• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 /** \mainpage V8 API Reference Guide
6  *
7  * V8 is Google's open source JavaScript engine.
8  *
9  * This set of documents provides reference material generated from the
10  * V8 header file, include/v8.h.
11  *
12  * For other documentation see http://code.google.com/apis/v8/
13  */
14 
15 #ifndef INCLUDE_V8_H_
16 #define INCLUDE_V8_H_
17 
18 #include <stddef.h>
19 #include <stdint.h>
20 #include <stdio.h>
21 #include <memory>
22 #include <utility>
23 #include <vector>
24 
25 #include "v8-version.h"  // NOLINT(build/include)
26 #include "v8config.h"    // NOLINT(build/include)
27 
28 // We reserve the V8_* prefix for macros defined in V8 public API and
29 // assume there are no name conflicts with the embedder's code.
30 
31 #ifdef V8_OS_WIN
32 
33 // Setup for Windows DLL export/import. When building the V8 DLL the
34 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
35 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
36 // static library or building a program which uses the V8 static library neither
37 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
38 #ifdef BUILDING_V8_SHARED
39 # define V8_EXPORT __declspec(dllexport)
40 #elif USING_V8_SHARED
41 # define V8_EXPORT __declspec(dllimport)
42 #else
43 # define V8_EXPORT
44 #endif  // BUILDING_V8_SHARED
45 
46 #else  // V8_OS_WIN
47 
48 // Setup for Linux shared library export.
49 #if V8_HAS_ATTRIBUTE_VISIBILITY
50 # ifdef BUILDING_V8_SHARED
51 #  define V8_EXPORT __attribute__ ((visibility("default")))
52 # else
53 #  define V8_EXPORT
54 # endif
55 #else
56 # define V8_EXPORT
57 #endif
58 
59 #endif  // V8_OS_WIN
60 
61 /**
62  * The v8 JavaScript engine.
63  */
64 namespace v8 {
65 
66 class AccessorSignature;
67 class Array;
68 class ArrayBuffer;
69 class Boolean;
70 class BooleanObject;
71 class Context;
72 class CpuProfiler;
73 class Data;
74 class Date;
75 class External;
76 class Function;
77 class FunctionTemplate;
78 class HeapProfiler;
79 class ImplementationUtilities;
80 class Int32;
81 class Integer;
82 class Isolate;
83 template <class T>
84 class Maybe;
85 class Name;
86 class Number;
87 class NumberObject;
88 class Object;
89 class ObjectOperationDescriptor;
90 class ObjectTemplate;
91 class Platform;
92 class Primitive;
93 class Promise;
94 class PropertyDescriptor;
95 class Proxy;
96 class RawOperationDescriptor;
97 class Script;
98 class SharedArrayBuffer;
99 class Signature;
100 class StartupData;
101 class StackFrame;
102 class StackTrace;
103 class String;
104 class StringObject;
105 class Symbol;
106 class SymbolObject;
107 class Private;
108 class Uint32;
109 class Utils;
110 class Value;
111 template <class T> class Local;
112 template <class T>
113 class MaybeLocal;
114 template <class T> class Eternal;
115 template<class T> class NonCopyablePersistentTraits;
116 template<class T> class PersistentBase;
117 template <class T, class M = NonCopyablePersistentTraits<T> >
118 class Persistent;
119 template <class T>
120 class Global;
121 template<class K, class V, class T> class PersistentValueMap;
122 template <class K, class V, class T>
123 class PersistentValueMapBase;
124 template <class K, class V, class T>
125 class GlobalValueMap;
126 template<class V, class T> class PersistentValueVector;
127 template<class T, class P> class WeakCallbackObject;
128 class FunctionTemplate;
129 class ObjectTemplate;
130 class Data;
131 template<typename T> class FunctionCallbackInfo;
132 template<typename T> class PropertyCallbackInfo;
133 class StackTrace;
134 class StackFrame;
135 class Isolate;
136 class CallHandlerHelper;
137 class EscapableHandleScope;
138 template<typename T> class ReturnValue;
139 
140 namespace experimental {
141 class FastAccessorBuilder;
142 }  // namespace experimental
143 
144 namespace internal {
145 class Arguments;
146 class Heap;
147 class HeapObject;
148 class Isolate;
149 class Object;
150 struct StreamedSource;
151 template<typename T> class CustomArguments;
152 class PropertyCallbackArguments;
153 class FunctionCallbackArguments;
154 class GlobalHandles;
155 }  // namespace internal
156 
157 
158 /**
159  * General purpose unique identifier.
160  */
161 class UniqueId {
162  public:
UniqueId(intptr_t data)163   explicit UniqueId(intptr_t data)
164       : data_(data) {}
165 
166   bool operator==(const UniqueId& other) const {
167     return data_ == other.data_;
168   }
169 
170   bool operator!=(const UniqueId& other) const {
171     return data_ != other.data_;
172   }
173 
174   bool operator<(const UniqueId& other) const {
175     return data_ < other.data_;
176   }
177 
178  private:
179   intptr_t data_;
180 };
181 
182 // --- Handles ---
183 
184 #define TYPE_CHECK(T, S)                                       \
185   while (false) {                                              \
186     *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
187   }
188 
189 
190 /**
191  * An object reference managed by the v8 garbage collector.
192  *
193  * All objects returned from v8 have to be tracked by the garbage
194  * collector so that it knows that the objects are still alive.  Also,
195  * because the garbage collector may move objects, it is unsafe to
196  * point directly to an object.  Instead, all objects are stored in
197  * handles which are known by the garbage collector and updated
198  * whenever an object moves.  Handles should always be passed by value
199  * (except in cases like out-parameters) and they should never be
200  * allocated on the heap.
201  *
202  * There are two types of handles: local and persistent handles.
203  * Local handles are light-weight and transient and typically used in
204  * local operations.  They are managed by HandleScopes.  Persistent
205  * handles can be used when storing objects across several independent
206  * operations and have to be explicitly deallocated when they're no
207  * longer used.
208  *
209  * It is safe to extract the object stored in the handle by
210  * dereferencing the handle (for instance, to extract the Object* from
211  * a Local<Object>); the value will still be governed by a handle
212  * behind the scenes and the same rules apply to these values as to
213  * their handles.
214  */
215 template <class T>
216 class Local {
217  public:
Local()218   V8_INLINE Local() : val_(0) {}
219   template <class S>
Local(Local<S> that)220   V8_INLINE Local(Local<S> that)
221       : val_(reinterpret_cast<T*>(*that)) {
222     /**
223      * This check fails when trying to convert between incompatible
224      * handles. For example, converting from a Local<String> to a
225      * Local<Number>.
226      */
227     TYPE_CHECK(T, S);
228   }
229 
230   /**
231    * Returns true if the handle is empty.
232    */
IsEmpty()233   V8_INLINE bool IsEmpty() const { return val_ == 0; }
234 
235   /**
236    * Sets the handle to be empty. IsEmpty() will then return true.
237    */
Clear()238   V8_INLINE void Clear() { val_ = 0; }
239 
240   V8_INLINE T* operator->() const { return val_; }
241 
242   V8_INLINE T* operator*() const { return val_; }
243 
244   /**
245    * Checks whether two handles are the same.
246    * Returns true if both are empty, or if the objects
247    * to which they refer are identical.
248    * The handles' references are not checked.
249    */
250   template <class S>
251   V8_INLINE bool operator==(const Local<S>& that) const {
252     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
253     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
254     if (a == 0) return b == 0;
255     if (b == 0) return false;
256     return *a == *b;
257   }
258 
259   template <class S> V8_INLINE bool operator==(
260       const PersistentBase<S>& that) const {
261     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
262     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
263     if (a == 0) return b == 0;
264     if (b == 0) return false;
265     return *a == *b;
266   }
267 
268   /**
269    * Checks whether two handles are different.
270    * Returns true if only one of the handles is empty, or if
271    * the objects to which they refer are different.
272    * The handles' references are not checked.
273    */
274   template <class S>
275   V8_INLINE bool operator!=(const Local<S>& that) const {
276     return !operator==(that);
277   }
278 
279   template <class S> V8_INLINE bool operator!=(
280       const Persistent<S>& that) const {
281     return !operator==(that);
282   }
283 
Cast(Local<S> that)284   template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
285 #ifdef V8_ENABLE_CHECKS
286     // If we're going to perform the type check then we have to check
287     // that the handle isn't empty before doing the checked cast.
288     if (that.IsEmpty()) return Local<T>();
289 #endif
290     return Local<T>(T::Cast(*that));
291   }
292 
293   template <class S>
As()294   V8_INLINE Local<S> As() const {
295     return Local<S>::Cast(*this);
296   }
297 
298   /**
299    * Create a local handle for the content of another handle.
