5644 // Count the number of live intervals.
5645 unsigned RegUsage = 0;
5646 for (auto Inst : OpenIntervals) {
5647 // Skip ignored values for VF > 1.
5648 if (VecValuesToIgnore.count(Inst))
5649 continue;
5650 RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
5651 }
5652 MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
5653 }
5654
5655 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5656 << OpenIntervals.size() << '\n');
5657
5658 // Add the current instruction to the list of open intervals.
5659 OpenIntervals.insert(I);
5660 }
5661
5662 for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5663 unsigned Invariant = 0;
5664 if (VFs[i] == 1)
5665 Invariant = LoopInvariants.size();
5666 else {
5667 for (auto Inst : LoopInvariants)
5668 Invariant += GetRegUsage(Inst->getType(), VFs[i]);
5669 }
5670
5671 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
5672 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
5673 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5674 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
5675
5676 RU.LoopInvariantRegs = Invariant;
5677 RU.MaxLocalUsers = MaxUsages[i];
5678 RUs[i] = RU;
5679 }
5680
5681 return RUs;
5682 }
5683
5684 LoopVectorizationCostModel::VectorizationCostTy
expectedCost(unsigned VF)5685 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5686 VectorizationCostTy Cost;
5687
5688 // For each block.
5689 for (BasicBlock *BB : TheLoop->blocks()) {
5690 VectorizationCostTy BlockCost;
5691
5692 // For each instruction in the old loop.
5693 for (Instruction &I : *BB) {
5694 // Skip dbg intrinsics.
5695 if (isa<DbgInfoIntrinsic>(I))
5696 continue;
5697
5698 // Skip ignored values.
5699 if (ValuesToIgnore.count(&I))
5700 continue;
5701
5702 VectorizationCostTy C = getInstructionCost(&I, VF);
5703
5704 // Check if we should override the cost.
5705 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5706 C.first = ForceTargetInstructionCost;
5707
5708 BlockCost.first += C.first;
5709 BlockCost.second |= C.second;
5710 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
5711 << VF << " For instruction: " << I << '\n');
5712 }
5713
5714 // We assume that if-converted blocks have a 50% chance of being executed.
5715 // When the code is scalar then some of the blocks are avoided due to CF.
5716 // When the code is vectorized we execute all code paths.
5717 if (VF == 1 && Legal->blockNeedsPredication(BB))
5718 BlockCost.first /= 2;
5719
5720 Cost.first += BlockCost.first;
5721 Cost.second |= BlockCost.second;
5722 }
5723
5724 return Cost;
5725 }
5726
5727 /// \brief Check if the load/store instruction \p I may be translated into
5728 /// gather/scatter during vectorization.
5729 ///
5730 /// Pointer \p Ptr specifies address in memory for the given scalar memory
5731 /// instruction. We need it to retrieve data type.
5732 /// Using gather/scatter is possible when it is supported by target.
isGatherOrScatterLegal(Instruction * I,Value * Ptr,LoopVectorizationLegality * Legal)5733 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr,
5734 LoopVectorizationLegality *Legal) {
5735 auto *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
5736 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) ||
5737 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy));
5738 }
5739
5740 /// \brief Check whether the address computation for a non-consecutive memory
5741 /// access looks like an unlikely candidate for being merged into the indexing
5742 /// mode.
5743 ///
5744 /// We look for a GEP which has one index that is an induction variable and all
5745 /// other indices are loop invariant. If the stride of this access is also
5746 /// within a small bound we decide that this address computation can likely be
5747 /// merged into the addressing mode.
5748 /// In all other cases, we identify the address computation as complex.
isLikelyComplexAddressComputation(Value * Ptr,LoopVectorizationLegality * Legal,ScalarEvolution * SE,const Loop * TheLoop)5749 static bool isLikelyComplexAddressComputation(Value *Ptr,
5750 LoopVectorizationLegality *Legal,
5751 ScalarEvolution *SE,
5752 const Loop *TheLoop) {
5753 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5754 if (!Gep)
5755 return true;
5756
5757 // We are looking for a gep with all loop invariant indices except for one
5758 // which should be an induction variable.
5759 unsigned NumOperands = Gep->getNumOperands();
5760 for (unsigned i = 1; i < NumOperands; ++i) {
5761 Value *Opd = Gep->getOperand(i);
5762 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5763 !Legal->isInductionVariable(Opd))
5764 return true;
5765 }
5766
5767 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5768 // can likely be merged into the address computation.
5769 unsigned MaxMergeDistance = 64;
5770
5771 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5772 if (!AddRec)
5773 return true;
5774
5775 // Check the step is constant.
