• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // The interleaved access vectorization is based on the paper:
38 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
39 //  Data for SIMD
40 //
41 // Other ideas/concepts are from:
42 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43 //
44 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
45 //  Vectorizing Compilers.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/Analysis/CodeMetrics.h"
60 #include "llvm/Analysis/GlobalsModRef.h"
61 #include "llvm/Analysis/LoopInfo.h"
62 #include "llvm/Analysis/LoopIterator.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
66 #include "llvm/Analysis/ValueTracking.h"
67 #include "llvm/Analysis/VectorUtils.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfo.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/DiagnosticInfo.h"
73 #include "llvm/IR/Dominators.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/PatternMatch.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/IR/ValueHandle.h"
84 #include "llvm/IR/Verifier.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Transforms/Scalar.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/LoopUtils.h"
94 #include "llvm/Transforms/Utils/LoopVersioning.h"
95 #include "llvm/Transforms/Vectorize.h"
96 #include <algorithm>
97 #include <map>
98 #include <tuple>
99 
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 
103 #define LV_NAME "loop-vectorize"
104 #define DEBUG_TYPE LV_NAME
105 
106 STATISTIC(LoopsVectorized, "Number of loops vectorized");
107 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
108 
109 static cl::opt<bool>
110     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
111                        cl::desc("Enable if-conversion during vectorization."));
112 
113 /// We don't vectorize loops with a known constant trip count below this number.
114 static cl::opt<unsigned> TinyTripCountVectorThreshold(
115     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
116     cl::desc("Don't vectorize loops with a constant "
117              "trip count that is smaller than this "
118              "value."));
119 
120 static cl::opt<bool> MaximizeBandwidth(
121     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
122     cl::desc("Maximize bandwidth when selecting vectorization factor which "
123              "will be determined by the smallest type in loop."));
124 
125 static cl::opt<bool> EnableInterleavedMemAccesses(
126     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
127     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
128 
129 /// Maximum factor for an interleaved memory access.
130 static cl::opt<unsigned> MaxInterleaveGroupFactor(
131     "max-interleave-group-factor", cl::Hidden,
132     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
133     cl::init(8));
134 
135 /// We don't interleave loops with a known constant trip count below this
136 /// number.
137 static const unsigned TinyTripCountInterleaveThreshold = 128;
138 
139 static cl::opt<unsigned> ForceTargetNumScalarRegs(
140     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
141     cl::desc("A flag that overrides the target's number of scalar registers."));
142 
143 static cl::opt<unsigned> ForceTargetNumVectorRegs(
144     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
145     cl::desc("A flag that overrides the target's number of vector registers."));
146 
147 /// Maximum vectorization interleave count.
148 static const unsigned MaxInterleaveFactor = 16;
149 
150 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
151     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
152     cl::desc("A flag that overrides the target's max interleave factor for "
153              "scalar loops."));
154 
155 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
156     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
157     cl::desc("A flag that overrides the target's max interleave factor for "
158              "vectorized loops."));
159 
160 static cl::opt<unsigned> ForceTargetInstructionCost(
161     "force-target-instruction-cost", cl::init(0), cl::Hidden,
162     cl::desc("A flag that overrides the target's expected cost for "
163              "an instruction to a single constant value. Mostly "
164              "useful for getting consistent testing."));
165 
166 static cl::opt<unsigned> SmallLoopCost(
167     "small-loop-cost", cl::init(20), cl::Hidden,
168     cl::desc(
169         "The cost of a loop that is considered 'small' by the interleaver."));
170 
171 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
172     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
173     cl::desc("Enable the use of the block frequency analysis to access PGO "
174              "heuristics minimizing code growth in cold regions and being more "
175              "aggressive in hot regions."));
176 
177 // Runtime interleave loops for load/store throughput.
178 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
179     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
180     cl::desc(
181         "Enable runtime interleaving until load/store ports are saturated"));
182 
183 /// The number of stores in a loop that are allowed to need predication.
184 static cl::opt<unsigned> NumberOfStoresToPredicate(
185     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
186     cl::desc("Max number of stores to be predicated behind an if."));
187 
188 static cl::opt<bool> EnableIndVarRegisterHeur(
189     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
190     cl::desc("Count the induction variable only once when interleaving"));
191 
192 static cl::opt<bool> EnableCondStoresVectorization(
193     "enable-cond-stores-vec", cl::init(false), cl::Hidden,
194     cl::desc("Enable if predication of stores during vectorization."));
195 
196 static cl::opt<unsigned> MaxNestedScalarReductionIC(
197     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
198     cl::desc("The maximum interleave count to use when interleaving a scalar "
199              "reduction in a nested loop."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
207     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
208     cl::desc("The maximum number of SCEV checks allowed."));
209 
210 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
211     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
212     cl::desc("The maximum number of SCEV checks allowed with a "
213              "vectorize(enable) pragma"));
214 
215 namespace {
216 
217 // Forward declarations.
218 class LoopVectorizeHints;
219 class LoopVectorizationLegality;
220 class LoopVectorizationCostModel;
221 class LoopVectorizationRequirements;
222 
223 /// \brief This modifies LoopAccessReport to initialize message with
224 /// loop-vectorizer-specific part.
225 class VectorizationReport : public LoopAccessReport {
226 public:
VectorizationReport(Instruction * I=nullptr)227   VectorizationReport(Instruction *I = nullptr)
228       : LoopAccessReport("loop not vectorized: ", I) {}
229 
230   /// \brief This allows promotion of the loop-access analysis report into the
231   /// loop-vectorizer report.  It modifies the message to add the
232   /// loop-vectorizer-specific part of the message.
VectorizationReport(const LoopAccessReport & R)233   explicit VectorizationReport(const LoopAccessReport &R)
234       : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
235                          R.getInstr()) {}
236 };
237 
238 /// A helper function for converting Scalar types to vector types.
239 /// If the incoming type is void, we return void. If the VF is 1, we return
240 /// the scalar type.
ToVectorTy(Type * Scalar,unsigned VF)241 static Type *ToVectorTy(Type *Scalar, unsigned VF) {
242   if (Scalar->isVoidTy() || VF == 1)
243     return Scalar;
244   return VectorType::get(Scalar, VF);
245 }
246 
247 /// A helper function that returns GEP instruction and knows to skip a
248 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
249 /// pointee types of the 'bitcast' have the same size.
250 /// For example:
251 ///   bitcast double** %var to i64* - can be skipped
252 ///   bitcast double** %var to i8*  - can not
getGEPInstruction(Value * Ptr)253 static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
254 
255   if (isa<GetElementPtrInst>(Ptr))
256     return cast<GetElementPtrInst>(Ptr);
257 
258   if (isa<BitCastInst>(Ptr) &&
259       isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
260     Type *BitcastTy = Ptr->getType();
261     Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
262     if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
263       return nullptr;
264     Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
265     Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
266     const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
267     if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
268       return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
269   }
270   return nullptr;
271 }
272 
273 /// InnerLoopVectorizer vectorizes loops which contain only one basic
274 /// block to a specified vectorization factor (VF).
275 /// This class performs the widening of scalars into vectors, or multiple
276 /// scalars. This class also implements the following features:
277 /// * It inserts an epilogue loop for handling loops that don't have iteration
278 ///   counts that are known to be a multiple of the vectorization factor.
279 /// * It handles the code generation for reduction variables.
280 /// * Scalarization (implementation using scalars) of un-vectorizable
281 ///   instructions.
282 /// InnerLoopVectorizer does not perform any vectorization-legality
283 /// checks, and relies on the caller to check for the different legality
284 /// aspects. The InnerLoopVectorizer relies on the
285 /// LoopVectorizationLegality class to provide information about the induction
286 /// and reduction variables that were found to a given vectorization factor.
287 class InnerLoopVectorizer {
288 public:
InnerLoopVectorizer(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,unsigned VecWidth,unsigned UnrollFactor)289   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
290                       LoopInfo *LI, DominatorTree *DT,
291                       const TargetLibraryInfo *TLI,
292                       const TargetTransformInfo *TTI, AssumptionCache *AC,
293                       unsigned VecWidth, unsigned UnrollFactor)
294       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
295         AC(AC), VF(VecWidth), UF(UnrollFactor),
296         Builder(PSE.getSE()->getContext()), Induction(nullptr),
297         OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr),
298         VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {}
299 
300   // Perform the actual loop widening (vectorization).
301   // MinimumBitWidths maps scalar integer values to the smallest bitwidth they
302   // can be validly truncated to. The cost model has assumed this truncation
303   // will happen when vectorizing. VecValuesToIgnore contains scalar values
304   // that the cost model has chosen to ignore because they will not be
305   // vectorized.
vectorize(LoopVectorizationLegality * L,const MapVector<Instruction *,uint64_t> & MinimumBitWidths,SmallPtrSetImpl<const Value * > & VecValuesToIgnore)306   void vectorize(LoopVectorizationLegality *L,
307                  const MapVector<Instruction *, uint64_t> &MinimumBitWidths,
308                  SmallPtrSetImpl<const Value *> &VecValuesToIgnore) {
309     MinBWs = &MinimumBitWidths;
310     ValuesNotWidened = &VecValuesToIgnore;
311     Legal = L;
312     // Create a new empty loop. Unlink the old loop and connect the new one.
313     createEmptyLoop();
314     // Widen each instruction in the old loop to a new one in the new loop.
315     // Use the Legality module to find the induction and reduction variables.
316     vectorizeLoop();
317   }
318 
319   // Return true if any runtime check is added.
areSafetyChecksAdded()320   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
321 
~InnerLoopVectorizer()322   virtual ~InnerLoopVectorizer() {}
323 
324 protected:
325   /// A small list of PHINodes.
326   typedef SmallVector<PHINode *, 4> PhiVector;
327   /// When we unroll loops we have multiple vector values for each scalar.
328   /// This data structure holds the unrolled and vectorized values that
329   /// originated from one scalar instruction.
330   typedef SmallVector<Value *, 2> VectorParts;
331 
332   // When we if-convert we need to create edge masks. We have to cache values
333   // so that we don't end up with exponential recursion/IR.
334   typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>
335       EdgeMaskCache;
336 
337   /// Create an empty loop, based on the loop ranges of the old loop.
338   void createEmptyLoop();
339 
340   /// Set up the values of the IVs correctly when exiting the vector loop.
341   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
342                     Value *CountRoundDown, Value *EndValue,
343                     BasicBlock *MiddleBlock);
344 
345   /// Create a new induction variable inside L.
346   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
347                                    Value *Step, Instruction *DL);
348   /// Copy and widen the instructions from the old loop.
349   virtual void vectorizeLoop();
350 
351   /// Fix a first-order recurrence. This is the second phase of vectorizing
352   /// this phi node.
353   void fixFirstOrderRecurrence(PHINode *Phi);
354 
355   /// \brief The Loop exit block may have single value PHI nodes where the
356   /// incoming value is 'Undef'. While vectorizing we only handled real values
357   /// that were defined inside the loop. Here we fix the 'undef case'.
358   /// See PR14725.
359   void fixLCSSAPHIs();
360 
361   /// Shrinks vector element sizes based on information in "MinBWs".
362   void truncateToMinimalBitwidths();
363 
364   /// A helper function that computes the predicate of the block BB, assuming
365   /// that the header block of the loop is set to True. It returns the *entry*
366   /// mask for the block BB.
367   VectorParts createBlockInMask(BasicBlock *BB);
368   /// A helper function that computes the predicate of the edge between SRC
369   /// and DST.
370   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
371 
372   /// A helper function to vectorize a single BB within the innermost loop.
373   void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
374 
375   /// Vectorize a single PHINode in a block. This method handles the induction
376   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
377   /// arbitrary length vectors.
378   void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF,
379                            unsigned VF, PhiVector *PV);
380 
381   /// Insert the new loop to the loop hierarchy and pass manager
382   /// and update the analysis passes.
383   void updateAnalysis();
384 
385   /// This instruction is un-vectorizable. Implement it as a sequence
386   /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
387   /// scalarized instruction behind an if block predicated on the control
388   /// dependence of the instruction.
389   virtual void scalarizeInstruction(Instruction *Instr,
390                                     bool IfPredicateStore = false);
391 
392   /// Vectorize Load and Store instructions,
393   virtual void vectorizeMemoryInstruction(Instruction *Instr);
394 
395   /// Create a broadcast instruction. This method generates a broadcast
396   /// instruction (shuffle) for loop invariant values and for the induction
397   /// value. If this is the induction variable then we extend it to N, N+1, ...
398   /// this is needed because each iteration in the loop corresponds to a SIMD
399   /// element.
400   virtual Value *getBroadcastInstrs(Value *V);
401 
402   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
403   /// to each vector element of Val. The sequence starts at StartIndex.
404   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
405 
406   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
407   /// variable on which to base the steps, \p Step is the size of the step, and
408   /// \p EntryVal is the value from the original loop that maps to the steps.
409   /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it
410   /// can be a truncate instruction).
411   void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal);
412 
413   /// Create a vector induction phi node based on an existing scalar one. This
414   /// currently only works for integer induction variables with a constant
415   /// step. If \p TruncType is non-null, instead of widening the original IV,
416   /// we widen a version of the IV truncated to \p TruncType.
417   void createVectorIntInductionPHI(const InductionDescriptor &II,
418                                    VectorParts &Entry, IntegerType *TruncType);
419 
420   /// Widen an integer induction variable \p IV. If \p Trunc is provided, the
421   /// induction variable will first be truncated to the corresponding type. The
422   /// widened values are placed in \p Entry.
423   void widenIntInduction(PHINode *IV, VectorParts &Entry,
424                          TruncInst *Trunc = nullptr);
425 
426   /// When we go over instructions in the basic block we rely on previous
427   /// values within the current basic block or on loop invariant values.
428   /// When we widen (vectorize) values we place them in the map. If the values
429   /// are not within the map, they have to be loop invariant, so we simply
430   /// broadcast them into a vector.
431   VectorParts &getVectorValue(Value *V);
432 
433   /// Try to vectorize the interleaved access group that \p Instr belongs to.
434   void vectorizeInterleaveGroup(Instruction *Instr);
435 
436   /// Generate a shuffle sequence that will reverse the vector Vec.
437   virtual Value *reverseVector(Value *Vec);
438 
439   /// Returns (and creates if needed) the original loop trip count.
440   Value *getOrCreateTripCount(Loop *NewLoop);
441 
442   /// Returns (and creates if needed) the trip count of the widened loop.
443   Value *getOrCreateVectorTripCount(Loop *NewLoop);
444 
445   /// Emit a bypass check to see if the trip count would overflow, or we
446   /// wouldn't have enough iterations to execute one vector loop.
447   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
448   /// Emit a bypass check to see if the vector trip count is nonzero.
449   void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
450   /// Emit a bypass check to see if all of the SCEV assumptions we've
451   /// had to make are correct.
452   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
453   /// Emit bypass checks to check any memory assumptions we may have made.
454   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
455 
456   /// Add additional metadata to \p To that was not present on \p Orig.
457   ///
458   /// Currently this is used to add the noalias annotations based on the
459   /// inserted memchecks.  Use this for instructions that are *cloned* into the
460   /// vector loop.
461   void addNewMetadata(Instruction *To, const Instruction *Orig);
462 
463   /// Add metadata from one instruction to another.
464   ///
465   /// This includes both the original MDs from \p From and additional ones (\see
466   /// addNewMetadata).  Use this for *newly created* instructions in the vector
467   /// loop.
468   void addMetadata(Instruction *To, Instruction *From);
469 
470   /// \brief Similar to the previous function but it adds the metadata to a
471   /// vector of instructions.
472   void addMetadata(ArrayRef<Value *> To, Instruction *From);
473 
474   /// This is a helper class that holds the vectorizer state. It maps scalar
475   /// instructions to vector instructions. When the code is 'unrolled' then
476   /// then a single scalar value is mapped to multiple vector parts. The parts
477   /// are stored in the VectorPart type.
478   struct ValueMap {
479     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
480     /// are mapped.
ValueMap__anonfb91178e0111::InnerLoopVectorizer::ValueMap481     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
482 
483     /// \return True if 'Key' is saved in the Value Map.
has__anonfb91178e0111::InnerLoopVectorizer::ValueMap484     bool has(Value *Key) const { return MapStorage.count(Key); }
485 
486     /// Initializes a new entry in the map. Sets all of the vector parts to the
487     /// save value in 'Val'.
488     /// \return A reference to a vector with splat values.
splat__anonfb91178e0111::InnerLoopVectorizer::ValueMap489     VectorParts &splat(Value *Key, Value *Val) {
490       VectorParts &Entry = MapStorage[Key];
491       Entry.assign(UF, Val);
492       return Entry;
493     }
494 
495     ///\return A reference to the value that is stored at 'Key'.
get__anonfb91178e0111::InnerLoopVectorizer::ValueMap496     VectorParts &get(Value *Key) {
497       VectorParts &Entry = MapStorage[Key];
498       if (Entry.empty())
499         Entry.resize(UF);
500       assert(Entry.size() == UF);
501       return Entry;
502     }
503 
504   private:
505     /// The unroll factor. Each entry in the map stores this number of vector
506     /// elements.
507     unsigned UF;
508 
509     /// Map storage. We use std::map and not DenseMap because insertions to a
510     /// dense map invalidates its iterators.
511     std::map<Value *, VectorParts> MapStorage;
512   };
513 
514   /// The original loop.
515   Loop *OrigLoop;
516   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
517   /// dynamic knowledge to simplify SCEV expressions and converts them to a
518   /// more usable form.
519   PredicatedScalarEvolution &PSE;
520   /// Loop Info.
521   LoopInfo *LI;
522   /// Dominator Tree.
523   DominatorTree *DT;
524   /// Alias Analysis.
525   AliasAnalysis *AA;
526   /// Target Library Info.
527   const TargetLibraryInfo *TLI;
528   /// Target Transform Info.
529   const TargetTransformInfo *TTI;
530   /// Assumption Cache.
531   AssumptionCache *AC;
532 
533   /// \brief LoopVersioning.  It's only set up (non-null) if memchecks were
534   /// used.
535   ///
536   /// This is currently only used to add no-alias metadata based on the
537   /// memchecks.  The actually versioning is performed manually.
538   std::unique_ptr<LoopVersioning> LVer;
539 
540   /// The vectorization SIMD factor to use. Each vector will have this many
541   /// vector elements.
542   unsigned VF;
543 
544 protected:
545   /// The vectorization unroll factor to use. Each scalar is vectorized to this
546   /// many different vector instructions.
547   unsigned UF;
548 
549   /// The builder that we use
550   IRBuilder<> Builder;
551 
552   // --- Vectorization state ---
553 
554   /// The vector-loop preheader.
555   BasicBlock *LoopVectorPreHeader;
556   /// The scalar-loop preheader.
557   BasicBlock *LoopScalarPreHeader;
558   /// Middle Block between the vector and the scalar.
559   BasicBlock *LoopMiddleBlock;
560   /// The ExitBlock of the scalar loop.
561   BasicBlock *LoopExitBlock;
562   /// The vector loop body.
563   BasicBlock *LoopVectorBody;
564   /// The scalar loop body.
565   BasicBlock *LoopScalarBody;
566   /// A list of all bypass blocks. The first block is the entry of the loop.
567   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
568 
569   /// The new Induction variable which was added to the new block.
570   PHINode *Induction;
571   /// The induction variable of the old basic block.
572   PHINode *OldInduction;
573   /// Maps scalars to widened vectors.
574   ValueMap WidenMap;
575 
576   /// A map of induction variables from the original loop to their
577   /// corresponding VF * UF scalarized values in the vectorized loop. The
578   /// purpose of ScalarIVMap is similar to that of WidenMap. Whereas WidenMap
579   /// maps original loop values to their vector versions in the new loop,
580   /// ScalarIVMap maps induction variables from the original loop that are not
581   /// vectorized to their scalar equivalents in the vector loop. Maintaining a
582   /// separate map for scalarized induction variables allows us to avoid
583   /// unnecessary scalar-to-vector-to-scalar conversions.
584   DenseMap<Value *, SmallVector<Value *, 8>> ScalarIVMap;
585 
586   /// Store instructions that should be predicated, as a pair
587   ///   <StoreInst, Predicate>
588   SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores;
589   EdgeMaskCache MaskCache;
590   /// Trip count of the original loop.
591   Value *TripCount;
592   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
593   Value *VectorTripCount;
594 
595   /// Map of scalar integer values to the smallest bitwidth they can be legally
596   /// represented as. The vector equivalents of these values should be truncated
597   /// to this type.
598   const MapVector<Instruction *, uint64_t> *MinBWs;
599 
600   /// A set of values that should not be widened. This is taken from
601   /// VecValuesToIgnore in the cost model.
602   SmallPtrSetImpl<const Value *> *ValuesNotWidened;
603 
604   LoopVectorizationLegality *Legal;
605 
606   // Record whether runtime checks are added.
607   bool AddedSafetyChecks;
608 };
609 
610 class InnerLoopUnroller : public InnerLoopVectorizer {
611 public:
InnerLoopUnroller(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,unsigned UnrollFactor)612   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
613                     LoopInfo *LI, DominatorTree *DT,
614                     const TargetLibraryInfo *TLI,
615                     const TargetTransformInfo *TTI, AssumptionCache *AC,
616                     unsigned UnrollFactor)
617       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1,
618                             UnrollFactor) {}
619 
620 private:
621   void scalarizeInstruction(Instruction *Instr,
622                             bool IfPredicateStore = false) override;
623   void vectorizeMemoryInstruction(Instruction *Instr) override;
624   Value *getBroadcastInstrs(Value *V) override;
625   Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
626   Value *reverseVector(Value *Vec) override;
627 };
628 
629 /// \brief Look for a meaningful debug location on the instruction or it's
630 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)631 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
632   if (!I)
633     return I;
634 
635   DebugLoc Empty;
636   if (I->getDebugLoc() != Empty)
637     return I;
638 
639   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
640     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
641       if (OpInst->getDebugLoc() != Empty)
642         return OpInst;
643   }
644 
645   return I;
646 }
647 
648 /// \brief Set the debug location in the builder using the debug location in the
649 /// instruction.
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)650 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
651   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
652     B.SetCurrentDebugLocation(Inst->getDebugLoc());
653   else
654     B.SetCurrentDebugLocation(DebugLoc());
655 }
656 
657 #ifndef NDEBUG
658 /// \return string containing a file name and a line # for the given loop.
getDebugLocString(const Loop * L)659 static std::string getDebugLocString(const Loop *L) {
660   std::string Result;
661   if (L) {
662     raw_string_ostream OS(Result);
663     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
664       LoopDbgLoc.print(OS);
665     else
666       // Just print the module name.
667       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
668     OS.flush();
669   }
670   return Result;
671 }
672 #endif
673 
addNewMetadata(Instruction * To,const Instruction * Orig)674 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
675                                          const Instruction *Orig) {
676   // If the loop was versioned with memchecks, add the corresponding no-alias
677   // metadata.
678   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
679     LVer->annotateInstWithNoAlias(To, Orig);
680 }
681 
addMetadata(Instruction * To,Instruction * From)682 void InnerLoopVectorizer::addMetadata(Instruction *To,
683                                       Instruction *From) {
684   propagateMetadata(To, From);
685   addNewMetadata(To, From);
686 }
687 
addMetadata(ArrayRef<Value * > To,Instruction * From)688 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
689                                       Instruction *From) {
690   for (Value *V : To) {
691     if (Instruction *I = dyn_cast<Instruction>(V))
692       addMetadata(I, From);
693   }
694 }
695 
696 /// \brief The group of interleaved loads/stores sharing the same stride and
697 /// close to each other.
698 ///
699 /// Each member in this group has an index starting from 0, and the largest
700 /// index should be less than interleaved factor, which is equal to the absolute
701 /// value of the access's stride.
702 ///
703 /// E.g. An interleaved load group of factor 4:
704 ///        for (unsigned i = 0; i < 1024; i+=4) {
705 ///          a = A[i];                           // Member of index 0
706 ///          b = A[i+1];                         // Member of index 1
707 ///          d = A[i+3];                         // Member of index 3
708 ///          ...
709 ///        }
710 ///
711 ///      An interleaved store group of factor 4:
712 ///        for (unsigned i = 0; i < 1024; i+=4) {
713 ///          ...
714 ///          A[i]   = a;                         // Member of index 0
715 ///          A[i+1] = b;                         // Member of index 1
716 ///          A[i+2] = c;                         // Member of index 2
717 ///          A[i+3] = d;                         // Member of index 3
718 ///        }
719 ///
720 /// Note: the interleaved load group could have gaps (missing members), but
721 /// the interleaved store group doesn't allow gaps.
722 class InterleaveGroup {
723 public:
InterleaveGroup(Instruction * Instr,int Stride,unsigned Align)724   InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
725       : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
726     assert(Align && "The alignment should be non-zero");
727 
728     Factor = std::abs(Stride);
729     assert(Factor > 1 && "Invalid interleave factor");
730 
731     Reverse = Stride < 0;
732     Members[0] = Instr;
733   }
734 
isReverse() const735   bool isReverse() const { return Reverse; }
getFactor() const736   unsigned getFactor() const { return Factor; }
getAlignment() const737   unsigned getAlignment() const { return Align; }
getNumMembers() const738   unsigned getNumMembers() const { return Members.size(); }
739 
740   /// \brief Try to insert a new member \p Instr with index \p Index and
741   /// alignment \p NewAlign. The index is related to the leader and it could be
742   /// negative if it is the new leader.
743   ///
744   /// \returns false if the instruction doesn't belong to the group.
insertMember(Instruction * Instr,int Index,unsigned NewAlign)745   bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
746     assert(NewAlign && "The new member's alignment should be non-zero");
747 
748     int Key = Index + SmallestKey;
749 
750     // Skip if there is already a member with the same index.
751     if (Members.count(Key))
752       return false;
753 
754     if (Key > LargestKey) {
755       // The largest index is always less than the interleave factor.
756       if (Index >= static_cast<int>(Factor))
757         return false;
758 
759       LargestKey = Key;
760     } else if (Key < SmallestKey) {
761       // The largest index is always less than the interleave factor.
762       if (LargestKey - Key >= static_cast<int>(Factor))
763         return false;
764 
765       SmallestKey = Key;
766     }
767 
768     // It's always safe to select the minimum alignment.
769     Align = std::min(Align, NewAlign);
770     Members[Key] = Instr;
771     return true;
772   }
773 
774   /// \brief Get the member with the given index \p Index
775   ///
776   /// \returns nullptr if contains no such member.
getMember(unsigned Index) const777   Instruction *getMember(unsigned Index) const {
778     int Key = SmallestKey + Index;
779     if (!Members.count(Key))
780       return nullptr;
781 
782     return Members.find(Key)->second;
783   }
784 
785   /// \brief Get the index for the given member. Unlike the key in the member
786   /// map, the index starts from 0.
getIndex(Instruction * Instr) const787   unsigned getIndex(Instruction *Instr) const {
788     for (auto I : Members)
789       if (I.second == Instr)
790         return I.first - SmallestKey;
791 
792     llvm_unreachable("InterleaveGroup contains no such member");
793   }
794 
getInsertPos() const795   Instruction *getInsertPos() const { return InsertPos; }
setInsertPos(Instruction * Inst)796   void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
797 
798 private:
799   unsigned Factor; // Interleave Factor.
800   bool Reverse;
801   unsigned Align;
802   DenseMap<int, Instruction *> Members;
803   int SmallestKey;
804   int LargestKey;
805 
806   // To avoid breaking dependences, vectorized instructions of an interleave
807   // group should be inserted at either the first load or the last store in
808   // program order.
809   //
810   // E.g. %even = load i32             // Insert Position
811   //      %add = add i32 %even         // Use of %even
812   //      %odd = load i32
813   //
814   //      store i32 %even
815   //      %odd = add i32               // Def of %odd
816   //      store i32 %odd               // Insert Position
817   Instruction *InsertPos;
818 };
819 
820 /// \brief Drive the analysis of interleaved memory accesses in the loop.
821 ///
822 /// Use this class to analyze interleaved accesses only when we can vectorize
823 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
824 /// on interleaved accesses is unsafe.
825 ///
826 /// The analysis collects interleave groups and records the relationships
827 /// between the member and the group in a map.
828 class InterleavedAccessInfo {
829 public:
InterleavedAccessInfo(PredicatedScalarEvolution & PSE,Loop * L,DominatorTree * DT,LoopInfo * LI)830   InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
831                         DominatorTree *DT, LoopInfo *LI)
832       : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr),
833         RequiresScalarEpilogue(false) {}
834 
~InterleavedAccessInfo()835   ~InterleavedAccessInfo() {
836     SmallSet<InterleaveGroup *, 4> DelSet;
837     // Avoid releasing a pointer twice.
838     for (auto &I : InterleaveGroupMap)
839       DelSet.insert(I.second);
840     for (auto *Ptr : DelSet)
841       delete Ptr;
842   }
843 
844   /// \brief Analyze the interleaved accesses and collect them in interleave
845   /// groups. Substitute symbolic strides using \p Strides.
846   void analyzeInterleaving(const ValueToValueMap &Strides);
847 
848   /// \brief Check if \p Instr belongs to any interleave group.
isInterleaved(Instruction * Instr) const849   bool isInterleaved(Instruction *Instr) const {
850     return InterleaveGroupMap.count(Instr);
851   }
852 
853   /// \brief Return the maximum interleave factor of all interleaved groups.
getMaxInterleaveFactor() const854   unsigned getMaxInterleaveFactor() const {
855     unsigned MaxFactor = 1;
856     for (auto &Entry : InterleaveGroupMap)
857       MaxFactor = std::max(MaxFactor, Entry.second->getFactor());
858     return MaxFactor;
859   }
860 
861   /// \brief Get the interleave group that \p Instr belongs to.