300    * The referee is kept alive by the local handle even when
301    * the original handle is destroyed/disposed.
302    */
303   V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
304   V8_INLINE static Local<T> New(Isolate* isolate,
305                                 const PersistentBase<T>& that);
306 
307  private:
308   friend class Utils;
309   template<class F> friend class Eternal;
310   template<class F> friend class PersistentBase;
311   template<class F, class M> friend class Persistent;
312   template<class F> friend class Local;
313   template <class F>
314   friend class MaybeLocal;
315   template<class F> friend class FunctionCallbackInfo;
316   template<class F> friend class PropertyCallbackInfo;
317   friend class String;
318   friend class Object;
319   friend class Context;
320   friend class Private;
321   template<class F> friend class internal::CustomArguments;
322   friend Local<Primitive> Undefined(Isolate* isolate);
323   friend Local<Primitive> Null(Isolate* isolate);
324   friend Local<Boolean> True(Isolate* isolate);
325   friend Local<Boolean> False(Isolate* isolate);
326   friend class HandleScope;
327   friend class EscapableHandleScope;
328   template <class F1, class F2, class F3>
329   friend class PersistentValueMapBase;
330   template<class F1, class F2> friend class PersistentValueVector;
331   template <class F>
332   friend class ReturnValue;
333 
Local(T * that)334   explicit V8_INLINE Local(T* that) : val_(that) {}
335   V8_INLINE static Local<T> New(Isolate* isolate, T* that);
336   T* val_;
337 };
338 
339 
340 #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
341 // Handle is an alias for Local for historical reasons.
342 template <class T>
343 using Handle = Local<T>;
344 #endif
345 
346 
347 /**
348  * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
349  * the Local<> is empty before it can be used.
350  *
351  * If an API method returns a MaybeLocal<>, the API method can potentially fail
352  * either because an exception is thrown, or because an exception is pending,
353  * e.g. because a previous API call threw an exception that hasn't been caught
354  * yet, or because a TerminateExecution exception was thrown. In that case, an
355  * empty MaybeLocal is returned.
356  */
357 template <class T>
358 class MaybeLocal {
359  public:
MaybeLocal()360   V8_INLINE MaybeLocal() : val_(nullptr) {}
361   template <class S>
MaybeLocal(Local<S> that)362   V8_INLINE MaybeLocal(Local<S> that)
363       : val_(reinterpret_cast<T*>(*that)) {
364     TYPE_CHECK(T, S);
365   }
366 
IsEmpty()367   V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
368 
369   template <class S>
ToLocal(Local<S> * out)370   V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
371     out->val_ = IsEmpty() ? nullptr : this->val_;
372     return !IsEmpty();
373   }
374 
375   // Will crash if the MaybeLocal<> is empty.
376   V8_INLINE Local<T> ToLocalChecked();
377 
378   template <class S>
FromMaybe(Local<S> default_value)379   V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
380     return IsEmpty() ? default_value : Local<S>(val_);
381   }
382 
383  private:
384   T* val_;
385 };
386 
387 
388 // Eternal handles are set-once handles that live for the life of the isolate.
389 template <class T> class Eternal {
390  public:
Eternal()391   V8_INLINE Eternal() : index_(kInitialValue) { }
392   template<class S>
Eternal(Isolate * isolate,Local<S> handle)393   V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
394     Set(isolate, handle);
395   }
396   // Can only be safely called if already set.
397   V8_INLINE Local<T> Get(Isolate* isolate);
IsEmpty()398   V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
399   template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
400 
401  private:
402   static const int kInitialValue = -1;
403   int index_;
404 };
405 
406 
407 static const int kInternalFieldsInWeakCallback = 2;
408 
409 
410 template <typename T>
411 class WeakCallbackInfo {
412  public:
413   typedef void (*Callback)(const WeakCallbackInfo<T>& data);
414 
WeakCallbackInfo(Isolate * isolate,T * parameter,void * internal_fields[kInternalFieldsInWeakCallback],Callback * callback)415   WeakCallbackInfo(Isolate* isolate, T* parameter,
416                    void* internal_fields[kInternalFieldsInWeakCallback],
417                    Callback* callback)
418       : isolate_(isolate), parameter_(parameter), callback_(callback) {
419     for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
420       internal_fields_[i] = internal_fields[i];
421     }
422   }
423 
GetIsolate()424   V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetParameter()425   V8_INLINE T* GetParameter() const { return parameter_; }
426   V8_INLINE void* GetInternalField(int index) const;
427 
428   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField1()429                           void* GetInternalField1() const) {
430     return internal_fields_[0];
431   }
432   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField2()433                           void* GetInternalField2() const) {
434     return internal_fields_[1];
435   }
436 
437   V8_DEPRECATED("Not realiable once SetSecondPassCallback() was used.",
IsFirstPass()438                 bool IsFirstPass() const) {
439     return callback_ != nullptr;
440   }
441 
442   // When first called, the embedder MUST Reset() the Global which triggered the
443   // callback. The Global itself is unusable for anything else. No v8 other api
444   // calls may be called in the first callback. Should additional work be
445   // required, the embedder must set a second pass callback, which will be
446   // called after all the initial callbacks are processed.
447   // Calling SetSecondPassCallback on the second pass will immediately crash.
SetSecondPassCallback(Callback callback)448   void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
449 
450  private:
451   Isolate* isolate_;
452   T* parameter_;
453   Callback* callback_;
454   void* internal_fields_[kInternalFieldsInWeakCallback];
455 };
456 
457 
458 // kParameter will pass a void* parameter back to the callback, kInternalFields
459 // will pass the first two internal fields back to the callback, kFinalizer
460 // will pass a void* parameter back, but is invoked before the object is
461 // actually collected, so it can be resurrected. In the last case, it is not
462 // possible to request a second pass callback.
463 enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer };
464 
465 /**
466  * An object reference that is independent of any handle scope.  Where
467  * a Local handle only lives as long as the HandleScope in which it was
468  * allocated, a PersistentBase handle remains valid until it is explicitly
469  * disposed.
470  *
471  * A persistent handle contains a reference to a storage cell within
472  * the v8 engine which holds an object value and which is updated by
473  * the garbage collector whenever the object is moved.  A new storage
474  * cell can be created using the constructor or PersistentBase::Reset and
475  * existing handles can be disposed using PersistentBase::Reset.
476  *
477  */
478 template <class T> class PersistentBase {
479  public:
480   /**
481    * If non-empty, destroy the underlying storage cell
482    * IsEmpty() will return true after this call.
483    */
484   V8_INLINE void Reset();
485   /**
486    * If non-empty, destroy the underlying storage cell
487    * and create a new one with the contents of other if other is non empty
488    */
489   template <class S>
490   V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
491 
492   /**
493    * If non-empty, destroy the underlying storage cell
494    * and create a new one with the contents of other if other is non empty
495    */
496   template <class S>
497   V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
498 
IsEmpty()499   V8_INLINE bool IsEmpty() const { return val_ == NULL; }
Empty()500   V8_INLINE void Empty() { val_ = 0; }
501 
Get(Isolate * isolate)502   V8_INLINE Local<T> Get(Isolate* isolate) const {
503     return Local<T>::New(isolate, *this);
504   }
505 
506   template <class S>
507   V8_INLINE bool operator==(const PersistentBase<S>& that) const {
508     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
509     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
510     if (a == NULL) return b == NULL;
511     if (b == NULL) return false;
512     return *a == *b;
513   }
514 
515   template <class S>
516   V8_INLINE bool operator==(const Local<S>& that) const {
517     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
518     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
519     if (a == NULL) return b == NULL;
520     if (b == NULL) return false;
521     return *a == *b;
522   }
523 
524   template <class S>
525   V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
526     return !operator==(that);
527   }
528 
529   template <class S>
530   V8_INLINE bool operator!=(const Local<S>& that) const {
531     return !operator==(that);
532   }
533 
534   /**
535    *  Install a finalization callback on this object.
536    *  NOTE: There is no guarantee as to *when* or even *if* the callback is
537    *  invoked. The invocation is performed solely on a best effort basis.
538    *  As always, GC-based finalization should *not* be relied upon for any
539    *  critical form of resource management!
540    */
541   template <typename P>
542   V8_INLINE void SetWeak(P* parameter,
543                          typename WeakCallbackInfo<P>::Callback callback,
544                          WeakCallbackType type);
545 
546   /**
547    * Turns this handle into a weak phantom handle without finalization callback.
548    * The handle will be reset automatically when the garbage collector detects
549    * that the object is no longer reachable.
550    * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall
551    * returns how many phantom handles were reset by the garbage collector.
552    */
553   V8_INLINE void SetWeak();
554 
555   template<typename P>
556   V8_INLINE P* ClearWeak();
557 
558   // TODO(dcarney): remove this.