5776 const SCEV *Step = AddRec->getStepRecurrence(*SE);
5777 // Calculate the pointer stride and check if it is consecutive.
5778 const auto *C = dyn_cast<SCEVConstant>(Step);
5779 if (!C)
5780 return true;
5781
5782 const APInt &APStepVal = C->getAPInt();
5783
5784 // Huge step value - give up.
5785 if (APStepVal.getBitWidth() > 64)
5786 return true;
5787
5788 int64_t StepVal = APStepVal.getSExtValue();
5789
5790 return StepVal > MaxMergeDistance;
5791 }
5792
isStrideMul(Instruction * I,LoopVectorizationLegality * Legal)5793 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5794 return Legal->hasStride(I->getOperand(0)) ||
5795 Legal->hasStride(I->getOperand(1));
5796 }
5797
5798 LoopVectorizationCostModel::VectorizationCostTy
getInstructionCost(Instruction * I,unsigned VF)5799 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5800 // If we know that this instruction will remain uniform, check the cost of
5801 // the scalar version.
5802 if (Legal->isUniformAfterVectorization(I))
5803 VF = 1;
5804
5805 Type *VectorTy;
5806 unsigned C = getInstructionCost(I, VF, VectorTy);
5807
5808 bool TypeNotScalarized =
5809 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF;
5810 return VectorizationCostTy(C, TypeNotScalarized);
5811 }
5812
getInstructionCost(Instruction * I,unsigned VF,Type * & VectorTy)5813 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
5814 unsigned VF,
5815 Type *&VectorTy) {
5816 Type *RetTy = I->getType();
5817 if (VF > 1 && MinBWs.count(I))
5818 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5819 VectorTy = ToVectorTy(RetTy, VF);
5820 auto SE = PSE.getSE();
5821
5822 // TODO: We need to estimate the cost of intrinsic calls.
5823 switch (I->getOpcode()) {
5824 case Instruction::GetElementPtr:
5825 // We mark this instruction as zero-cost because the cost of GEPs in
5826 // vectorized code depends on whether the corresponding memory instruction
5827 // is scalarized or not. Therefore, we handle GEPs with the memory
5828 // instruction cost.
5829 return 0;
5830 case Instruction::Br: {
5831 return TTI.getCFInstrCost(I->getOpcode());
5832 }
5833 case Instruction::PHI: {
5834 auto *Phi = cast<PHINode>(I);
5835
5836 // First-order recurrences are replaced by vector shuffles inside the loop.
5837 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
5838 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5839 VectorTy, VF - 1, VectorTy);
5840
5841 // TODO: IF-converted IFs become selects.
5842 return 0;
5843 }
5844 case Instruction::Add:
5845 case Instruction::FAdd:
5846 case Instruction::Sub:
5847 case Instruction::FSub:
5848 case Instruction::Mul:
5849 case Instruction::FMul:
5850 case Instruction::UDiv:
5851 case Instruction::SDiv:
5852 case Instruction::FDiv:
5853 case Instruction::URem:
5854 case Instruction::SRem:
5855 case Instruction::FRem:
5856 case Instruction::Shl:
5857 case Instruction::LShr:
5858 case Instruction::AShr:
5859 case Instruction::And:
5860 case Instruction::Or:
5861 case Instruction::Xor: {
5862 // Since we will replace the stride by 1 the multiplication should go away.
5863 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5864 return 0;
5865 // Certain instructions can be cheaper to vectorize if they have a constant
5866 // second vector operand. One example of this are shifts on x86.
5867 TargetTransformInfo::OperandValueKind Op1VK =
5868 TargetTransformInfo::OK_AnyValue;
5869 TargetTransformInfo::OperandValueKind Op2VK =
5870 TargetTransformInfo::OK_AnyValue;
5871 TargetTransformInfo::OperandValueProperties Op1VP =
5872 TargetTransformInfo::OP_None;
5873 TargetTransformInfo::OperandValueProperties Op2VP =
5874 TargetTransformInfo::OP_None;
5875 Value *Op2 = I->getOperand(1);
5876
5877 // Check for a splat of a constant or for a non uniform vector of constants.