862   ///
863   /// \returns nullptr if doesn't have such group.
getInterleaveGroup(Instruction * Instr) const864   InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
865     if (InterleaveGroupMap.count(Instr))
866       return InterleaveGroupMap.find(Instr)->second;
867     return nullptr;
868   }
869 
870   /// \brief Returns true if an interleaved group that may access memory
871   /// out-of-bounds requires a scalar epilogue iteration for correctness.
requiresScalarEpilogue() const872   bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
873 
874   /// \brief Initialize the LoopAccessInfo used for dependence checking.
setLAI(const LoopAccessInfo * Info)875   void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
876 
877 private:
878   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
879   /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
880   /// The interleaved access analysis can also add new predicates (for example
881   /// by versioning strides of pointers).
882   PredicatedScalarEvolution &PSE;
883   Loop *TheLoop;
884   DominatorTree *DT;
885   LoopInfo *LI;
886   const LoopAccessInfo *LAI;
887 
888   /// True if the loop may contain non-reversed interleaved groups with
889   /// out-of-bounds accesses. We ensure we don't speculatively access memory
890   /// out-of-bounds by executing at least one scalar epilogue iteration.
891   bool RequiresScalarEpilogue;
892 
893   /// Holds the relationships between the members and the interleave group.
894   DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
895 
896   /// Holds dependences among the memory accesses in the loop. It maps a source
897   /// access to a set of dependent sink accesses.
898   DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
899 
900   /// \brief The descriptor for a strided memory access.
901   struct StrideDescriptor {
StrideDescriptor__anonfb91178e0111::InterleavedAccessInfo::StrideDescriptor902     StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
903                      unsigned Align)
904         : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
905 
906     StrideDescriptor() = default;
907 
908     // The access's stride. It is negative for a reverse access.
909     int64_t Stride = 0;
910     const SCEV *Scev = nullptr; // The scalar expression of this access
911     uint64_t Size = 0;          // The size of the memory object.
912     unsigned Align = 0;         // The alignment of this access.
913   };
914 
915   /// \brief A type for holding instructions and their stride descriptors.
916   typedef std::pair<Instruction *, StrideDescriptor> StrideEntry;
917 
918   /// \brief Create a new interleave group with the given instruction \p Instr,
919   /// stride \p Stride and alignment \p Align.
920   ///
921   /// \returns the newly created interleave group.
createInterleaveGroup(Instruction * Instr,int Stride,unsigned Align)922   InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
923                                          unsigned Align) {
924     assert(!InterleaveGroupMap.count(Instr) &&
925            "Already in an interleaved access group");
926     InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
927     return InterleaveGroupMap[Instr];
928   }
929 
930   /// \brief Release the group and remove all the relationships.
releaseGroup(InterleaveGroup * Group)931   void releaseGroup(InterleaveGroup *Group) {
932     for (unsigned i = 0; i < Group->getFactor(); i++)
933       if (Instruction *Member = Group->getMember(i))
934         InterleaveGroupMap.erase(Member);
935 
936     delete Group;
937   }
938 
939   /// \brief Collect all the accesses with a constant stride in program order.
940   void collectConstStrideAccesses(
941       MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
942       const ValueToValueMap &Strides);
943 
944   /// \brief Returns true if \p Stride is allowed in an interleaved group.
isStrided(int Stride)945   static bool isStrided(int Stride) {
946     unsigned Factor = std::abs(Stride);
947     return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
948   }
949 
950   /// \brief Returns true if \p BB is a predicated block.
isPredicated(BasicBlock * BB) const951   bool isPredicated(BasicBlock *BB) const {
952     return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
953   }
954 
955   /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
areDependencesValid() const956   bool areDependencesValid() const {
957     return LAI && LAI->getDepChecker().getDependences();
958   }
959 
960   /// \brief Returns true if memory accesses \p B and \p A can be reordered, if
961   /// necessary, when constructing interleaved groups.
962   ///
963   /// \p B must precede \p A in program order. We return false if reordering is
964   /// not necessary or is prevented because \p B and \p A may be dependent.
canReorderMemAccessesForInterleavedGroups(StrideEntry * B,StrideEntry * A) const965   bool canReorderMemAccessesForInterleavedGroups(StrideEntry *B,
966                                                  StrideEntry *A) const {
967 
968     // Code motion for interleaved accesses can potentially hoist strided loads
969     // and sink strided stores. The code below checks the legality of the
970     // following two conditions:
971     //
972     // 1. Potentially moving a strided load (A) before any store (B) that
973     //    precedes A, or
974     //
975     // 2. Potentially moving a strided store (B) after any load or store (A)
976     //    that B precedes.
977     //
978     // It's legal to reorder B and A if we know there isn't a dependence from B
979     // to A. Note that this determination is conservative since some
980     // dependences could potentially be reordered safely.
981 
982     // B is potentially the source of a dependence.
983     auto *Src = B->first;
984     auto SrcDes = B->second;
985 
986     // A is potentially the sink of a dependence.
987     auto *Sink = A->first;
988     auto SinkDes = A->second;
989 
990     // Code motion for interleaved accesses can't violate WAR dependences.
991     // Thus, reordering is legal if the source isn't a write.
992     if (!Src->mayWriteToMemory())
993       return true;
994 
995     // At least one of the accesses must be strided.
996     if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
997       return true;
998 
999     // If dependence information is not available from LoopAccessInfo,
1000     // conservatively assume the instructions can't be reordered.
1001     if (!areDependencesValid())
1002       return false;
1003 
1004     // If we know there is a dependence from source to sink, assume the
1005     // instructions can't be reordered. Otherwise, reordering is legal.
1006     return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1007   }
1008 
1009   /// \brief Collect the dependences from LoopAccessInfo.
1010   ///
1011   /// We process the dependences once during the interleaved access analysis to
1012   /// enable constant-time dependence queries.
collectDependences()1013   void collectDependences() {
1014     if (!areDependencesValid())
1015       return;
1016     auto *Deps = LAI->getDepChecker().getDependences();
1017     for (auto Dep : *Deps)
1018       Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1019   }
1020 };
1021 
1022 /// Utility class for getting and setting loop vectorizer hints in the form
1023 /// of loop metadata.
1024 /// This class keeps a number of loop annotations locally (as member variables)
1025 /// and can, upon request, write them back as metadata on the loop. It will
1026 /// initially scan the loop for existing metadata, and will update the local
1027 /// values based on information in the loop.
1028 /// We cannot write all values to metadata, as the mere presence of some info,
1029 /// for example 'force', means a decision has been made. So, we need to be
1030 /// careful NOT to add them if the user hasn't specifically asked so.
1031 class LoopVectorizeHints {
1032   enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE };
1033 
1034   /// Hint - associates name and validation with the hint value.
1035   struct Hint {
1036     const char *Name;
1037     unsigned Value; // This may have to change for non-numeric values.
1038     HintKind Kind;
1039 
Hint__anonfb91178e0111::LoopVectorizeHints::Hint1040     Hint(const char *Name, unsigned Value, HintKind Kind)
1041         : Name(Name), Value(Value), Kind(Kind) {}
1042 
validate__anonfb91178e0111::LoopVectorizeHints::Hint1043     bool validate(unsigned Val) {
1044       switch (Kind) {
1045       case HK_WIDTH:
1046         return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1047       case HK_UNROLL:
1048         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1049       case HK_FORCE:
1050         return (Val <= 1);
1051       }
1052       return false;
1053     }
1054   };
1055 
1056   /// Vectorization width.
1057   Hint Width;
1058   /// Vectorization interleave factor.
1059   Hint Interleave;
1060   /// Vectorization forced
1061   Hint Force;
1062 
1063   /// Return the loop metadata prefix.
Prefix()1064   static StringRef Prefix() { return "llvm.loop."; }
1065 
1066   /// True if there is any unsafe math in the loop.
1067   bool PotentiallyUnsafe;
1068 
1069 public:
1070   enum ForceKind {
1071     FK_Undefined = -1, ///< Not selected.
1072     FK_Disabled = 0,   ///< Forcing disabled.
1073     FK_Enabled = 1,    ///< Forcing enabled.
1074   };
1075 
LoopVectorizeHints(const Loop * L,bool DisableInterleaving)1076   LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1077       : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1078               HK_WIDTH),
1079         Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1080         Force("vectorize.enable", FK_Undefined, HK_FORCE),
1081         PotentiallyUnsafe(false), TheLoop(L) {
1082     // Populate values with existing loop metadata.
1083     getHintsFromMetadata();
1084 
1085     // force-vector-interleave overrides DisableInterleaving.
1086     if (VectorizerParams::isInterleaveForced())
1087       Interleave.Value = VectorizerParams::VectorizationInterleave;
1088 
1089     DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1090           << "LV: Interleaving disabled by the pass manager\n");
1091   }
1092 
1093   /// Mark the loop L as already vectorized by setting the width to 1.
setAlreadyVectorized()1094   void setAlreadyVectorized() {
1095     Width.Value = Interleave.Value = 1;
1096     Hint Hints[] = {Width, Interleave};
1097     writeHintsToMetadata(Hints);
1098   }
1099 
allowVectorization(Function * F,Loop * L,bool AlwaysVectorize) const1100   bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1101     if (getForce() == LoopVectorizeHints::FK_Disabled) {
1102       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1103       emitOptimizationRemarkAnalysis(F->getContext(),
1104                                      vectorizeAnalysisPassName(), *F,
1105                                      L->getStartLoc(), emitRemark());
1106       return false;
1107     }
1108 
1109     if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1110       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1111       emitOptimizationRemarkAnalysis(F->getContext(),
1112                                      vectorizeAnalysisPassName(), *F,
1113                                      L->getStartLoc(), emitRemark());
1114       return false;
1115     }
1116 
1117     if (getWidth() == 1 && getInterleave() == 1) {
1118       // FIXME: Add a separate metadata to indicate when the loop has already
1119       // been vectorized instead of setting width and count to 1.
1120       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1121       // FIXME: Add interleave.disable metadata. This will allow
1122       // vectorize.disable to be used without disabling the pass and errors
1123       // to differentiate between disabled vectorization and a width of 1.
1124       emitOptimizationRemarkAnalysis(
1125           F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
1126           "loop not vectorized: vectorization and interleaving are explicitly "
1127           "disabled, or vectorize width and interleave count are both set to "
1128           "1");
1129       return false;
1130     }
1131 
1132     return true;
1133   }
1134 
1135   /// Dumps all the hint information.
emitRemark() const1136   std::string emitRemark() const {
1137     VectorizationReport R;
1138     if (Force.Value == LoopVectorizeHints::FK_Disabled)
1139       R << "vectorization is explicitly disabled";
1140     else {
1141       R << "use -Rpass-analysis=loop-vectorize for more info";
1142       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1143         R << " (Force=true";
1144         if (Width.Value != 0)
1145           R << ", Vector Width=" << Width.Value;
1146         if (Interleave.Value != 0)
1147           R << ", Interleave Count=" << Interleave.Value;
1148         R << ")";
1149       }
1150     }
1151 
1152     return R.str();
1153   }
1154 
getWidth() const1155   unsigned getWidth() const { return Width.Value; }
getInterleave() const1156   unsigned getInterleave() const { return Interleave.Value; }
getForce() const1157   enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1158 
1159   /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1160   /// pass name to force the frontend to print the diagnostic.
vectorizeAnalysisPassName() const1161   const char *vectorizeAnalysisPassName() const {
1162     if (getWidth() == 1)
1163       return LV_NAME;
1164     if (getForce() == LoopVectorizeHints::FK_Disabled)
1165       return LV_NAME;
1166     if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1167       return LV_NAME;
1168     return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint;
1169   }
1170 
allowReordering() const1171   bool allowReordering() const {
1172     // When enabling loop hints are provided we allow the vectorizer to change
1173     // the order of operations that is given by the scalar loop. This is not
1174     // enabled by default because can be unsafe or inefficient. For example,
1175     // reordering floating-point operations will change the way round-off
1176     // error accumulates in the loop.
1177     return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1178   }
1179 
isPotentiallyUnsafe() const1180   bool isPotentiallyUnsafe() const {
1181     // Avoid FP vectorization if the target is unsure about proper support.
1182     // This may be related to the SIMD unit in the target not handling
1183     // IEEE 754 FP ops properly, or bad single-to-double promotions.
1184     // Otherwise, a sequence of vectorized loops, even without reduction,
1185     // could lead to different end results on the destination vectors.
1186     return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1187   }
1188 
setPotentiallyUnsafe()1189   void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1190 
1191 private:
1192   /// Find hints specified in the loop metadata and update local values.
getHintsFromMetadata()1193   void getHintsFromMetadata() {
1194     MDNode *LoopID = TheLoop->getLoopID();
1195     if (!LoopID)
1196       return;
1197 
1198     // First operand should refer to the loop id itself.
1199     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1200     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1201 
1202     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1203       const MDString *S = nullptr;
1204       SmallVector<Metadata *, 4> Args;
1205 
1206       // The expected hint is either a MDString or a MDNode with the first
1207       // operand a MDString.
1208       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1209         if (!MD || MD->getNumOperands() == 0)
1210           continue;
1211         S = dyn_cast<MDString>(MD->getOperand(0));
1212         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1213           Args.push_back(MD->getOperand(i));
1214       } else {
1215         S = dyn_cast<MDString>(LoopID->getOperand(i));
1216         assert(Args.size() == 0 && "too many arguments for MDString");
1217       }
1218 
1219       if (!S)
1220         continue;
1221 
1222       // Check if the hint starts with the loop metadata prefix.
1223       StringRef Name = S->getString();
1224       if (Args.size() == 1)
1225         setHint(Name, Args[0]);
1226     }
1227   }
1228 
1229   /// Checks string hint with one operand and set value if valid.
setHint(StringRef Name,Metadata * Arg)1230   void setHint(StringRef Name, Metadata *Arg) {
1231     if (!Name.startswith(Prefix()))
1232       return;
1233     Name = Name.substr(Prefix().size(), StringRef::npos);
1234 
1235     const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1236     if (!C)
1237       return;
1238     unsigned Val = C->getZExtValue();
1239 
1240     Hint *Hints[] = {&Width, &Interleave, &Force};
1241     for (auto H : Hints) {
1242       if (Name == H->Name) {
1243         if (H->validate(Val))
1244           H->Value = Val;
1245         else
1246           DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1247         break;
1248       }
1249     }
1250   }
1251 
1252   /// Create a new hint from name / value pair.
createHintMetadata(StringRef Name,unsigned V) const1253   MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1254     LLVMContext &Context = TheLoop->getHeader()->getContext();
1255     Metadata *MDs[] = {MDString::get(Context, Name),
1256                        ConstantAsMetadata::get(
1257                            ConstantInt::get(Type::getInt32Ty(Context), V))};
1258     return MDNode::get(Context, MDs);
1259   }
1260 
1261   /// Matches metadata with hint name.
matchesHintMetadataName(MDNode * Node,ArrayRef<Hint> HintTypes)1262   bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1263     MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1264     if (!Name)
1265       return false;
1266 
1267     for (auto H : HintTypes)
1268       if (Name->getString().endswith(H.Name))
1269         return true;
1270     return false;
1271   }
1272 
1273   /// Sets current hints into loop metadata, keeping other values intact.
writeHintsToMetadata(ArrayRef<Hint> HintTypes)1274   void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1275     if (HintTypes.size() == 0)
1276       return;
1277 
1278     // Reserve the first element to LoopID (see below).
1279     SmallVector<Metadata *, 4> MDs(1);
1280     // If the loop already has metadata, then ignore the existing operands.
1281     MDNode *LoopID = TheLoop->getLoopID();
1282     if (LoopID) {
1283       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1284         MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1285         // If node in update list, ignore old value.
1286         if (!matchesHintMetadataName(Node, HintTypes))
1287           MDs.push_back(Node);
1288       }
1289     }
1290 
1291     // Now, add the missing hints.
1292     for (auto H : HintTypes)
1293       MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1294 
1295     // Replace current metadata node with new one.
1296     LLVMContext &Context = TheLoop->getHeader()->getContext();
1297     MDNode *NewLoopID = MDNode::get(Context, MDs);
1298     // Set operand 0 to refer to the loop id itself.
1299     NewLoopID->replaceOperandWith(0, NewLoopID);
1300 
1301     TheLoop->setLoopID(NewLoopID);
1302   }
1303 
1304   /// The loop these hints belong to.
1305   const Loop *TheLoop;
1306 };
1307 
emitAnalysisDiag(const Function * TheFunction,const Loop * TheLoop,const LoopVectorizeHints & Hints,const LoopAccessReport & Message)1308 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
1309                              const LoopVectorizeHints &Hints,
1310                              const LoopAccessReport &Message) {
1311   const char *Name = Hints.vectorizeAnalysisPassName();
1312   LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
1313 }
1314 
emitMissedWarning(Function * F,Loop * L,const LoopVectorizeHints & LH)1315 static void emitMissedWarning(Function *F, Loop *L,
1316                               const LoopVectorizeHints &LH) {
1317   emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1318                                LH.emitRemark());
1319 
1320   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1321     if (LH.getWidth() != 1)
1322       emitLoopVectorizeWarning(
1323           F->getContext(), *F, L->getStartLoc(),
1324           "failed explicitly specified loop vectorization");
1325     else if (LH.getInterleave() != 1)
1326       emitLoopInterleaveWarning(
1327           F->getContext(), *F, L->getStartLoc(),
1328           "failed explicitly specified loop interleaving");
1329   }
1330 }
1331 
1332 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1333 /// to what vectorization factor.
1334 /// This class does not look at the profitability of vectorization, only the
1335 /// legality. This class has two main kinds of checks:
1336 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1337 ///   will change the order of memory accesses in a way that will change the
1338 ///   correctness of the program.
1339 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1340 /// checks for a number of different conditions, such as the availability of a
1341 /// single induction variable, that all types are supported and vectorize-able,
1342 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1343 /// This class is also used by InnerLoopVectorizer for identifying
1344 /// induction variable and the different reduction variables.
1345 class LoopVectorizationLegality {
1346 public:
LoopVectorizationLegality(Loop * L,PredicatedScalarEvolution & PSE,DominatorTree * DT,TargetLibraryInfo * TLI,AliasAnalysis * AA,Function * F,const TargetTransformInfo * TTI,std::function<const LoopAccessInfo & (Loop &)> * GetLAA,LoopInfo * LI,LoopVectorizationRequirements * R,LoopVectorizeHints * H)1347   LoopVectorizationLegality(
1348       Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1349       TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1350       const TargetTransformInfo *TTI,
1351       std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1352       LoopVectorizationRequirements *R, LoopVectorizeHints *H)
1353       : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F),
1354         TTI(TTI), DT(DT), GetLAA(GetLAA), LAI(nullptr),
1355         InterleaveInfo(PSE, L, DT, LI), Induction(nullptr),
1356         WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R),
1357         Hints(H) {}
1358 
1359   /// ReductionList contains the reduction descriptors for all
1360   /// of the reductions that were found in the loop.
1361   typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1362 
1363   /// InductionList saves induction variables and maps them to the
1364   /// induction descriptor.
1365   typedef MapVector<PHINode *, InductionDescriptor> InductionList;
1366 
1367   /// RecurrenceSet contains the phi nodes that are recurrences other than
1368   /// inductions and reductions.
1369   typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet;
1370 
1371   /// Returns true if it is legal to vectorize this loop.
1372   /// This does not mean that it is profitable to vectorize this
1373   /// loop, only that it is legal to do so.
1374   bool canVectorize();
1375 
1376   /// Returns the Induction variable.
getInduction()1377   PHINode *getInduction() { return Induction; }
1378 
1379   /// Returns the reduction variables found in the loop.
getReductionVars()1380   ReductionList *getReductionVars() { return &Reductions; }
1381 
1382   /// Returns the induction variables found in the loop.
getInductionVars()1383   InductionList *getInductionVars() { return &Inductions; }
1384 
1385   /// Return the first-order recurrences found in the loop.
getFirstOrderRecurrences()1386   RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1387 
1388   /// Returns the widest induction type.
getWidestInductionType()1389   Type *getWidestInductionType() { return WidestIndTy; }
1390 
1391   /// Returns True if V is an induction variable in this loop.
1392   bool isInductionVariable(const Value *V);
1393 
1394   /// Returns True if PN is a reduction variable in this loop.
isReductionVariable(PHINode * PN)1395   bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1396 
1397   /// Returns True if Phi is a first-order recurrence in this loop.
1398   bool isFirstOrderRecurrence(const PHINode *Phi);
1399 
1400   /// Return true if the block BB needs to be predicated in order for the loop
1401   /// to be vectorized.
1402   bool blockNeedsPredication(BasicBlock *BB);
1403 
1404   /// Check if this pointer is consecutive when vectorizing. This happens
1405   /// when the last index of the GEP is the induction variable, or that the
1406   /// pointer itself is an induction variable.
1407   /// This check allows us to vectorize A[idx] into a wide load/store.
1408   /// Returns:
1409   /// 0 - Stride is unknown or non-consecutive.
1410   /// 1 - Address is consecutive.
1411   /// -1 - Address is consecutive, and decreasing.
1412   int isConsecutivePtr(Value *Ptr);
1413 
1414   /// Returns true if the value V is uniform within the loop.
1415   bool isUniform(Value *V);
1416 
1417   /// Returns true if this instruction will remain scalar after vectorization.
isUniformAfterVectorization(Instruction * I)1418   bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); }
1419 
1420   /// Returns the information that we collected about runtime memory check.
getRuntimePointerChecking() const1421   const RuntimePointerChecking *getRuntimePointerChecking() const {
1422     return LAI->getRuntimePointerChecking();
1423   }
1424 
getLAI() const1425   const LoopAccessInfo *getLAI() const { return LAI; }
1426 
1427   /// \brief Check if \p Instr belongs to any interleaved access group.
isAccessInterleaved(Instruction * Instr)1428   bool isAccessInterleaved(Instruction *Instr) {
1429     return InterleaveInfo.isInterleaved(Instr);
1430   }
1431 
1432   /// \brief Return the maximum interleave factor of all interleaved groups.
getMaxInterleaveFactor() const1433   unsigned getMaxInterleaveFactor() const {
1434     return InterleaveInfo.getMaxInterleaveFactor();
1435   }
1436 
1437   /// \brief Get the interleaved access group that \p Instr belongs to.
getInterleavedAccessGroup(Instruction * Instr)1438   const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1439     return InterleaveInfo.getInterleaveGroup(Instr);
1440   }
1441 
1442   /// \brief Returns true if an interleaved group requires a scalar iteration
1443   /// to handle accesses with gaps.
requiresScalarEpilogue() const1444   bool requiresScalarEpilogue() const {
1445     return InterleaveInfo.requiresScalarEpilogue();
1446   }
1447 
getMaxSafeDepDistBytes()1448   unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1449 
hasStride(Value * V)1450   bool hasStride(Value *V) { return LAI->hasStride(V); }
1451 
1452   /// Returns true if the target machine supports masked store operation
1453   /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedStore(Type * DataType,Value * Ptr)1454   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1455     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1456   }
1457   /// Returns true if the target machine supports masked load operation
1458   /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedLoad(Type * DataType,Value * Ptr)1459   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1460     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1461   }
1462   /// Returns true if the target machine supports masked scatter operation
1463   /// for the given \p DataType.
isLegalMaskedScatter(Type * DataType)1464   bool isLegalMaskedScatter(Type *DataType) {
1465     return TTI->isLegalMaskedScatter(DataType);
1466   }
1467   /// Returns true if the target machine supports masked gather operation
1468   /// for the given \p DataType.
isLegalMaskedGather(Type * DataType)1469   bool isLegalMaskedGather(Type *DataType) {
1470     return TTI->isLegalMaskedGather(DataType);
1471   }
1472 
1473   /// Returns true if vector representation of the instruction \p I
1474   /// requires mask.
isMaskRequired(const Instruction * I)1475   bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
getNumStores() const1476   unsigned getNumStores() const { return LAI->getNumStores(); }
getNumLoads() const1477   unsigned getNumLoads() const { return LAI->getNumLoads(); }
getNumPredStores() const1478   unsigned getNumPredStores() const { return NumPredStores; }
1479 
1480 private:
1481   /// Check if a single basic block loop is vectorizable.
1482   /// At this point we know that this is a loop with a constant trip count
1483   /// and we only need to check individual instructions.
1484   bool canVectorizeInstrs();
1485 
1486   /// When we vectorize loops we may change the order in which
1487   /// we read and write from memory. This method checks if it is
1488   /// legal to vectorize the code, considering only memory constrains.
1489   /// Returns true if the loop is vectorizable
1490   bool canVectorizeMemory();
1491 
1492   /// Return true if we can vectorize this loop using the IF-conversion
1493   /// transformation.
1494   bool canVectorizeWithIfConvert();
1495 
1496   /// Collect the variables that need to stay uniform after vectorization.
1497   void collectLoopUniforms();
1498 
1499   /// Return true if all of the instructions in the block can be speculatively
1500   /// executed. \p SafePtrs is a list of addresses that are known to be legal
1501   /// and we know that we can read from them without segfault.
1502   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1503 
1504   /// Updates the vectorization state by adding \p Phi to the inductions list.
1505   /// This can set \p Phi as the main induction of the loop if \p Phi is a
1506   /// better choice for the main induction than the existing one.
1507   void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1508                        SmallPtrSetImpl<Value *> &AllowedExit);
1509 
1510   /// Report an analysis message to assist the user in diagnosing loops that are
1511   /// not vectorized.  These are handled as LoopAccessReport rather than
1512   /// VectorizationReport because the << operator of VectorizationReport returns
1513   /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message) const1514   void emitAnalysis(const LoopAccessReport &Message) const {
1515     emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1516   }
1517 
1518   /// \brief If an access has a symbolic strides, this maps the pointer value to
1519   /// the stride symbol.
getSymbolicStrides()1520   const ValueToValueMap *getSymbolicStrides() {
1521     // FIXME: Currently, the set of symbolic strides is sometimes queried before
1522     // it's collected.  This happens from canVectorizeWithIfConvert, when the
1523     // pointer is checked to reference consecutive elements suitable for a
1524     // masked access.
1525     return LAI ? &LAI->getSymbolicStrides() : nullptr;
1526   }
1527 
1528   unsigned NumPredStores;
1529 
1530   /// The loop that we evaluate.
1531   Loop *TheLoop;
1532   /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1533   /// Applies dynamic knowledge to simplify SCEV expressions in the context
1534   /// of existing SCEV assumptions. The analysis will also add a minimal set
1535   /// of new predicates if this is required to enable vectorization and
1536   /// unrolling.
1537   PredicatedScalarEvolution &PSE;
1538   /// Target Library Info.
1539   TargetLibraryInfo *TLI;
1540   /// Parent function
1541   Function *TheFunction;
1542   /// Target Transform Info
1543   const TargetTransformInfo *TTI;
1544   /// Dominator Tree.
1545   DominatorTree *DT;
1546   // LoopAccess analysis.
1547   std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1548   // And the loop-accesses info corresponding to this loop.  This pointer is
1549   // null until canVectorizeMemory sets it up.
1550   const LoopAccessInfo *LAI;
1551 
1552   /// The interleave access information contains groups of interleaved accesses
1553   /// with the same stride and close to each other.
1554   InterleavedAccessInfo InterleaveInfo;
1555 
1556   //  ---  vectorization state --- //
1557 
1558   /// Holds the integer induction variable. This is the counter of the
1559   /// loop.
1560   PHINode *Induction;
1561   /// Holds the reduction variables.
1562   ReductionList Reductions;
1563   /// Holds all of the induction variables that we found in the loop.
1564   /// Notice that inductions don't need to start at zero and that induction
1565   /// variables can be pointers.
1566   InductionList Inductions;
1567   /// Holds the phi nodes that are first-order recurrences.
1568   RecurrenceSet FirstOrderRecurrences;
1569   /// Holds the widest induction type encountered.
1570   Type *WidestIndTy;
1571 
1572   /// Allowed outside users. This holds the induction and reduction
1573   /// vars which can be accessed from outside the loop.
1574   SmallPtrSet<Value *, 4> AllowedExit;
1575   /// This set holds the variables which are known to be uniform after
1576   /// vectorization.
1577   SmallPtrSet<Instruction *, 4> Uniforms;
1578 
1579   /// Can we assume the absence of NaNs.
1580   bool HasFunNoNaNAttr;
1581 
1582   /// Vectorization requirements that will go through late-evaluation.
1583   LoopVectorizationRequirements *Requirements;
1584 
1585   /// Used to emit an analysis of any legality issues.
1586   LoopVectorizeHints *Hints;
1587 
1588   /// While vectorizing these instructions we have to generate a
1589   /// call to the appropriate masked intrinsic
1590   SmallPtrSet<const Instruction *, 8> MaskedOp;
1591 };
1592 
1593 /// LoopVectorizationCostModel - estimates the expected speedups due to
1594 /// vectorization.
1595 /// In many cases vectorization is not profitable. This can happen because of
1596 /// a number of reasons. In this class we mainly attempt to predict the
1597 /// expected speedup/slowdowns due to the supported instruction set. We use the
1598 /// TargetTransformInfo to query the different backends for the cost of
1599 /// different operations.
1600 class LoopVectorizationCostModel {
1601 public:
LoopVectorizationCostModel(Loop * L,PredicatedScalarEvolution & PSE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,DemandedBits * DB,AssumptionCache * AC,const Function * F,const LoopVectorizeHints * Hints)1602   LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1603                              LoopInfo *LI, LoopVectorizationLegality *Legal,
1604                              const TargetTransformInfo &TTI,
1605                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1606                              AssumptionCache *AC, const Function *F,
1607                              const LoopVectorizeHints *Hints)
1608       : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1609         AC(AC), TheFunction(F), Hints(Hints) {}
1610 
1611   /// Information about vectorization costs
1612   struct VectorizationFactor {
1613     unsigned Width; // Vector width with best cost
1614     unsigned Cost;  // Cost of the loop with that width
1615   };
1616   /// \return The most profitable vectorization factor and the cost of that VF.
1617   /// This method checks every power of two up to VF. If UserVF is not ZERO
1618   /// then this vectorization factor will be selected if vectorization is
1619   /// possible.
1620   VectorizationFactor selectVectorizationFactor(bool OptForSize);
1621 
1622   /// \return The size (in bits) of the smallest and widest types in the code
1623   /// that needs to be vectorized. We ignore values that remain scalar such as
1624   /// 64 bit loop indices.