ClearWeak()559   V8_INLINE void ClearWeak() { ClearWeak<void>(); }
560 
561   /**
562    * Allows the embedder to tell the v8 garbage collector that a certain object
563    * is alive. Only allowed when the embedder is asked to trace its heap by
564    * EmbedderHeapTracer.
565    */
566   V8_INLINE void RegisterExternalReference(Isolate* isolate) const;
567 
568   /**
569    * Marks the reference to this object independent. Garbage collector is free
570    * to ignore any object groups containing this object. Weak callback for an
571    * independent handle should not assume that it will be preceded by a global
572    * GC prologue callback or followed by a global GC epilogue callback.
573    */
574   V8_INLINE void MarkIndependent();
575 
576   /**
577    * Marks the reference to this object as active. The scavenge garbage
578    * collection should not reclaim the objects marked as active.
579    * This bit is cleared after the each garbage collection pass.
580    */
581   V8_INLINE void MarkActive();
582 
583   V8_INLINE bool IsIndependent() const;
584 
585   /** Checks if the handle holds the only reference to an object. */
586   V8_INLINE bool IsNearDeath() const;
587 
588   /** Returns true if the handle's reference is weak.  */
589   V8_INLINE bool IsWeak() const;
590 
591   /**
592    * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
593    * description in v8-profiler.h for details.
594    */
595   V8_INLINE void SetWrapperClassId(uint16_t class_id);
596 
597   /**
598    * Returns the class ID previously assigned to this handle or 0 if no class ID
599    * was previously assigned.
600    */
601   V8_INLINE uint16_t WrapperClassId() const;
602 
603   PersistentBase(const PersistentBase& other) = delete;  // NOLINT
604   void operator=(const PersistentBase&) = delete;
605 
606  private:
607   friend class Isolate;
608   friend class Utils;
609   template<class F> friend class Local;
610   template<class F1, class F2> friend class Persistent;
611   template <class F>
612   friend class Global;
613   template<class F> friend class PersistentBase;
614   template<class F> friend class ReturnValue;
615   template <class F1, class F2, class F3>
616   friend class PersistentValueMapBase;
617   template<class F1, class F2> friend class PersistentValueVector;
618   friend class Object;
619 
PersistentBase(T * val)620   explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
621   V8_INLINE static T* New(Isolate* isolate, T* that);
622 
623   T* val_;
624 };
625 
626 
627 /**
628  * Default traits for Persistent. This class does not allow
629  * use of the copy constructor or assignment operator.
630  * At present kResetInDestructor is not set, but that will change in a future
631  * version.
632  */
633 template<class T>
634 class NonCopyablePersistentTraits {
635  public:
636   typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
637   static const bool kResetInDestructor = false;
638   template<class S, class M>
Copy(const Persistent<S,M> & source,NonCopyablePersistent * dest)639   V8_INLINE static void Copy(const Persistent<S, M>& source,
640                              NonCopyablePersistent* dest) {
641     Uncompilable<Object>();
642   }
643   // TODO(dcarney): come up with a good compile error here.
Uncompilable()644   template<class O> V8_INLINE static void Uncompilable() {
645     TYPE_CHECK(O, Primitive);
646   }
647 };
648 
649 
650 /**
651  * Helper class traits to allow copying and assignment of Persistent.
652  * This will clone the contents of storage cell, but not any of the flags, etc.
653  */
654 template<class T>
655 struct CopyablePersistentTraits {
656   typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
657   static const bool kResetInDestructor = true;
658   template<class S, class M>
CopyCopyablePersistentTraits659   static V8_INLINE void Copy(const Persistent<S, M>& source,
660                              CopyablePersistent* dest) {
661     // do nothing, just allow copy
662   }
663 };
664 
665 
666 /**
667  * A PersistentBase which allows copy and assignment.
668  *
669  * Copy, assignment and destructor behavior is controlled by the traits
670  * class M.
671  *
672  * Note: Persistent class hierarchy is subject to future changes.
673  */
674 template <class T, class M> class Persistent : public PersistentBase<T> {
675  public:
676   /**
677    * A Persistent with no storage cell.
678    */
Persistent()679   V8_INLINE Persistent() : PersistentBase<T>(0) { }
680   /**
681    * Construct a Persistent from a Local.
682    * When the Local is non-empty, a new storage cell is created
683    * pointing to the same object, and no flags are set.
684    */
685   template <class S>
Persistent(Isolate * isolate,Local<S> that)686   V8_INLINE Persistent(Isolate* isolate, Local<S> that)
687       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
688     TYPE_CHECK(T, S);
689   }
690   /**
691    * Construct a Persistent from a Persistent.
692    * When the Persistent is non-empty, a new storage cell is created
693    * pointing to the same object, and no flags are set.
694    */
695   template <class S, class M2>
Persistent(Isolate * isolate,const Persistent<S,M2> & that)696   V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
697     : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
698     TYPE_CHECK(T, S);
699   }
700   /**
701    * The copy constructors and assignment operator create a Persistent
702    * exactly as the Persistent constructor, but the Copy function from the
703    * traits class is called, allowing the setting of flags based on the
704    * copied Persistent.
705    */
Persistent(const Persistent & that)706   V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
707     Copy(that);
708   }
709   template <class S, class M2>
Persistent(const Persistent<S,M2> & that)710   V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
711     Copy(that);
712   }
713   V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
714     Copy(that);
715     return *this;
716   }
717   template <class S, class M2>
718   V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
719     Copy(that);
720     return *this;
721   }
722   /**
723    * The destructor will dispose the Persistent based on the
724    * kResetInDestructor flags in the traits class.  Since not calling dispose
725    * can result in a memory leak, it is recommended to always set this flag.
726    */
~Persistent()727   V8_INLINE ~Persistent() {
728     if (M::kResetInDestructor) this->Reset();
729   }
730 
731   // TODO(dcarney): this is pretty useless, fix or remove
732   template <class S>
Cast(const Persistent<S> & that)733   V8_INLINE static Persistent<T>& Cast(const Persistent<S>& that) {  // NOLINT
734 #ifdef V8_ENABLE_CHECKS
735     // If we're going to perform the type check then we have to check
736     // that the handle isn't empty before doing the checked cast.
737     if (!that.IsEmpty()) T::Cast(*that);
738 #endif
739     return reinterpret_cast<Persistent<T>&>(const_cast<Persistent<S>&>(that));
740   }
741 
742   // TODO(dcarney): this is pretty useless, fix or remove
743   template <class S>
As()744   V8_INLINE Persistent<S>& As() const {  // NOLINT
745     return Persistent<S>::Cast(*this);
746   }
747 
748  private:
749   friend class Isolate;
750   friend class Utils;
751   template<class F> friend class Local;
752   template<class F1, class F2> friend class Persistent;
753   template<class F> friend class ReturnValue;
754 
Persistent(T * that)755   explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {}
756   V8_INLINE T* operator*() const { return this->val_; }
757   template<class S, class M2>
758   V8_INLINE void Copy(const Persistent<S, M2>& that);
759 };
760 
761 
762 /**
763  * A PersistentBase which has move semantics.
764  *
765  * Note: Persistent class hierarchy is subject to future changes.
766  */
767 template <class T>
768 class Global : public PersistentBase<T> {
769  public:
770   /**
771    * A Global with no storage cell.
772    */
Global()773   V8_INLINE Global() : PersistentBase<T>(nullptr) {}
774   /**
775    * Construct a Global from a Local.
776    * When the Local is non-empty, a new storage cell is created
777    * pointing to the same object, and no flags are set.
778    */
779   template <class S>
Global(Isolate * isolate,Local<S> that)780   V8_INLINE Global(Isolate* isolate, Local<S> that)
781       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
782     TYPE_CHECK(T, S);
783   }
784   /**
785    * Construct a Global from a PersistentBase.
786    * When the Persistent is non-empty, a new storage cell is created
787    * pointing to the same object, and no flags are set.
788    */
789   template <class S>
Global(Isolate * isolate,const PersistentBase<S> & that)790   V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
791       : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
792     TYPE_CHECK(T, S);
793   }
794   /**
795    * Move constructor.
796    */
Global(Global && other)797   V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) {  // NOLINT
798     other.val_ = nullptr;
799   }
~Global()800   V8_INLINE ~Global() { this->Reset(); }
801   /**
802    * Move via assignment.
803    */
804   template <class S>
805   V8_INLINE Global& operator=(Global<S>&& rhs) {  // NOLINT
806     TYPE_CHECK(T, S);
807     if (this != &rhs) {
808       this->Reset();
809       this->val_ = rhs.val_;
810       rhs.val_ = nullptr;
811     }
812     return *this;
813   }
814   /**
815    * Pass allows returning uniques from functions, etc.