5878 if (isa<ConstantInt>(Op2)) {
5879 ConstantInt *CInt = cast<ConstantInt>(Op2);
5880 if (CInt && CInt->getValue().isPowerOf2())
5881 Op2VP = TargetTransformInfo::OP_PowerOf2;
5882 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5883 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
5884 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5885 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
5886 if (SplatValue) {
5887 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
5888 if (CInt && CInt->getValue().isPowerOf2())
5889 Op2VP = TargetTransformInfo::OP_PowerOf2;
5890 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5891 }
5892 }
5893
5894 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
5895 Op1VP, Op2VP);
5896 }
5897 case Instruction::Select: {
5898 SelectInst *SI = cast<SelectInst>(I);
5899 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
5900 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
5901 Type *CondTy = SI->getCondition()->getType();
5902 if (!ScalarCond)
5903 CondTy = VectorType::get(CondTy, VF);
5904
5905 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
5906 }
5907 case Instruction::ICmp:
5908 case Instruction::FCmp: {
5909 Type *ValTy = I->getOperand(0)->getType();
5910 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
5911 auto It = MinBWs.find(Op0AsInstruction);
5912 if (VF > 1 && It != MinBWs.end())
5913 ValTy = IntegerType::get(ValTy->getContext(), It->second);
5914 VectorTy = ToVectorTy(ValTy, VF);
5915 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
5916 }
5917 case Instruction::Store:
5918 case Instruction::Load: {
5919 StoreInst *SI = dyn_cast<StoreInst>(I);
5920 LoadInst *LI = dyn_cast<LoadInst>(I);
5921 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType());
5922 VectorTy = ToVectorTy(ValTy, VF);
5923
5924 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
5925 unsigned AS =
5926 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace();
5927 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
5928 // We add the cost of address computation here instead of with the gep
5929 // instruction because only here we know whether the operation is
5930 // scalarized.
5931 if (VF == 1)
5932 return TTI.getAddressComputationCost(VectorTy) +
5933 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5934
5935 if (LI && Legal->isUniform(Ptr)) {
5936 // Scalar load + broadcast
5937 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType());
5938 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5939 Alignment, AS);
5940 return Cost +
5941 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy);
5942 }
5943
5944 // For an interleaved access, calculate the total cost of the whole
5945 // interleave group.
5946 if (Legal->isAccessInterleaved(I)) {
5947 auto Group = Legal->getInterleavedAccessGroup(I);
5948 assert(Group && "Fail to get an interleaved access group.");
5949
5950 // Only calculate the cost once at the insert position.
5951 if (Group->getInsertPos() != I)
5952 return 0;
5953
5954 unsigned InterleaveFactor = Group->getFactor();
5955 Type *WideVecTy =
5956 VectorType::get(VectorTy->getVectorElementType(),
5957 VectorTy->getVectorNumElements() * InterleaveFactor);
5958
5959 // Holds the indices of existing members in an interleaved load group.
5960 // An interleaved store group doesn't need this as it doesn't allow gaps.
5961 SmallVector<unsigned, 4> Indices;
5962 if (LI) {
5963 for (unsigned i = 0; i < InterleaveFactor; i++)
5964 if (Group->getMember(i))
5965 Indices.push_back(i);
5966 }
5967
5968 // Calculate the cost of the whole interleaved group.
5969 unsigned Cost = TTI.getInterleavedMemoryOpCost(
5970 I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5971 Group->getAlignment(), AS);
5972
5973 if (Group->isReverse())
5974 Cost +=
5975 Group->getNumMembers() *
5976 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5977
5978 // FIXME: The interleaved load group with a huge gap could be even more
5979 // expensive than scalar operations. Then we could ignore such group and
5980 // use scalar operations instead.
5981 return Cost;
5982 }
5983
5984 // Scalarized loads/stores.
5985 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5986 bool UseGatherOrScatter =
5987 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal);
5988
5989 bool Reverse = ConsecutiveStride < 0;
5990 const DataLayout &DL = I->getModule()->getDataLayout();
5991 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
5992 uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
5993 if ((!ConsecutiveStride && !UseGatherOrScatter) ||
5994 ScalarAllocatedSize != VectorElementSize) {
5995 bool IsComplexComputation =
5996 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
5997 unsigned Cost = 0;
5998 // The cost of extracting from the value vector and pointer vector.
5999 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6000 for (unsigned i = 0; i < VF; ++i) {
6001 // The cost of extracting the pointer operand.
6002 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
6003 // In case of STORE, the cost of ExtractElement from the vector.
6004 // In case of LOAD, the cost of InsertElement into the returned
6005 // vector.
6006 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement
6007 : Instruction::InsertElement,
6008 VectorTy, i);
6009 }
6010
6011 // The cost of the scalar loads/stores.
6012 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
6013 Cost += VF *
6014 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
6015 Alignment, AS);
6016 return Cost;
6017 }
6018
6019 unsigned Cost = TTI.getAddressComputationCost(VectorTy);
6020 if (UseGatherOrScatter) {
6021 assert(ConsecutiveStride == 0 &&
6022 "Gather/Scatter are not used for consecutive stride");
6023 return Cost +
6024 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
6025 Legal->isMaskRequired(I), Alignment);
6026 }
6027 // Wide load/stores.