1625   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1626 
1627   /// \return The desired interleave count.
1628   /// If interleave count has been specified by metadata it will be returned.
1629   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1630   /// are the selected vectorization factor and the cost of the selected VF.
1631   unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1632                                  unsigned LoopCost);
1633 
1634   /// \return The most profitable unroll factor.
1635   /// This method finds the best unroll-factor based on register pressure and
1636   /// other parameters. VF and LoopCost are the selected vectorization factor
1637   /// and the cost of the selected VF.
1638   unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
1639                                   unsigned LoopCost);
1640 
1641   /// \brief A struct that represents some properties of the register usage
1642   /// of a loop.
1643   struct RegisterUsage {
1644     /// Holds the number of loop invariant values that are used in the loop.
1645     unsigned LoopInvariantRegs;
1646     /// Holds the maximum number of concurrent live intervals in the loop.
1647     unsigned MaxLocalUsers;
1648     /// Holds the number of instructions in the loop.
1649     unsigned NumInstructions;
1650   };
1651 
1652   /// \return Returns information about the register usages of the loop for the
1653   /// given vectorization factors.
1654   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1655 
1656   /// Collect values we want to ignore in the cost model.
1657   void collectValuesToIgnore();
1658 
1659 private:
1660   /// The vectorization cost is a combination of the cost itself and a boolean
1661   /// indicating whether any of the contributing operations will actually
1662   /// operate on
1663   /// vector values after type legalization in the backend. If this latter value
1664   /// is
1665   /// false, then all operations will be scalarized (i.e. no vectorization has
1666   /// actually taken place).
1667   typedef std::pair<unsigned, bool> VectorizationCostTy;
1668 
1669   /// Returns the expected execution cost. The unit of the cost does
1670   /// not matter because we use the 'cost' units to compare different
1671   /// vector widths. The cost that is returned is *not* normalized by
1672   /// the factor width.
1673   VectorizationCostTy expectedCost(unsigned VF);
1674 
1675   /// Returns the execution time cost of an instruction for a given vector
1676   /// width. Vector width of one means scalar.
1677   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1678 
1679   /// The cost-computation logic from getInstructionCost which provides
1680   /// the vector type as an output parameter.
1681   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1682 
1683   /// Returns whether the instruction is a load or store and will be a emitted
1684   /// as a vector operation.
1685   bool isConsecutiveLoadOrStore(Instruction *I);
1686 
1687   /// Report an analysis message to assist the user in diagnosing loops that are
1688   /// not vectorized.  These are handled as LoopAccessReport rather than
1689   /// VectorizationReport because the << operator of VectorizationReport returns
1690   /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message) const1691   void emitAnalysis(const LoopAccessReport &Message) const {
1692     emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1693   }
1694 
1695 public:
1696   /// Map of scalar integer values to the smallest bitwidth they can be legally
1697   /// represented as. The vector equivalents of these values should be truncated
1698   /// to this type.
1699   MapVector<Instruction *, uint64_t> MinBWs;
1700 
1701   /// The loop that we evaluate.
1702   Loop *TheLoop;
1703   /// Predicated scalar evolution analysis.
1704   PredicatedScalarEvolution &PSE;
1705   /// Loop Info analysis.
1706   LoopInfo *LI;
1707   /// Vectorization legality.
1708   LoopVectorizationLegality *Legal;
1709   /// Vector target information.
1710   const TargetTransformInfo &TTI;
1711   /// Target Library Info.
1712   const TargetLibraryInfo *TLI;
1713   /// Demanded bits analysis.
1714   DemandedBits *DB;
1715   /// Assumption cache.
1716   AssumptionCache *AC;
1717   const Function *TheFunction;
1718   /// Loop Vectorize Hint.
1719   const LoopVectorizeHints *Hints;
1720   /// Values to ignore in the cost model.
1721   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1722   /// Values to ignore in the cost model when VF > 1.
1723   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1724 };
1725 
1726 /// \brief This holds vectorization requirements that must be verified late in
1727 /// the process. The requirements are set by legalize and costmodel. Once
1728 /// vectorization has been determined to be possible and profitable the
1729 /// requirements can be verified by looking for metadata or compiler options.
1730 /// For example, some loops require FP commutativity which is only allowed if
1731 /// vectorization is explicitly specified or if the fast-math compiler option
1732 /// has been provided.
1733 /// Late evaluation of these requirements allows helpful diagnostics to be
1734 /// composed that tells the user what need to be done to vectorize the loop. For
1735 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
1736 /// evaluation should be used only when diagnostics can generated that can be
1737 /// followed by a non-expert user.
1738 class LoopVectorizationRequirements {
1739 public:
LoopVectorizationRequirements()1740   LoopVectorizationRequirements()
1741       : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
1742 
addUnsafeAlgebraInst(Instruction * I)1743   void addUnsafeAlgebraInst(Instruction *I) {
1744     // First unsafe algebra instruction.
1745     if (!UnsafeAlgebraInst)
1746       UnsafeAlgebraInst = I;
1747   }
1748 
addRuntimePointerChecks(unsigned Num)1749   void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
1750 
doesNotMeet(Function * F,Loop * L,const LoopVectorizeHints & Hints)1751   bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
1752     const char *Name = Hints.vectorizeAnalysisPassName();
1753     bool Failed = false;
1754     if (UnsafeAlgebraInst && !Hints.allowReordering()) {
1755       emitOptimizationRemarkAnalysisFPCommute(
1756           F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
1757           VectorizationReport() << "cannot prove it is safe to reorder "
1758                                    "floating-point operations");
1759       Failed = true;
1760     }
1761 
1762     // Test if runtime memcheck thresholds are exceeded.
1763     bool PragmaThresholdReached =
1764         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
1765     bool ThresholdReached =
1766         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
1767     if ((ThresholdReached && !Hints.allowReordering()) ||
1768         PragmaThresholdReached) {
1769       emitOptimizationRemarkAnalysisAliasing(
1770           F->getContext(), Name, *F, L->getStartLoc(),
1771           VectorizationReport()
1772               << "cannot prove it is safe to reorder memory operations");
1773       DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1774       Failed = true;
1775     }
1776 
1777     return Failed;
1778   }
1779 
1780 private:
1781   unsigned NumRuntimePointerChecks;
1782   Instruction *UnsafeAlgebraInst;
1783 };
1784 
addInnerLoop(Loop & L,SmallVectorImpl<Loop * > & V)1785 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1786   if (L.empty())
1787     return V.push_back(&L);
1788 
1789   for (Loop *InnerL : L)
1790     addInnerLoop(*InnerL, V);
1791 }
1792 
1793 /// The LoopVectorize Pass.
1794 struct LoopVectorize : public FunctionPass {
1795   /// Pass identification, replacement for typeid
1796   static char ID;
1797 
LoopVectorize__anonfb91178e0111::LoopVectorize1798   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1799       : FunctionPass(ID) {
1800     Impl.DisableUnrolling = NoUnrolling;
1801     Impl.AlwaysVectorize = AlwaysVectorize;
1802     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1803   }
1804 
1805   LoopVectorizePass Impl;
1806 
runOnFunction__anonfb91178e0111::LoopVectorize1807   bool runOnFunction(Function &F) override {
1808     if (skipFunction(F))
1809       return false;
1810 
1811     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1812     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1813     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1814     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1815     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1816     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1817     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
1818     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1819     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1820     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1821     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1822 
1823     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1824         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1825 
1826     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1827                         GetLAA);
1828   }
1829 
getAnalysisUsage__anonfb91178e0111::LoopVectorize1830   void getAnalysisUsage(AnalysisUsage &AU) const override {
1831     AU.addRequired<AssumptionCacheTracker>();
1832     AU.addRequiredID(LoopSimplifyID);
1833     AU.addRequiredID(LCSSAID);
1834     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1835     AU.addRequired<DominatorTreeWrapperPass>();
1836     AU.addRequired<LoopInfoWrapperPass>();
1837     AU.addRequired<ScalarEvolutionWrapperPass>();
1838     AU.addRequired<TargetTransformInfoWrapperPass>();
1839     AU.addRequired<AAResultsWrapperPass>();
1840     AU.addRequired<LoopAccessLegacyAnalysis>();
1841     AU.addRequired<DemandedBitsWrapperPass>();
1842     AU.addPreserved<LoopInfoWrapperPass>();
1843     AU.addPreserved<DominatorTreeWrapperPass>();
1844     AU.addPreserved<BasicAAWrapperPass>();
1845     AU.addPreserved<GlobalsAAWrapperPass>();
1846   }
1847 };
1848 
1849 } // end anonymous namespace
1850 
1851 //===----------------------------------------------------------------------===//
1852 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1853 // LoopVectorizationCostModel.
1854 //===----------------------------------------------------------------------===//
1855 
getBroadcastInstrs(Value * V)1856 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1857   // We need to place the broadcast of invariant variables outside the loop.
1858   Instruction *Instr = dyn_cast<Instruction>(V);
1859   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1860   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1861 
1862   // Place the code for broadcasting invariant variables in the new preheader.
1863   IRBuilder<>::InsertPointGuard Guard(Builder);
1864   if (Invariant)
1865     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1866 
1867   // Broadcast the scalar into all locations in the vector.
1868   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1869 
1870   return Shuf;
1871 }
1872 
createVectorIntInductionPHI(const InductionDescriptor & II,VectorParts & Entry,IntegerType * TruncType)1873 void InnerLoopVectorizer::createVectorIntInductionPHI(
1874     const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) {
1875   Value *Start = II.getStartValue();
1876   ConstantInt *Step = II.getConstIntStepValue();
1877   assert(Step && "Can not widen an IV with a non-constant step");
1878 
1879   // Construct the initial value of the vector IV in the vector loop preheader
1880   auto CurrIP = Builder.saveIP();
1881   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1882   if (TruncType) {
1883     Step = ConstantInt::getSigned(TruncType, Step->getSExtValue());
1884     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1885   }
1886   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1887   Value *SteppedStart = getStepVector(SplatStart, 0, Step);
1888   Builder.restoreIP(CurrIP);
1889 
1890   Value *SplatVF =
1891       ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(),
1892                                VF * Step->getSExtValue()));
1893   // We may need to add the step a number of times, depending on the unroll
1894   // factor. The last of those goes into the PHI.
1895   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1896                                     &*LoopVectorBody->getFirstInsertionPt());
1897   Value *LastInduction = VecInd;
1898   for (unsigned Part = 0; Part < UF; ++Part) {
1899     Entry[Part] = LastInduction;
1900     LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add");
1901   }
1902 
1903   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1904   VecInd->addIncoming(LastInduction, LoopVectorBody);
1905 }
1906 
widenIntInduction(PHINode * IV,VectorParts & Entry,TruncInst * Trunc)1907 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry,
1908                                             TruncInst *Trunc) {
1909 
1910   auto II = Legal->getInductionVars()->find(IV);
1911   assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
1912 
1913   auto ID = II->second;
1914   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1915 
1916   // If a truncate instruction was provided, get the smaller type.
1917   auto *TruncType = Trunc ? cast<IntegerType>(Trunc->getType()) : nullptr;
1918 
1919   // The step of the induction.
1920   Value *Step = nullptr;
1921 
1922   // If the induction variable has a constant integer step value, go ahead and
1923   // get it now.
1924   if (ID.getConstIntStepValue())
1925     Step = ID.getConstIntStepValue();
1926 
1927   // Try to create a new independent vector induction variable. If we can't
1928   // create the phi node, we will splat the scalar induction variable in each
1929   // loop iteration.
1930   if (VF > 1 && IV->getType() == Induction->getType() && Step &&
1931       !ValuesNotWidened->count(IV))
1932     return createVectorIntInductionPHI(ID, Entry, TruncType);
1933 
1934   // The scalar value to broadcast. This will be derived from the canonical
1935   // induction variable.
1936   Value *ScalarIV = nullptr;
1937 
1938   // Define the scalar induction variable and step values. If we were given a
1939   // truncation type, truncate the canonical induction variable and constant
1940   // step. Otherwise, derive these values from the induction descriptor.
1941   if (TruncType) {
1942     assert(Step && "Truncation requires constant integer step");
1943     auto StepInt = cast<ConstantInt>(Step)->getSExtValue();
1944     ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType);
1945     Step = ConstantInt::getSigned(TruncType, StepInt);
1946   } else {
1947     ScalarIV = Induction;
1948     auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1949     if (IV != OldInduction) {
1950       ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType());
1951       ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
1952       ScalarIV->setName("offset.idx");
1953     }
1954     if (!Step) {
1955       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1956       Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
1957                                &*Builder.GetInsertPoint());
1958     }
1959   }
1960 
1961   // Splat the scalar induction variable, and build the necessary step vectors.
1962   Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1963   for (unsigned Part = 0; Part < UF; ++Part)
1964     Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
1965 
1966   // If an induction variable is only used for counting loop iterations or
1967   // calculating addresses, it doesn't need to be widened. Create scalar steps
1968   // that can be used by instructions we will later scalarize. Note that the
1969   // addition of the scalar steps will not increase the number of instructions
1970   // in the loop in the common case prior to InstCombine. We will be trading
1971   // one vector extract for each scalar step.
1972   if (VF > 1 && ValuesNotWidened->count(IV)) {
1973     auto *EntryVal = Trunc ? cast<Value>(Trunc) : IV;
1974     buildScalarSteps(ScalarIV, Step, EntryVal);
1975   }
1976 }
1977 
getStepVector(Value * Val,int StartIdx,Value * Step)1978 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1979                                           Value *Step) {
1980   assert(Val->getType()->isVectorTy() && "Must be a vector");
1981   assert(Val->getType()->getScalarType()->isIntegerTy() &&
1982          "Elem must be an integer");
1983   assert(Step->getType() == Val->getType()->getScalarType() &&
1984          "Step has wrong type");
1985   // Create the types.
1986   Type *ITy = Val->getType()->getScalarType();
1987   VectorType *Ty = cast<VectorType>(Val->getType());
1988   int VLen = Ty->getNumElements();
1989   SmallVector<Constant *, 8> Indices;
1990 
1991   // Create a vector of consecutive numbers from zero to VF.
1992   for (int i = 0; i < VLen; ++i)
1993     Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1994 
1995   // Add the consecutive indices to the vector value.
1996   Constant *Cv = ConstantVector::get(Indices);
1997   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1998   Step = Builder.CreateVectorSplat(VLen, Step);
1999   assert(Step->getType() == Val->getType() && "Invalid step vec");
2000   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2001   // which can be found from the original scalar operations.
2002   Step = Builder.CreateMul(Cv, Step);
2003   return Builder.CreateAdd(Val, Step, "induction");
2004 }
2005 
buildScalarSteps(Value * ScalarIV,Value * Step,Value * EntryVal)2006 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2007                                            Value *EntryVal) {
2008 
2009   // We shouldn't have to build scalar steps if we aren't vectorizing.
2010   assert(VF > 1 && "VF should be greater than one");
2011 
2012   // Get the value type and ensure it and the step have the same integer type.
2013   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2014   assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() &&
2015          "Val and Step should have the same integer type");
2016 
2017   // Compute the scalar steps and save the results in ScalarIVMap.
2018   for (unsigned Part = 0; Part < UF; ++Part)
2019     for (unsigned I = 0; I < VF; ++I) {
2020       auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + I);
2021       auto *Mul = Builder.CreateMul(StartIdx, Step);
2022       auto *Add = Builder.CreateAdd(ScalarIV, Mul);
2023       ScalarIVMap[EntryVal].push_back(Add);
2024     }
2025 }
2026 
isConsecutivePtr(Value * Ptr)2027 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2028   assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
2029   auto *SE = PSE.getSE();
2030   // Make sure that the pointer does not point to structs.
2031   if (Ptr->getType()->getPointerElementType()->isAggregateType())
2032     return 0;
2033 
2034   // If this value is a pointer induction variable, we know it is consecutive.
2035   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
2036   if (Phi && Inductions.count(Phi)) {
2037     InductionDescriptor II = Inductions[Phi];
2038     return II.getConsecutiveDirection();
2039   }
2040 
2041   GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2042   if (!Gep)
2043     return 0;
2044 
2045   unsigned NumOperands = Gep->getNumOperands();
2046   Value *GpPtr = Gep->getPointerOperand();
2047   // If this GEP value is a consecutive pointer induction variable and all of
2048   // the indices are constant, then we know it is consecutive.
2049   Phi = dyn_cast<PHINode>(GpPtr);
2050   if (Phi && Inductions.count(Phi)) {
2051 
2052     // Make sure that the pointer does not point to structs.
2053     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
2054     if (GepPtrType->getElementType()->isAggregateType())
2055       return 0;
2056 
2057     // Make sure that all of the index operands are loop invariant.
2058     for (unsigned i = 1; i < NumOperands; ++i)
2059       if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2060         return 0;
2061 
2062     InductionDescriptor II = Inductions[Phi];
2063     return II.getConsecutiveDirection();
2064   }
2065 
2066   unsigned InductionOperand = getGEPInductionOperand(Gep);
2067 
2068   // Check that all of the gep indices are uniform except for our induction
2069   // operand.
2070   for (unsigned i = 0; i != NumOperands; ++i)
2071     if (i != InductionOperand &&
2072         !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2073       return 0;
2074 
2075   // We can emit wide load/stores only if the last non-zero index is the
2076   // induction variable.
2077   const SCEV *Last = nullptr;
2078   if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep))
2079     Last = PSE.getSCEV(Gep->getOperand(InductionOperand));
2080   else {
2081     // Because of the multiplication by a stride we can have a s/zext cast.
2082     // We are going to replace this stride by 1 so the cast is safe to ignore.
2083     //
2084     //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
2085     //  %0 = trunc i64 %indvars.iv to i32
2086     //  %mul = mul i32 %0, %Stride1
2087     //  %idxprom = zext i32 %mul to i64  << Safe cast.
2088     //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
2089     //
2090     Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(),
2091                                      Gep->getOperand(InductionOperand), Gep);
2092     if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
2093       Last =
2094           (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
2095               ? C->getOperand()
2096               : Last;
2097   }
2098   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
2099     const SCEV *Step = AR->getStepRecurrence(*SE);
2100 
2101     // The memory is consecutive because the last index is consecutive
2102     // and all other indices are loop invariant.
2103     if (Step->isOne())
2104       return 1;
2105     if (Step->isAllOnesValue())
2106       return -1;
2107   }
2108 
2109   return 0;
2110 }
2111 
isUniform(Value * V)2112 bool LoopVectorizationLegality::isUniform(Value *V) {
2113   return LAI->isUniform(V);
2114 }
2115 
2116 InnerLoopVectorizer::VectorParts &
getVectorValue(Value * V)2117 InnerLoopVectorizer::getVectorValue(Value *V) {
2118   assert(V != Induction && "The new induction variable should not be used.");
2119   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2120 
2121   // If we have a stride that is replaced by one, do it here.
2122   if (Legal->hasStride(V))
2123     V = ConstantInt::get(V->getType(), 1);
2124 
2125   // If we have this scalar in the map, return it.
2126   if (WidenMap.has(V))
2127     return WidenMap.get(V);
2128 
2129   // If this scalar is unknown, assume that it is a constant or that it is
2130   // loop invariant. Broadcast V and save the value for future uses.
2131   Value *B = getBroadcastInstrs(V);
2132   return WidenMap.splat(V, B);
2133 }
2134 
reverseVector(Value * Vec)2135 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2136   assert(Vec->getType()->isVectorTy() && "Invalid type");
2137   SmallVector<Constant *, 8> ShuffleMask;
2138   for (unsigned i = 0; i < VF; ++i)
2139     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2140 
2141   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2142                                      ConstantVector::get(ShuffleMask),
2143                                      "reverse");
2144 }
2145 
2146 // Get a mask to interleave \p NumVec vectors into a wide vector.
2147 // I.e.  <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
2148 // E.g. For 2 interleaved vectors, if VF is 4, the mask is:
2149 //      <0, 4, 1, 5, 2, 6, 3, 7>
getInterleavedMask(IRBuilder<> & Builder,unsigned VF,unsigned NumVec)2150 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
2151                                     unsigned NumVec) {
2152   SmallVector<Constant *, 16> Mask;
2153   for (unsigned i = 0; i < VF; i++)
2154     for (unsigned j = 0; j < NumVec; j++)
2155       Mask.push_back(Builder.getInt32(j * VF + i));
2156 
2157   return ConstantVector::get(Mask);
2158 }
2159 
2160 // Get the strided mask starting from index \p Start.
2161 // I.e.  <Start, Start + Stride, ..., Start + Stride*(VF-1)>
getStridedMask(IRBuilder<> & Builder,unsigned Start,unsigned Stride,unsigned VF)2162 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
2163                                 unsigned Stride, unsigned VF) {
2164   SmallVector<Constant *, 16> Mask;
2165   for (unsigned i = 0; i < VF; i++)
2166     Mask.push_back(Builder.getInt32(Start + i * Stride));
2167 
2168   return ConstantVector::get(Mask);
2169 }
2170 
2171 // Get a mask of two parts: The first part consists of sequential integers
2172 // starting from 0, The second part consists of UNDEFs.
2173 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
getSequentialMask(IRBuilder<> & Builder,unsigned NumInt,unsigned NumUndef)2174 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
2175                                    unsigned NumUndef) {
2176   SmallVector<Constant *, 16> Mask;
2177   for (unsigned i = 0; i < NumInt; i++)
2178     Mask.push_back(Builder.getInt32(i));
2179 
2180   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
2181   for (unsigned i = 0; i < NumUndef; i++)
2182     Mask.push_back(Undef);
2183 
2184   return ConstantVector::get(Mask);
2185 }
2186 
2187 // Concatenate two vectors with the same element type. The 2nd vector should
2188 // not have more elements than the 1st vector. If the 2nd vector has less
2189 // elements, extend it with UNDEFs.
ConcatenateTwoVectors(IRBuilder<> & Builder,Value * V1,Value * V2)2190 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
2191                                     Value *V2) {
2192   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
2193   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
2194   assert(VecTy1 && VecTy2 &&
2195          VecTy1->getScalarType() == VecTy2->getScalarType() &&
2196          "Expect two vectors with the same element type");
2197 
2198   unsigned NumElts1 = VecTy1->getNumElements();
2199   unsigned NumElts2 = VecTy2->getNumElements();
2200   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
2201 
2202   if (NumElts1 > NumElts2) {
2203     // Extend with UNDEFs.
2204     Constant *ExtMask =
2205         getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
2206     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
2207   }
2208 
2209   Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
2210   return Builder.CreateShuffleVector(V1, V2, Mask);
2211 }
2212 
2213 // Concatenate vectors in the given list. All vectors have the same type.
ConcatenateVectors(IRBuilder<> & Builder,ArrayRef<Value * > InputList)2214 static Value *ConcatenateVectors(IRBuilder<> &Builder,
2215                                  ArrayRef<Value *> InputList) {
2216   unsigned NumVec = InputList.size();
2217   assert(NumVec > 1 && "Should be at least two vectors");
2218 
2219   SmallVector<Value *, 8> ResList;
2220   ResList.append(InputList.begin(), InputList.end());
2221   do {
2222     SmallVector<Value *, 8> TmpList;
2223     for (unsigned i = 0; i < NumVec - 1; i += 2) {
2224       Value *V0 = ResList[i], *V1 = ResList[i + 1];
2225       assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
2226              "Only the last vector may have a different type");
2227 
2228       TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
2229     }
2230 
2231     // Push the last vector if the total number of vectors is odd.
2232     if (NumVec % 2 != 0)
2233       TmpList.push_back(ResList[NumVec - 1]);
2234 
2235     ResList = TmpList;
2236     NumVec = ResList.size();
2237   } while (NumVec > 1);
2238 
2239   return ResList[0];
2240 }
2241 
2242 // Try to vectorize the interleave group that \p Instr belongs to.
2243 //
2244 // E.g. Translate following interleaved load group (factor = 3):
2245 //   for (i = 0; i < N; i+=3) {
2246 //     R = Pic[i];             // Member of index 0
2247 //     G = Pic[i+1];           // Member of index 1
2248 //     B = Pic[i+2];           // Member of index 2
2249 //     ... // do something to R, G, B
2250 //   }
2251 // To:
2252 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2253 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2254 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2255 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2256 //
2257 // Or translate following interleaved store group (factor = 3):
2258 //   for (i = 0; i < N; i+=3) {
2259 //     ... do something to R, G, B
2260 //     Pic[i]   = R;           // Member of index 0
2261 //     Pic[i+1] = G;           // Member of index 1
2262 //     Pic[i+2] = B;           // Member of index 2
2263 //   }
2264 // To:
2265 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2266 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2267 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2268 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2269 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
vectorizeInterleaveGroup(Instruction * Instr)2270 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2271   const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2272   assert(Group && "Fail to get an interleaved access group.");
2273 
2274   // Skip if current instruction is not the insert position.
2275   if (Instr != Group->getInsertPos())
2276     return;
2277 
2278   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2279   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2280   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2281 
2282   // Prepare for the vector type of the interleaved load/store.
2283   Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2284   unsigned InterleaveFactor = Group->getFactor();
2285   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2286   Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
2287 
2288   // Prepare for the new pointers.
2289   setDebugLocFromInst(Builder, Ptr);
2290   VectorParts &PtrParts = getVectorValue(Ptr);
2291   SmallVector<Value *, 2> NewPtrs;
2292   unsigned Index = Group->getIndex(Instr);
2293   for (unsigned Part = 0; Part < UF; Part++) {
2294     // Extract the pointer for current instruction from the pointer vector. A
2295     // reverse access uses the pointer in the last lane.
2296     Value *NewPtr = Builder.CreateExtractElement(
2297         PtrParts[Part],
2298         Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
2299 
2300     // Notice current instruction could be any index. Need to adjust the address
2301     // to the member of index 0.
2302     //
2303     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2304     //       b = A[i];       // Member of index 0
2305     // Current pointer is pointed to A[i+1], adjust it to A[i].
2306     //
2307     // E.g.  A[i+1] = a;     // Member of index 1
2308     //       A[i]   = b;     // Member of index 0
2309     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2310     // Current pointer is pointed to A[i+2], adjust it to A[i].
2311     NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2312 
2313     // Cast to the vector pointer type.
2314     NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2315   }
2316 
2317   setDebugLocFromInst(Builder, Instr);
2318   Value *UndefVec = UndefValue::get(VecTy);
2319 
2320   // Vectorize the interleaved load group.
2321   if (LI) {
2322     for (unsigned Part = 0; Part < UF; Part++) {
2323       Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
2324           NewPtrs[Part], Group->getAlignment(), "wide.vec");
2325 
2326       for (unsigned i = 0; i < InterleaveFactor; i++) {
2327         Instruction *Member = Group->getMember(i);
2328 
2329         // Skip the gaps in the group.
2330         if (!Member)
2331           continue;
2332 
2333         Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
2334         Value *StridedVec = Builder.CreateShuffleVector(
2335             NewLoadInstr, UndefVec, StrideMask, "strided.vec");
2336 
2337         // If this member has different type, cast the result type.
2338         if (Member->getType() != ScalarTy) {
2339           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2340           StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2341         }
2342 
2343         VectorParts &Entry = WidenMap.get(Member);
2344         Entry[Part] =
2345             Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2346       }
2347 
2348       addMetadata(NewLoadInstr, Instr);
2349     }
2350     return;
2351   }
2352 
2353   // The sub vector type for current instruction.
2354   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2355 
2356   // Vectorize the interleaved store group.
2357   for (unsigned Part = 0; Part < UF; Part++) {
2358     // Collect the stored vector from each member.
2359     SmallVector<Value *, 4> StoredVecs;
2360     for (unsigned i = 0; i < InterleaveFactor; i++) {
2361       // Interleaved store group doesn't allow a gap, so each index has a member
2362       Instruction *Member = Group->getMember(i);
2363       assert(Member && "Fail to get a member from an interleaved store group");
2364 
2365       Value *StoredVec =
2366           getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part];
2367       if (Group->isReverse())
2368         StoredVec = reverseVector(StoredVec);
2369 
2370       // If this member has different type, cast it to an unified type.
2371       if (StoredVec->getType() != SubVT)
2372         StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2373 
2374       StoredVecs.push_back(StoredVec);
2375     }
2376 
2377     // Concatenate all vectors into a wide vector.
2378     Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
2379 
2380     // Interleave the elements in the wide vector.
2381     Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
2382     Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2383                                               "interleaved.vec");
2384 
2385     Instruction *NewStoreInstr =
2386         Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2387     addMetadata(NewStoreInstr, Instr);
2388   }
2389 }
2390 
vectorizeMemoryInstruction(Instruction * Instr)2391 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2392   // Attempt to issue a wide load.
2393   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2394   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2395 
2396   assert((LI || SI) && "Invalid Load/Store instruction");
2397 
2398   // Try to vectorize the interleave group if this access is interleaved.
2399   if (Legal->isAccessInterleaved(Instr))
2400     return vectorizeInterleaveGroup(Instr);
2401 
2402   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2403   Type *DataTy = VectorType::get(ScalarDataTy, VF);
2404   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2405   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
2406   // An alignment of 0 means target abi alignment. We need to use the scalar's
2407   // target abi alignment in such a case.
2408   const DataLayout &DL = Instr->getModule()->getDataLayout();
2409   if (!Alignment)
2410     Alignment = DL.getABITypeAlignment(ScalarDataTy);
2411   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2412   uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
2413   uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
2414 
2415   if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
2416       !Legal->isMaskRequired(SI))
2417     return scalarizeInstruction(Instr, true);
2418 
2419   if (ScalarAllocatedSize != VectorElementSize)
2420     return scalarizeInstruction(Instr);
2421 
2422   // If the pointer is loop invariant scalarize the load.
2423   if (LI && Legal->isUniform(Ptr))
2424     return scalarizeInstruction(Instr);
2425 
2426   // If the pointer is non-consecutive and gather/scatter is not supported
2427   // scalarize the instruction.