816    */
Pass()817   Global Pass() { return static_cast<Global&&>(*this); }  // NOLINT
818 
819   /*
820    * For compatibility with Chromium's base::Bind (base::Passed).
821    */
822   typedef void MoveOnlyTypeForCPP03;
823 
824   Global(const Global&) = delete;
825   void operator=(const Global&) = delete;
826 
827  private:
828   template <class F>
829   friend class ReturnValue;
830   V8_INLINE T* operator*() const { return this->val_; }
831 };
832 
833 
834 // UniquePersistent is an alias for Global for historical reason.
835 template <class T>
836 using UniquePersistent = Global<T>;
837 
838 
839  /**
840  * A stack-allocated class that governs a number of local handles.
841  * After a handle scope has been created, all local handles will be
842  * allocated within that handle scope until either the handle scope is
843  * deleted or another handle scope is created.  If there is already a
844  * handle scope and a new one is created, all allocations will take
845  * place in the new handle scope until it is deleted.  After that,
846  * new handles will again be allocated in the original handle scope.
847  *
848  * After the handle scope of a local handle has been deleted the
849  * garbage collector will no longer track the object stored in the
850  * handle and may deallocate it.  The behavior of accessing a handle
851  * for which the handle scope has been deleted is undefined.
852  */
853 class V8_EXPORT HandleScope {
854  public:
855   explicit HandleScope(Isolate* isolate);
856 
857   ~HandleScope();
858 
859   /**
860    * Counts the number of allocated handles.
861    */
862   static int NumberOfHandles(Isolate* isolate);
863 
GetIsolate()864   V8_INLINE Isolate* GetIsolate() const {
865     return reinterpret_cast<Isolate*>(isolate_);
866   }
867 
868   HandleScope(const HandleScope&) = delete;
869   void operator=(const HandleScope&) = delete;
870   void* operator new(size_t size);
871   void operator delete(void*, size_t);
872 
873  protected:
HandleScope()874   V8_INLINE HandleScope() {}
875 
876   void Initialize(Isolate* isolate);
877 
878   static internal::Object** CreateHandle(internal::Isolate* isolate,
879                                          internal::Object* value);
880 
881  private:
882   // Uses heap_object to obtain the current Isolate.
883   static internal::Object** CreateHandle(internal::HeapObject* heap_object,
884                                          internal::Object* value);
885 
886   internal::Isolate* isolate_;
887   internal::Object** prev_next_;
888   internal::Object** prev_limit_;
889 
890   // Local::New uses CreateHandle with an Isolate* parameter.
891   template<class F> friend class Local;
892 
893   // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
894   // a HeapObject* in their shortcuts.
895   friend class Object;
896   friend class Context;
897 };
898 
899 
900 /**
901  * A HandleScope which first allocates a handle in the current scope
902  * which will be later filled with the escape value.
903  */
904 class V8_EXPORT EscapableHandleScope : public HandleScope {
905  public:
906   explicit EscapableHandleScope(Isolate* isolate);
~EscapableHandleScope()907   V8_INLINE ~EscapableHandleScope() {}
908 
909   /**
910    * Pushes the value into the previous scope and returns a handle to it.
911    * Cannot be called twice.
912    */
913   template <class T>
Escape(Local<T> value)914   V8_INLINE Local<T> Escape(Local<T> value) {
915     internal::Object** slot =
916         Escape(reinterpret_cast<internal::Object**>(*value));
917     return Local<T>(reinterpret_cast<T*>(slot));
918   }
919 
920   EscapableHandleScope(const EscapableHandleScope&) = delete;
921   void operator=(const EscapableHandleScope&) = delete;
922   void* operator new(size_t size);
923   void operator delete(void*, size_t);
924 
925  private:
926   internal::Object** Escape(internal::Object** escape_value);
927   internal::Object** escape_slot_;
928 };
929 
930 class V8_EXPORT SealHandleScope {
931  public:
932   SealHandleScope(Isolate* isolate);
933   ~SealHandleScope();
934 
935   SealHandleScope(const SealHandleScope&) = delete;
936   void operator=(const SealHandleScope&) = delete;
937   void* operator new(size_t size);
938   void operator delete(void*, size_t);
939 
940  private:
941   internal::Isolate* const isolate_;
942   internal::Object** prev_limit_;
943   int prev_sealed_level_;
944 };
945 
946 
947 // --- Special objects ---
948 
949 
950 /**
951  * The superclass of values and API object templates.
952  */
953 class V8_EXPORT Data {
954  private:
955   Data();
956 };
957 
958 
959 /**
960  * The optional attributes of ScriptOrigin.
961  */
962 class ScriptOriginOptions {
963  public:
964   V8_INLINE ScriptOriginOptions(bool is_shared_cross_origin = false,
965                                 bool is_opaque = false, bool is_wasm = false,
966                                 bool is_module = false)
967       : flags_((is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
968                (is_wasm ? kIsWasm : 0) | (is_opaque ? kIsOpaque : 0) |
969                (is_module ? kIsModule : 0)) {}
ScriptOriginOptions(int flags)970   V8_INLINE ScriptOriginOptions(int flags)
971       : flags_(flags &
972                (kIsSharedCrossOrigin | kIsOpaque | kIsWasm | kIsModule)) {}
973 
IsSharedCrossOrigin()974   bool IsSharedCrossOrigin() const {
975     return (flags_ & kIsSharedCrossOrigin) != 0;
976   }
IsOpaque()977   bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
IsWasm()978   bool IsWasm() const { return (flags_ & kIsWasm) != 0; }
IsModule()979   bool IsModule() const { return (flags_ & kIsModule) != 0; }
980 
Flags()981   int Flags() const { return flags_; }
982 
983  private:
984   enum {
985     kIsSharedCrossOrigin = 1,
986     kIsOpaque = 1 << 1,
987     kIsWasm = 1 << 2,
988     kIsModule = 1 << 3
989   };
990   const int flags_;
991 };
992 
993 /**
994  * The origin, within a file, of a script.
995  */
996 class ScriptOrigin {
997  public:
998   V8_INLINE ScriptOrigin(
999       Local<Value> resource_name,
1000       Local<Integer> resource_line_offset = Local<Integer>(),
1001       Local<Integer> resource_column_offset = Local<Integer>(),
1002       Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1003       Local<Integer> script_id = Local<Integer>(),
1004       Local<Value> source_map_url = Local<Value>(),
1005       Local<Boolean> resource_is_opaque = Local<Boolean>(),
1006       Local<Boolean> is_wasm = Local<Boolean>(),
1007       Local<Boolean> is_module = Local<Boolean>());
1008 
1009   V8_INLINE Local<Value> ResourceName() const;
1010   V8_INLINE Local<Integer> ResourceLineOffset() const;
1011   V8_INLINE Local<Integer> ResourceColumnOffset() const;
1012   /**
1013     * Returns true for embedder's debugger scripts
1014     */
1015   V8_INLINE Local<Integer> ScriptID() const;
1016   V8_INLINE Local<Value> SourceMapUrl() const;
Options()1017   V8_INLINE ScriptOriginOptions Options() const { return options_; }
1018 
1019  private:
1020   Local<Value> resource_name_;
1021   Local<Integer> resource_line_offset_;
1022   Local<Integer> resource_column_offset_;
1023   ScriptOriginOptions options_;
1024   Local<Integer> script_id_;
1025   Local<Value> source_map_url_;
1026 };
1027 
1028 
1029 /**
1030  * A compiled JavaScript script, not yet tied to a Context.
1031  */
1032 class V8_EXPORT UnboundScript {
1033  public:
1034   /**
1035    * Binds the script to the currently entered context.
1036    */
1037   Local<Script> BindToCurrentContext();
1038 
1039   int GetId();
1040   Local<Value> GetScriptName();
1041 
1042   /**
1043    * Data read from magic sourceURL comments.
1044    */
1045   Local<Value> GetSourceURL();
1046   /**
1047    * Data read from magic sourceMappingURL comments.
1048    */
1049   Local<Value> GetSourceMappingURL();
1050 
1051   /**
1052    * Returns zero based line number of the code_pos location in the script.
1053    * -1 will be returned if no information available.
1054    */
1055   int GetLineNumber(int code_pos);
1056 
1057   static const int kNoScriptId = 0;
1058 };
1059 
1060 /**
1061  * This is an unfinished experimental feature, and is only exposed
1062  * here for internal testing purposes. DO NOT USE.
1063  *
1064  * A compiled JavaScript module.
1065  */
1066 class V8_EXPORT Module {
1067  public:
1068   /**
1069    * Returns the number of modules requested by this module.
1070    */
1071   int GetModuleRequestsLength() const;
1072 
1073   /**
1074    * Returns the ith module specifier in this module.
1075    * i must be < GetModuleRequestsLength() and >= 0.