6028 if (Legal->isMaskRequired(I))
6029 Cost +=
6030 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6031 else
6032 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6033
6034 if (Reverse)
6035 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6036 return Cost;
6037 }
6038 case Instruction::ZExt:
6039 case Instruction::SExt:
6040 case Instruction::FPToUI:
6041 case Instruction::FPToSI:
6042 case Instruction::FPExt:
6043 case Instruction::PtrToInt:
6044 case Instruction::IntToPtr:
6045 case Instruction::SIToFP:
6046 case Instruction::UIToFP:
6047 case Instruction::Trunc:
6048 case Instruction::FPTrunc:
6049 case Instruction::BitCast: {
6050 // We optimize the truncation of induction variable.
6051 // The cost of these is the same as the scalar operation.
6052 if (I->getOpcode() == Instruction::Trunc &&
6053 Legal->isInductionVariable(I->getOperand(0)))
6054 return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
6055 I->getOperand(0)->getType());
6056
6057 Type *SrcScalarTy = I->getOperand(0)->getType();
6058 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
6059 if (VF > 1 && MinBWs.count(I)) {
6060 // This cast is going to be shrunk. This may remove the cast or it might
6061 // turn it into slightly different cast. For example, if MinBW == 16,
6062 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6063 //
6064 // Calculate the modified src and dest types.
6065 Type *MinVecTy = VectorTy;
6066 if (I->getOpcode() == Instruction::Trunc) {
6067 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6068 VectorTy =
6069 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6070 } else if (I->getOpcode() == Instruction::ZExt ||
6071 I->getOpcode() == Instruction::SExt) {
6072 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6073 VectorTy =
6074 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6075 }
6076 }
6077
6078 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
6079 }
6080 case Instruction::Call: {
6081 bool NeedToScalarize;
6082 CallInst *CI = cast<CallInst>(I);
6083 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
6084 if (getVectorIntrinsicIDForCall(CI, TLI))
6085 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
6086 return CallCost;
6087 }
6088 default: {
6089 // We are scalarizing the instruction. Return the cost of the scalar
6090 // instruction, plus the cost of insert and extract into vector
6091 // elements, times the vector width.
6092 unsigned Cost = 0;
6093
6094 if (!RetTy->isVoidTy() && VF != 1) {
6095 unsigned InsCost =
6096 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy);
6097 unsigned ExtCost =
6098 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy);
6099
6100 // The cost of inserting the results plus extracting each one of the
6101 // operands.
6102 Cost += VF * (InsCost + ExtCost * I->getNumOperands());
6103 }
6104
6105 // The cost of executing VF copies of the scalar instruction. This opcode
6106 // is unknown. Assume that it is the same as 'mul'.
6107 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
6108 return Cost;
6109 }
6110 } // end of switch.
6111 }
6112
6113 char LoopVectorize::ID = 0;
6114 static const char lv_name[] = "Loop Vectorization";
6115 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6116 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6117 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6118 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6119 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6120 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6121 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6122 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6124 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
6125 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6126 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6127 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6128 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6129 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6130
6131 namespace llvm {
createLoopVectorizePass(bool NoUnrolling,bool AlwaysVectorize)6132 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
6133 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
6134 }
6135 }
6136
isConsecutiveLoadOrStore(Instruction * Inst)6137 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6138 // Check for a store.
6139 if (auto *ST = dyn_cast<StoreInst>(Inst))
6140 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
6141
6142 // Check for a load.
6143 if (auto *LI = dyn_cast<LoadInst>(Inst))
6144 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
6145
6146 return false;
6147 }
6148
collectValuesToIgnore()6149 void LoopVectorizationCostModel::collectValuesToIgnore() {
6150 // Ignore ephemeral values.
6151 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6152
6153 // Ignore type-promoting instructions we identified during reduction
6154 // detection.
6155 for (auto &Reduction : *Legal->getReductionVars()) {
6156 RecurrenceDescriptor &RedDes = Reduction.second;
6157 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6158 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6159 }
6160
6161 // Ignore induction phis that are only used in either GetElementPtr or ICmp
6162 // instruction to exit loop. Induction variables usually have large types and
6163 // can have big impact when estimating register usage.
6164 // This is for when VF > 1.
6165 for (auto &Induction : *Legal->getInductionVars()) {
6166 auto *PN = Induction.first;
6167 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
6168
6169 // Check that the PHI is only used by the induction increment (UpdateV) or
6170 // by GEPs. Then check that UpdateV is only used by a compare instruction,
6171 // the loop header PHI, or by GEPs.