2428   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2429   bool Reverse = ConsecutiveStride < 0;
2430   bool CreateGatherScatter =
2431       !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) ||
2432                              (SI && Legal->isLegalMaskedScatter(ScalarDataTy)));
2433 
2434   if (!ConsecutiveStride && !CreateGatherScatter)
2435     return scalarizeInstruction(Instr);
2436 
2437   Constant *Zero = Builder.getInt32(0);
2438   VectorParts &Entry = WidenMap.get(Instr);
2439   VectorParts VectorGep;
2440 
2441   // Handle consecutive loads/stores.
2442   GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2443   if (ConsecutiveStride) {
2444     if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
2445       setDebugLocFromInst(Builder, Gep);
2446       Value *PtrOperand = Gep->getPointerOperand();
2447       Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
2448       FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
2449 
2450       // Create the new GEP with the new induction variable.
2451       GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2452       Gep2->setOperand(0, FirstBasePtr);
2453       Gep2->setName("gep.indvar.base");
2454       Ptr = Builder.Insert(Gep2);
2455     } else if (Gep) {
2456       setDebugLocFromInst(Builder, Gep);
2457       assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
2458                                           OrigLoop) &&
2459              "Base ptr must be invariant");
2460       // The last index does not have to be the induction. It can be
2461       // consecutive and be a function of the index. For example A[I+1];
2462       unsigned NumOperands = Gep->getNumOperands();
2463       unsigned InductionOperand = getGEPInductionOperand(Gep);
2464       // Create the new GEP with the new induction variable.
2465       GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2466 
2467       for (unsigned i = 0; i < NumOperands; ++i) {
2468         Value *GepOperand = Gep->getOperand(i);
2469         Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
2470 
2471         // Update last index or loop invariant instruction anchored in loop.
2472         if (i == InductionOperand ||
2473             (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
2474           assert((i == InductionOperand ||
2475                   PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst),
2476                                                OrigLoop)) &&
2477                  "Must be last index or loop invariant");
2478 
2479           VectorParts &GEPParts = getVectorValue(GepOperand);
2480 
2481           // If GepOperand is an induction variable, and there's a scalarized
2482           // version of it available, use it. Otherwise, we will need to create
2483           // an extractelement instruction.
2484           Value *Index = ScalarIVMap.count(GepOperand)
2485                              ? ScalarIVMap[GepOperand][0]
2486                              : Builder.CreateExtractElement(GEPParts[0], Zero);
2487 
2488           Gep2->setOperand(i, Index);
2489           Gep2->setName("gep.indvar.idx");
2490         }
2491       }
2492       Ptr = Builder.Insert(Gep2);
2493     } else { // No GEP
2494       // Use the induction element ptr.
2495       assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
2496       setDebugLocFromInst(Builder, Ptr);
2497       VectorParts &PtrVal = getVectorValue(Ptr);
2498       Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
2499     }
2500   } else {
2501     // At this point we should vector version of GEP for Gather or Scatter
2502     assert(CreateGatherScatter && "The instruction should be scalarized");
2503     if (Gep) {
2504       // Vectorizing GEP, across UF parts. We want to get a vector value for base
2505       // and each index that's defined inside the loop, even if it is
2506       // loop-invariant but wasn't hoisted out. Otherwise we want to keep them
2507       // scalar.
2508       SmallVector<VectorParts, 4> OpsV;
2509       for (Value *Op : Gep->operands()) {
2510         Instruction *SrcInst = dyn_cast<Instruction>(Op);
2511         if (SrcInst && OrigLoop->contains(SrcInst))
2512           OpsV.push_back(getVectorValue(Op));
2513         else
2514           OpsV.push_back(VectorParts(UF, Op));
2515       }
2516       for (unsigned Part = 0; Part < UF; ++Part) {
2517         SmallVector<Value *, 4> Ops;
2518         Value *GEPBasePtr = OpsV[0][Part];
2519         for (unsigned i = 1; i < Gep->getNumOperands(); i++)
2520           Ops.push_back(OpsV[i][Part]);
2521         Value *NewGep =  Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep");
2522         cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds());
2523         assert(NewGep->getType()->isVectorTy() && "Expected vector GEP");
2524 
2525         NewGep =
2526             Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF));
2527         VectorGep.push_back(NewGep);
2528       }
2529     } else
2530       VectorGep = getVectorValue(Ptr);
2531   }
2532 
2533   VectorParts Mask = createBlockInMask(Instr->getParent());
2534   // Handle Stores:
2535   if (SI) {
2536     assert(!Legal->isUniform(SI->getPointerOperand()) &&
2537            "We do not allow storing to uniform addresses");
2538     setDebugLocFromInst(Builder, SI);
2539     // We don't want to update the value in the map as it might be used in
2540     // another expression. So don't use a reference type for "StoredVal".
2541     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
2542 
2543     for (unsigned Part = 0; Part < UF; ++Part) {
2544       Instruction *NewSI = nullptr;
2545       if (CreateGatherScatter) {
2546         Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr;
2547         NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part],
2548                                             Alignment, MaskPart);
2549       } else {
2550         // Calculate the pointer for the specific unroll-part.
2551         Value *PartPtr =
2552             Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2553 
2554         if (Reverse) {
2555           // If we store to reverse consecutive memory locations, then we need
2556           // to reverse the order of elements in the stored value.
2557           StoredVal[Part] = reverseVector(StoredVal[Part]);
2558           // If the address is consecutive but reversed, then the
2559           // wide store needs to start at the last vector element.
2560           PartPtr =
2561               Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2562           PartPtr =
2563               Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2564           Mask[Part] = reverseVector(Mask[Part]);
2565         }
2566 
2567         Value *VecPtr =
2568             Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2569 
2570         if (Legal->isMaskRequired(SI))
2571           NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
2572                                             Mask[Part]);
2573         else
2574           NewSI =
2575               Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
2576       }
2577       addMetadata(NewSI, SI);
2578     }
2579     return;
2580   }
2581 
2582   // Handle loads.
2583   assert(LI && "Must have a load instruction");
2584   setDebugLocFromInst(Builder, LI);
2585   for (unsigned Part = 0; Part < UF; ++Part) {
2586     Instruction *NewLI;
2587     if (CreateGatherScatter) {
2588       Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr;
2589       NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart,
2590                                          0, "wide.masked.gather");
2591       Entry[Part] = NewLI;
2592     } else {
2593       // Calculate the pointer for the specific unroll-part.
2594       Value *PartPtr =
2595           Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2596 
2597       if (Reverse) {
2598         // If the address is consecutive but reversed, then the
2599         // wide load needs to start at the last vector element.
2600         PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2601         PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2602         Mask[Part] = reverseVector(Mask[Part]);
2603       }
2604 
2605       Value *VecPtr =
2606           Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2607       if (Legal->isMaskRequired(LI))
2608         NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
2609                                          UndefValue::get(DataTy),
2610                                          "wide.masked.load");
2611       else
2612         NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
2613       Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
2614     }
2615     addMetadata(NewLI, LI);
2616   }
2617 }
2618 
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)2619 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2620                                                bool IfPredicateStore) {
2621   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2622   // Holds vector parameters or scalars, in case of uniform vals.
2623   SmallVector<VectorParts, 4> Params;
2624 
2625   setDebugLocFromInst(Builder, Instr);
2626 
2627   // Find all of the vectorized parameters.
2628   for (Value *SrcOp : Instr->operands()) {
2629     // If we are accessing the old induction variable, use the new one.
2630     if (SrcOp == OldInduction) {
2631       Params.push_back(getVectorValue(SrcOp));
2632       continue;
2633     }
2634 
2635     // Try using previously calculated values.
2636     auto *SrcInst = dyn_cast<Instruction>(SrcOp);
2637 
2638     // If the src is an instruction that appeared earlier in the basic block,
2639     // then it should already be vectorized.
2640     if (SrcInst && OrigLoop->contains(SrcInst)) {
2641       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
2642       // The parameter is a vector value from earlier.
2643       Params.push_back(WidenMap.get(SrcInst));
2644     } else {
2645       // The parameter is a scalar from outside the loop. Maybe even a constant.
2646       VectorParts Scalars;
2647       Scalars.append(UF, SrcOp);
2648       Params.push_back(Scalars);
2649     }
2650   }
2651 
2652   assert(Params.size() == Instr->getNumOperands() &&
2653          "Invalid number of operands");
2654 
2655   // Does this instruction return a value ?
2656   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2657 
2658   Value *UndefVec =
2659       IsVoidRetTy ? nullptr
2660                   : UndefValue::get(VectorType::get(Instr->getType(), VF));
2661   // Create a new entry in the WidenMap and initialize it to Undef or Null.
2662   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
2663 
2664   VectorParts Cond;
2665   if (IfPredicateStore) {
2666     assert(Instr->getParent()->getSinglePredecessor() &&
2667            "Only support single predecessor blocks");
2668     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
2669                           Instr->getParent());
2670   }
2671 
2672   // For each vector unroll 'part':
2673   for (unsigned Part = 0; Part < UF; ++Part) {
2674     // For each scalar that we create:
2675     for (unsigned Width = 0; Width < VF; ++Width) {
2676 
2677       // Start if-block.
2678       Value *Cmp = nullptr;
2679       if (IfPredicateStore) {
2680         Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2681         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
2682                                  ConstantInt::get(Cmp->getType(), 1));
2683       }
2684 
2685       Instruction *Cloned = Instr->clone();
2686       if (!IsVoidRetTy)
2687         Cloned->setName(Instr->getName() + ".cloned");
2688       // Replace the operands of the cloned instructions with extracted scalars.
2689       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2690 
2691         // If the operand is an induction variable, and there's a scalarized
2692         // version of it available, use it. Otherwise, we will need to create
2693         // an extractelement instruction if vectorizing.
2694         auto *NewOp = Params[op][Part];
2695         auto *ScalarOp = Instr->getOperand(op);
2696         if (ScalarIVMap.count(ScalarOp))
2697           NewOp = ScalarIVMap[ScalarOp][VF * Part + Width];
2698         else if (NewOp->getType()->isVectorTy())
2699           NewOp = Builder.CreateExtractElement(NewOp, Builder.getInt32(Width));
2700         Cloned->setOperand(op, NewOp);
2701       }
2702       addNewMetadata(Cloned, Instr);
2703 
2704       // Place the cloned scalar in the new loop.
2705       Builder.Insert(Cloned);
2706 
2707       // If we just cloned a new assumption, add it the assumption cache.
2708       if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2709         if (II->getIntrinsicID() == Intrinsic::assume)
2710           AC->registerAssumption(II);
2711 
2712       // If the original scalar returns a value we need to place it in a vector
2713       // so that future users will be able to use it.
2714       if (!IsVoidRetTy)
2715         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2716                                                        Builder.getInt32(Width));
2717       // End if-block.
2718       if (IfPredicateStore)
2719         PredicatedStores.push_back(
2720             std::make_pair(cast<StoreInst>(Cloned), Cmp));
2721     }
2722   }
2723 }
2724 
createInductionVariable(Loop * L,Value * Start,Value * End,Value * Step,Instruction * DL)2725 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2726                                                       Value *End, Value *Step,
2727                                                       Instruction *DL) {
2728   BasicBlock *Header = L->getHeader();
2729   BasicBlock *Latch = L->getLoopLatch();
2730   // As we're just creating this loop, it's possible no latch exists
2731   // yet. If so, use the header as this will be a single block loop.
2732   if (!Latch)
2733     Latch = Header;
2734 
2735   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2736   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2737   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2738 
2739   Builder.SetInsertPoint(Latch->getTerminator());
2740 
2741   // Create i+1 and fill the PHINode.
2742   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2743   Induction->addIncoming(Start, L->getLoopPreheader());
2744   Induction->addIncoming(Next, Latch);
2745   // Create the compare.
2746   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2747   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2748 
2749   // Now we have two terminators. Remove the old one from the block.
2750   Latch->getTerminator()->eraseFromParent();
2751 
2752   return Induction;
2753 }
2754 
getOrCreateTripCount(Loop * L)2755 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2756   if (TripCount)
2757     return TripCount;
2758 
2759   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2760   // Find the loop boundaries.
2761   ScalarEvolution *SE = PSE.getSE();
2762   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2763   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2764          "Invalid loop count");
2765 
2766   Type *IdxTy = Legal->getWidestInductionType();
2767 
2768   // The exit count might have the type of i64 while the phi is i32. This can
2769   // happen if we have an induction variable that is sign extended before the
2770   // compare. The only way that we get a backedge taken count is that the
2771   // induction variable was signed and as such will not overflow. In such a case
2772   // truncation is legal.
2773   if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2774       IdxTy->getPrimitiveSizeInBits())
2775     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2776   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2777 
2778   // Get the total trip count from the count by adding 1.
2779   const SCEV *ExitCount = SE->getAddExpr(
2780       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2781 
2782   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2783 
2784   // Expand the trip count and place the new instructions in the preheader.
2785   // Notice that the pre-header does not change, only the loop body.
2786   SCEVExpander Exp(*SE, DL, "induction");
2787 
2788   // Count holds the overall loop count (N).
2789   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2790                                 L->getLoopPreheader()->getTerminator());
2791 
2792   if (TripCount->getType()->isPointerTy())
2793     TripCount =
2794         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2795                                     L->getLoopPreheader()->getTerminator());
2796 
2797   return TripCount;
2798 }
2799 
getOrCreateVectorTripCount(Loop * L)2800 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2801   if (VectorTripCount)
2802     return VectorTripCount;
2803 
2804   Value *TC = getOrCreateTripCount(L);
2805   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2806 
2807   // Now we need to generate the expression for the part of the loop that the
2808   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2809   // iterations are not required for correctness, or N - Step, otherwise. Step
2810   // is equal to the vectorization factor (number of SIMD elements) times the
2811   // unroll factor (number of SIMD instructions).
2812   Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
2813   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2814 
2815   // If there is a non-reversed interleaved group that may speculatively access
2816   // memory out-of-bounds, we need to ensure that there will be at least one
2817   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2818   // the trip count, we set the remainder to be equal to the step. If the step
2819   // does not evenly divide the trip count, no adjustment is necessary since
2820   // there will already be scalar iterations. Note that the minimum iterations
2821   // check ensures that N >= Step.
2822   if (VF > 1 && Legal->requiresScalarEpilogue()) {
2823     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2824     R = Builder.CreateSelect(IsZero, Step, R);
2825   }
2826 
2827   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2828 
2829   return VectorTripCount;
2830 }
2831 
emitMinimumIterationCountCheck(Loop * L,BasicBlock * Bypass)2832 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2833                                                          BasicBlock *Bypass) {
2834   Value *Count = getOrCreateTripCount(L);
2835   BasicBlock *BB = L->getLoopPreheader();
2836   IRBuilder<> Builder(BB->getTerminator());
2837 
2838   // Generate code to check that the loop's trip count that we computed by
2839   // adding one to the backedge-taken count will not overflow.
2840   Value *CheckMinIters = Builder.CreateICmpULT(
2841       Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
2842 
2843   BasicBlock *NewBB =
2844       BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked");
2845   // Update dominator tree immediately if the generated block is a
2846   // LoopBypassBlock because SCEV expansions to generate loop bypass
2847   // checks may query it before the current function is finished.
2848   DT->addNewBlock(NewBB, BB);
2849   if (L->getParentLoop())
2850     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2851   ReplaceInstWithInst(BB->getTerminator(),
2852                       BranchInst::Create(Bypass, NewBB, CheckMinIters));
2853   LoopBypassBlocks.push_back(BB);
2854 }
2855 
emitVectorLoopEnteredCheck(Loop * L,BasicBlock * Bypass)2856 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
2857                                                      BasicBlock *Bypass) {
2858   Value *TC = getOrCreateVectorTripCount(L);
2859   BasicBlock *BB = L->getLoopPreheader();
2860   IRBuilder<> Builder(BB->getTerminator());
2861 
2862   // Now, compare the new count to zero. If it is zero skip the vector loop and
2863   // jump to the scalar loop.
2864   Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
2865                                     "cmp.zero");
2866 
2867   // Generate code to check that the loop's trip count that we computed by
2868   // adding one to the backedge-taken count will not overflow.
2869   BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2870   // Update dominator tree immediately if the generated block is a
2871   // LoopBypassBlock because SCEV expansions to generate loop bypass
2872   // checks may query it before the current function is finished.
2873   DT->addNewBlock(NewBB, BB);
2874   if (L->getParentLoop())
2875     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2876   ReplaceInstWithInst(BB->getTerminator(),
2877                       BranchInst::Create(Bypass, NewBB, Cmp));
2878   LoopBypassBlocks.push_back(BB);
2879 }
2880 
emitSCEVChecks(Loop * L,BasicBlock * Bypass)2881 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2882   BasicBlock *BB = L->getLoopPreheader();
2883 
2884   // Generate the code to check that the SCEV assumptions that we made.
2885   // We want the new basic block to start at the first instruction in a
2886   // sequence of instructions that form a check.
2887   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2888                    "scev.check");
2889   Value *SCEVCheck =
2890       Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
2891 
2892   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2893     if (C->isZero())
2894       return;
2895 
2896   // Create a new block containing the stride check.
2897   BB->setName("vector.scevcheck");
2898   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2899   // Update dominator tree immediately if the generated block is a
2900   // LoopBypassBlock because SCEV expansions to generate loop bypass
2901   // checks may query it before the current function is finished.
2902   DT->addNewBlock(NewBB, BB);
2903   if (L->getParentLoop())
2904     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2905   ReplaceInstWithInst(BB->getTerminator(),
2906                       BranchInst::Create(Bypass, NewBB, SCEVCheck));
2907   LoopBypassBlocks.push_back(BB);
2908   AddedSafetyChecks = true;
2909 }
2910 
emitMemRuntimeChecks(Loop * L,BasicBlock * Bypass)2911 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2912   BasicBlock *BB = L->getLoopPreheader();
2913 
2914   // Generate the code that checks in runtime if arrays overlap. We put the
2915   // checks into a separate block to make the more common case of few elements
2916   // faster.
2917   Instruction *FirstCheckInst;
2918   Instruction *MemRuntimeCheck;
2919   std::tie(FirstCheckInst, MemRuntimeCheck) =
2920       Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
2921   if (!MemRuntimeCheck)
2922     return;
2923 
2924   // Create a new block containing the memory check.
2925   BB->setName("vector.memcheck");
2926   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2927   // Update dominator tree immediately if the generated block is a
2928   // LoopBypassBlock because SCEV expansions to generate loop bypass
2929   // checks may query it before the current function is finished.
2930   DT->addNewBlock(NewBB, BB);
2931   if (L->getParentLoop())
2932     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2933   ReplaceInstWithInst(BB->getTerminator(),
2934                       BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
2935   LoopBypassBlocks.push_back(BB);
2936   AddedSafetyChecks = true;
2937 
2938   // We currently don't use LoopVersioning for the actual loop cloning but we
2939   // still use it to add the noalias metadata.
2940   LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2941                                            PSE.getSE());
2942   LVer->prepareNoAliasMetadata();
2943 }
2944 
createEmptyLoop()2945 void InnerLoopVectorizer::createEmptyLoop() {
2946   /*
2947    In this function we generate a new loop. The new loop will contain
2948    the vectorized instructions while the old loop will continue to run the
2949    scalar remainder.
2950 
2951        [ ] <-- loop iteration number check.
2952     /   |
2953    /    v
2954   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2955   |  /  |
2956   | /   v
2957   ||   [ ]     <-- vector pre header.
2958   |/    |
2959   |     v
2960   |    [  ] \
2961   |    [  ]_|   <-- vector loop.
2962   |     |
2963   |     v
2964   |   -[ ]   <--- middle-block.
2965   |  /  |
2966   | /   v
2967   -|- >[ ]     <--- new preheader.
2968    |    |
2969    |    v
2970    |   [ ] \
2971    |   [ ]_|   <-- old scalar loop to handle remainder.
2972     \   |
2973      \  v
2974       >[ ]     <-- exit block.
2975    ...
2976    */
2977 
2978   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2979   BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2980   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2981   assert(VectorPH && "Invalid loop structure");
2982   assert(ExitBlock && "Must have an exit block");
2983 
2984   // Some loops have a single integer induction variable, while other loops
2985   // don't. One example is c++ iterators that often have multiple pointer
2986   // induction variables. In the code below we also support a case where we
2987   // don't have a single induction variable.
2988   //
2989   // We try to obtain an induction variable from the original loop as hard
2990   // as possible. However if we don't find one that:
2991   //   - is an integer
2992   //   - counts from zero, stepping by one
2993   //   - is the size of the widest induction variable type
2994   // then we create a new one.
2995   OldInduction = Legal->getInduction();
2996   Type *IdxTy = Legal->getWidestInductionType();
2997 
2998   // Split the single block loop into the two loop structure described above.
2999   BasicBlock *VecBody =
3000       VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3001   BasicBlock *MiddleBlock =
3002       VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3003   BasicBlock *ScalarPH =
3004       MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3005 
3006   // Create and register the new vector loop.
3007   Loop *Lp = new Loop();
3008   Loop *ParentLoop = OrigLoop->getParentLoop();
3009 
3010   // Insert the new loop into the loop nest and register the new basic blocks
3011   // before calling any utilities such as SCEV that require valid LoopInfo.
3012   if (ParentLoop) {
3013     ParentLoop->addChildLoop(Lp);
3014     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3015     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3016   } else {
3017     LI->addTopLevelLoop(Lp);
3018   }
3019   Lp->addBasicBlockToLoop(VecBody, *LI);
3020 
3021   // Find the loop boundaries.
3022   Value *Count = getOrCreateTripCount(Lp);
3023 
3024   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3025 
3026   // We need to test whether the backedge-taken count is uint##_max. Adding one
3027   // to it will cause overflow and an incorrect loop trip count in the vector
3028   // body. In case of overflow we want to directly jump to the scalar remainder
3029   // loop.
3030   emitMinimumIterationCountCheck(Lp, ScalarPH);
3031   // Now, compare the new count to zero. If it is zero skip the vector loop and
3032   // jump to the scalar loop.
3033   emitVectorLoopEnteredCheck(Lp, ScalarPH);
3034   // Generate the code to check any assumptions that we've made for SCEV
3035   // expressions.
3036   emitSCEVChecks(Lp, ScalarPH);
3037 
3038   // Generate the code that checks in runtime if arrays overlap. We put the
3039   // checks into a separate block to make the more common case of few elements
3040   // faster.
3041   emitMemRuntimeChecks(Lp, ScalarPH);
3042 
3043   // Generate the induction variable.
3044   // The loop step is equal to the vectorization factor (num of SIMD elements)
3045   // times the unroll factor (num of SIMD instructions).
3046   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3047   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3048   Induction =
3049       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3050                               getDebugLocFromInstOrOperands(OldInduction));
3051 
3052   // We are going to resume the execution of the scalar loop.
3053   // Go over all of the induction variables that we found and fix the
3054   // PHIs that are left in the scalar version of the loop.
3055   // The starting values of PHI nodes depend on the counter of the last
3056   // iteration in the vectorized loop.
3057   // If we come from a bypass edge then we need to start from the original
3058   // start value.
3059 
3060   // This variable saves the new starting index for the scalar loop. It is used
3061   // to test if there are any tail iterations left once the vector loop has
3062   // completed.
3063   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3064   for (auto &InductionEntry : *List) {
3065     PHINode *OrigPhi = InductionEntry.first;
3066     InductionDescriptor II = InductionEntry.second;
3067 
3068     // Create phi nodes to merge from the  backedge-taken check block.
3069     PHINode *BCResumeVal = PHINode::Create(
3070         OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3071     Value *EndValue;
3072     if (OrigPhi == OldInduction) {
3073       // We know what the end value is.
3074       EndValue = CountRoundDown;
3075     } else {
3076       IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
3077       Value *CRD = B.CreateSExtOrTrunc(CountRoundDown,
3078                                        II.getStep()->getType(), "cast.crd");
3079       const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3080       EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3081       EndValue->setName("ind.end");
3082     }
3083 
3084     // The new PHI merges the original incoming value, in case of a bypass,
3085     // or the value at the end of the vectorized loop.
3086     BCResumeVal->addIncoming(EndValue, MiddleBlock);
3087 
3088     // Fix up external users of the induction variable.
3089     fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock);
3090 
3091     // Fix the scalar body counter (PHI node).
3092     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3093 
3094     // The old induction's phi node in the scalar body needs the truncated
3095     // value.
3096     for (BasicBlock *BB : LoopBypassBlocks)
3097       BCResumeVal->addIncoming(II.getStartValue(), BB);
3098     OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3099   }
3100 
3101   // Add a check in the middle block to see if we have completed
3102   // all of the iterations in the first vector loop.
3103   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3104   Value *CmpN =
3105       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3106                       CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3107   ReplaceInstWithInst(MiddleBlock->getTerminator(),
3108                       BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3109 
3110   // Get ready to start creating new instructions into the vectorized body.
3111   Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3112 
3113   // Save the state.
3114   LoopVectorPreHeader = Lp->getLoopPreheader();
3115   LoopScalarPreHeader = ScalarPH;
3116   LoopMiddleBlock = MiddleBlock;
3117   LoopExitBlock = ExitBlock;
3118   LoopVectorBody = VecBody;
3119   LoopScalarBody = OldBasicBlock;
3120 
3121   // Keep all loop hints from the original loop on the vector loop (we'll
3122   // replace the vectorizer-specific hints below).
3123   if (MDNode *LID = OrigLoop->getLoopID())
3124     Lp->setLoopID(LID);
3125 
3126   LoopVectorizeHints Hints(Lp, true);
3127   Hints.setAlreadyVectorized();
3128 }
3129 
3130 // Fix up external users of the induction variable. At this point, we are
3131 // in LCSSA form, with all external PHIs that use the IV having one input value,
3132 // coming from the remainder loop. We need those PHIs to also have a correct
3133 // value for the IV when arriving directly from the middle block.
fixupIVUsers(PHINode * OrigPhi,const InductionDescriptor & II,Value * CountRoundDown,Value * EndValue,BasicBlock * MiddleBlock)3134 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3135                                        const InductionDescriptor &II,
3136                                        Value *CountRoundDown, Value *EndValue,
3137                                        BasicBlock *MiddleBlock) {
3138   // There are two kinds of external IV usages - those that use the value
3139   // computed in the last iteration (the PHI) and those that use the penultimate
3140   // value (the value that feeds into the phi from the loop latch).
3141   // We allow both, but they, obviously, have different values.
3142 
3143   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3144 
3145   DenseMap<Value *, Value *> MissingVals;
3146 
3147   // An external user of the last iteration's value should see the value that
3148   // the remainder loop uses to initialize its own IV.
3149   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3150   for (User *U : PostInc->users()) {
3151     Instruction *UI = cast<Instruction>(U);
3152     if (!OrigLoop->contains(UI)) {
3153       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3154       MissingVals[UI] = EndValue;
3155     }
3156   }
3157 
3158   // An external user of the penultimate value need to see EndValue - Step.
3159   // The simplest way to get this is to recompute it from the constituent SCEVs,
3160   // that is Start + (Step * (CRD - 1)).
3161   for (User *U : OrigPhi->users()) {
3162     auto *UI = cast<Instruction>(U);
3163     if (!OrigLoop->contains(UI)) {
3164       const DataLayout &DL =
3165           OrigLoop->getHeader()->getModule()->getDataLayout();
3166       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3167 
3168       IRBuilder<> B(MiddleBlock->getTerminator());
3169       Value *CountMinusOne = B.CreateSub(
3170           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3171       Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(),
3172                                        "cast.cmo");
3173       Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3174       Escape->setName("ind.escape");
3175       MissingVals[UI] = Escape;
3176     }
3177   }
3178 
3179   for (auto &I : MissingVals) {
3180     PHINode *PHI = cast<PHINode>(I.first);
3181     // One corner case we have to handle is two IVs "chasing" each-other,
3182     // that is %IV2 = phi [...], [ %IV1, %latch ]
3183     // In this case, if IV1 has an external use, we need to avoid adding both
3184     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3185     // don't already have an incoming value for the middle block.
3186     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3187       PHI->addIncoming(I.second, MiddleBlock);
3188   }
3189 }
3190 
3191 namespace {
3192 struct CSEDenseMapInfo {
canHandle__anonfb91178e0311::CSEDenseMapInfo3193   static bool canHandle(Instruction *I) {
3194     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3195            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3196   }
getEmptyKey__anonfb91178e0311::CSEDenseMapInfo3197   static inline Instruction *getEmptyKey() {
3198     return DenseMapInfo<Instruction *>::getEmptyKey();
3199   }
getTombstoneKey__anonfb91178e0311::CSEDenseMapInfo3200   static inline Instruction *getTombstoneKey() {
3201     return DenseMapInfo<Instruction *>::getTombstoneKey();
3202   }
getHashValue__anonfb91178e0311::CSEDenseMapInfo3203   static unsigned getHashValue(Instruction *I) {
3204     assert(canHandle(I) && "Unknown instruction!");
3205     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3206                                                            I->value_op_end()));
3207   }
isEqual__anonfb91178e0311::CSEDenseMapInfo3208   static bool isEqual(Instruction *LHS, Instruction *RHS) {
3209     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3210         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3211       return LHS == RHS;
3212     return LHS->isIdenticalTo(RHS);
3213   }
3214 };
3215 }
3216 
3217 ///\brief Perform cse of induction variable instructions.
cse(BasicBlock * BB)3218 static void cse(BasicBlock *BB) {
3219   // Perform simple cse.
3220   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3221   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3222     Instruction *In = &*I++;
3223 
3224     if (!CSEDenseMapInfo::canHandle(In))
3225       continue;
3226 
3227     // Check if we can replace this instruction with any of the
3228     // visited instructions.
3229     if (Instruction *V = CSEMap.lookup(In)) {
3230       In->replaceAllUsesWith(V);
3231       In->eraseFromParent();
3232       continue;
3233     }
3234 
3235     CSEMap[In] = In;
3236   }
3237 }
3238 
3239 /// \brief Adds a 'fast' flag to floating point operations.
addFastMathFlag(Value * V)3240 static Value *addFastMathFlag(Value *V) {
3241   if (isa<FPMathOperator>(V)) {
3242     FastMathFlags Flags;
3243     Flags.setUnsafeAlgebra();
3244     cast<Instruction>(V)->setFastMathFlags(Flags);
3245   }
3246   return V;
3247 }
3248 
3249 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
3250 /// the result needs to be inserted and/or extracted from vectors.