1076    */
1077   Local<String> GetModuleRequest(int i) const;
1078 
1079   /**
1080    * Returns the identity hash for this object.
1081    */
1082   int GetIdentityHash() const;
1083 
1084   typedef MaybeLocal<Module> (*ResolveCallback)(Local<Context> context,
1085                                                 Local<String> specifier,
1086                                                 Local<Module> referrer);
1087 
1088   /**
1089    * ModuleDeclarationInstantiation
1090    *
1091    * Returns false if an exception occurred during instantiation.
1092    */
1093   V8_WARN_UNUSED_RESULT bool Instantiate(Local<Context> context,
1094                                          ResolveCallback callback);
1095 
1096   /**
1097    * ModuleEvaluation
1098    */
1099   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Evaluate(Local<Context> context);
1100 };
1101 
1102 /**
1103  * A compiled JavaScript script, tied to a Context which was active when the
1104  * script was compiled.
1105  */
1106 class V8_EXPORT Script {
1107  public:
1108   /**
1109    * A shorthand for ScriptCompiler::Compile().
1110    */
1111   static V8_DEPRECATE_SOON(
1112       "Use maybe version",
1113       Local<Script> Compile(Local<String> source,
1114                             ScriptOrigin* origin = nullptr));
1115   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1116       Local<Context> context, Local<String> source,
1117       ScriptOrigin* origin = nullptr);
1118 
1119   static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1120                                          Compile(Local<String> source,
1121                                                  Local<String> file_name));
1122 
1123   /**
1124    * Runs the script returning the resulting value. It will be run in the
1125    * context in which it was created (ScriptCompiler::CompileBound or
1126    * UnboundScript::BindToCurrentContext()).
1127    */
1128   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1129   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1130 
1131   /**
1132    * Returns the corresponding context-unbound script.
1133    */
1134   Local<UnboundScript> GetUnboundScript();
1135 };
1136 
1137 
1138 /**
1139  * For compiling scripts.
1140  */
1141 class V8_EXPORT ScriptCompiler {
1142  public:
1143   /**
1144    * Compilation data that the embedder can cache and pass back to speed up
1145    * future compilations. The data is produced if the CompilerOptions passed to
1146    * the compilation functions in ScriptCompiler contains produce_data_to_cache
1147    * = true. The data to cache can then can be retrieved from
1148    * UnboundScript.
1149    */
1150   struct V8_EXPORT CachedData {
1151     enum BufferPolicy {
1152       BufferNotOwned,
1153       BufferOwned
1154     };
1155 
CachedDataCachedData1156     CachedData()
1157         : data(NULL),
1158           length(0),
1159           rejected(false),
1160           buffer_policy(BufferNotOwned) {}
1161 
1162     // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1163     // data and guarantees that it stays alive until the CachedData object is
1164     // destroyed. If the policy is BufferOwned, the given data will be deleted
1165     // (with delete[]) when the CachedData object is destroyed.
1166     CachedData(const uint8_t* data, int length,
1167                BufferPolicy buffer_policy = BufferNotOwned);
1168     ~CachedData();
1169     // TODO(marja): Async compilation; add constructors which take a callback
1170     // which will be called when V8 no longer needs the data.
1171     const uint8_t* data;
1172     int length;
1173     bool rejected;
1174     BufferPolicy buffer_policy;
1175 
1176     // Prevent copying.
1177     CachedData(const CachedData&) = delete;
1178     CachedData& operator=(const CachedData&) = delete;
1179   };
1180 
1181   /**
1182    * Source code which can be then compiled to a UnboundScript or Script.
1183    */
1184   class Source {
1185    public:
1186     // Source takes ownership of CachedData.
1187     V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1188            CachedData* cached_data = NULL);
1189     V8_INLINE Source(Local<String> source_string,
1190                      CachedData* cached_data = NULL);
1191     V8_INLINE ~Source();
1192 
1193     // Ownership of the CachedData or its buffers is *not* transferred to the
1194     // caller. The CachedData object is alive as long as the Source object is
1195     // alive.
1196     V8_INLINE const CachedData* GetCachedData() const;
1197 
1198     V8_INLINE const ScriptOriginOptions& GetResourceOptions() const;
1199 
1200     // Prevent copying.
1201     Source(const Source&) = delete;
1202     Source& operator=(const Source&) = delete;
1203 
1204    private:
1205     friend class ScriptCompiler;
1206 
1207     Local<String> source_string;
1208 
1209     // Origin information
1210     Local<Value> resource_name;
1211     Local<Integer> resource_line_offset;
1212     Local<Integer> resource_column_offset;
1213     ScriptOriginOptions resource_options;
1214     Local<Value> source_map_url;
1215 
1216     // Cached data from previous compilation (if a kConsume*Cache flag is
1217     // set), or hold newly generated cache data (kProduce*Cache flags) are
1218     // set when calling a compile method.
1219     CachedData* cached_data;
1220   };
1221 
1222   /**
1223    * For streaming incomplete script data to V8. The embedder should implement a
1224    * subclass of this class.
1225    */
1226   class V8_EXPORT ExternalSourceStream {
1227    public:
~ExternalSourceStream()1228     virtual ~ExternalSourceStream() {}
1229 
1230     /**
1231      * V8 calls this to request the next chunk of data from the embedder. This
1232      * function will be called on a background thread, so it's OK to block and
1233      * wait for the data, if the embedder doesn't have data yet. Returns the
1234      * length of the data returned. When the data ends, GetMoreData should
1235      * return 0. Caller takes ownership of the data.
1236      *
1237      * When streaming UTF-8 data, V8 handles multi-byte characters split between
1238      * two data chunks, but doesn't handle multi-byte characters split between
1239      * more than two data chunks. The embedder can avoid this problem by always
1240      * returning at least 2 bytes of data.
1241      *
1242      * If the embedder wants to cancel the streaming, they should make the next
1243      * GetMoreData call return 0. V8 will interpret it as end of data (and most
1244      * probably, parsing will fail). The streaming task will return as soon as
1245      * V8 has parsed the data it received so far.
1246      */
1247     virtual size_t GetMoreData(const uint8_t** src) = 0;
1248 
1249     /**
1250      * V8 calls this method to set a 'bookmark' at the current position in
1251      * the source stream, for the purpose of (maybe) later calling
1252      * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1253      * calls to GetMoreData should return the same data as they did when
1254      * SetBookmark was called earlier.
1255      *
1256      * The embedder may return 'false' to indicate it cannot provide this
1257      * functionality.
1258      */
1259     virtual bool SetBookmark();
1260 
1261     /**
1262      * V8 calls this to return to a previously set bookmark.
1263      */
1264     virtual void ResetToBookmark();
1265   };
1266 
1267 
1268   /**
1269    * Source code which can be streamed into V8 in pieces. It will be parsed
1270    * while streaming. It can be compiled after the streaming is complete.
1271    * StreamedSource must be kept alive while the streaming task is ran (see
1272    * ScriptStreamingTask below).
1273    */
1274   class V8_EXPORT StreamedSource {
1275    public:
1276     enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
1277 
1278     StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1279     ~StreamedSource();
1280 
1281     // Ownership of the CachedData or its buffers is *not* transferred to the
1282     // caller. The CachedData object is alive as long as the StreamedSource
1283     // object is alive.
1284     const CachedData* GetCachedData() const;
1285 
impl()1286     internal::StreamedSource* impl() const { return impl_; }
1287 
1288     // Prevent copying.
1289     StreamedSource(const StreamedSource&) = delete;
1290     StreamedSource& operator=(const StreamedSource&) = delete;
1291 
1292    private:
1293     internal::StreamedSource* impl_;
1294   };
1295 
1296   /**
1297    * A streaming task which the embedder must run on a background thread to
1298    * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1299    */
1300   class ScriptStreamingTask {
1301    public:
~ScriptStreamingTask()1302     virtual ~ScriptStreamingTask() {}
1303     virtual void Run() = 0;
1304   };
1305 
1306   enum CompileOptions {
1307     kNoCompileOptions = 0,
1308     kProduceParserCache,
1309     kConsumeParserCache,
1310     kProduceCodeCache,
1311     kConsumeCodeCache
1312   };
1313 
1314   /**
1315    * Compiles the specified script (context-independent).
1316    * Cached data as part of the source object can be optionally produced to be
1317    * consumed later to speed up compilation of identical source scripts.
1318    *
1319    * Note that when producing cached data, the source must point to NULL for
1320    * cached data. When consuming cached data, the cached data must have been
1321    * produced by the same version of V8.
1322    *
1323    * \param source Script source code.
1324    * \return Compiled script object (context independent; for running it must be
1325    *   bound to a context).