6172 // FIXME: Need precise def-use analysis to determine if this instruction
6173 // variable will be vectorized.
6174 if (all_of(PN->users(),
6175 [&](const User *U) -> bool {
6176 return U == UpdateV || isa<GetElementPtrInst>(U);
6177 }) &&
6178 all_of(UpdateV->users(), [&](const User *U) -> bool {
6179 return U == PN || isa<ICmpInst>(U) || isa<GetElementPtrInst>(U);
6180 })) {
6181 VecValuesToIgnore.insert(PN);
6182 VecValuesToIgnore.insert(UpdateV);
6183 }
6184 }
6185
6186 // Ignore instructions that will not be vectorized.
6187 // This is for when VF > 1.
6188 for (BasicBlock *BB : TheLoop->blocks()) {
6189 for (auto &Inst : *BB) {
6190 switch (Inst.getOpcode())
6191 case Instruction::GetElementPtr: {
6192 // Ignore GEP if its last operand is an induction variable so that it is
6193 // a consecutive load/store and won't be vectorized as scatter/gather
6194 // pattern.
6195
6196 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst);
6197 unsigned NumOperands = Gep->getNumOperands();
6198 unsigned InductionOperand = getGEPInductionOperand(Gep);
6199 bool GepToIgnore = true;
6200
6201 // Check that all of the gep indices are uniform except for the
6202 // induction operand.
6203 for (unsigned i = 0; i != NumOperands; ++i) {
6204 if (i != InductionOperand &&
6205 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)),
6206 TheLoop)) {
6207 GepToIgnore = false;
6208 break;
6209 }
6210 }
6211
6212 if (GepToIgnore)
6213 VecValuesToIgnore.insert(&Inst);
6214 break;
6215 }
6216 }
6217 }
6218 }
6219
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)6220 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
6221 bool IfPredicateStore) {
6222 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
6223 // Holds vector parameters or scalars, in case of uniform vals.
6224 SmallVector<VectorParts, 4> Params;
6225
6226 setDebugLocFromInst(Builder, Instr);
6227
6228 // Find all of the vectorized parameters.
6229 for (Value *SrcOp : Instr->operands()) {
6230 // If we are accessing the old induction variable, use the new one.
6231 if (SrcOp == OldInduction) {
6232 Params.push_back(getVectorValue(SrcOp));
6233 continue;
6234 }
6235
6236 // Try using previously calculated values.
6237 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
6238
6239 // If the src is an instruction that appeared earlier in the basic block
6240 // then it should already be vectorized.
6241 if (SrcInst && OrigLoop->contains(SrcInst)) {
6242 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
6243 // The parameter is a vector value from earlier.
6244 Params.push_back(WidenMap.get(SrcInst));
6245 } else {
6246 // The parameter is a scalar from outside the loop. Maybe even a constant.
6247 VectorParts Scalars;
6248 Scalars.append(UF, SrcOp);
6249 Params.push_back(Scalars);
6250 }
6251 }
6252
6253 assert(Params.size() == Instr->getNumOperands() &&
6254 "Invalid number of operands");
6255
6256 // Does this instruction return a value ?
6257 bool IsVoidRetTy = Instr->getType()->isVoidTy();
6258
6259 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType());
6260 // Create a new entry in the WidenMap and initialize it to Undef or Null.
6261 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
6262
6263 VectorParts Cond;
6264 if (IfPredicateStore) {
6265 assert(Instr->getParent()->getSinglePredecessor() &&
6266 "Only support single predecessor blocks");
6267 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
6268 Instr->getParent());
6269 }
6270
6271 // For each vector unroll 'part':
6272 for (unsigned Part = 0; Part < UF; ++Part) {
6273 // For each scalar that we create:
6274
6275 // Start an "if (pred) a[i] = ..." block.
6276 Value *Cmp = nullptr;
6277 if (IfPredicateStore) {
6278 if (Cond[Part]->getType()->isVectorTy())
6279 Cond[Part] =
6280 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
6281 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
6282 ConstantInt::get(Cond[Part]->getType(), 1));
6283 }
6284
6285 Instruction *Cloned = Instr->clone();
6286 if (!IsVoidRetTy)
6287 Cloned->setName(Instr->getName() + ".cloned");
6288 // Replace the operands of the cloned instructions with extracted scalars.
6289 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6290 Value *Op = Params[op][Part];
6291 Cloned->setOperand(op, Op);
6292 }
6293
6294 // Place the cloned scalar in the new loop.
6295 Builder.Insert(Cloned);
6296
6297 // If we just cloned a new assumption, add it the assumption cache.