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract,const TargetTransformInfo & TTI)3251 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
3252                                          const TargetTransformInfo &TTI) {
3253   if (Ty->isVoidTy())
3254     return 0;
3255 
3256   assert(Ty->isVectorTy() && "Can only scalarize vectors");
3257   unsigned Cost = 0;
3258 
3259   for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) {
3260     if (Insert)
3261       Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I);
3262     if (Extract)
3263       Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I);
3264   }
3265 
3266   return Cost;
3267 }
3268 
3269 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3270 // Return the cost of the instruction, including scalarization overhead if it's
3271 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3272 // i.e. either vector version isn't available, or is too expensive.
getVectorCallCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,bool & NeedToScalarize)3273 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3274                                   const TargetTransformInfo &TTI,
3275                                   const TargetLibraryInfo *TLI,
3276                                   bool &NeedToScalarize) {
3277   Function *F = CI->getCalledFunction();
3278   StringRef FnName = CI->getCalledFunction()->getName();
3279   Type *ScalarRetTy = CI->getType();
3280   SmallVector<Type *, 4> Tys, ScalarTys;
3281   for (auto &ArgOp : CI->arg_operands())
3282     ScalarTys.push_back(ArgOp->getType());
3283 
3284   // Estimate cost of scalarized vector call. The source operands are assumed
3285   // to be vectors, so we need to extract individual elements from there,
3286   // execute VF scalar calls, and then gather the result into the vector return
3287   // value.
3288   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3289   if (VF == 1)
3290     return ScalarCallCost;
3291 
3292   // Compute corresponding vector type for return value and arguments.
3293   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3294   for (Type *ScalarTy : ScalarTys)
3295     Tys.push_back(ToVectorTy(ScalarTy, VF));
3296 
3297   // Compute costs of unpacking argument values for the scalar calls and
3298   // packing the return values to a vector.
3299   unsigned ScalarizationCost =
3300       getScalarizationOverhead(RetTy, true, false, TTI);
3301   for (Type *Ty : Tys)
3302     ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI);
3303 
3304   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3305 
3306   // If we can't emit a vector call for this function, then the currently found
3307   // cost is the cost we need to return.
3308   NeedToScalarize = true;
3309   if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3310     return Cost;
3311 
3312   // If the corresponding vector cost is cheaper, return its cost.
3313   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3314   if (VectorCallCost < Cost) {
3315     NeedToScalarize = false;
3316     return VectorCallCost;
3317   }
3318   return Cost;
3319 }
3320 
3321 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3322 // factor VF.  Return the cost of the instruction, including scalarization
3323 // overhead if it's needed.
getVectorIntrinsicCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI)3324 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3325                                        const TargetTransformInfo &TTI,
3326                                        const TargetLibraryInfo *TLI) {
3327   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3328   assert(ID && "Expected intrinsic call!");
3329 
3330   Type *RetTy = ToVectorTy(CI->getType(), VF);
3331   SmallVector<Type *, 4> Tys;
3332   for (Value *ArgOperand : CI->arg_operands())
3333     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
3334 
3335   FastMathFlags FMF;
3336   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3337     FMF = FPMO->getFastMathFlags();
3338 
3339   return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF);
3340 }
3341 
smallestIntegerVectorType(Type * T1,Type * T2)3342 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3343   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3344   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3345   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3346 }
largestIntegerVectorType(Type * T1,Type * T2)3347 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3348   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3349   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3350   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3351 }
3352 
truncateToMinimalBitwidths()3353 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3354   // For every instruction `I` in MinBWs, truncate the operands, create a
3355   // truncated version of `I` and reextend its result. InstCombine runs
3356   // later and will remove any ext/trunc pairs.
3357   //
3358   SmallPtrSet<Value *, 4> Erased;
3359   for (const auto &KV : *MinBWs) {
3360     VectorParts &Parts = WidenMap.get(KV.first);
3361     for (Value *&I : Parts) {
3362       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3363         continue;
3364       Type *OriginalTy = I->getType();
3365       Type *ScalarTruncatedTy =
3366           IntegerType::get(OriginalTy->getContext(), KV.second);
3367       Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3368                                           OriginalTy->getVectorNumElements());
3369       if (TruncatedTy == OriginalTy)
3370         continue;
3371 
3372       IRBuilder<> B(cast<Instruction>(I));
3373       auto ShrinkOperand = [&](Value *V) -> Value * {
3374         if (auto *ZI = dyn_cast<ZExtInst>(V))
3375           if (ZI->getSrcTy() == TruncatedTy)
3376             return ZI->getOperand(0);
3377         return B.CreateZExtOrTrunc(V, TruncatedTy);
3378       };
3379 
3380       // The actual instruction modification depends on the instruction type,
3381       // unfortunately.
3382       Value *NewI = nullptr;
3383       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3384         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3385                              ShrinkOperand(BO->getOperand(1)));
3386         cast<BinaryOperator>(NewI)->copyIRFlags(I);
3387       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3388         NewI =
3389             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3390                          ShrinkOperand(CI->getOperand(1)));
3391       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3392         NewI = B.CreateSelect(SI->getCondition(),
3393                               ShrinkOperand(SI->getTrueValue()),
3394                               ShrinkOperand(SI->getFalseValue()));
3395       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3396         switch (CI->getOpcode()) {
3397         default:
3398           llvm_unreachable("Unhandled cast!");
3399         case Instruction::Trunc:
3400           NewI = ShrinkOperand(CI->getOperand(0));
3401           break;
3402         case Instruction::SExt:
3403           NewI = B.CreateSExtOrTrunc(
3404               CI->getOperand(0),
3405               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3406           break;
3407         case Instruction::ZExt:
3408           NewI = B.CreateZExtOrTrunc(
3409               CI->getOperand(0),
3410               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3411           break;
3412         }
3413       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3414         auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3415         auto *O0 = B.CreateZExtOrTrunc(
3416             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3417         auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3418         auto *O1 = B.CreateZExtOrTrunc(
3419             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3420 
3421         NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3422       } else if (isa<LoadInst>(I)) {
3423         // Don't do anything with the operands, just extend the result.
3424         continue;
3425       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3426         auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3427         auto *O0 = B.CreateZExtOrTrunc(
3428             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3429         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3430         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3431       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3432         auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3433         auto *O0 = B.CreateZExtOrTrunc(
3434             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3435         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3436       } else {
3437         llvm_unreachable("Unhandled instruction type!");
3438       }
3439 
3440       // Lastly, extend the result.
3441       NewI->takeName(cast<Instruction>(I));
3442       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3443       I->replaceAllUsesWith(Res);
3444       cast<Instruction>(I)->eraseFromParent();
3445       Erased.insert(I);
3446       I = Res;
3447     }
3448   }
3449 
3450   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3451   for (const auto &KV : *MinBWs) {
3452     VectorParts &Parts = WidenMap.get(KV.first);
3453     for (Value *&I : Parts) {
3454       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3455       if (Inst && Inst->use_empty()) {
3456         Value *NewI = Inst->getOperand(0);
3457         Inst->eraseFromParent();
3458         I = NewI;
3459       }
3460     }
3461   }
3462 }
3463 
vectorizeLoop()3464 void InnerLoopVectorizer::vectorizeLoop() {
3465   //===------------------------------------------------===//
3466   //
3467   // Notice: any optimization or new instruction that go
3468   // into the code below should be also be implemented in
3469   // the cost-model.
3470   //
3471   //===------------------------------------------------===//
3472   Constant *Zero = Builder.getInt32(0);
3473 
3474   // In order to support recurrences we need to be able to vectorize Phi nodes.
3475   // Phi nodes have cycles, so we need to vectorize them in two stages. First,
3476   // we create a new vector PHI node with no incoming edges. We use this value
3477   // when we vectorize all of the instructions that use the PHI. Next, after
3478   // all of the instructions in the block are complete we add the new incoming
3479   // edges to the PHI. At this point all of the instructions in the basic block
3480   // are vectorized, so we can use them to construct the PHI.
3481   PhiVector PHIsToFix;
3482 
3483   // Scan the loop in a topological order to ensure that defs are vectorized
3484   // before users.
3485   LoopBlocksDFS DFS(OrigLoop);
3486   DFS.perform(LI);
3487 
3488   // Vectorize all of the blocks in the original loop.
3489   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
3490     vectorizeBlockInLoop(BB, &PHIsToFix);
3491 
3492   // Insert truncates and extends for any truncated instructions as hints to
3493   // InstCombine.
3494   if (VF > 1)
3495     truncateToMinimalBitwidths();
3496 
3497   // At this point every instruction in the original loop is widened to a
3498   // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI
3499   // nodes are currently empty because we did not want to introduce cycles.
3500   // This is the second stage of vectorizing recurrences.
3501   for (PHINode *Phi : PHIsToFix) {
3502     assert(Phi && "Unable to recover vectorized PHI");
3503 
3504     // Handle first-order recurrences that need to be fixed.
3505     if (Legal->isFirstOrderRecurrence(Phi)) {
3506       fixFirstOrderRecurrence(Phi);
3507       continue;
3508     }
3509 
3510     // If the phi node is not a first-order recurrence, it must be a reduction.
3511     // Get it's reduction variable descriptor.
3512     assert(Legal->isReductionVariable(Phi) &&
3513            "Unable to find the reduction variable");
3514     RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
3515 
3516     RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3517     TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3518     Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3519     RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3520         RdxDesc.getMinMaxRecurrenceKind();
3521     setDebugLocFromInst(Builder, ReductionStartValue);
3522 
3523     // We need to generate a reduction vector from the incoming scalar.
3524     // To do so, we need to generate the 'identity' vector and override
3525     // one of the elements with the incoming scalar reduction. We need
3526     // to do it in the vector-loop preheader.
3527     Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
3528 
3529     // This is the vector-clone of the value that leaves the loop.
3530     VectorParts &VectorExit = getVectorValue(LoopExitInst);
3531     Type *VecTy = VectorExit[0]->getType();
3532 
3533     // Find the reduction identity variable. Zero for addition, or, xor,
3534     // one for multiplication, -1 for And.
3535     Value *Identity;
3536     Value *VectorStart;
3537     if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3538         RK == RecurrenceDescriptor::RK_FloatMinMax) {
3539       // MinMax reduction have the start value as their identify.
3540       if (VF == 1) {
3541         VectorStart = Identity = ReductionStartValue;
3542       } else {
3543         VectorStart = Identity =
3544             Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3545       }
3546     } else {
3547       // Handle other reduction kinds:
3548       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3549           RK, VecTy->getScalarType());
3550       if (VF == 1) {
3551         Identity = Iden;
3552         // This vector is the Identity vector where the first element is the
3553         // incoming scalar reduction.
3554         VectorStart = ReductionStartValue;
3555       } else {
3556         Identity = ConstantVector::getSplat(VF, Iden);
3557 
3558         // This vector is the Identity vector where the first element is the
3559         // incoming scalar reduction.
3560         VectorStart =
3561             Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3562       }
3563     }
3564 
3565     // Fix the vector-loop phi.
3566 
3567     // Reductions do not have to start at zero. They can start with
3568     // any loop invariant values.
3569     VectorParts &VecRdxPhi = WidenMap.get(Phi);
3570     BasicBlock *Latch = OrigLoop->getLoopLatch();
3571     Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3572     VectorParts &Val = getVectorValue(LoopVal);
3573     for (unsigned part = 0; part < UF; ++part) {
3574       // Make sure to add the reduction stat value only to the
3575       // first unroll part.
3576       Value *StartVal = (part == 0) ? VectorStart : Identity;
3577       cast<PHINode>(VecRdxPhi[part])
3578           ->addIncoming(StartVal, LoopVectorPreHeader);
3579       cast<PHINode>(VecRdxPhi[part])
3580           ->addIncoming(Val[part], LoopVectorBody);
3581     }
3582 
3583     // Before each round, move the insertion point right between
3584     // the PHIs and the values we are going to write.
3585     // This allows us to write both PHINodes and the extractelement
3586     // instructions.
3587     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3588 
3589     VectorParts RdxParts = getVectorValue(LoopExitInst);
3590     setDebugLocFromInst(Builder, LoopExitInst);
3591 
3592     // If the vector reduction can be performed in a smaller type, we truncate
3593     // then extend the loop exit value to enable InstCombine to evaluate the
3594     // entire expression in the smaller type.
3595     if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3596       Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3597       Builder.SetInsertPoint(LoopVectorBody->getTerminator());
3598       for (unsigned part = 0; part < UF; ++part) {
3599         Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3600         Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3601                                           : Builder.CreateZExt(Trunc, VecTy);
3602         for (Value::user_iterator UI = RdxParts[part]->user_begin();
3603              UI != RdxParts[part]->user_end();)
3604           if (*UI != Trunc) {
3605             (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
3606             RdxParts[part] = Extnd;
3607           } else {
3608             ++UI;
3609           }
3610       }
3611       Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3612       for (unsigned part = 0; part < UF; ++part)
3613         RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3614     }
3615 
3616     // Reduce all of the unrolled parts into a single vector.
3617     Value *ReducedPartRdx = RdxParts[0];
3618     unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3619     setDebugLocFromInst(Builder, ReducedPartRdx);
3620     for (unsigned part = 1; part < UF; ++part) {
3621       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3622         // Floating point operations had to be 'fast' to enable the reduction.
3623         ReducedPartRdx = addFastMathFlag(
3624             Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
3625                                 ReducedPartRdx, "bin.rdx"));
3626       else
3627         ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
3628             Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
3629     }
3630 
3631     if (VF > 1) {
3632       // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
3633       // and vector ops, reducing the set of values being computed by half each
3634       // round.
3635       assert(isPowerOf2_32(VF) &&
3636              "Reduction emission only supported for pow2 vectors!");
3637       Value *TmpVec = ReducedPartRdx;
3638       SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
3639       for (unsigned i = VF; i != 1; i >>= 1) {
3640         // Move the upper half of the vector to the lower half.
3641         for (unsigned j = 0; j != i / 2; ++j)
3642           ShuffleMask[j] = Builder.getInt32(i / 2 + j);
3643 
3644         // Fill the rest of the mask with undef.
3645         std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
3646                   UndefValue::get(Builder.getInt32Ty()));
3647 
3648         Value *Shuf = Builder.CreateShuffleVector(
3649             TmpVec, UndefValue::get(TmpVec->getType()),
3650             ConstantVector::get(ShuffleMask), "rdx.shuf");
3651 
3652         if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3653           // Floating point operations had to be 'fast' to enable the reduction.
3654           TmpVec = addFastMathFlag(Builder.CreateBinOp(
3655               (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
3656         else
3657           TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
3658                                                         TmpVec, Shuf);
3659       }
3660 
3661       // The result is in the first element of the vector.
3662       ReducedPartRdx =
3663           Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3664 
3665       // If the reduction can be performed in a smaller type, we need to extend
3666       // the reduction to the wider type before we branch to the original loop.
3667       if (Phi->getType() != RdxDesc.getRecurrenceType())
3668         ReducedPartRdx =
3669             RdxDesc.isSigned()
3670                 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3671                 : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3672     }
3673 
3674     // Create a phi node that merges control-flow from the backedge-taken check
3675     // block and the middle block.
3676     PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3677                                           LoopScalarPreHeader->getTerminator());
3678     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3679       BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3680     BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3681 
3682     // Now, we need to fix the users of the reduction variable
3683     // inside and outside of the scalar remainder loop.
3684     // We know that the loop is in LCSSA form. We need to update the
3685     // PHI nodes in the exit blocks.
3686     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3687                               LEE = LoopExitBlock->end();
3688          LEI != LEE; ++LEI) {
3689       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3690       if (!LCSSAPhi)
3691         break;
3692 
3693       // All PHINodes need to have a single entry edge, or two if
3694       // we already fixed them.
3695       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3696 
3697       // We found our reduction value exit-PHI. Update it with the
3698       // incoming bypass edge.
3699       if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
3700         // Add an edge coming from the bypass.
3701         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3702         break;
3703       }
3704     } // end of the LCSSA phi scan.
3705 
3706     // Fix the scalar loop reduction variable with the incoming reduction sum
3707     // from the vector body and from the backedge value.
3708     int IncomingEdgeBlockIdx =
3709         Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3710     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3711     // Pick the other block.
3712     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3713     Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3714     Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3715   } // end of for each Phi in PHIsToFix.
3716 
3717   fixLCSSAPHIs();
3718 
3719   // Make sure DomTree is updated.
3720   updateAnalysis();
3721 
3722   // Predicate any stores.
3723   for (auto KV : PredicatedStores) {
3724     BasicBlock::iterator I(KV.first);
3725     auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI);
3726     auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
3727                                         /*BranchWeights=*/nullptr, DT, LI);
3728     I->moveBefore(T);
3729     I->getParent()->setName("pred.store.if");
3730     BB->setName("pred.store.continue");
3731   }
3732   DEBUG(DT->verifyDomTree());
3733   // Remove redundant induction instructions.
3734   cse(LoopVectorBody);
3735 }
3736 
fixFirstOrderRecurrence(PHINode * Phi)3737 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3738 
3739   // This is the second phase of vectorizing first-order recurrences. An
3740   // overview of the transformation is described below. Suppose we have the
3741   // following loop.
3742   //
3743   //   for (int i = 0; i < n; ++i)
3744   //     b[i] = a[i] - a[i - 1];
3745   //
3746   // There is a first-order recurrence on "a". For this loop, the shorthand
3747   // scalar IR looks like:
3748   //
3749   //   scalar.ph:
3750   //     s_init = a[-1]
3751   //     br scalar.body
3752   //
3753   //   scalar.body:
3754   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3755   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3756   //     s2 = a[i]
3757   //     b[i] = s2 - s1
3758   //     br cond, scalar.body, ...
3759   //
3760   // In this example, s1 is a recurrence because it's value depends on the
3761   // previous iteration. In the first phase of vectorization, we created a
3762   // temporary value for s1. We now complete the vectorization and produce the
3763   // shorthand vector IR shown below (for VF = 4, UF = 1).
3764   //
3765   //   vector.ph:
3766   //     v_init = vector(..., ..., ..., a[-1])
3767   //     br vector.body
3768   //
3769   //   vector.body
3770   //     i = phi [0, vector.ph], [i+4, vector.body]
3771   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3772   //     v2 = a[i, i+1, i+2, i+3];
3773   //     v3 = vector(v1(3), v2(0, 1, 2))
3774   //     b[i, i+1, i+2, i+3] = v2 - v3
3775   //     br cond, vector.body, middle.block
3776   //
3777   //   middle.block:
3778   //     x = v2(3)
3779   //     br scalar.ph
3780   //
3781   //   scalar.ph:
3782   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3783   //     br scalar.body
3784   //
3785   // After execution completes the vector loop, we extract the next value of
3786   // the recurrence (x) to use as the initial value in the scalar loop.
3787 
3788   // Get the original loop preheader and single loop latch.
3789   auto *Preheader = OrigLoop->getLoopPreheader();
3790   auto *Latch = OrigLoop->getLoopLatch();
3791 
3792   // Get the initial and previous values of the scalar recurrence.
3793   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3794   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3795 
3796   // Create a vector from the initial value.
3797   auto *VectorInit = ScalarInit;
3798   if (VF > 1) {
3799     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3800     VectorInit = Builder.CreateInsertElement(
3801         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3802         Builder.getInt32(VF - 1), "vector.recur.init");
3803   }
3804 
3805   // We constructed a temporary phi node in the first phase of vectorization.
3806   // This phi node will eventually be deleted.
3807   auto &PhiParts = getVectorValue(Phi);
3808   Builder.SetInsertPoint(cast<Instruction>(PhiParts[0]));
3809 
3810   // Create a phi node for the new recurrence. The current value will either be
3811   // the initial value inserted into a vector or loop-varying vector value.
3812   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3813   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3814 
3815   // Get the vectorized previous value. We ensured the previous values was an
3816   // instruction when detecting the recurrence.
3817   auto &PreviousParts = getVectorValue(Previous);
3818 
3819   // Set the insertion point to be after this instruction. We ensured the
3820   // previous value dominated all uses of the phi when detecting the
3821   // recurrence.
3822   Builder.SetInsertPoint(
3823       &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1])));
3824 
3825   // We will construct a vector for the recurrence by combining the values for
3826   // the current and previous iterations. This is the required shuffle mask.
3827   SmallVector<Constant *, 8> ShuffleMask(VF);
3828   ShuffleMask[0] = Builder.getInt32(VF - 1);
3829   for (unsigned I = 1; I < VF; ++I)
3830     ShuffleMask[I] = Builder.getInt32(I + VF - 1);
3831 
3832   // The vector from which to take the initial value for the current iteration
3833   // (actual or unrolled). Initially, this is the vector phi node.
3834   Value *Incoming = VecPhi;
3835 
3836   // Shuffle the current and previous vector and update the vector parts.
3837   for (unsigned Part = 0; Part < UF; ++Part) {
3838     auto *Shuffle =
3839         VF > 1
3840             ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part],
3841                                           ConstantVector::get(ShuffleMask))
3842             : Incoming;
3843     PhiParts[Part]->replaceAllUsesWith(Shuffle);
3844     cast<Instruction>(PhiParts[Part])->eraseFromParent();
3845     PhiParts[Part] = Shuffle;
3846     Incoming = PreviousParts[Part];
3847   }
3848 
3849   // Fix the latch value of the new recurrence in the vector loop.
3850   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3851 
3852   // Extract the last vector element in the middle block. This will be the
3853   // initial value for the recurrence when jumping to the scalar loop.
3854   auto *Extract = Incoming;
3855   if (VF > 1) {
3856     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3857     Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1),
3858                                            "vector.recur.extract");
3859   }
3860 
3861   // Fix the initial value of the original recurrence in the scalar loop.
3862   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3863   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3864   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3865     auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit;
3866     Start->addIncoming(Incoming, BB);
3867   }
3868 
3869   Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
3870   Phi->setName("scalar.recur");
3871 
3872   // Finally, fix users of the recurrence outside the loop. The users will need
3873   // either the last value of the scalar recurrence or the last value of the
3874   // vector recurrence we extracted in the middle block. Since the loop is in
3875   // LCSSA form, we just need to find the phi node for the original scalar
3876   // recurrence in the exit block, and then add an edge for the middle block.
3877   for (auto &I : *LoopExitBlock) {
3878     auto *LCSSAPhi = dyn_cast<PHINode>(&I);
3879     if (!LCSSAPhi)
3880       break;
3881     if (LCSSAPhi->getIncomingValue(0) == Phi) {
3882       LCSSAPhi->addIncoming(Extract, LoopMiddleBlock);
3883       break;
3884     }
3885   }
3886 }
3887 
fixLCSSAPHIs()3888 void InnerLoopVectorizer::fixLCSSAPHIs() {
3889   for (Instruction &LEI : *LoopExitBlock) {
3890     auto *LCSSAPhi = dyn_cast<PHINode>(&LEI);
3891     if (!LCSSAPhi)
3892       break;
3893     if (LCSSAPhi->getNumIncomingValues() == 1)
3894       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3895                             LoopMiddleBlock);
3896   }
3897 }
3898 
3899 InnerLoopVectorizer::VectorParts
createEdgeMask(BasicBlock * Src,BasicBlock * Dst)3900 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3901   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
3902          "Invalid edge");
3903 
3904   // Look for cached value.
3905   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
3906   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3907   if (ECEntryIt != MaskCache.end())
3908     return ECEntryIt->second;
3909 
3910   VectorParts SrcMask = createBlockInMask(Src);
3911 
3912   // The terminator has to be a branch inst!
3913   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3914   assert(BI && "Unexpected terminator found");
3915 
3916   if (BI->isConditional()) {
3917     VectorParts EdgeMask = getVectorValue(BI->getCondition());
3918 
3919     if (BI->getSuccessor(0) != Dst)
3920       for (unsigned part = 0; part < UF; ++part)
3921         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3922 
3923     for (unsigned part = 0; part < UF; ++part)
3924       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3925 
3926     MaskCache[Edge] = EdgeMask;
3927     return EdgeMask;
3928   }
3929 
3930   MaskCache[Edge] = SrcMask;
3931   return SrcMask;
3932 }
3933 
3934 InnerLoopVectorizer::VectorParts
createBlockInMask(BasicBlock * BB)3935 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3936   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3937 
3938   // Loop incoming mask is all-one.
3939   if (OrigLoop->getHeader() == BB) {
3940     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3941     return getVectorValue(C);
3942   }
3943 
3944   // This is the block mask. We OR all incoming edges, and with zero.
3945   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3946   VectorParts BlockMask = getVectorValue(Zero);
3947 
3948   // For each pred:
3949   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3950     VectorParts EM = createEdgeMask(*it, BB);
3951     for (unsigned part = 0; part < UF; ++part)
3952       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3953   }
3954 
3955   return BlockMask;
3956 }
3957 
widenPHIInstruction(Instruction * PN,InnerLoopVectorizer::VectorParts & Entry,unsigned UF,unsigned VF,PhiVector * PV)3958 void InnerLoopVectorizer::widenPHIInstruction(
3959     Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF,
3960     unsigned VF, PhiVector *PV) {
3961   PHINode *P = cast<PHINode>(PN);
3962   // Handle recurrences.
3963   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
3964     for (unsigned part = 0; part < UF; ++part) {
3965       // This is phase one of vectorizing PHIs.
3966       Type *VecTy =
3967           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
3968       Entry[part] = PHINode::Create(
3969           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
3970     }
3971     PV->push_back(P);
3972     return;
3973   }
3974 
3975   setDebugLocFromInst(Builder, P);
3976   // Check for PHI nodes that are lowered to vector selects.
3977   if (P->getParent() != OrigLoop->getHeader()) {
3978     // We know that all PHIs in non-header blocks are converted into
3979     // selects, so we don't have to worry about the insertion order and we
3980     // can just use the builder.
3981     // At this point we generate the predication tree. There may be
3982     // duplications since this is a simple recursive scan, but future
3983     // optimizations will clean it up.
3984 
3985     unsigned NumIncoming = P->getNumIncomingValues();
3986 
3987     // Generate a sequence of selects of the form:
3988     // SELECT(Mask3, In3,
3989     //      SELECT(Mask2, In2,
3990     //                   ( ...)))
3991     for (unsigned In = 0; In < NumIncoming; In++) {
3992       VectorParts Cond =
3993           createEdgeMask(P->getIncomingBlock(In), P->getParent());
3994       VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3995 
3996       for (unsigned part = 0; part < UF; ++part) {
3997         // We might have single edge PHIs (blocks) - use an identity
3998         // 'select' for the first PHI operand.
3999         if (In == 0)
4000           Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]);
4001         else
4002           // Select between the current value and the previous incoming edge
4003           // based on the incoming mask.
4004           Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part],
4005                                              "predphi");
4006       }
4007     }
4008     return;
4009   }
4010 
4011   // This PHINode must be an induction variable.
4012   // Make sure that we know about it.
4013   assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
4014 
4015   InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4016   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4017 
4018   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4019   // which can be found from the original scalar operations.
4020   switch (II.getKind()) {
4021   case InductionDescriptor::IK_NoInduction:
4022     llvm_unreachable("Unknown induction");
4023   case InductionDescriptor::IK_IntInduction:
4024     return widenIntInduction(P, Entry);
4025   case InductionDescriptor::IK_PtrInduction:
4026     // Handle the pointer induction variable case.
4027     assert(P->getType()->isPointerTy() && "Unexpected type.");
4028     // This is the normalized GEP that starts counting at zero.
4029     Value *PtrInd = Induction;
4030     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4031     // This is the vector of results. Notice that we don't generate
4032     // vector geps because scalar geps result in better code.
4033     for (unsigned part = 0; part < UF; ++part) {
4034       if (VF == 1) {
4035         int EltIndex = part;
4036         Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
4037         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4038         Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4039         SclrGep->setName("next.gep");
4040         Entry[part] = SclrGep;
4041         continue;
4042       }
4043 
4044       Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
4045       for (unsigned int i = 0; i < VF; ++i) {
4046         int EltIndex = i + part * VF;
4047         Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
4048         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4049         Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4050         SclrGep->setName("next.gep");
4051         VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
4052                                              Builder.getInt32(i), "insert.gep");
4053       }
4054       Entry[part] = VecVal;
4055     }
4056     return;
4057   }
4058 }
4059 
vectorizeBlockInLoop(BasicBlock * BB,PhiVector * PV)4060 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
4061   // For each instruction in the old loop.
4062   for (Instruction &I : *BB) {
4063     VectorParts &Entry = WidenMap.get(&I);
4064 
4065     switch (I.getOpcode()) {
4066     case Instruction::Br:
4067       // Nothing to do for PHIs and BR, since we already took care of the
4068       // loop control flow instructions.
4069       continue;
4070     case Instruction::PHI: {
4071       // Vectorize PHINodes.
4072       widenPHIInstruction(&I, Entry, UF, VF, PV);
4073       continue;
4074     } // End of PHI.
4075 
4076     case Instruction::Add:
4077     case Instruction::FAdd:
4078     case Instruction::Sub:
4079     case Instruction::FSub:
4080     case Instruction::Mul:
4081     case Instruction::FMul:
4082     case Instruction::UDiv:
4083     case Instruction::SDiv:
4084     case Instruction::FDiv:
4085     case Instruction::URem:
4086     case Instruction::SRem:
4087     case Instruction::FRem:
4088     case Instruction::Shl:
4089     case Instruction::LShr:
4090     case Instruction::AShr:
4091     case Instruction::And:
4092     case Instruction::Or:
4093     case Instruction::Xor: {
4094       // Just widen binops.
4095       auto *BinOp = cast<BinaryOperator>(&I);
4096       setDebugLocFromInst(Builder, BinOp);
4097       VectorParts &A = getVectorValue(BinOp->getOperand(0));
4098       VectorParts &B = getVectorValue(BinOp->getOperand(1));
4099 
4100       // Use this vector value for all users of the original instruction.