1326    */
1327   static V8_DEPRECATED("Use maybe version",
1328                        Local<UnboundScript> CompileUnbound(
1329                            Isolate* isolate, Source* source,
1330                            CompileOptions options = kNoCompileOptions));
1331   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
1332       Isolate* isolate, Source* source,
1333       CompileOptions options = kNoCompileOptions);
1334 
1335   /**
1336    * Compiles the specified script (bound to current context).
1337    *
1338    * \param source Script source code.
1339    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1340    *   using pre_data speeds compilation if it's done multiple times.
1341    *   Owned by caller, no references are kept when this function returns.
1342    * \return Compiled script object, bound to the context that was active
1343    *   when this function was called. When run it will always use this
1344    *   context.
1345    */
1346   static V8_DEPRECATED(
1347       "Use maybe version",
1348       Local<Script> Compile(Isolate* isolate, Source* source,
1349                             CompileOptions options = kNoCompileOptions));
1350   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1351       Local<Context> context, Source* source,
1352       CompileOptions options = kNoCompileOptions);
1353 
1354   /**
1355    * Returns a task which streams script data into V8, or NULL if the script
1356    * cannot be streamed. The user is responsible for running the task on a
1357    * background thread and deleting it. When ran, the task starts parsing the
1358    * script, and it will request data from the StreamedSource as needed. When
1359    * ScriptStreamingTask::Run exits, all data has been streamed and the script
1360    * can be compiled (see Compile below).
1361    *
1362    * This API allows to start the streaming with as little data as possible, and
1363    * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1364    */
1365   static ScriptStreamingTask* StartStreamingScript(
1366       Isolate* isolate, StreamedSource* source,
1367       CompileOptions options = kNoCompileOptions);
1368 
1369   /**
1370    * Compiles a streamed script (bound to current context).
1371    *
1372    * This can only be called after the streaming has finished
1373    * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1374    * during streaming, so the embedder needs to pass the full source here.
1375    */
1376   static V8_DEPRECATED("Use maybe version",
1377                        Local<Script> Compile(Isolate* isolate,
1378                                              StreamedSource* source,
1379                                              Local<String> full_source_string,
1380                                              const ScriptOrigin& origin));
1381   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1382       Local<Context> context, StreamedSource* source,
1383       Local<String> full_source_string, const ScriptOrigin& origin);
1384 
1385   /**
1386    * Return a version tag for CachedData for the current V8 version & flags.
1387    *
1388    * This value is meant only for determining whether a previously generated
1389    * CachedData instance is still valid; the tag has no other meaing.
1390    *
1391    * Background: The data carried by CachedData may depend on the exact
1392    *   V8 version number or currently compiler flags. This means when
1393    *   persisting CachedData, the embedder must take care to not pass in
1394    *   data from another V8 version, or the same version with different
1395    *   features enabled.
1396    *
1397    *   The easiest way to do so is to clear the embedder's cache on any
1398    *   such change.
1399    *
1400    *   Alternatively, this tag can be stored alongside the cached data and
1401    *   compared when it is being used.
1402    */
1403   static uint32_t CachedDataVersionTag();
1404 
1405   /**
1406    * This is an unfinished experimental feature, and is only exposed
1407    * here for internal testing purposes. DO NOT USE.
1408    *
1409    * Compile an ES module, returning a Module that encapsulates
1410    * the compiled code.
1411    *
1412    * Corresponds to the ParseModule abstract operation in the
1413    * ECMAScript specification.
1414    */
1415   static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule(
1416       Isolate* isolate, Source* source);
1417 
1418   /**
1419    * Compile a function for a given context. This is equivalent to running
1420    *
1421    * with (obj) {
1422    *   return function(args) { ... }
1423    * }
1424    *
1425    * It is possible to specify multiple context extensions (obj in the above
1426    * example).
1427    */
1428   static V8_DEPRECATE_SOON("Use maybe version",
1429                            Local<Function> CompileFunctionInContext(
1430                                Isolate* isolate, Source* source,
1431                                Local<Context> context, size_t arguments_count,
1432                                Local<String> arguments[],
1433                                size_t context_extension_count,
1434                                Local<Object> context_extensions[]));
1435   static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
1436       Local<Context> context, Source* source, size_t arguments_count,
1437       Local<String> arguments[], size_t context_extension_count,
1438       Local<Object> context_extensions[]);
1439 
1440  private:
1441   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1442       Isolate* isolate, Source* source, CompileOptions options);
1443 };
1444 
1445 
1446 /**
1447  * An error message.
1448  */
1449 class V8_EXPORT Message {
1450  public:
1451   Local<String> Get() const;
1452 
1453   V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1454   V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
1455       Local<Context> context) const;
1456 
1457   /**
1458    * Returns the origin for the script from where the function causing the
1459    * error originates.
1460    */
1461   ScriptOrigin GetScriptOrigin() const;
1462 
1463   /**
1464    * Returns the resource name for the script from where the function causing
1465    * the error originates.
1466    */
1467   Local<Value> GetScriptResourceName() const;
1468 
1469   /**
1470    * Exception stack trace. By default stack traces are not captured for
1471    * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1472    * to change this option.
1473    */
1474   Local<StackTrace> GetStackTrace() const;
1475 
1476   /**
1477    * Returns the number, 1-based, of the line where the error occurred.
1478    */
1479   V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1480   V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1481 
1482   /**
1483    * Returns the index within the script of the first character where
1484    * the error occurred.
1485    */
1486   int GetStartPosition() const;
1487 
1488   /**
1489    * Returns the index within the script of the last character where
1490    * the error occurred.
1491    */
1492   int GetEndPosition() const;
1493 
1494   /**
1495    * Returns the error level of the message.
1496    */
1497   int ErrorLevel() const;
1498 
1499   /**
1500    * Returns the index within the line of the first character where
1501    * the error occurred.
1502    */
1503   V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1504   V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1505 
1506   /**
1507    * Returns the index within the line of the last character where
1508    * the error occurred.
1509    */
1510   V8_DEPRECATED("Use maybe version", int GetEndColumn() const);
1511   V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1512 
1513   /**
1514    * Passes on the value set by the embedder when it fed the script from which
1515    * this Message was generated to V8.
1516    */
1517   bool IsSharedCrossOrigin() const;
1518   bool IsOpaque() const;
1519 
1520   // TODO(1245381): Print to a string instead of on a FILE.
1521   static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1522 
1523   static const int kNoLineNumberInfo = 0;
1524   static const int kNoColumnInfo = 0;
1525   static const int kNoScriptIdInfo = 0;
1526 };
1527 
1528 
1529 /**
1530  * Representation of a JavaScript stack trace. The information collected is a
1531  * snapshot of the execution stack and the information remains valid after
1532  * execution continues.
1533  */
1534 class V8_EXPORT StackTrace {
1535  public:
1536   /**
1537    * Flags that determine what information is placed captured for each
1538    * StackFrame when grabbing the current stack trace.
1539    */
1540   enum StackTraceOptions {
1541     kLineNumber = 1,
1542     kColumnOffset = 1 << 1 | kLineNumber,
1543     kScriptName = 1 << 2,
1544     kFunctionName = 1 << 3,
1545     kIsEval = 1 << 4,
1546     kIsConstructor = 1 << 5,
1547     kScriptNameOrSourceURL = 1 << 6,
1548     kScriptId = 1 << 7,
1549     kExposeFramesAcrossSecurityOrigins = 1 << 8,
1550     kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1551     kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1552   };
1553 
1554   /**
1555    * Returns a StackFrame at a particular index.
1556    */
1557   Local<StackFrame> GetFrame(uint32_t index) const;
1558 
1559   /**
1560    * Returns the number of StackFrames.
1561    */
1562   int GetFrameCount() const;
1563 
1564   /**
1565    * Returns StackTrace as a v8::Array that contains StackFrame objects.
1566    */
1567   Local<Array> AsArray();
1568 
1569   /**
1570    * Grab a snapshot of the current JavaScript execution stack.
1571    *
1572    * \param frame_limit The maximum number of stack frames we want to capture.
1573    * \param options Enumerates the set of things we will capture for each
1574    *   StackFrame.
1575    */
1576   static Local<StackTrace> CurrentStackTrace(
1577       Isolate* isolate,
1578       int frame_limit,
1579       StackTraceOptions options = kOverview);
1580 };
1581 
1582 
1583 /**
1584  * A single JavaScript stack frame.
1585  */
1586 class V8_EXPORT StackFrame {
1587  public:
1588   /**
1589    * Returns the number, 1-based, of the line for the associate function call.
1590    * This method will return Message::kNoLineNumberInfo if it is unable to
1591    * retrieve the line number, or if kLineNumber was not passed as an option
1592    * when capturing the StackTrace.
1593    */
1594   int GetLineNumber() const;
1595 
1596   /**
1597    * Returns the 1-based column offset on the line for the associated function
1598    * call.