6298 if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
6299 if (II->getIntrinsicID() == Intrinsic::assume)
6300 AC->registerAssumption(II);
6301
6302 // If the original scalar returns a value we need to place it in a vector
6303 // so that future users will be able to use it.
6304 if (!IsVoidRetTy)
6305 VecResults[Part] = Cloned;
6306
6307 // End if-block.
6308 if (IfPredicateStore)
6309 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp));
6310 }
6311 }
6312
vectorizeMemoryInstruction(Instruction * Instr)6313 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
6314 auto *SI = dyn_cast<StoreInst>(Instr);
6315 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6316
6317 return scalarizeInstruction(Instr, IfPredicateStore);
6318 }
6319
reverseVector(Value * Vec)6320 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6321
getBroadcastInstrs(Value * V)6322 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6323
getStepVector(Value * Val,int StartIdx,Value * Step)6324 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
6325 // When unrolling and the VF is 1, we only need to add a simple scalar.
6326 Type *ITy = Val->getType();
6327 assert(!ITy->isVectorTy() && "Val must be a scalar");
6328 Constant *C = ConstantInt::get(ITy, StartIdx);
6329 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6330 }
6331
AddRuntimeUnrollDisableMetaData(Loop * L)6332 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6333 SmallVector<Metadata *, 4> MDs;
6334 // Reserve first location for self reference to the LoopID metadata node.
6335 MDs.push_back(nullptr);
6336 bool IsUnrollMetadata = false;
6337 MDNode *LoopID = L->getLoopID();
6338 if (LoopID) {
6339 // First find existing loop unrolling disable metadata.
6340 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6341 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6342 if (MD) {
6343 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6344 IsUnrollMetadata =
6345 S && S->getString().startswith("llvm.loop.unroll.disable");
6346 }
6347 MDs.push_back(LoopID->getOperand(i));
6348 }
6349 }
6350
6351 if (!IsUnrollMetadata) {
6352 // Add runtime unroll disable metadata.
6353 LLVMContext &Context = L->getHeader()->getContext();
6354 SmallVector<Metadata *, 1> DisableOperands;
6355 DisableOperands.push_back(
6356 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6357 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6358 MDs.push_back(DisableNode);
6359 MDNode *NewLoopID = MDNode::get(Context, MDs);
6360 // Set operand 0 to refer to the loop id itself.
6361 NewLoopID->replaceOperandWith(0, NewLoopID);
6362 L->setLoopID(NewLoopID);
6363 }
6364 }
6365
processLoop(Loop * L)6366 bool LoopVectorizePass::processLoop(Loop *L) {
6367 assert(L->empty() && "Only process inner loops.");
6368
6369 #ifndef NDEBUG
6370 const std::string DebugLocStr = getDebugLocString(L);
6371 #endif /* NDEBUG */
6372
6373 DEBUG(dbgs() << "\nLV: Checking a loop in \""
6374 << L->getHeader()->getParent()->getName() << "\" from "
6375 << DebugLocStr << "\n");
6376
6377 LoopVectorizeHints Hints(L, DisableUnrolling);
6378
6379 DEBUG(dbgs() << "LV: Loop hints:"
6380 << " force="
6381 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
6382 ? "disabled"
6383 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
6384 ? "enabled"
6385 : "?"))
6386 << " width=" << Hints.getWidth()
6387 << " unroll=" << Hints.getInterleave() << "\n");
6388
6389 // Function containing loop
6390 Function *F = L->getHeader()->getParent();
6391
6392 // Looking at the diagnostic output is the only way to determine if a loop
6393 // was vectorized (other than looking at the IR or machine code), so it
6394 // is important to generate an optimization remark for each loop. Most of
6395 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
6396 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
6397 // less verbose reporting vectorized loops and unvectorized loops that may
6398 // benefit from vectorization, respectively.
6399
6400 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
6401 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
6402 return false;
6403 }
6404
6405 // Check the loop for a trip count threshold:
6406 // do not vectorize loops with a tiny trip count.
6407 const unsigned TC = SE->getSmallConstantTripCount(L);
6408 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
6409 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
6410 << "This loop is not worth vectorizing.");
6411 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
6412 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
6413 else {
6414 DEBUG(dbgs() << "\n");
6415 emitAnalysisDiag(F, L, Hints, VectorizationReport()
6416 << "vectorization is not beneficial "
6417 "and is not explicitly forced");
6418 return false;
6419 }
6420 }
6421
6422 PredicatedScalarEvolution PSE(*SE, *L);
6423
6424 // Check if it is legal to vectorize the loop.