4101       for (unsigned Part = 0; Part < UF; ++Part) {
4102         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
4103 
4104         if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4105           VecOp->copyIRFlags(BinOp);
4106 
4107         Entry[Part] = V;
4108       }
4109 
4110       addMetadata(Entry, BinOp);
4111       break;
4112     }
4113     case Instruction::Select: {
4114       // Widen selects.
4115       // If the selector is loop invariant we can create a select
4116       // instruction with a scalar condition. Otherwise, use vector-select.
4117       auto *SE = PSE.getSE();
4118       bool InvariantCond =
4119           SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4120       setDebugLocFromInst(Builder, &I);
4121 
4122       // The condition can be loop invariant  but still defined inside the
4123       // loop. This means that we can't just use the original 'cond' value.
4124       // We have to take the 'vectorized' value and pick the first lane.
4125       // Instcombine will make this a no-op.
4126       VectorParts &Cond = getVectorValue(I.getOperand(0));
4127       VectorParts &Op0 = getVectorValue(I.getOperand(1));
4128       VectorParts &Op1 = getVectorValue(I.getOperand(2));
4129 
4130       Value *ScalarCond =
4131           (VF == 1)
4132               ? Cond[0]
4133               : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
4134 
4135       for (unsigned Part = 0; Part < UF; ++Part) {
4136         Entry[Part] = Builder.CreateSelect(
4137             InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]);
4138       }
4139 
4140       addMetadata(Entry, &I);
4141       break;
4142     }
4143 
4144     case Instruction::ICmp:
4145     case Instruction::FCmp: {
4146       // Widen compares. Generate vector compares.
4147       bool FCmp = (I.getOpcode() == Instruction::FCmp);
4148       auto *Cmp = dyn_cast<CmpInst>(&I);
4149       setDebugLocFromInst(Builder, Cmp);
4150       VectorParts &A = getVectorValue(Cmp->getOperand(0));
4151       VectorParts &B = getVectorValue(Cmp->getOperand(1));
4152       for (unsigned Part = 0; Part < UF; ++Part) {
4153         Value *C = nullptr;
4154         if (FCmp) {
4155           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
4156           cast<FCmpInst>(C)->copyFastMathFlags(Cmp);
4157         } else {
4158           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
4159         }
4160         Entry[Part] = C;
4161       }
4162 
4163       addMetadata(Entry, &I);
4164       break;
4165     }
4166 
4167     case Instruction::Store:
4168     case Instruction::Load:
4169       vectorizeMemoryInstruction(&I);
4170       break;
4171     case Instruction::ZExt:
4172     case Instruction::SExt:
4173     case Instruction::FPToUI:
4174     case Instruction::FPToSI:
4175     case Instruction::FPExt:
4176     case Instruction::PtrToInt:
4177     case Instruction::IntToPtr:
4178     case Instruction::SIToFP:
4179     case Instruction::UIToFP:
4180     case Instruction::Trunc:
4181     case Instruction::FPTrunc:
4182     case Instruction::BitCast: {
4183       auto *CI = dyn_cast<CastInst>(&I);
4184       setDebugLocFromInst(Builder, CI);
4185 
4186       // Optimize the special case where the source is a constant integer
4187       // induction variable. Notice that we can only optimize the 'trunc' case
4188       // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
4189       // (c) other casts depend on pointer size.
4190       auto ID = Legal->getInductionVars()->lookup(OldInduction);
4191       if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction &&
4192           ID.getConstIntStepValue()) {
4193         widenIntInduction(OldInduction, Entry, cast<TruncInst>(CI));
4194         addMetadata(Entry, &I);
4195         break;
4196       }
4197 
4198       /// Vectorize casts.
4199       Type *DestTy =
4200           (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4201 
4202       VectorParts &A = getVectorValue(CI->getOperand(0));
4203       for (unsigned Part = 0; Part < UF; ++Part)
4204         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
4205       addMetadata(Entry, &I);
4206       break;
4207     }
4208 
4209     case Instruction::Call: {
4210       // Ignore dbg intrinsics.
4211       if (isa<DbgInfoIntrinsic>(I))
4212         break;
4213       setDebugLocFromInst(Builder, &I);
4214 
4215       Module *M = BB->getParent()->getParent();
4216       auto *CI = cast<CallInst>(&I);
4217 
4218       StringRef FnName = CI->getCalledFunction()->getName();
4219       Function *F = CI->getCalledFunction();
4220       Type *RetTy = ToVectorTy(CI->getType(), VF);
4221       SmallVector<Type *, 4> Tys;
4222       for (Value *ArgOperand : CI->arg_operands())
4223         Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4224 
4225       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4226       if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
4227                  ID == Intrinsic::lifetime_start)) {
4228         scalarizeInstruction(&I);
4229         break;
4230       }
4231       // The flag shows whether we use Intrinsic or a usual Call for vectorized
4232       // version of the instruction.
4233       // Is it beneficial to perform intrinsic call compared to lib call?
4234       bool NeedToScalarize;
4235       unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4236       bool UseVectorIntrinsic =
4237           ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4238       if (!UseVectorIntrinsic && NeedToScalarize) {
4239         scalarizeInstruction(&I);
4240         break;
4241       }
4242 
4243       for (unsigned Part = 0; Part < UF; ++Part) {
4244         SmallVector<Value *, 4> Args;
4245         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4246           Value *Arg = CI->getArgOperand(i);
4247           // Some intrinsics have a scalar argument - don't replace it with a
4248           // vector.
4249           if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
4250             VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
4251             Arg = VectorArg[Part];
4252           }
4253           Args.push_back(Arg);
4254         }
4255 
4256         Function *VectorF;
4257         if (UseVectorIntrinsic) {
4258           // Use vector version of the intrinsic.
4259           Type *TysForDecl[] = {CI->getType()};
4260           if (VF > 1)
4261             TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4262           VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4263         } else {
4264           // Use vector version of the library call.
4265           StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4266           assert(!VFnName.empty() && "Vector function name is empty.");
4267           VectorF = M->getFunction(VFnName);
4268           if (!VectorF) {
4269             // Generate a declaration
4270             FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4271             VectorF =
4272                 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4273             VectorF->copyAttributesFrom(F);
4274           }
4275         }
4276         assert(VectorF && "Can't create vector function.");
4277 
4278         SmallVector<OperandBundleDef, 1> OpBundles;
4279         CI->getOperandBundlesAsDefs(OpBundles);
4280         CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4281 
4282         if (isa<FPMathOperator>(V))
4283           V->copyFastMathFlags(CI);
4284 
4285         Entry[Part] = V;
4286       }
4287 
4288       addMetadata(Entry, &I);
4289       break;
4290     }
4291 
4292     default:
4293       // All other instructions are unsupported. Scalarize them.
4294       scalarizeInstruction(&I);
4295       break;
4296     } // end of switch.
4297   }   // end of for_each instr.
4298 }
4299 
updateAnalysis()4300 void InnerLoopVectorizer::updateAnalysis() {
4301   // Forget the original basic block.
4302   PSE.getSE()->forgetLoop(OrigLoop);
4303 
4304   // Update the dominator tree information.
4305   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
4306          "Entry does not dominate exit.");
4307 
4308   // We don't predicate stores by this point, so the vector body should be a
4309   // single loop.
4310   DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
4311 
4312   DT->addNewBlock(LoopMiddleBlock, LoopVectorBody);
4313   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
4314   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
4315   DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
4316 
4317   DEBUG(DT->verifyDomTree());
4318 }
4319 
4320 /// \brief Check whether it is safe to if-convert this phi node.
4321 ///
4322 /// Phi nodes with constant expressions that can trap are not safe to if
4323 /// convert.
canIfConvertPHINodes(BasicBlock * BB)4324 static bool canIfConvertPHINodes(BasicBlock *BB) {
4325   for (Instruction &I : *BB) {
4326     auto *Phi = dyn_cast<PHINode>(&I);
4327     if (!Phi)
4328       return true;
4329     for (Value *V : Phi->incoming_values())
4330       if (auto *C = dyn_cast<Constant>(V))
4331         if (C->canTrap())
4332           return false;
4333   }
4334   return true;
4335 }
4336 
canVectorizeWithIfConvert()4337 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
4338   if (!EnableIfConversion) {
4339     emitAnalysis(VectorizationReport() << "if-conversion is disabled");
4340     return false;
4341   }
4342 
4343   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
4344 
4345   // A list of pointers that we can safely read and write to.
4346   SmallPtrSet<Value *, 8> SafePointes;
4347 
4348   // Collect safe addresses.
4349   for (BasicBlock *BB : TheLoop->blocks()) {
4350     if (blockNeedsPredication(BB))
4351       continue;
4352 
4353     for (Instruction &I : *BB) {
4354       if (auto *LI = dyn_cast<LoadInst>(&I))
4355         SafePointes.insert(LI->getPointerOperand());
4356       else if (auto *SI = dyn_cast<StoreInst>(&I))
4357         SafePointes.insert(SI->getPointerOperand());
4358     }
4359   }
4360 
4361   // Collect the blocks that need predication.
4362   BasicBlock *Header = TheLoop->getHeader();
4363   for (BasicBlock *BB : TheLoop->blocks()) {
4364     // We don't support switch statements inside loops.
4365     if (!isa<BranchInst>(BB->getTerminator())) {
4366       emitAnalysis(VectorizationReport(BB->getTerminator())
4367                    << "loop contains a switch statement");
4368       return false;
4369     }
4370 
4371     // We must be able to predicate all blocks that need to be predicated.
4372     if (blockNeedsPredication(BB)) {
4373       if (!blockCanBePredicated(BB, SafePointes)) {
4374         emitAnalysis(VectorizationReport(BB->getTerminator())
4375                      << "control flow cannot be substituted for a select");
4376         return false;
4377       }
4378     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
4379       emitAnalysis(VectorizationReport(BB->getTerminator())
4380                    << "control flow cannot be substituted for a select");
4381       return false;
4382     }
4383   }
4384 
4385   // We can if-convert this loop.
4386   return true;
4387 }
4388 
canVectorize()4389 bool LoopVectorizationLegality::canVectorize() {
4390   // We must have a loop in canonical form. Loops with indirectbr in them cannot
4391   // be canonicalized.
4392   if (!TheLoop->getLoopPreheader()) {
4393     emitAnalysis(VectorizationReport()
4394                  << "loop control flow is not understood by vectorizer");
4395     return false;
4396   }
4397 
4398   // We can only vectorize innermost loops.
4399   if (!TheLoop->empty()) {
4400     emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
4401     return false;
4402   }
4403 
4404   // We must have a single backedge.
4405   if (TheLoop->getNumBackEdges() != 1) {
4406     emitAnalysis(VectorizationReport()
4407                  << "loop control flow is not understood by vectorizer");
4408     return false;
4409   }
4410 
4411   // We must have a single exiting block.
4412   if (!TheLoop->getExitingBlock()) {
4413     emitAnalysis(VectorizationReport()
4414                  << "loop control flow is not understood by vectorizer");
4415     return false;
4416   }
4417 
4418   // We only handle bottom-tested loops, i.e. loop in which the condition is
4419   // checked at the end of each iteration. With that we can assume that all
4420   // instructions in the loop are executed the same number of times.
4421   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
4422     emitAnalysis(VectorizationReport()
4423                  << "loop control flow is not understood by vectorizer");
4424     return false;
4425   }
4426 
4427   // We need to have a loop header.
4428   DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
4429                << '\n');
4430 
4431   // Check if we can if-convert non-single-bb loops.
4432   unsigned NumBlocks = TheLoop->getNumBlocks();
4433   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
4434     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
4435     return false;
4436   }
4437 
4438   // ScalarEvolution needs to be able to find the exit count.
4439   const SCEV *ExitCount = PSE.getBackedgeTakenCount();
4440   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
4441     emitAnalysis(VectorizationReport()
4442                  << "could not determine number of loop iterations");
4443     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
4444     return false;
4445   }
4446 
4447   // Check if we can vectorize the instructions and CFG in this loop.
4448   if (!canVectorizeInstrs()) {
4449     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
4450     return false;
4451   }
4452 
4453   // Go over each instruction and look at memory deps.
4454   if (!canVectorizeMemory()) {
4455     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
4456     return false;
4457   }
4458 
4459   // Collect all of the variables that remain uniform after vectorization.
4460   collectLoopUniforms();
4461 
4462   DEBUG(dbgs() << "LV: We can vectorize this loop"
4463                << (LAI->getRuntimePointerChecking()->Need
4464                        ? " (with a runtime bound check)"
4465                        : "")
4466                << "!\n");
4467 
4468   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
4469 
4470   // If an override option has been passed in for interleaved accesses, use it.
4471   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
4472     UseInterleaved = EnableInterleavedMemAccesses;
4473 
4474   // Analyze interleaved memory accesses.
4475   if (UseInterleaved)
4476     InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
4477 
4478   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
4479   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
4480     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
4481 
4482   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
4483     emitAnalysis(VectorizationReport()
4484                  << "Too many SCEV assumptions need to be made and checked "
4485                  << "at runtime");
4486     DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
4487     return false;
4488   }
4489 
4490   // Okay! We can vectorize. At this point we don't have any other mem analysis
4491   // which may limit our maximum vectorization factor, so just return true with
4492   // no restrictions.
4493   return true;
4494 }
4495 
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)4496 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
4497   if (Ty->isPointerTy())
4498     return DL.getIntPtrType(Ty);
4499 
4500   // It is possible that char's or short's overflow when we ask for the loop's
4501   // trip count, work around this by changing the type size.
4502   if (Ty->getScalarSizeInBits() < 32)
4503     return Type::getInt32Ty(Ty->getContext());
4504 
4505   return Ty;
4506 }
4507 
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)4508 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
4509   Ty0 = convertPointerToIntegerType(DL, Ty0);
4510   Ty1 = convertPointerToIntegerType(DL, Ty1);
4511   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
4512     return Ty0;
4513   return Ty1;
4514 }
4515 
4516 /// \brief Check that the instruction has outside loop users and is not an
4517 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & AllowedExit)4518 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
4519                                SmallPtrSetImpl<Value *> &AllowedExit) {
4520   // Reduction and Induction instructions are allowed to have exit users. All
4521   // other instructions must not have external users.
4522   if (!AllowedExit.count(Inst))
4523     // Check that all of the users of the loop are inside the BB.
4524     for (User *U : Inst->users()) {
4525       Instruction *UI = cast<Instruction>(U);
4526       // This user may be a reduction exit value.
4527       if (!TheLoop->contains(UI)) {
4528         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
4529         return true;
4530       }
4531     }
4532   return false;
4533 }
4534 
addInductionPhi(PHINode * Phi,const InductionDescriptor & ID,SmallPtrSetImpl<Value * > & AllowedExit)4535 void LoopVectorizationLegality::addInductionPhi(
4536     PHINode *Phi, const InductionDescriptor &ID,
4537     SmallPtrSetImpl<Value *> &AllowedExit) {
4538   Inductions[Phi] = ID;
4539   Type *PhiTy = Phi->getType();
4540   const DataLayout &DL = Phi->getModule()->getDataLayout();
4541 
4542   // Get the widest type.
4543   if (!WidestIndTy)
4544     WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
4545   else
4546     WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
4547 
4548   // Int inductions are special because we only allow one IV.
4549   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
4550       ID.getConstIntStepValue() &&
4551       ID.getConstIntStepValue()->isOne() &&
4552       isa<Constant>(ID.getStartValue()) &&
4553       cast<Constant>(ID.getStartValue())->isNullValue()) {
4554 
4555     // Use the phi node with the widest type as induction. Use the last
4556     // one if there are multiple (no good reason for doing this other
4557     // than it is expedient). We've checked that it begins at zero and
4558     // steps by one, so this is a canonical induction variable.
4559     if (!Induction || PhiTy == WidestIndTy)
4560       Induction = Phi;
4561   }
4562 
4563   // Both the PHI node itself, and the "post-increment" value feeding
4564   // back into the PHI node may have external users.
4565   AllowedExit.insert(Phi);
4566   AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
4567 
4568   DEBUG(dbgs() << "LV: Found an induction variable.\n");
4569   return;
4570 }
4571 
canVectorizeInstrs()4572 bool LoopVectorizationLegality::canVectorizeInstrs() {
4573   BasicBlock *Header = TheLoop->getHeader();
4574 
4575   // Look for the attribute signaling the absence of NaNs.
4576   Function &F = *Header->getParent();
4577   HasFunNoNaNAttr =
4578       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
4579 
4580   // For each block in the loop.
4581   for (BasicBlock *BB : TheLoop->blocks()) {
4582     // Scan the instructions in the block and look for hazards.
4583     for (Instruction &I : *BB) {
4584       if (auto *Phi = dyn_cast<PHINode>(&I)) {
4585         Type *PhiTy = Phi->getType();
4586         // Check that this PHI type is allowed.
4587         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
4588             !PhiTy->isPointerTy()) {
4589           emitAnalysis(VectorizationReport(Phi)
4590                        << "loop control flow is not understood by vectorizer");
4591           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
4592           return false;
4593         }
4594 
4595         // If this PHINode is not in the header block, then we know that we
4596         // can convert it to select during if-conversion. No need to check if
4597         // the PHIs in this block are induction or reduction variables.
4598         if (BB != Header) {
4599           // Check that this instruction has no outside users or is an
4600           // identified reduction value with an outside user.
4601           if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
4602             continue;
4603           emitAnalysis(VectorizationReport(Phi)
4604                        << "value could not be identified as "
4605                           "an induction or reduction variable");
4606           return false;
4607         }
4608 
4609         // We only allow if-converted PHIs with exactly two incoming values.
4610         if (Phi->getNumIncomingValues() != 2) {
4611           emitAnalysis(VectorizationReport(Phi)
4612                        << "control flow not understood by vectorizer");
4613           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
4614           return false;
4615         }
4616 
4617         RecurrenceDescriptor RedDes;
4618         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
4619           if (RedDes.hasUnsafeAlgebra())
4620             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
4621           AllowedExit.insert(RedDes.getLoopExitInstr());
4622           Reductions[Phi] = RedDes;
4623           continue;
4624         }
4625 
4626         InductionDescriptor ID;
4627         if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) {
4628           addInductionPhi(Phi, ID, AllowedExit);
4629           continue;
4630         }
4631 
4632         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) {
4633           FirstOrderRecurrences.insert(Phi);
4634           continue;
4635         }
4636 
4637         // As a last resort, coerce the PHI to a AddRec expression
4638         // and re-try classifying it a an induction PHI.
4639         if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) {
4640           addInductionPhi(Phi, ID, AllowedExit);
4641           continue;
4642         }
4643 
4644         emitAnalysis(VectorizationReport(Phi)
4645                      << "value that could not be identified as "
4646                         "reduction is used outside the loop");
4647         DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
4648         return false;
4649       } // end of PHI handling
4650 
4651       // We handle calls that:
4652       //   * Are debug info intrinsics.
4653       //   * Have a mapping to an IR intrinsic.
4654       //   * Have a vector version available.
4655       auto *CI = dyn_cast<CallInst>(&I);
4656       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
4657           !isa<DbgInfoIntrinsic>(CI) &&
4658           !(CI->getCalledFunction() && TLI &&
4659             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
4660         emitAnalysis(VectorizationReport(CI)
4661                      << "call instruction cannot be vectorized");
4662         DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
4663         return false;
4664       }
4665 
4666       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
4667       // second argument is the same (i.e. loop invariant)
4668       if (CI && hasVectorInstrinsicScalarOpd(
4669                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
4670         auto *SE = PSE.getSE();
4671         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
4672           emitAnalysis(VectorizationReport(CI)
4673                        << "intrinsic instruction cannot be vectorized");
4674           DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
4675           return false;
4676         }
4677       }
4678 
4679       // Check that the instruction return type is vectorizable.
4680       // Also, we can't vectorize extractelement instructions.
4681       if ((!VectorType::isValidElementType(I.getType()) &&
4682            !I.getType()->isVoidTy()) ||
4683           isa<ExtractElementInst>(I)) {
4684         emitAnalysis(VectorizationReport(&I)
4685                      << "instruction return type cannot be vectorized");
4686         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
4687         return false;
4688       }
4689 
4690       // Check that the stored type is vectorizable.
4691       if (auto *ST = dyn_cast<StoreInst>(&I)) {
4692         Type *T = ST->getValueOperand()->getType();
4693         if (!VectorType::isValidElementType(T)) {
4694           emitAnalysis(VectorizationReport(ST)
4695                        << "store instruction cannot be vectorized");
4696           return false;
4697         }
4698 
4699         // FP instructions can allow unsafe algebra, thus vectorizable by
4700         // non-IEEE-754 compliant SIMD units.
4701         // This applies to floating-point math operations and calls, not memory
4702         // operations, shuffles, or casts, as they don't change precision or
4703         // semantics.
4704       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
4705                  !I.hasUnsafeAlgebra()) {
4706         DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
4707         Hints->setPotentiallyUnsafe();
4708       }
4709 
4710       // Reduction instructions are allowed to have exit users.
4711       // All other instructions must not have external users.
4712       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
4713         emitAnalysis(VectorizationReport(&I)
4714                      << "value cannot be used outside the loop");
4715         return false;
4716       }
4717 
4718     } // next instr.
4719   }
4720 
4721   if (!Induction) {
4722     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
4723     if (Inductions.empty()) {
4724       emitAnalysis(VectorizationReport()
4725                    << "loop induction variable could not be identified");
4726       return false;
4727     }
4728   }
4729 
4730   // Now we know the widest induction type, check if our found induction
4731   // is the same size. If it's not, unset it here and InnerLoopVectorizer
4732   // will create another.
4733   if (Induction && WidestIndTy != Induction->getType())
4734     Induction = nullptr;
4735 
4736   return true;
4737 }
4738 
collectLoopUniforms()4739 void LoopVectorizationLegality::collectLoopUniforms() {
4740   // We now know that the loop is vectorizable!
4741   // Collect variables that will remain uniform after vectorization.
4742 
4743   // If V is not an instruction inside the current loop, it is a Value
4744   // outside of the scope which we are interesting in.
4745   auto isOutOfScope = [&](Value *V) -> bool {
4746     Instruction *I = dyn_cast<Instruction>(V);
4747     return (!I || !TheLoop->contains(I));
4748   };
4749 
4750   SetVector<Instruction *> Worklist;
4751   BasicBlock *Latch = TheLoop->getLoopLatch();
4752   // Start with the conditional branch.
4753   if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) {
4754     Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0));
4755     Worklist.insert(Cmp);
4756     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
4757   }
4758 
4759   // Also add all consecutive pointer values; these values will be uniform
4760   // after vectorization (and subsequent cleanup).
4761   for (auto *BB : TheLoop->blocks()) {
4762     for (auto &I : *BB) {
4763       if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) {
4764         Worklist.insert(&I);
4765         DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n");
4766       }
4767     }
4768   }
4769 
4770   // Expand Worklist in topological order: whenever a new instruction
4771   // is added , its users should be either already inside Worklist, or
4772   // out of scope. It ensures a uniform instruction will only be used
4773   // by uniform instructions or out of scope instructions.
4774   unsigned idx = 0;
4775   do {
4776     Instruction *I = Worklist[idx++];
4777 
4778     for (auto OV : I->operand_values()) {
4779       if (isOutOfScope(OV))
4780         continue;
4781       auto *OI = cast<Instruction>(OV);
4782       if (all_of(OI->users(), [&](User *U) -> bool {
4783             return isOutOfScope(U) || Worklist.count(cast<Instruction>(U));
4784           })) {
4785         Worklist.insert(OI);
4786         DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
4787       }
4788     }
4789   } while (idx != Worklist.size());
4790 
4791   // For an instruction to be added into Worklist above, all its users inside
4792   // the current loop should be already added into Worklist. This condition
4793   // cannot be true for phi instructions which is always in a dependence loop.
4794   // Because any instruction in the dependence cycle always depends on others
4795   // in the cycle to be added into Worklist first, the result is no ones in
4796   // the cycle will be added into Worklist in the end.
4797   // That is why we process PHI separately.
4798   for (auto &Induction : *getInductionVars()) {
4799     auto *PN = Induction.first;
4800     auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
4801     if (all_of(PN->users(),
4802                [&](User *U) -> bool {
4803                  return U == UpdateV || isOutOfScope(U) ||
4804                         Worklist.count(cast<Instruction>(U));
4805                }) &&
4806         all_of(UpdateV->users(), [&](User *U) -> bool {
4807           return U == PN || isOutOfScope(U) ||
4808                  Worklist.count(cast<Instruction>(U));
4809         })) {
4810       Worklist.insert(cast<Instruction>(PN));
4811       Worklist.insert(cast<Instruction>(UpdateV));
4812       DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n");
4813       DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n");
4814     }
4815   }
4816 
4817   Uniforms.insert(Worklist.begin(), Worklist.end());
4818 }
4819 
canVectorizeMemory()4820 bool LoopVectorizationLegality::canVectorizeMemory() {
4821   LAI = &(*GetLAA)(*TheLoop);
4822   InterleaveInfo.setLAI(LAI);
4823   auto &OptionalReport = LAI->getReport();
4824   if (OptionalReport)
4825     emitAnalysis(VectorizationReport(*OptionalReport));
4826   if (!LAI->canVectorizeMemory())
4827     return false;
4828 
4829   if (LAI->hasStoreToLoopInvariantAddress()) {
4830     emitAnalysis(
4831         VectorizationReport()
4832         << "write to a loop invariant address could not be vectorized");
4833     DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4834     return false;
4835   }
4836 
4837   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
4838   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
4839 
4840   return true;
4841 }
4842 
isInductionVariable(const Value * V)4843 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4844   Value *In0 = const_cast<Value *>(V);
4845   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4846   if (!PN)
4847     return false;
4848 
4849   return Inductions.count(PN);
4850 }
4851 
isFirstOrderRecurrence(const PHINode * Phi)4852 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
4853   return FirstOrderRecurrences.count(Phi);
4854 }
4855 
blockNeedsPredication(BasicBlock * BB)4856 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
4857   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
4858 }
4859 
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs)4860 bool LoopVectorizationLegality::blockCanBePredicated(
4861     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
4862   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4863 
4864   for (Instruction &I : *BB) {
4865     // Check that we don't have a constant expression that can trap as operand.
4866     for (Value *Operand : I.operands()) {
4867       if (auto *C = dyn_cast<Constant>(Operand))
4868         if (C->canTrap())
4869           return false;
4870     }
4871     // We might be able to hoist the load.
4872     if (I.mayReadFromMemory()) {
4873       auto *LI = dyn_cast<LoadInst>(&I);
4874       if (!LI)
4875         return false;
4876       if (!SafePtrs.count(LI->getPointerOperand())) {
4877         if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) ||
4878             isLegalMaskedGather(LI->getType())) {
4879           MaskedOp.insert(LI);
4880           continue;
4881         }
4882         // !llvm.mem.parallel_loop_access implies if-conversion safety.
4883         if (IsAnnotatedParallel)
4884           continue;
4885         return false;
4886       }
4887     }
4888 
4889     // We don't predicate stores at the moment.
4890     if (I.mayWriteToMemory()) {
4891       auto *SI = dyn_cast<StoreInst>(&I);
4892       // We only support predication of stores in basic blocks with one
4893       // predecessor.
4894       if (!SI)
4895         return false;
4896 
4897       // Build a masked store if it is legal for the target.
4898       if (isLegalMaskedStore(SI->getValueOperand()->getType(),
4899                              SI->getPointerOperand()) ||
4900           isLegalMaskedScatter(SI->getValueOperand()->getType())) {
4901         MaskedOp.insert(SI);
4902         continue;
4903       }
4904 
4905       bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
4906       bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
4907 
4908       if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
4909           !isSinglePredecessor)
4910         return false;
4911     }
4912     if (I.mayThrow())
4913       return false;
4914 
4915     // The instructions below can trap.
4916     switch (I.getOpcode()) {
4917     default:
4918       continue;
4919     case Instruction::UDiv:
4920     case Instruction::SDiv:
4921     case Instruction::URem:
4922     case Instruction::SRem:
4923       return false;
4924     }
4925   }
4926 
4927   return true;
4928 }
4929 
collectConstStrideAccesses(MapVector<Instruction *,StrideDescriptor> & AccessStrideInfo,const ValueToValueMap & Strides)4930 void InterleavedAccessInfo::collectConstStrideAccesses(
4931     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
4932     const ValueToValueMap &Strides) {
4933 
4934   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
4935 
4936   // Since it's desired that the load/store instructions be maintained in
4937   // "program order" for the interleaved access analysis, we have to visit the
4938   // blocks in the loop in reverse postorder (i.e., in a topological order).
4939   // Such an ordering will ensure that any load/store that may be executed
4940   // before a second load/store will precede the second load/store in
4941   // AccessStrideInfo.
4942   LoopBlocksDFS DFS(TheLoop);
4943   DFS.perform(LI);
4944   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
4945     for (auto &I : *BB) {
4946       auto *LI = dyn_cast<LoadInst>(&I);
4947       auto *SI = dyn_cast<StoreInst>(&I);
4948       if (!LI && !SI)
4949         continue;
4950 
4951       Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
4952       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides);
4953 
4954       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
4955       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4956       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
4957 
4958       // An alignment of 0 means target ABI alignment.
4959       unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
4960       if (!Align)
4961         Align = DL.getABITypeAlignment(PtrTy->getElementType());
4962 
4963       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
4964     }
4965 }
4966 
4967 // Analyze interleaved accesses and collect them into interleaved load and
4968 // store groups.
4969 //
4970 // When generating code for an interleaved load group, we effectively hoist all
4971 // loads in the group to the location of the first load in program order. When
4972 // generating code for an interleaved store group, we sink all stores to the
4973 // location of the last store. This code motion can change the order of load
4974 // and store instructions and may break dependences.
4975 //
4976 // The code generation strategy mentioned above ensures that we won't violate
4977 // any write-after-read (WAR) dependences.
4978 //
4979 // E.g., for the WAR dependence:  a = A[i];      // (1)
4980 //                                A[i] = b;      // (2)
4981 //
4982 // The store group of (2) is always inserted at or below (2), and the load
4983 // group of (1) is always inserted at or above (1). Thus, the instructions will
4984 // never be reordered. All other dependences are checked to ensure the
4985 // correctness of the instruction reordering.