1599    * This method will return Message::kNoColumnInfo if it is unable to retrieve
1600    * the column number, or if kColumnOffset was not passed as an option when
1601    * capturing the StackTrace.
1602    */
1603   int GetColumn() const;
1604 
1605   /**
1606    * Returns the id of the script for the function for this StackFrame.
1607    * This method will return Message::kNoScriptIdInfo if it is unable to
1608    * retrieve the script id, or if kScriptId was not passed as an option when
1609    * capturing the StackTrace.
1610    */
1611   int GetScriptId() const;
1612 
1613   /**
1614    * Returns the name of the resource that contains the script for the
1615    * function for this StackFrame.
1616    */
1617   Local<String> GetScriptName() const;
1618 
1619   /**
1620    * Returns the name of the resource that contains the script for the
1621    * function for this StackFrame or sourceURL value if the script name
1622    * is undefined and its source ends with //# sourceURL=... string or
1623    * deprecated //@ sourceURL=... string.
1624    */
1625   Local<String> GetScriptNameOrSourceURL() const;
1626 
1627   /**
1628    * Returns the name of the function associated with this stack frame.
1629    */
1630   Local<String> GetFunctionName() const;
1631 
1632   /**
1633    * Returns whether or not the associated function is compiled via a call to
1634    * eval().
1635    */
1636   bool IsEval() const;
1637 
1638   /**
1639    * Returns whether or not the associated function is called as a
1640    * constructor via "new".
1641    */
1642   bool IsConstructor() const;
1643 };
1644 
1645 
1646 // A StateTag represents a possible state of the VM.
1647 enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
1648 
1649 // A RegisterState represents the current state of registers used
1650 // by the sampling profiler API.
1651 struct RegisterState {
RegisterStateRegisterState1652   RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {}
1653   void* pc;  // Instruction pointer.
1654   void* sp;  // Stack pointer.
1655   void* fp;  // Frame pointer.
1656 };
1657 
1658 // The output structure filled up by GetStackSample API function.
1659 struct SampleInfo {
1660   size_t frames_count;            // Number of frames collected.
1661   StateTag vm_state;              // Current VM state.
1662   void* external_callback_entry;  // External callback address if VM is
1663                                   // executing an external callback.
1664 };
1665 
1666 /**
1667  * A JSON Parser and Stringifier.
1668  */
1669 class V8_EXPORT JSON {
1670  public:
1671   /**
1672    * Tries to parse the string |json_string| and returns it as value if
1673    * successful.
1674    *
1675    * \param json_string The string to parse.
1676    * \return The corresponding value if successfully parsed.
1677    */
1678   static V8_DEPRECATED("Use the maybe version taking context",
1679                        Local<Value> Parse(Local<String> json_string));
1680   static V8_DEPRECATE_SOON("Use the maybe version taking context",
1681                            MaybeLocal<Value> Parse(Isolate* isolate,
1682                                                    Local<String> json_string));
1683   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1684       Local<Context> context, Local<String> json_string);
1685 
1686   /**
1687    * Tries to stringify the JSON-serializable object |json_object| and returns
1688    * it as string if successful.
1689    *
1690    * \param json_object The JSON-serializable object to stringify.
1691    * \return The corresponding string if successfully stringified.
1692    */
1693   static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify(
1694       Local<Context> context, Local<Object> json_object,
1695       Local<String> gap = Local<String>());
1696 };
1697 
1698 /**
1699  * Value serialization compatible with the HTML structured clone algorithm.
1700  * The format is backward-compatible (i.e. safe to store to disk).
1701  *
1702  * WARNING: This API is under development, and changes (including incompatible
1703  * changes to the API or wire format) may occur without notice until this
1704  * warning is removed.
1705  */
1706 class V8_EXPORT ValueSerializer {
1707  public:
1708   class V8_EXPORT Delegate {
1709    public:
~Delegate()1710     virtual ~Delegate() {}
1711 
1712     /*
1713      * Handles the case where a DataCloneError would be thrown in the structured
1714      * clone spec. Other V8 embedders may throw some other appropriate exception
1715      * type.
1716      */
1717     virtual void ThrowDataCloneError(Local<String> message) = 0;
1718 
1719     /*
1720      * The embedder overrides this method to write some kind of host object, if
1721      * possible. If not, a suitable exception should be thrown and
1722      * Nothing<bool>() returned.
1723      */
1724     virtual Maybe<bool> WriteHostObject(Isolate* isolate, Local<Object> object);
1725 
1726     /*
1727      * Called when the ValueSerializer is going to serialize a
1728      * SharedArrayBuffer object. The embedder must return an ID for the
1729      * object, using the same ID if this SharedArrayBuffer has already been
1730      * serialized in this buffer. When deserializing, this ID will be passed to
1731      * ValueDeserializer::TransferSharedArrayBuffer as |transfer_id|.
1732      *
1733      * If the object cannot be serialized, an
1734      * exception should be thrown and Nothing<uint32_t>() returned.
1735      */
1736     virtual Maybe<uint32_t> GetSharedArrayBufferId(
1737         Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer);
1738 
1739     /*
1740      * Allocates memory for the buffer of at least the size provided. The actual
1741      * size (which may be greater or equal) is written to |actual_size|. If no
1742      * buffer has been allocated yet, nullptr will be provided.
1743      *
1744      * If the memory cannot be allocated, nullptr should be returned.
1745      * |actual_size| will be ignored. It is assumed that |old_buffer| is still
1746      * valid in this case and has not been modified.
1747      */
1748     virtual void* ReallocateBufferMemory(void* old_buffer, size_t size,
1749                                          size_t* actual_size);
1750 
1751     /*
1752      * Frees a buffer allocated with |ReallocateBufferMemory|.
1753      */
1754     virtual void FreeBufferMemory(void* buffer);
1755   };
1756 
1757   explicit ValueSerializer(Isolate* isolate);
1758   ValueSerializer(Isolate* isolate, Delegate* delegate);
1759   ~ValueSerializer();
1760 
1761   /*
1762    * Writes out a header, which includes the format version.
1763    */
1764   void WriteHeader();
1765 
1766   /*
1767    * Serializes a JavaScript value into the buffer.
1768    */
1769   V8_WARN_UNUSED_RESULT Maybe<bool> WriteValue(Local<Context> context,
1770                                                Local<Value> value);
1771 
1772   /*
1773    * Returns the stored data. This serializer should not be used once the buffer
1774    * is released. The contents are undefined if a previous write has failed.
1775    */
1776   V8_DEPRECATE_SOON("Use Release()", std::vector<uint8_t> ReleaseBuffer());
1777 
1778   /*
1779    * Returns the stored data (allocated using the delegate's
1780    * AllocateBufferMemory) and its size. This serializer should not be used once
1781    * the buffer is released. The contents are undefined if a previous write has
1782    * failed.
1783    */
1784   V8_WARN_UNUSED_RESULT std::pair<uint8_t*, size_t> Release();
1785 
1786   /*
1787    * Marks an ArrayBuffer as havings its contents transferred out of band.
1788    * Pass the corresponding ArrayBuffer in the deserializing context to
1789    * ValueDeserializer::TransferArrayBuffer.
1790    */
1791   void TransferArrayBuffer(uint32_t transfer_id,
1792                            Local<ArrayBuffer> array_buffer);
1793 
1794   /*
1795    * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1796    */
1797   V8_DEPRECATE_SOON("Use Delegate::GetSharedArrayBufferId",
1798                     void TransferSharedArrayBuffer(
1799                         uint32_t transfer_id,
1800                         Local<SharedArrayBuffer> shared_array_buffer));
1801 
1802   /*
1803    * Indicate whether to treat ArrayBufferView objects as host objects,
1804    * i.e. pass them to Delegate::WriteHostObject. This should not be
1805    * called when no Delegate was passed.
1806    *
1807    * The default is not to treat ArrayBufferViews as host objects.
1808    */
1809   void SetTreatArrayBufferViewsAsHostObjects(bool mode);
1810 
1811   /*
1812    * Write raw data in various common formats to the buffer.
1813    * Note that integer types are written in base-128 varint format, not with a
1814    * binary copy. For use during an override of Delegate::WriteHostObject.
1815    */
1816   void WriteUint32(uint32_t value);
1817   void WriteUint64(uint64_t value);
1818   void WriteDouble(double value);
1819   void WriteRawBytes(const void* source, size_t length);
1820 
1821  private:
1822   ValueSerializer(const ValueSerializer&) = delete;
1823   void operator=(const ValueSerializer&) = delete;
1824 
1825   struct PrivateData;
1826   PrivateData* private_;
1827 };
1828 
1829 /**
1830  * Deserializes values from data written with ValueSerializer, or a compatible
1831  * implementation.