6425 LoopVectorizationRequirements Requirements;
6426 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI,
6427 &Requirements, &Hints);
6428 if (!LVL.canVectorize()) {
6429 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
6430 emitMissedWarning(F, L, Hints);
6431 return false;
6432 }
6433
6434 // Use the cost model.
6435 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F,
6436 &Hints);
6437 CM.collectValuesToIgnore();
6438
6439 // Check the function attributes to find out if this function should be
6440 // optimized for size.
6441 bool OptForSize =
6442 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
6443
6444 // Compute the weighted frequency of this loop being executed and see if it
6445 // is less than 20% of the function entry baseline frequency. Note that we
6446 // always have a canonical loop here because we think we *can* vectorize.
6447 // FIXME: This is hidden behind a flag due to pervasive problems with
6448 // exactly what block frequency models.
6449 if (LoopVectorizeWithBlockFrequency) {
6450 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
6451 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
6452 LoopEntryFreq < ColdEntryFreq)
6453 OptForSize = true;
6454 }
6455
6456 // Check the function attributes to see if implicit floats are allowed.
6457 // FIXME: This check doesn't seem possibly correct -- what if the loop is
6458 // an integer loop and the vector instructions selected are purely integer
6459 // vector instructions?
6460 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
6461 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
6462 "attribute is used.\n");
6463 emitAnalysisDiag(
6464 F, L, Hints,
6465 VectorizationReport()
6466 << "loop not vectorized due to NoImplicitFloat attribute");
6467 emitMissedWarning(F, L, Hints);
6468 return false;
6469 }
6470
6471 // Check if the target supports potentially unsafe FP vectorization.
6472 // FIXME: Add a check for the type of safety issue (denormal, signaling)
6473 // for the target we're vectorizing for, to make sure none of the
6474 // additional fp-math flags can help.
6475 if (Hints.isPotentiallyUnsafe() &&
6476 TTI->isFPVectorizationPotentiallyUnsafe()) {
6477 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
6478 emitAnalysisDiag(F, L, Hints,
6479 VectorizationReport()
6480 << "loop not vectorized due to unsafe FP support.");
6481 emitMissedWarning(F, L, Hints);
6482 return false;
6483 }
6484
6485 // Select the optimal vectorization factor.
6486 const LoopVectorizationCostModel::VectorizationFactor VF =
6487 CM.selectVectorizationFactor(OptForSize);
6488
6489 // Select the interleave count.
6490 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
6491
6492 // Get user interleave count.
6493 unsigned UserIC = Hints.getInterleave();
6494
6495 // Identify the diagnostic messages that should be produced.
6496 std::string VecDiagMsg, IntDiagMsg;
6497 bool VectorizeLoop = true, InterleaveLoop = true;
6498
6499 if (Requirements.doesNotMeet(F, L, Hints)) {
6500 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
6501 "requirements.\n");
6502 emitMissedWarning(F, L, Hints);
6503 return false;
6504 }
6505
6506 if (VF.Width == 1) {
6507 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
6508 VecDiagMsg =
6509 "the cost-model indicates that vectorization is not beneficial";
6510 VectorizeLoop = false;
6511 }
6512
6513 if (IC == 1 && UserIC <= 1) {
6514 // Tell the user interleaving is not beneficial.
6515 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
6516 IntDiagMsg =
6517 "the cost-model indicates that interleaving is not beneficial";
6518 InterleaveLoop = false;
6519 if (UserIC == 1)
6520 IntDiagMsg +=
6521 " and is explicitly disabled or interleave count is set to 1";
6522 } else if (IC > 1 && UserIC == 1) {
6523 // Tell the user interleaving is beneficial, but it explicitly disabled.
6524 DEBUG(dbgs()
6525 << "LV: Interleaving is beneficial but is explicitly disabled.");
6526 IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
6527 "but is explicitly disabled or interleave count is set to 1";
6528 InterleaveLoop = false;
6529 }
6530
6531 // Override IC if user provided an interleave count.
6532 IC = UserIC > 0 ? UserIC : IC;
6533
6534 // Emit diagnostic messages, if any.
6535 const char *VAPassName = Hints.vectorizeAnalysisPassName();
6536 if (!VectorizeLoop && !InterleaveLoop) {
6537 // Do not vectorize or interleaving the loop.
6538 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
6539 L->getStartLoc(), VecDiagMsg);
6540 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
6541 L->getStartLoc(), IntDiagMsg);
6542 return false;
6543 } else if (!VectorizeLoop && InterleaveLoop) {
6544 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
6545 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
6546 L->getStartLoc(), VecDiagMsg);
6547 } else if (VectorizeLoop && !InterleaveLoop) {
6548 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
6549 << DebugLocStr << '\n');
6550 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
6551 L->getStartLoc(), IntDiagMsg);
6552 } else if (VectorizeLoop && InterleaveLoop) {
6553 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
6554 << DebugLocStr << '\n');
6555 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
6556 }
6557
6558 if (!VectorizeLoop) {
6559 assert(IC > 1 && "interleave count should not be 1 or 0");
6560 // If we decided that it is not legal to vectorize the loop, then
6561 // interleave it.