4986 //
4987 // The algorithm visits all memory accesses in the loop in bottom-up program
4988 // order. Program order is established by traversing the blocks in the loop in
4989 // reverse postorder when collecting the accesses.
4990 //
4991 // We visit the memory accesses in bottom-up order because it can simplify the
4992 // construction of store groups in the presence of write-after-write (WAW)
4993 // dependences.
4994 //
4995 // E.g., for the WAW dependence:  A[i] = a;      // (1)
4996 //                                A[i] = b;      // (2)
4997 //                                A[i + 1] = c;  // (3)
4998 //
4999 // We will first create a store group with (3) and (2). (1) can't be added to
5000 // this group because it and (2) are dependent. However, (1) can be grouped
5001 // with other accesses that may precede it in program order. Note that a
5002 // bottom-up order does not imply that WAW dependences should not be checked.
analyzeInterleaving(const ValueToValueMap & Strides)5003 void InterleavedAccessInfo::analyzeInterleaving(
5004     const ValueToValueMap &Strides) {
5005   DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
5006 
5007   // Holds all accesses with a constant stride.
5008   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
5009   collectConstStrideAccesses(AccessStrideInfo, Strides);
5010 
5011   if (AccessStrideInfo.empty())
5012     return;
5013 
5014   // Collect the dependences in the loop.
5015   collectDependences();
5016 
5017   // Holds all interleaved store groups temporarily.
5018   SmallSetVector<InterleaveGroup *, 4> StoreGroups;
5019   // Holds all interleaved load groups temporarily.
5020   SmallSetVector<InterleaveGroup *, 4> LoadGroups;
5021 
5022   // Search the load-load/write-write pair B-A in bottom-up order and try to
5023   // insert B into the interleave group of A according to 3 rules:
5024   //   1. A and B have the same stride.
5025   //   2. A and B have the same memory object size.
5026   //   3. B belongs to the group according to the distance.
5027   for (auto AI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
5028        AI != E; ++AI) {
5029     Instruction *A = AI->first;
5030     StrideDescriptor DesA = AI->second;
5031 
5032     // Initialize a group for A if it has an allowable stride. Even if we don't
5033     // create a group for A, we continue with the bottom-up algorithm to ensure
5034     // we don't break any of A's dependences.
5035     InterleaveGroup *Group = nullptr;
5036     if (isStrided(DesA.Stride)) {
5037       Group = getInterleaveGroup(A);
5038       if (!Group) {
5039         DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n');
5040         Group = createInterleaveGroup(A, DesA.Stride, DesA.Align);
5041       }
5042       if (A->mayWriteToMemory())
5043         StoreGroups.insert(Group);
5044       else
5045         LoadGroups.insert(Group);
5046     }
5047 
5048     for (auto BI = std::next(AI); BI != E; ++BI) {
5049       Instruction *B = BI->first;
5050       StrideDescriptor DesB = BI->second;
5051 
5052       // Our code motion strategy implies that we can't have dependences
5053       // between accesses in an interleaved group and other accesses located
5054       // between the first and last member of the group. Note that this also
5055       // means that a group can't have more than one member at a given offset.
5056       // The accesses in a group can have dependences with other accesses, but
5057       // we must ensure we don't extend the boundaries of the group such that
5058       // we encompass those dependent accesses.
5059       //
5060       // For example, assume we have the sequence of accesses shown below in a
5061       // stride-2 loop:
5062       //
5063       //  (1, 2) is a group | A[i]   = a;  // (1)
5064       //                    | A[i-1] = b;  // (2) |
5065       //                      A[i-3] = c;  // (3)
5066       //                      A[i]   = d;  // (4) | (2, 4) is not a group
5067       //
5068       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
5069       // but not with (4). If we did, the dependent access (3) would be within
5070       // the boundaries of the (2, 4) group.
5071       if (!canReorderMemAccessesForInterleavedGroups(&*BI, &*AI)) {
5072 
5073         // If a dependence exists and B is already in a group, we know that B
5074         // must be a store since B precedes A and WAR dependences are allowed.
5075         // Thus, B would be sunk below A. We release B's group to prevent this
5076         // illegal code motion. B will then be free to form another group with
5077         // instructions that precede it.
5078         if (isInterleaved(B)) {
5079           InterleaveGroup *StoreGroup = getInterleaveGroup(B);
5080           StoreGroups.remove(StoreGroup);
5081           releaseGroup(StoreGroup);
5082         }
5083 
5084         // If a dependence exists and B is not already in a group (or it was
5085         // and we just released it), A might be hoisted above B (if A is a
5086         // load) or another store might be sunk below B (if A is a store). In
5087         // either case, we can't add additional instructions to A's group. A
5088         // will only form a group with instructions that it precedes.
5089         break;
5090       }
5091 
5092       // At this point, we've checked for illegal code motion. If either A or B
5093       // isn't strided, there's nothing left to do.
5094       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
5095         continue;
5096 
5097       // Ignore if B is already in a group or B is a different memory operation.
5098       if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory())
5099         continue;
5100 
5101       // Check the rule 1 and 2.
5102       if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size)
5103         continue;
5104 
5105       // Calculate the distance and prepare for the rule 3.
5106       const SCEVConstant *DistToA = dyn_cast<SCEVConstant>(
5107           PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev));
5108       if (!DistToA)
5109         continue;
5110 
5111       int64_t DistanceToA = DistToA->getAPInt().getSExtValue();
5112 
5113       // Skip if the distance is not multiple of size as they are not in the
5114       // same group.
5115       if (DistanceToA % static_cast<int64_t>(DesA.Size))
5116         continue;
5117 
5118       // If either A or B is in a predicated block, we prevent adding them to a
5119       // group. We may be able to relax this limitation in the future once we
5120       // handle more complicated blocks.
5121       if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
5122         continue;
5123 
5124       // The index of B is the index of A plus the related index to A.
5125       int IndexB =
5126           Group->getIndex(A) + DistanceToA / static_cast<int64_t>(DesA.Size);
5127 
5128       // Try to insert B into the group.
5129       if (Group->insertMember(B, IndexB, DesB.Align)) {
5130         DEBUG(dbgs() << "LV: Inserted:" << *B << '\n'
5131                      << "    into the interleave group with" << *A << '\n');
5132         InterleaveGroupMap[B] = Group;
5133 
5134         // Set the first load in program order as the insert position.
5135         if (B->mayReadFromMemory())
5136           Group->setInsertPos(B);
5137       }
5138     } // Iteration on instruction B
5139   }   // Iteration on instruction A
5140 
5141   // Remove interleaved store groups with gaps.
5142   for (InterleaveGroup *Group : StoreGroups)
5143     if (Group->getNumMembers() != Group->getFactor())
5144       releaseGroup(Group);
5145 
5146   // If there is a non-reversed interleaved load group with gaps, we will need
5147   // to execute at least one scalar epilogue iteration. This will ensure that
5148   // we don't speculatively access memory out-of-bounds. Note that we only need
5149   // to look for a member at index factor - 1, since every group must have a
5150   // member at index zero.
5151   for (InterleaveGroup *Group : LoadGroups)
5152     if (!Group->getMember(Group->getFactor() - 1)) {
5153       if (Group->isReverse()) {
5154         releaseGroup(Group);
5155       } else {
5156         DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
5157         RequiresScalarEpilogue = true;
5158       }
5159     }
5160 }
5161 
5162 LoopVectorizationCostModel::VectorizationFactor
selectVectorizationFactor(bool OptForSize)5163 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
5164   // Width 1 means no vectorize
5165   VectorizationFactor Factor = {1U, 0U};
5166   if (OptForSize && Legal->getRuntimePointerChecking()->Need) {
5167     emitAnalysis(
5168         VectorizationReport()
5169         << "runtime pointer checks needed. Enable vectorization of this "
5170            "loop with '#pragma clang loop vectorize(enable)' when "
5171            "compiling with -Os/-Oz");
5172     DEBUG(dbgs()
5173           << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
5174     return Factor;
5175   }
5176 
5177   if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
5178     emitAnalysis(
5179         VectorizationReport()
5180         << "store that is conditionally executed prevents vectorization");
5181     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
5182     return Factor;
5183   }
5184 
5185   // Find the trip count.
5186   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5187   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5188 
5189   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5190   unsigned SmallestType, WidestType;
5191   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5192   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5193   unsigned MaxSafeDepDist = -1U;
5194 
5195   // Get the maximum safe dependence distance in bits computed by LAA. If the
5196   // loop contains any interleaved accesses, we divide the dependence distance
5197   // by the maximum interleave factor of all interleaved groups. Note that
5198   // although the division ensures correctness, this is a fairly conservative
5199   // computation because the maximum distance computed by LAA may not involve
5200   // any of the interleaved accesses.
5201   if (Legal->getMaxSafeDepDistBytes() != -1U)
5202     MaxSafeDepDist =
5203         Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor();
5204 
5205   WidestRegister =
5206       ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist);
5207   unsigned MaxVectorSize = WidestRegister / WidestType;
5208 
5209   DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
5210                << WidestType << " bits.\n");
5211   DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister
5212                << " bits.\n");
5213 
5214   if (MaxVectorSize == 0) {
5215     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5216     MaxVectorSize = 1;
5217   }
5218 
5219   assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
5220                                 " into one vector!");
5221 
5222   unsigned VF = MaxVectorSize;
5223   if (MaximizeBandwidth && !OptForSize) {
5224     // Collect all viable vectorization factors.
5225     SmallVector<unsigned, 8> VFs;
5226     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5227     for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
5228       VFs.push_back(VS);
5229 
5230     // For each VF calculate its register usage.
5231     auto RUs = calculateRegisterUsage(VFs);
5232 
5233     // Select the largest VF which doesn't require more registers than existing
5234     // ones.
5235     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
5236     for (int i = RUs.size() - 1; i >= 0; --i) {
5237       if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
5238         VF = VFs[i];
5239         break;
5240       }
5241     }
5242   }
5243 
5244   // If we optimize the program for size, avoid creating the tail loop.
5245   if (OptForSize) {
5246     // If we are unable to calculate the trip count then don't try to vectorize.
5247     if (TC < 2) {
5248       emitAnalysis(
5249           VectorizationReport()
5250           << "unable to calculate the loop count due to complex control flow");
5251       DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
5252       return Factor;
5253     }
5254 
5255     // Find the maximum SIMD width that can fit within the trip count.
5256     VF = TC % MaxVectorSize;
5257 
5258     if (VF == 0)
5259       VF = MaxVectorSize;
5260     else {
5261       // If the trip count that we found modulo the vectorization factor is not
5262       // zero then we require a tail.
5263       emitAnalysis(VectorizationReport()
5264                    << "cannot optimize for size and vectorize at the "
5265                       "same time. Enable vectorization of this loop "
5266                       "with '#pragma clang loop vectorize(enable)' "
5267                       "when compiling with -Os/-Oz");
5268       DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
5269       return Factor;
5270     }
5271   }
5272 
5273   int UserVF = Hints->getWidth();
5274   if (UserVF != 0) {
5275     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
5276     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
5277 
5278     Factor.Width = UserVF;
5279     return Factor;
5280   }
5281 
5282   float Cost = expectedCost(1).first;
5283 #ifndef NDEBUG
5284   const float ScalarCost = Cost;
5285 #endif /* NDEBUG */
5286   unsigned Width = 1;
5287   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5288 
5289   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5290   // Ignore scalar width, because the user explicitly wants vectorization.
5291   if (ForceVectorization && VF > 1) {
5292     Width = 2;
5293     Cost = expectedCost(Width).first / (float)Width;
5294   }
5295 
5296   for (unsigned i = 2; i <= VF; i *= 2) {
5297     // Notice that the vector loop needs to be executed less times, so
5298     // we need to divide the cost of the vector loops by the width of
5299     // the vector elements.
5300     VectorizationCostTy C = expectedCost(i);
5301     float VectorCost = C.first / (float)i;
5302     DEBUG(dbgs() << "LV: Vector loop of width " << i
5303                  << " costs: " << (int)VectorCost << ".\n");
5304     if (!C.second && !ForceVectorization) {
5305       DEBUG(
5306           dbgs() << "LV: Not considering vector loop of width " << i
5307                  << " because it will not generate any vector instructions.\n");
5308       continue;
5309     }
5310     if (VectorCost < Cost) {
5311       Cost = VectorCost;
5312       Width = i;
5313     }
5314   }
5315 
5316   DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5317         << "LV: Vectorization seems to be not beneficial, "
5318         << "but was forced by a user.\n");
5319   DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5320   Factor.Width = Width;
5321   Factor.Cost = Width * Cost;
5322   return Factor;
5323 }
5324 
5325 std::pair<unsigned, unsigned>
getSmallestAndWidestTypes()5326 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5327   unsigned MinWidth = -1U;
5328   unsigned MaxWidth = 8;
5329   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5330 
5331   // For each block.
5332   for (BasicBlock *BB : TheLoop->blocks()) {
5333     // For each instruction in the loop.
5334     for (Instruction &I : *BB) {
5335       Type *T = I.getType();
5336 
5337       // Skip ignored values.
5338       if (ValuesToIgnore.count(&I))
5339         continue;
5340 
5341       // Only examine Loads, Stores and PHINodes.
5342       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5343         continue;
5344 
5345       // Examine PHI nodes that are reduction variables. Update the type to
5346       // account for the recurrence type.
5347       if (auto *PN = dyn_cast<PHINode>(&I)) {
5348         if (!Legal->isReductionVariable(PN))
5349           continue;
5350         RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
5351         T = RdxDesc.getRecurrenceType();
5352       }
5353 
5354       // Examine the stored values.
5355       if (auto *ST = dyn_cast<StoreInst>(&I))
5356         T = ST->getValueOperand()->getType();
5357 
5358       // Ignore loaded pointer types and stored pointer types that are not
5359       // consecutive. However, we do want to take consecutive stores/loads of
5360       // pointer vectors into account.
5361       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I))
5362         continue;
5363 
5364       MinWidth = std::min(MinWidth,
5365                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5366       MaxWidth = std::max(MaxWidth,
5367                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5368     }
5369   }
5370 
5371   return {MinWidth, MaxWidth};
5372 }
5373 
selectInterleaveCount(bool OptForSize,unsigned VF,unsigned LoopCost)5374 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
5375                                                            unsigned VF,
5376                                                            unsigned LoopCost) {
5377 
5378   // -- The interleave heuristics --
5379   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5380   // There are many micro-architectural considerations that we can't predict
5381   // at this level. For example, frontend pressure (on decode or fetch) due to
5382   // code size, or the number and capabilities of the execution ports.
5383   //
5384   // We use the following heuristics to select the interleave count:
5385   // 1. If the code has reductions, then we interleave to break the cross
5386   // iteration dependency.
5387   // 2. If the loop is really small, then we interleave to reduce the loop
5388   // overhead.
5389   // 3. We don't interleave if we think that we will spill registers to memory
5390   // due to the increased register pressure.
5391 
5392   // When we optimize for size, we don't interleave.
5393   if (OptForSize)
5394     return 1;
5395 
5396   // We used the distance for the interleave count.
5397   if (Legal->getMaxSafeDepDistBytes() != -1U)
5398     return 1;
5399 
5400   // Do not interleave loops with a relatively small trip count.
5401   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5402   if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
5403     return 1;
5404 
5405   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5406   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5407                << " registers\n");
5408 
5409   if (VF == 1) {
5410     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5411       TargetNumRegisters = ForceTargetNumScalarRegs;
5412   } else {
5413     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5414       TargetNumRegisters = ForceTargetNumVectorRegs;
5415   }
5416 
5417   RegisterUsage R = calculateRegisterUsage({VF})[0];
5418   // We divide by these constants so assume that we have at least one
5419   // instruction that uses at least one register.
5420   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5421   R.NumInstructions = std::max(R.NumInstructions, 1U);
5422 
5423   // We calculate the interleave count using the following formula.
5424   // Subtract the number of loop invariants from the number of available
5425   // registers. These registers are used by all of the interleaved instances.
5426   // Next, divide the remaining registers by the number of registers that is
5427   // required by the loop, in order to estimate how many parallel instances
5428   // fit without causing spills. All of this is rounded down if necessary to be
5429   // a power of two. We want power of two interleave count to simplify any
5430   // addressing operations or alignment considerations.
5431   unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5432                               R.MaxLocalUsers);
5433 
5434   // Don't count the induction variable as interleaved.
5435   if (EnableIndVarRegisterHeur)
5436     IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5437                        std::max(1U, (R.MaxLocalUsers - 1)));
5438 
5439   // Clamp the interleave ranges to reasonable counts.
5440   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5441 
5442   // Check if the user has overridden the max.
5443   if (VF == 1) {
5444     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5445       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5446   } else {
5447     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5448       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5449   }
5450 
5451   // If we did not calculate the cost for VF (because the user selected the VF)
5452   // then we calculate the cost of VF here.
5453   if (LoopCost == 0)
5454     LoopCost = expectedCost(VF).first;
5455 
5456   // Clamp the calculated IC to be between the 1 and the max interleave count
5457   // that the target allows.
5458   if (IC > MaxInterleaveCount)
5459     IC = MaxInterleaveCount;
5460   else if (IC < 1)
5461     IC = 1;
5462 
5463   // Interleave if we vectorized this loop and there is a reduction that could
5464   // benefit from interleaving.
5465   if (VF > 1 && Legal->getReductionVars()->size()) {
5466     DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5467     return IC;
5468   }
5469 
5470   // Note that if we've already vectorized the loop we will have done the
5471   // runtime check and so interleaving won't require further checks.
5472   bool InterleavingRequiresRuntimePointerCheck =
5473       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5474 
5475   // We want to interleave small loops in order to reduce the loop overhead and
5476   // potentially expose ILP opportunities.
5477   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5478   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5479     // We assume that the cost overhead is 1 and we use the cost model
5480     // to estimate the cost of the loop and interleave until the cost of the
5481     // loop overhead is about 5% of the cost of the loop.
5482     unsigned SmallIC =
5483         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5484 
5485     // Interleave until store/load ports (estimated by max interleave count) are
5486     // saturated.
5487     unsigned NumStores = Legal->getNumStores();
5488     unsigned NumLoads = Legal->getNumLoads();
5489     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5490     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5491 
5492     // If we have a scalar reduction (vector reductions are already dealt with
5493     // by this point), we can increase the critical path length if the loop
5494     // we're interleaving is inside another loop. Limit, by default to 2, so the
5495     // critical path only gets increased by one reduction operation.
5496     if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) {
5497       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5498       SmallIC = std::min(SmallIC, F);
5499       StoresIC = std::min(StoresIC, F);
5500       LoadsIC = std::min(LoadsIC, F);
5501     }
5502 
5503     if (EnableLoadStoreRuntimeInterleave &&
5504         std::max(StoresIC, LoadsIC) > SmallIC) {
5505       DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5506       return std::max(StoresIC, LoadsIC);
5507     }
5508 
5509     DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5510     return SmallIC;
5511   }
5512 
5513   // Interleave if this is a large loop (small loops are already dealt with by
5514   // this point) that could benefit from interleaving.
5515   bool HasReductions = (Legal->getReductionVars()->size() > 0);
5516   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5517     DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5518     return IC;
5519   }
5520 
5521   DEBUG(dbgs() << "LV: Not Interleaving.\n");
5522   return 1;
5523 }
5524 
5525 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
calculateRegisterUsage(ArrayRef<unsigned> VFs)5526 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5527   // This function calculates the register usage by measuring the highest number
5528   // of values that are alive at a single location. Obviously, this is a very
5529   // rough estimation. We scan the loop in a topological order in order and
5530   // assign a number to each instruction. We use RPO to ensure that defs are
5531   // met before their users. We assume that each instruction that has in-loop
5532   // users starts an interval. We record every time that an in-loop value is
5533   // used, so we have a list of the first and last occurrences of each
5534   // instruction. Next, we transpose this data structure into a multi map that
5535   // holds the list of intervals that *end* at a specific location. This multi
5536   // map allows us to perform a linear search. We scan the instructions linearly
5537   // and record each time that a new interval starts, by placing it in a set.
5538   // If we find this value in the multi-map then we remove it from the set.
5539   // The max register usage is the maximum size of the set.
5540   // We also search for instructions that are defined outside the loop, but are
5541   // used inside the loop. We need this number separately from the max-interval
5542   // usage number because when we unroll, loop-invariant values do not take
5543   // more register.
5544   LoopBlocksDFS DFS(TheLoop);
5545   DFS.perform(LI);
5546 
5547   RegisterUsage RU;
5548   RU.NumInstructions = 0;
5549 
5550   // Each 'key' in the map opens a new interval. The values
5551   // of the map are the index of the 'last seen' usage of the
5552   // instruction that is the key.
5553   typedef DenseMap<Instruction *, unsigned> IntervalMap;
5554   // Maps instruction to its index.
5555   DenseMap<unsigned, Instruction *> IdxToInstr;
5556   // Marks the end of each interval.
5557   IntervalMap EndPoint;
5558   // Saves the list of instruction indices that are used in the loop.
5559   SmallSet<Instruction *, 8> Ends;
5560   // Saves the list of values that are used in the loop but are
5561   // defined outside the loop, such as arguments and constants.
5562   SmallPtrSet<Value *, 8> LoopInvariants;
5563 
5564   unsigned Index = 0;
5565   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5566     RU.NumInstructions += BB->size();
5567     for (Instruction &I : *BB) {
5568       IdxToInstr[Index++] = &I;
5569 
5570       // Save the end location of each USE.
5571       for (Value *U : I.operands()) {
5572         auto *Instr = dyn_cast<Instruction>(U);
5573 
5574         // Ignore non-instruction values such as arguments, constants, etc.
5575         if (!Instr)
5576           continue;
5577 
5578         // If this instruction is outside the loop then record it and continue.
5579         if (!TheLoop->contains(Instr)) {
5580           LoopInvariants.insert(Instr);
5581           continue;
5582         }
5583 
5584         // Overwrite previous end points.
5585         EndPoint[Instr] = Index;
5586         Ends.insert(Instr);
5587       }
5588     }
5589   }
5590 
5591   // Saves the list of intervals that end with the index in 'key'.
5592   typedef SmallVector<Instruction *, 2> InstrList;
5593   DenseMap<unsigned, InstrList> TransposeEnds;
5594 
5595   // Transpose the EndPoints to a list of values that end at each index.
5596   for (auto &Interval : EndPoint)
5597     TransposeEnds[Interval.second].push_back(Interval.first);
5598 
5599   SmallSet<Instruction *, 8> OpenIntervals;
5600 
5601   // Get the size of the widest register.
5602   unsigned MaxSafeDepDist = -1U;
5603   if (Legal->getMaxSafeDepDistBytes() != -1U)
5604     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5605   unsigned WidestRegister =
5606       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5607   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5608 
5609   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5610   SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
5611 
5612   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5613 
5614   // A lambda that gets the register usage for the given type and VF.
5615   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5616     if (Ty->isTokenTy())
5617       return 0U;
5618     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5619     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5620   };
5621 
5622   for (unsigned int i = 0; i < Index; ++i) {
5623     Instruction *I = IdxToInstr[i];
5624     // Ignore instructions that are never used within the loop.
5625     if (!Ends.count(I))
5626       continue;
5627 
5628     // Remove all of the instructions that end at this location.
5629     InstrList &List = TransposeEnds[i];
5630     for (Instruction *ToRemove : List)
5631       OpenIntervals.erase(ToRemove);
5632 
5633     // Skip ignored values.
5634     if (ValuesToIgnore.count(I))
5635       continue;
5636 
5637     // For each VF find the maximum usage of registers.
5638     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5639       if (VFs[j] == 1) {
5640         MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
5641         continue;
5642       }
5643 
5644       // Count the number of live intervals.
5645       unsigned RegUsage = 0;
5646       for (auto Inst : OpenIntervals) {
5647         // Skip ignored values for VF > 1.
5648         if (VecValuesToIgnore.count(Inst))
5649           continue;
5650         RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
5651       }
5652       MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
5653     }
5654 
5655     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5656                  << OpenIntervals.size() << '\n');
5657 
5658     // Add the current instruction to the list of open intervals.
5659     OpenIntervals.insert(I);
5660   }
5661 
5662   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5663     unsigned Invariant = 0;
5664     if (VFs[i] == 1)
5665       Invariant = LoopInvariants.size();
5666     else {
5667       for (auto Inst : LoopInvariants)
5668         Invariant += GetRegUsage(Inst->getType(), VFs[i]);
5669     }
5670 
5671     DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
5672     DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
5673     DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5674     DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
5675 
5676     RU.LoopInvariantRegs = Invariant;
5677     RU.MaxLocalUsers = MaxUsages[i];
5678     RUs[i] = RU;
5679   }
5680 
5681   return RUs;
5682 }
5683 
5684 LoopVectorizationCostModel::VectorizationCostTy
expectedCost(unsigned VF)5685 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5686   VectorizationCostTy Cost;
5687 
5688   // For each block.
5689   for (BasicBlock *BB : TheLoop->blocks()) {
5690     VectorizationCostTy BlockCost;
5691 
5692     // For each instruction in the old loop.
5693     for (Instruction &I : *BB) {
5694       // Skip dbg intrinsics.
5695       if (isa<DbgInfoIntrinsic>(I))
5696         continue;
5697 
5698       // Skip ignored values.
5699       if (ValuesToIgnore.count(&I))
5700         continue;
5701 
5702       VectorizationCostTy C = getInstructionCost(&I, VF);
5703 
5704       // Check if we should override the cost.
5705       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5706         C.first = ForceTargetInstructionCost;
5707 
5708       BlockCost.first += C.first;
5709       BlockCost.second |= C.second;
5710       DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
5711                    << VF << " For instruction: " << I << '\n');
5712     }
5713 
5714     // We assume that if-converted blocks have a 50% chance of being executed.
5715     // When the code is scalar then some of the blocks are avoided due to CF.
5716     // When the code is vectorized we execute all code paths.
5717     if (VF == 1 && Legal->blockNeedsPredication(BB))
5718       BlockCost.first /= 2;
5719 
5720     Cost.first += BlockCost.first;
5721     Cost.second |= BlockCost.second;
5722   }
5723 
5724   return Cost;
5725 }
5726 
5727 /// \brief Check if the load/store instruction \p I may be translated into
5728 /// gather/scatter during vectorization.
5729 ///
5730 /// Pointer \p Ptr specifies address in memory for the given scalar memory
5731 /// instruction. We need it to retrieve data type.
5732 /// Using gather/scatter is possible when it is supported by target.
isGatherOrScatterLegal(Instruction * I,Value * Ptr,LoopVectorizationLegality * Legal)5733 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr,
5734                                    LoopVectorizationLegality *Legal) {
5735   auto *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
5736   return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) ||
5737          (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy));
5738 }
5739 
5740 /// \brief Check whether the address computation for a non-consecutive memory
5741 /// access looks like an unlikely candidate for being merged into the indexing
5742 /// mode.
5743 ///
5744 /// We look for a GEP which has one index that is an induction variable and all
5745 /// other indices are loop invariant. If the stride of this access is also
5746 /// within a small bound we decide that this address computation can likely be
5747 /// merged into the addressing mode.
5748 /// In all other cases, we identify the address computation as complex.
isLikelyComplexAddressComputation(Value * Ptr,LoopVectorizationLegality * Legal,ScalarEvolution * SE,const Loop * TheLoop)5749 static bool isLikelyComplexAddressComputation(Value *Ptr,
5750                                               LoopVectorizationLegality *Legal,
5751                                               ScalarEvolution *SE,
5752                                               const Loop *TheLoop) {
5753   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5754   if (!Gep)
5755     return true;
5756 
5757   // We are looking for a gep with all loop invariant indices except for one
5758   // which should be an induction variable.
5759   unsigned NumOperands = Gep->getNumOperands();
5760   for (unsigned i = 1; i < NumOperands; ++i) {
5761     Value *Opd = Gep->getOperand(i);
5762     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5763         !Legal->isInductionVariable(Opd))
5764       return true;
5765   }
5766 
5767   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5768   // can likely be merged into the address computation.
5769   unsigned MaxMergeDistance = 64;
5770 
5771   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5772   if (!AddRec)
5773     return true;
5774 
5775   // Check the step is constant.
5776   const SCEV *Step = AddRec->getStepRecurrence(*SE);
5777   // Calculate the pointer stride and check if it is consecutive.
5778   const auto *C = dyn_cast<SCEVConstant>(Step);
5779   if (!C)
5780     return true;
5781 
5782   const APInt &APStepVal = C->getAPInt();
5783 
5784   // Huge step value - give up.
5785   if (APStepVal.getBitWidth() > 64)
5786     return true;
5787 
5788   int64_t StepVal = APStepVal.getSExtValue();
5789 
5790   return StepVal > MaxMergeDistance;
5791 }
5792 
isStrideMul(Instruction * I,LoopVectorizationLegality * Legal)5793 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5794   return Legal->hasStride(I->getOperand(0)) ||
5795          Legal->hasStride(I->getOperand(1));
5796 }
5797 
5798 LoopVectorizationCostModel::VectorizationCostTy
getInstructionCost(Instruction * I,unsigned VF)5799 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5800   // If we know that this instruction will remain uniform, check the cost of
5801   // the scalar version.
5802   if (Legal->isUniformAfterVectorization(I))
5803     VF = 1;
5804 
5805   Type *VectorTy;
5806   unsigned C = getInstructionCost(I, VF, VectorTy);
5807 
5808   bool TypeNotScalarized =
5809       VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF;
5810   return VectorizationCostTy(C, TypeNotScalarized);
5811 }
5812 
getInstructionCost(Instruction * I,unsigned VF,Type * & VectorTy)5813 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
5814                                                         unsigned VF,
5815                                                         Type *&VectorTy) {
5816   Type *RetTy = I->getType();
5817   if (VF > 1 && MinBWs.count(I))
5818     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5819   VectorTy = ToVectorTy(RetTy, VF);
5820   auto SE = PSE.getSE();
5821 
5822   // TODO: We need to estimate the cost of intrinsic calls.