6562 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC);
6563 Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
6564
6565 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
6566 Twine("interleaved loop (interleaved count: ") +
6567 Twine(IC) + ")");
6568 } else {
6569 // If we decided that it is *legal* to vectorize the loop, then do it.
6570 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC);
6571 LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
6572 ++LoopsVectorized;
6573
6574 // Add metadata to disable runtime unrolling a scalar loop when there are
6575 // no runtime checks about strides and memory. A scalar loop that is
6576 // rarely used is not worth unrolling.
6577 if (!LB.areSafetyChecksAdded())
6578 AddRuntimeUnrollDisableMetaData(L);
6579
6580 // Report the vectorization decision.
6581 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
6582 Twine("vectorized loop (vectorization width: ") +
6583 Twine(VF.Width) + ", interleaved count: " +
6584 Twine(IC) + ")");
6585 }
6586
6587 // Mark the loop as already vectorized to avoid vectorizing again.
6588 Hints.setAlreadyVectorized();
6589
6590 DEBUG(verifyFunction(*L->getHeader()->getParent()));
6591 return true;
6592 }
6593
runImpl(Function & F,ScalarEvolution & SE_,LoopInfo & LI_,TargetTransformInfo & TTI_,DominatorTree & DT_,BlockFrequencyInfo & BFI_,TargetLibraryInfo * TLI_,DemandedBits & DB_,AliasAnalysis & AA_,AssumptionCache & AC_,std::function<const LoopAccessInfo & (Loop &)> & GetLAA_)6594 bool LoopVectorizePass::runImpl(
6595 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
6596 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
6597 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
6598 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_) {
6599
6600 SE = &SE_;
6601 LI = &LI_;
6602 TTI = &TTI_;
6603 DT = &DT_;
6604 BFI = &BFI_;
6605 TLI = TLI_;
6606 AA = &AA_;
6607 AC = &AC_;
6608 GetLAA = &GetLAA_;
6609 DB = &DB_;
6610
6611 // Compute some weights outside of the loop over the loops. Compute this
6612 // using a BranchProbability to re-use its scaling math.
6613 const BranchProbability ColdProb(1, 5); // 20%
6614 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
6615
6616 // Don't attempt if
6617 // 1. the target claims to have no vector registers, and
6618 // 2. interleaving won't help ILP.
6619 //
6620 // The second condition is necessary because, even if the target has no
6621 // vector registers, loop vectorization may still enable scalar
6622 // interleaving.
6623 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
6624 return false;
6625
6626 // Build up a worklist of inner-loops to vectorize. This is necessary as
6627 // the act of vectorizing or partially unrolling a loop creates new loops
6628 // and can invalidate iterators across the loops.
6629 SmallVector<Loop *, 8> Worklist;
6630
6631 for (Loop *L : *LI)
6632 addInnerLoop(*L, Worklist);
6633
6634 LoopsAnalyzed += Worklist.size();
6635
6636 // Now walk the identified inner loops.
6637 bool Changed = false;
6638 while (!Worklist.empty())
6639 Changed |= processLoop(Worklist.pop_back_val());
6640
6641 // Process each loop nest in the function.
6642 return Changed;
6643
6644 }
6645
6646
run(Function & F,FunctionAnalysisManager & AM)6647 PreservedAnalyses LoopVectorizePass::run(Function &F,
6648 FunctionAnalysisManager &AM) {
6649 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
6650 auto &LI = AM.getResult<LoopAnalysis>(F);
6651 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
6652 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6653 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
6654 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6655 auto &AA = AM.getResult<AAManager>(F);
6656 auto &AC = AM.getResult<AssumptionAnalysis>(F);
6657 auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
6658
6659 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
6660 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
6661 [&](Loop &L) -> const LoopAccessInfo & {
6662 return LAM.getResult<LoopAccessAnalysis>(L);
6663 };
6664 bool Changed = runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA);
6665 if (!Changed)
6666 return PreservedAnalyses::all();
6667 PreservedAnalyses PA;
6668 PA.preserve<LoopAnalysis>();
6669 PA.preserve<DominatorTreeAnalysis>();
6670 PA.preserve<BasicAA>();
6671 PA.preserve<GlobalsAA>();
6672 return PA;
6673 }
6674