5823   switch (I->getOpcode()) {
5824   case Instruction::GetElementPtr:
5825     // We mark this instruction as zero-cost because the cost of GEPs in
5826     // vectorized code depends on whether the corresponding memory instruction
5827     // is scalarized or not. Therefore, we handle GEPs with the memory
5828     // instruction cost.
5829     return 0;
5830   case Instruction::Br: {
5831     return TTI.getCFInstrCost(I->getOpcode());
5832   }
5833   case Instruction::PHI: {
5834     auto *Phi = cast<PHINode>(I);
5835 
5836     // First-order recurrences are replaced by vector shuffles inside the loop.
5837     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
5838       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5839                                 VectorTy, VF - 1, VectorTy);
5840 
5841     // TODO: IF-converted IFs become selects.
5842     return 0;
5843   }
5844   case Instruction::Add:
5845   case Instruction::FAdd:
5846   case Instruction::Sub:
5847   case Instruction::FSub:
5848   case Instruction::Mul:
5849   case Instruction::FMul:
5850   case Instruction::UDiv:
5851   case Instruction::SDiv:
5852   case Instruction::FDiv:
5853   case Instruction::URem:
5854   case Instruction::SRem:
5855   case Instruction::FRem:
5856   case Instruction::Shl:
5857   case Instruction::LShr:
5858   case Instruction::AShr:
5859   case Instruction::And:
5860   case Instruction::Or:
5861   case Instruction::Xor: {
5862     // Since we will replace the stride by 1 the multiplication should go away.
5863     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5864       return 0;
5865     // Certain instructions can be cheaper to vectorize if they have a constant
5866     // second vector operand. One example of this are shifts on x86.
5867     TargetTransformInfo::OperandValueKind Op1VK =
5868         TargetTransformInfo::OK_AnyValue;
5869     TargetTransformInfo::OperandValueKind Op2VK =
5870         TargetTransformInfo::OK_AnyValue;
5871     TargetTransformInfo::OperandValueProperties Op1VP =
5872         TargetTransformInfo::OP_None;
5873     TargetTransformInfo::OperandValueProperties Op2VP =
5874         TargetTransformInfo::OP_None;
5875     Value *Op2 = I->getOperand(1);
5876 
5877     // Check for a splat of a constant or for a non uniform vector of constants.
5878     if (isa<ConstantInt>(Op2)) {
5879       ConstantInt *CInt = cast<ConstantInt>(Op2);
5880       if (CInt && CInt->getValue().isPowerOf2())
5881         Op2VP = TargetTransformInfo::OP_PowerOf2;
5882       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5883     } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
5884       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5885       Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
5886       if (SplatValue) {
5887         ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
5888         if (CInt && CInt->getValue().isPowerOf2())
5889           Op2VP = TargetTransformInfo::OP_PowerOf2;
5890         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5891       }
5892     }
5893 
5894     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
5895                                       Op1VP, Op2VP);
5896   }
5897   case Instruction::Select: {
5898     SelectInst *SI = cast<SelectInst>(I);
5899     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
5900     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
5901     Type *CondTy = SI->getCondition()->getType();
5902     if (!ScalarCond)
5903       CondTy = VectorType::get(CondTy, VF);
5904 
5905     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
5906   }
5907   case Instruction::ICmp:
5908   case Instruction::FCmp: {
5909     Type *ValTy = I->getOperand(0)->getType();
5910     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
5911     auto It = MinBWs.find(Op0AsInstruction);
5912     if (VF > 1 && It != MinBWs.end())
5913       ValTy = IntegerType::get(ValTy->getContext(), It->second);
5914     VectorTy = ToVectorTy(ValTy, VF);
5915     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
5916   }
5917   case Instruction::Store:
5918   case Instruction::Load: {
5919     StoreInst *SI = dyn_cast<StoreInst>(I);
5920     LoadInst *LI = dyn_cast<LoadInst>(I);
5921     Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType());
5922     VectorTy = ToVectorTy(ValTy, VF);
5923 
5924     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
5925     unsigned AS =
5926         SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace();
5927     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
5928     // We add the cost of address computation here instead of with the gep
5929     // instruction because only here we know whether the operation is
5930     // scalarized.
5931     if (VF == 1)
5932       return TTI.getAddressComputationCost(VectorTy) +
5933              TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5934 
5935     if (LI && Legal->isUniform(Ptr)) {
5936       // Scalar load + broadcast
5937       unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType());
5938       Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5939                                   Alignment, AS);
5940       return Cost +
5941              TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy);
5942     }
5943 
5944     // For an interleaved access, calculate the total cost of the whole
5945     // interleave group.
5946     if (Legal->isAccessInterleaved(I)) {
5947       auto Group = Legal->getInterleavedAccessGroup(I);
5948       assert(Group && "Fail to get an interleaved access group.");
5949 
5950       // Only calculate the cost once at the insert position.
5951       if (Group->getInsertPos() != I)
5952         return 0;
5953 
5954       unsigned InterleaveFactor = Group->getFactor();
5955       Type *WideVecTy =
5956           VectorType::get(VectorTy->getVectorElementType(),
5957                           VectorTy->getVectorNumElements() * InterleaveFactor);
5958 
5959       // Holds the indices of existing members in an interleaved load group.
5960       // An interleaved store group doesn't need this as it doesn't allow gaps.
5961       SmallVector<unsigned, 4> Indices;
5962       if (LI) {
5963         for (unsigned i = 0; i < InterleaveFactor; i++)
5964           if (Group->getMember(i))
5965             Indices.push_back(i);
5966       }
5967 
5968       // Calculate the cost of the whole interleaved group.
5969       unsigned Cost = TTI.getInterleavedMemoryOpCost(
5970           I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5971           Group->getAlignment(), AS);
5972 
5973       if (Group->isReverse())
5974         Cost +=
5975             Group->getNumMembers() *
5976             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5977 
5978       // FIXME: The interleaved load group with a huge gap could be even more
5979       // expensive than scalar operations. Then we could ignore such group and
5980       // use scalar operations instead.
5981       return Cost;
5982     }
5983 
5984     // Scalarized loads/stores.
5985     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5986     bool UseGatherOrScatter =
5987         (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal);
5988 
5989     bool Reverse = ConsecutiveStride < 0;
5990     const DataLayout &DL = I->getModule()->getDataLayout();
5991     uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
5992     uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
5993     if ((!ConsecutiveStride && !UseGatherOrScatter) ||
5994         ScalarAllocatedSize != VectorElementSize) {
5995       bool IsComplexComputation =
5996           isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
5997       unsigned Cost = 0;
5998       // The cost of extracting from the value vector and pointer vector.
5999       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6000       for (unsigned i = 0; i < VF; ++i) {
6001         //  The cost of extracting the pointer operand.
6002         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
6003         // In case of STORE, the cost of ExtractElement from the vector.
6004         // In case of LOAD, the cost of InsertElement into the returned
6005         // vector.
6006         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement
6007                                           : Instruction::InsertElement,
6008                                        VectorTy, i);
6009       }
6010 
6011       // The cost of the scalar loads/stores.
6012       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
6013       Cost += VF *
6014               TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
6015                                   Alignment, AS);
6016       return Cost;
6017     }
6018 
6019     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
6020     if (UseGatherOrScatter) {
6021       assert(ConsecutiveStride == 0 &&
6022              "Gather/Scatter are not used for consecutive stride");
6023       return Cost +
6024              TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
6025                                         Legal->isMaskRequired(I), Alignment);
6026     }
6027     // Wide load/stores.
6028     if (Legal->isMaskRequired(I))
6029       Cost +=
6030           TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6031     else
6032       Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6033 
6034     if (Reverse)
6035       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6036     return Cost;
6037   }
6038   case Instruction::ZExt:
6039   case Instruction::SExt:
6040   case Instruction::FPToUI:
6041   case Instruction::FPToSI:
6042   case Instruction::FPExt:
6043   case Instruction::PtrToInt:
6044   case Instruction::IntToPtr:
6045   case Instruction::SIToFP:
6046   case Instruction::UIToFP:
6047   case Instruction::Trunc:
6048   case Instruction::FPTrunc:
6049   case Instruction::BitCast: {
6050     // We optimize the truncation of induction variable.
6051     // The cost of these is the same as the scalar operation.
6052     if (I->getOpcode() == Instruction::Trunc &&
6053         Legal->isInductionVariable(I->getOperand(0)))
6054       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
6055                                   I->getOperand(0)->getType());
6056 
6057     Type *SrcScalarTy = I->getOperand(0)->getType();
6058     Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
6059     if (VF > 1 && MinBWs.count(I)) {
6060       // This cast is going to be shrunk. This may remove the cast or it might
6061       // turn it into slightly different cast. For example, if MinBW == 16,
6062       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6063       //
6064       // Calculate the modified src and dest types.
6065       Type *MinVecTy = VectorTy;
6066       if (I->getOpcode() == Instruction::Trunc) {
6067         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6068         VectorTy =
6069             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6070       } else if (I->getOpcode() == Instruction::ZExt ||
6071                  I->getOpcode() == Instruction::SExt) {
6072         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6073         VectorTy =
6074             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6075       }
6076     }
6077 
6078     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
6079   }
6080   case Instruction::Call: {
6081     bool NeedToScalarize;
6082     CallInst *CI = cast<CallInst>(I);
6083     unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
6084     if (getVectorIntrinsicIDForCall(CI, TLI))
6085       return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
6086     return CallCost;
6087   }
6088   default: {
6089     // We are scalarizing the instruction. Return the cost of the scalar
6090     // instruction, plus the cost of insert and extract into vector
6091     // elements, times the vector width.
6092     unsigned Cost = 0;
6093 
6094     if (!RetTy->isVoidTy() && VF != 1) {
6095       unsigned InsCost =
6096           TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy);
6097       unsigned ExtCost =
6098           TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy);
6099 
6100       // The cost of inserting the results plus extracting each one of the
6101       // operands.
6102       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
6103     }
6104 
6105     // The cost of executing VF copies of the scalar instruction. This opcode
6106     // is unknown. Assume that it is the same as 'mul'.
6107     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
6108     return Cost;
6109   }
6110   } // end of switch.
6111 }
6112 
6113 char LoopVectorize::ID = 0;
6114 static const char lv_name[] = "Loop Vectorization";
6115 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6116 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6117 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6118 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6119 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6120 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6121 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6122 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6124 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
6125 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6126 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6127 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6128 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6129 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6130 
6131 namespace llvm {
createLoopVectorizePass(bool NoUnrolling,bool AlwaysVectorize)6132 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
6133   return new LoopVectorize(NoUnrolling, AlwaysVectorize);
6134 }
6135 }
6136 
isConsecutiveLoadOrStore(Instruction * Inst)6137 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6138   // Check for a store.
6139   if (auto *ST = dyn_cast<StoreInst>(Inst))
6140     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
6141 
6142   // Check for a load.
6143   if (auto *LI = dyn_cast<LoadInst>(Inst))
6144     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
6145 
6146   return false;
6147 }
6148 
collectValuesToIgnore()6149 void LoopVectorizationCostModel::collectValuesToIgnore() {
6150   // Ignore ephemeral values.
6151   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6152 
6153   // Ignore type-promoting instructions we identified during reduction
6154   // detection.
6155   for (auto &Reduction : *Legal->getReductionVars()) {
6156     RecurrenceDescriptor &RedDes = Reduction.second;
6157     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6158     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6159   }
6160 
6161   // Ignore induction phis that are only used in either GetElementPtr or ICmp
6162   // instruction to exit loop. Induction variables usually have large types and
6163   // can have big impact when estimating register usage.
6164   // This is for when VF > 1.
6165   for (auto &Induction : *Legal->getInductionVars()) {
6166     auto *PN = Induction.first;
6167     auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
6168 
6169     // Check that the PHI is only used by the induction increment (UpdateV) or
6170     // by GEPs. Then check that UpdateV is only used by a compare instruction,
6171     // the loop header PHI, or by GEPs.
6172     // FIXME: Need precise def-use analysis to determine if this instruction
6173     // variable will be vectorized.
6174     if (all_of(PN->users(),
6175                [&](const User *U) -> bool {
6176                  return U == UpdateV || isa<GetElementPtrInst>(U);
6177                }) &&
6178         all_of(UpdateV->users(), [&](const User *U) -> bool {
6179           return U == PN || isa<ICmpInst>(U) || isa<GetElementPtrInst>(U);
6180         })) {
6181       VecValuesToIgnore.insert(PN);
6182       VecValuesToIgnore.insert(UpdateV);
6183     }
6184   }
6185 
6186   // Ignore instructions that will not be vectorized.
6187   // This is for when VF > 1.
6188   for (BasicBlock *BB : TheLoop->blocks()) {
6189     for (auto &Inst : *BB) {
6190       switch (Inst.getOpcode())
6191       case Instruction::GetElementPtr: {
6192         // Ignore GEP if its last operand is an induction variable so that it is
6193         // a consecutive load/store and won't be vectorized as scatter/gather
6194         // pattern.
6195 
6196         GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst);
6197         unsigned NumOperands = Gep->getNumOperands();
6198         unsigned InductionOperand = getGEPInductionOperand(Gep);
6199         bool GepToIgnore = true;
6200 
6201         // Check that all of the gep indices are uniform except for the
6202         // induction operand.
6203         for (unsigned i = 0; i != NumOperands; ++i) {
6204           if (i != InductionOperand &&
6205               !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)),
6206                                             TheLoop)) {
6207             GepToIgnore = false;
6208             break;
6209           }
6210         }
6211 
6212         if (GepToIgnore)
6213           VecValuesToIgnore.insert(&Inst);
6214         break;
6215       }
6216     }
6217   }
6218 }
6219 
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)6220 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
6221                                              bool IfPredicateStore) {
6222   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
6223   // Holds vector parameters or scalars, in case of uniform vals.
6224   SmallVector<VectorParts, 4> Params;
6225 
6226   setDebugLocFromInst(Builder, Instr);
6227 
6228   // Find all of the vectorized parameters.
6229   for (Value *SrcOp : Instr->operands()) {
6230     // If we are accessing the old induction variable, use the new one.
6231     if (SrcOp == OldInduction) {
6232       Params.push_back(getVectorValue(SrcOp));
6233       continue;
6234     }
6235 
6236     // Try using previously calculated values.
6237     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
6238 
6239     // If the src is an instruction that appeared earlier in the basic block
6240     // then it should already be vectorized.
6241     if (SrcInst && OrigLoop->contains(SrcInst)) {
6242       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
6243       // The parameter is a vector value from earlier.
6244       Params.push_back(WidenMap.get(SrcInst));
6245     } else {
6246       // The parameter is a scalar from outside the loop. Maybe even a constant.
6247       VectorParts Scalars;
6248       Scalars.append(UF, SrcOp);
6249       Params.push_back(Scalars);
6250     }
6251   }
6252 
6253   assert(Params.size() == Instr->getNumOperands() &&
6254          "Invalid number of operands");
6255 
6256   // Does this instruction return a value ?
6257   bool IsVoidRetTy = Instr->getType()->isVoidTy();
6258 
6259   Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType());
6260   // Create a new entry in the WidenMap and initialize it to Undef or Null.
6261   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
6262 
6263   VectorParts Cond;
6264   if (IfPredicateStore) {
6265     assert(Instr->getParent()->getSinglePredecessor() &&
6266            "Only support single predecessor blocks");
6267     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
6268                           Instr->getParent());
6269   }
6270 
6271   // For each vector unroll 'part':
6272   for (unsigned Part = 0; Part < UF; ++Part) {
6273     // For each scalar that we create:
6274 
6275     // Start an "if (pred) a[i] = ..." block.
6276     Value *Cmp = nullptr;
6277     if (IfPredicateStore) {
6278       if (Cond[Part]->getType()->isVectorTy())
6279         Cond[Part] =
6280             Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
6281       Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
6282                                ConstantInt::get(Cond[Part]->getType(), 1));
6283     }
6284 
6285     Instruction *Cloned = Instr->clone();
6286     if (!IsVoidRetTy)
6287       Cloned->setName(Instr->getName() + ".cloned");
6288     // Replace the operands of the cloned instructions with extracted scalars.
6289     for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6290       Value *Op = Params[op][Part];
6291       Cloned->setOperand(op, Op);
6292     }
6293 
6294     // Place the cloned scalar in the new loop.
6295     Builder.Insert(Cloned);
6296 
6297     // If we just cloned a new assumption, add it the assumption cache.
6298     if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
6299       if (II->getIntrinsicID() == Intrinsic::assume)
6300         AC->registerAssumption(II);
6301 
6302     // If the original scalar returns a value we need to place it in a vector
6303     // so that future users will be able to use it.
6304     if (!IsVoidRetTy)
6305       VecResults[Part] = Cloned;
6306 
6307     // End if-block.
6308     if (IfPredicateStore)
6309       PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp));
6310   }
6311 }
6312 
vectorizeMemoryInstruction(Instruction * Instr)6313 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
6314   auto *SI = dyn_cast<StoreInst>(Instr);
6315   bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6316 
6317   return scalarizeInstruction(Instr, IfPredicateStore);
6318 }
6319 
reverseVector(Value * Vec)6320 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6321 
getBroadcastInstrs(Value * V)6322 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6323 
getStepVector(Value * Val,int StartIdx,Value * Step)6324 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
6325   // When unrolling and the VF is 1, we only need to add a simple scalar.
6326   Type *ITy = Val->getType();
6327   assert(!ITy->isVectorTy() && "Val must be a scalar");
6328   Constant *C = ConstantInt::get(ITy, StartIdx);
6329   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6330 }
6331 
AddRuntimeUnrollDisableMetaData(Loop * L)6332 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6333   SmallVector<Metadata *, 4> MDs;
6334   // Reserve first location for self reference to the LoopID metadata node.
6335   MDs.push_back(nullptr);
6336   bool IsUnrollMetadata = false;
6337   MDNode *LoopID = L->getLoopID();
6338   if (LoopID) {
6339     // First find existing loop unrolling disable metadata.
6340     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6341       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6342       if (MD) {
6343         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6344         IsUnrollMetadata =
6345             S && S->getString().startswith("llvm.loop.unroll.disable");
6346       }
6347       MDs.push_back(LoopID->getOperand(i));
6348     }
6349   }
6350 
6351   if (!IsUnrollMetadata) {
6352     // Add runtime unroll disable metadata.
6353     LLVMContext &Context = L->getHeader()->getContext();
6354     SmallVector<Metadata *, 1> DisableOperands;
6355     DisableOperands.push_back(
6356         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6357     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6358     MDs.push_back(DisableNode);
6359     MDNode *NewLoopID = MDNode::get(Context, MDs);
6360     // Set operand 0 to refer to the loop id itself.
6361     NewLoopID->replaceOperandWith(0, NewLoopID);
6362     L->setLoopID(NewLoopID);
6363   }
6364 }
6365 
processLoop(Loop * L)6366 bool LoopVectorizePass::processLoop(Loop *L) {
6367   assert(L->empty() && "Only process inner loops.");
6368 
6369 #ifndef NDEBUG
6370   const std::string DebugLocStr = getDebugLocString(L);
6371 #endif /* NDEBUG */
6372 
6373   DEBUG(dbgs() << "\nLV: Checking a loop in \""
6374                << L->getHeader()->getParent()->getName() << "\" from "
6375                << DebugLocStr << "\n");
6376 
6377   LoopVectorizeHints Hints(L, DisableUnrolling);
6378 
6379   DEBUG(dbgs() << "LV: Loop hints:"
6380                << " force="
6381                << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
6382                        ? "disabled"
6383                        : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
6384                               ? "enabled"
6385                               : "?"))
6386                << " width=" << Hints.getWidth()
6387                << " unroll=" << Hints.getInterleave() << "\n");
6388 
6389   // Function containing loop
6390   Function *F = L->getHeader()->getParent();
6391 
6392   // Looking at the diagnostic output is the only way to determine if a loop
6393   // was vectorized (other than looking at the IR or machine code), so it
6394   // is important to generate an optimization remark for each loop. Most of
6395   // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
6396   // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
6397   // less verbose reporting vectorized loops and unvectorized loops that may
6398   // benefit from vectorization, respectively.
6399 
6400   if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
6401     DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
6402     return false;
6403   }
6404 
6405   // Check the loop for a trip count threshold:
6406   // do not vectorize loops with a tiny trip count.
6407   const unsigned TC = SE->getSmallConstantTripCount(L);
6408   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
6409     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
6410                  << "This loop is not worth vectorizing.");
6411     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
6412       DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
6413     else {
6414       DEBUG(dbgs() << "\n");
6415       emitAnalysisDiag(F, L, Hints, VectorizationReport()
6416                                         << "vectorization is not beneficial "
6417                                            "and is not explicitly forced");
6418       return false;
6419     }
6420   }
6421 
6422   PredicatedScalarEvolution PSE(*SE, *L);
6423 
6424   // Check if it is legal to vectorize the loop.
6425   LoopVectorizationRequirements Requirements;
6426   LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI,
6427                                 &Requirements, &Hints);
6428   if (!LVL.canVectorize()) {
6429     DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
6430     emitMissedWarning(F, L, Hints);
6431     return false;
6432   }
6433 
6434   // Use the cost model.
6435   LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F,
6436                                 &Hints);
6437   CM.collectValuesToIgnore();
6438 
6439   // Check the function attributes to find out if this function should be
6440   // optimized for size.
6441   bool OptForSize =
6442       Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
6443 
6444   // Compute the weighted frequency of this loop being executed and see if it
6445   // is less than 20% of the function entry baseline frequency. Note that we
6446   // always have a canonical loop here because we think we *can* vectorize.
6447   // FIXME: This is hidden behind a flag due to pervasive problems with
6448   // exactly what block frequency models.
6449   if (LoopVectorizeWithBlockFrequency) {
6450     BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
6451     if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
6452         LoopEntryFreq < ColdEntryFreq)
6453       OptForSize = true;
6454   }
6455 
6456   // Check the function attributes to see if implicit floats are allowed.
6457   // FIXME: This check doesn't seem possibly correct -- what if the loop is
6458   // an integer loop and the vector instructions selected are purely integer
6459   // vector instructions?
6460   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
6461     DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
6462                     "attribute is used.\n");
6463     emitAnalysisDiag(
6464         F, L, Hints,
6465         VectorizationReport()
6466             << "loop not vectorized due to NoImplicitFloat attribute");
6467     emitMissedWarning(F, L, Hints);
6468     return false;
6469   }
6470 
6471   // Check if the target supports potentially unsafe FP vectorization.
6472   // FIXME: Add a check for the type of safety issue (denormal, signaling)
6473   // for the target we're vectorizing for, to make sure none of the
6474   // additional fp-math flags can help.
6475   if (Hints.isPotentiallyUnsafe() &&
6476       TTI->isFPVectorizationPotentiallyUnsafe()) {
6477     DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
6478     emitAnalysisDiag(F, L, Hints,
6479                      VectorizationReport()
6480                          << "loop not vectorized due to unsafe FP support.");
6481     emitMissedWarning(F, L, Hints);
6482     return false;
6483   }
6484 
6485   // Select the optimal vectorization factor.
6486   const LoopVectorizationCostModel::VectorizationFactor VF =
6487       CM.selectVectorizationFactor(OptForSize);
6488 
6489   // Select the interleave count.
6490   unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
6491 
6492   // Get user interleave count.
6493   unsigned UserIC = Hints.getInterleave();
6494 
6495   // Identify the diagnostic messages that should be produced.
6496   std::string VecDiagMsg, IntDiagMsg;
6497   bool VectorizeLoop = true, InterleaveLoop = true;
6498 
6499   if (Requirements.doesNotMeet(F, L, Hints)) {
6500     DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
6501                     "requirements.\n");
6502     emitMissedWarning(F, L, Hints);
6503     return false;
6504   }
6505 
6506   if (VF.Width == 1) {
6507     DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
6508     VecDiagMsg =
6509         "the cost-model indicates that vectorization is not beneficial";
6510     VectorizeLoop = false;
6511   }
6512 
6513   if (IC == 1 && UserIC <= 1) {
6514     // Tell the user interleaving is not beneficial.
6515     DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
6516     IntDiagMsg =
6517         "the cost-model indicates that interleaving is not beneficial";
6518     InterleaveLoop = false;
6519     if (UserIC == 1)
6520       IntDiagMsg +=
6521           " and is explicitly disabled or interleave count is set to 1";
6522   } else if (IC > 1 && UserIC == 1) {
6523     // Tell the user interleaving is beneficial, but it explicitly disabled.
6524     DEBUG(dbgs()
6525           << "LV: Interleaving is beneficial but is explicitly disabled.");
6526     IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
6527                  "but is explicitly disabled or interleave count is set to 1";
6528     InterleaveLoop = false;
6529   }
6530 
6531   // Override IC if user provided an interleave count.
6532   IC = UserIC > 0 ? UserIC : IC;
6533 
6534   // Emit diagnostic messages, if any.
6535   const char *VAPassName = Hints.vectorizeAnalysisPassName();
6536   if (!VectorizeLoop && !InterleaveLoop) {
6537     // Do not vectorize or interleaving the loop.
6538     emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
6539                                    L->getStartLoc(), VecDiagMsg);
6540     emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
6541                                    L->getStartLoc(), IntDiagMsg);
6542     return false;
6543   } else if (!VectorizeLoop && InterleaveLoop) {
6544     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
6545     emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
6546                                    L->getStartLoc(), VecDiagMsg);
6547   } else if (VectorizeLoop && !InterleaveLoop) {
6548     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
6549                  << DebugLocStr << '\n');
6550     emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
6551                                    L->getStartLoc(), IntDiagMsg);
6552   } else if (VectorizeLoop && InterleaveLoop) {
6553     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
6554                  << DebugLocStr << '\n');
6555     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
6556   }
6557 
6558   if (!VectorizeLoop) {
6559     assert(IC > 1 && "interleave count should not be 1 or 0");
6560     // If we decided that it is not legal to vectorize the loop, then
6561     // interleave it.
6562     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC);
6563     Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
6564 
6565     emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
6566                            Twine("interleaved loop (interleaved count: ") +
6567                                Twine(IC) + ")");
6568   } else {
6569     // If we decided that it is *legal* to vectorize the loop, then do it.
6570     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC);
6571     LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
6572     ++LoopsVectorized;
6573 
6574     // Add metadata to disable runtime unrolling a scalar loop when there are
6575     // no runtime checks about strides and memory. A scalar loop that is
6576     // rarely used is not worth unrolling.
6577     if (!LB.areSafetyChecksAdded())
6578       AddRuntimeUnrollDisableMetaData(L);
6579 
6580     // Report the vectorization decision.
6581     emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
6582                            Twine("vectorized loop (vectorization width: ") +
6583                                Twine(VF.Width) + ", interleaved count: " +
6584                                Twine(IC) + ")");
6585   }
6586 
6587   // Mark the loop as already vectorized to avoid vectorizing again.
6588   Hints.setAlreadyVectorized();
6589 
6590   DEBUG(verifyFunction(*L->getHeader()->getParent()));
6591   return true;
6592 }
6593 
runImpl(Function & F,ScalarEvolution & SE_,LoopInfo & LI_,TargetTransformInfo & TTI_,DominatorTree & DT_,BlockFrequencyInfo & BFI_,TargetLibraryInfo * TLI_,DemandedBits & DB_,AliasAnalysis & AA_,AssumptionCache & AC_,std::function<const LoopAccessInfo & (Loop &)> & GetLAA_)6594 bool LoopVectorizePass::runImpl(
6595     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
6596     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
6597     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
6598     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_) {
6599 
6600   SE = &SE_;
6601   LI = &LI_;
6602   TTI = &TTI_;
6603   DT = &DT_;
6604   BFI = &BFI_;
6605   TLI = TLI_;
6606   AA = &AA_;
6607   AC = &AC_;
6608   GetLAA = &GetLAA_;
6609   DB = &DB_;
6610 
6611   // Compute some weights outside of the loop over the loops. Compute this
6612   // using a BranchProbability to re-use its scaling math.
6613   const BranchProbability ColdProb(1, 5); // 20%
6614   ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
6615 
6616   // Don't attempt if
6617   // 1. the target claims to have no vector registers, and
6618   // 2. interleaving won't help ILP.
6619   //
6620   // The second condition is necessary because, even if the target has no
6621   // vector registers, loop vectorization may still enable scalar
6622   // interleaving.
6623   if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
6624     return false;
6625 
6626   // Build up a worklist of inner-loops to vectorize. This is necessary as
6627   // the act of vectorizing or partially unrolling a loop creates new loops
6628   // and can invalidate iterators across the loops.
6629   SmallVector<Loop *, 8> Worklist;
6630 
6631   for (Loop *L : *LI)
6632     addInnerLoop(*L, Worklist);
6633 
6634   LoopsAnalyzed += Worklist.size();
6635 
6636   // Now walk the identified inner loops.
6637   bool Changed = false;
6638   while (!Worklist.empty())
6639     Changed |= processLoop(Worklist.pop_back_val());
6640 
6641   // Process each loop nest in the function.
6642   return Changed;
6643 
6644 }
6645 
6646 
run(Function & F,FunctionAnalysisManager & AM)6647 PreservedAnalyses LoopVectorizePass::run(Function &F,
6648                                          FunctionAnalysisManager &AM) {
6649     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
6650     auto &LI = AM.getResult<LoopAnalysis>(F);
6651     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
6652     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6653     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
6654     auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6655     auto &AA = AM.getResult<AAManager>(F);
6656     auto &AC = AM.getResult<AssumptionAnalysis>(F);
6657     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
6658 
6659     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
6660     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
6661         [&](Loop &L) -> const LoopAccessInfo & {
6662       return LAM.getResult<LoopAccessAnalysis>(L);
6663     };
6664     bool Changed = runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA);
6665     if (!Changed)
6666       return PreservedAnalyses::all();
6667     PreservedAnalyses PA;
6668     PA.preserve<LoopAnalysis>();
6669     PA.preserve<DominatorTreeAnalysis>();
6670     PA.preserve<BasicAA>();
6671     PA.preserve<GlobalsAA>();
6672     return PA;
6673 }
6674