1832  *
1833  * WARNING: This API is under development, and changes (including incompatible
1834  * changes to the API or wire format) may occur without notice until this
1835  * warning is removed.
1836  */
1837 class V8_EXPORT ValueDeserializer {
1838  public:
1839   class V8_EXPORT Delegate {
1840    public:
~Delegate()1841     virtual ~Delegate() {}
1842 
1843     /*
1844      * The embedder overrides this method to read some kind of host object, if
1845      * possible. If not, a suitable exception should be thrown and
1846      * MaybeLocal<Object>() returned.
1847      */
1848     virtual MaybeLocal<Object> ReadHostObject(Isolate* isolate);
1849   };
1850 
1851   ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size);
1852   ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size,
1853                     Delegate* delegate);
1854   ~ValueDeserializer();
1855 
1856   /*
1857    * Reads and validates a header (including the format version).
1858    * May, for example, reject an invalid or unsupported wire format.
1859    */
1860   V8_WARN_UNUSED_RESULT Maybe<bool> ReadHeader(Local<Context> context);
1861 
1862   /*
1863    * Deserializes a JavaScript value from the buffer.
1864    */
1865   V8_WARN_UNUSED_RESULT MaybeLocal<Value> ReadValue(Local<Context> context);
1866 
1867   /*
1868    * Accepts the array buffer corresponding to the one passed previously to
1869    * ValueSerializer::TransferArrayBuffer.
1870    */
1871   void TransferArrayBuffer(uint32_t transfer_id,
1872                            Local<ArrayBuffer> array_buffer);
1873 
1874   /*
1875    * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1876    * The id is not necessarily in the same namespace as unshared ArrayBuffer
1877    * objects.
1878    */
1879   void TransferSharedArrayBuffer(uint32_t id,
1880                                  Local<SharedArrayBuffer> shared_array_buffer);
1881 
1882   /*
1883    * Must be called before ReadHeader to enable support for reading the legacy
1884    * wire format (i.e., which predates this being shipped).
1885    *
1886    * Don't use this unless you need to read data written by previous versions of
1887    * blink::ScriptValueSerializer.
1888    */
1889   void SetSupportsLegacyWireFormat(bool supports_legacy_wire_format);
1890 
1891   /*
1892    * Reads the underlying wire format version. Likely mostly to be useful to
1893    * legacy code reading old wire format versions. Must be called after
1894    * ReadHeader.
1895    */
1896   uint32_t GetWireFormatVersion() const;
1897 
1898   /*
1899    * Reads raw data in various common formats to the buffer.
1900    * Note that integer types are read in base-128 varint format, not with a
1901    * binary copy. For use during an override of Delegate::ReadHostObject.
1902    */
1903   V8_WARN_UNUSED_RESULT bool ReadUint32(uint32_t* value);
1904   V8_WARN_UNUSED_RESULT bool ReadUint64(uint64_t* value);
1905   V8_WARN_UNUSED_RESULT bool ReadDouble(double* value);
1906   V8_WARN_UNUSED_RESULT bool ReadRawBytes(size_t length, const void** data);
1907 
1908  private:
1909   ValueDeserializer(const ValueDeserializer&) = delete;
1910   void operator=(const ValueDeserializer&) = delete;
1911 
1912   struct PrivateData;
1913   PrivateData* private_;
1914 };
1915 
1916 /**
1917  * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1918  * but can be created without entering a v8::Context and hence shouldn't
1919  * escape to JavaScript.
1920  */
1921 class V8_EXPORT NativeWeakMap : public Data {
1922  public:
1923   static Local<NativeWeakMap> New(Isolate* isolate);
1924   void Set(Local<Value> key, Local<Value> value);
1925   Local<Value> Get(Local<Value> key);
1926   bool Has(Local<Value> key);
1927   bool Delete(Local<Value> key);
1928 };
1929 
1930 
1931 // --- Value ---
1932 
1933 
1934 /**
1935  * The superclass of all JavaScript values and objects.
1936  */
1937 class V8_EXPORT Value : public Data {
1938  public:
1939   /**
1940    * Returns true if this value is the undefined value.  See ECMA-262
1941    * 4.3.10.
1942    */
1943   V8_INLINE bool IsUndefined() const;
1944 
1945   /**
1946    * Returns true if this value is the null value.  See ECMA-262
1947    * 4.3.11.
1948    */
1949   V8_INLINE bool IsNull() const;
1950 
1951   /**
1952    * Returns true if this value is either the null or the undefined value.
1953    * See ECMA-262
1954    * 4.3.11. and 4.3.12
1955    */
1956   V8_INLINE bool IsNullOrUndefined() const;
1957 
1958   /**
1959   * Returns true if this value is true.
1960   */
1961   bool IsTrue() const;
1962 
1963   /**
1964    * Returns true if this value is false.
1965    */
1966   bool IsFalse() const;
1967 
1968   /**
1969    * Returns true if this value is a symbol or a string.
1970    */
1971   bool IsName() const;
1972 
1973   /**
1974    * Returns true if this value is an instance of the String type.
1975    * See ECMA-262 8.4.
1976    */
1977   V8_INLINE bool IsString() const;
1978 
1979   /**
1980    * Returns true if this value is a symbol.
1981    */
1982   bool IsSymbol() const;
1983 
1984   /**
1985    * Returns true if this value is a function.
1986    */
1987   bool IsFunction() const;
1988 
1989   /**
1990    * Returns true if this value is an array. Note that it will return false for
1991    * an Proxy for an array.
1992    */
1993   bool IsArray() const;
1994 
1995   /**
1996    * Returns true if this value is an object.
1997    */
1998   bool IsObject() const;
1999 
2000   /**
2001    * Returns true if this value is boolean.
2002    */
2003   bool IsBoolean() const;
2004 
2005   /**
2006    * Returns true if this value is a number.
2007    */
2008   bool IsNumber() const;
2009 
2010   /**
2011    * Returns true if this value is external.
2012    */
2013   bool IsExternal() const;
2014 
2015   /**
2016    * Returns true if this value is a 32-bit signed integer.
2017    */
2018   bool IsInt32() const;
2019 
2020   /**
2021    * Returns true if this value is a 32-bit unsigned integer.
2022    */
2023   bool IsUint32() const;
2024 
2025   /**
2026    * Returns true if this value is a Date.
2027    */
2028   bool IsDate() const;
2029 
2030   /**
2031    * Returns true if this value is an Arguments object.
2032    */
2033   bool IsArgumentsObject() const;
2034 
2035   /**
2036    * Returns true if this value is a Boolean object.
2037    */
2038   bool IsBooleanObject() const;
2039 
2040   /**
2041    * Returns true if this value is a Number object.
2042    */
2043   bool IsNumberObject() const;
2044 
2045   /**
2046    * Returns true if this value is a String object.
2047    */
2048   bool IsStringObject() const;
2049 
2050   /**
2051    * Returns true if this value is a Symbol object.
2052    */
2053   bool IsSymbolObject() const;
2054 
2055   /**
2056    * Returns true if this value is a NativeError.
2057    */
2058   bool IsNativeError() const;
2059 
2060   /**
2061    * Returns true if this value is a RegExp.
2062    */
2063   bool IsRegExp() const;
2064 
2065   /**
2066    * Returns true if this value is an async function.
2067    */
2068   bool IsAsyncFunction() const;
2069 
2070   /**
2071    * Returns true if this value is a Generator function.
2072    */
2073   bool IsGeneratorFunction() const;
2074 
2075   /**
2076    * Returns true if this value is a Generator object (iterator).
2077    */
2078   bool IsGeneratorObject() const;
2079 
2080   /**
2081    * Returns true if this value is a Promise.
2082    */
2083   bool IsPromise() const;
2084 
2085   /**
2086    * Returns true if this value is a Map.
2087    */
2088   bool IsMap() const;
2089 
2090   /**
2091    * Returns true if this value is a Set.
2092    */
2093   bool IsSet() const;
2094 
2095   /**
2096    * Returns true if this value is a Map Iterator.
2097    */
2098   bool IsMapIterator() const;
2099 
2100   /**
2101    * Returns true if this value is a Set Iterator.
2102    */
2103   bool IsSetIterator() const;
2104 
2105   /**
2106    * Returns true if this value is a WeakMap.
2107    */
2108   bool IsWeakMap() const;
2109 
2110   /**
2111    * Returns true if this value is a WeakSet.
2112    */
2113   bool IsWeakSet() const;
2114 
2115   /**
2116    * Returns true if this value is an ArrayBuffer.
2117    */
2118   bool IsArrayBuffer() const;
2119 
2120   /**
2121    * Returns true if this value is an ArrayBufferView.
2122    */
2123   bool IsArrayBufferView() const;
2124 
2125   /**
2126    * Returns true if this value is one of TypedArrays.
2127    */
2128   bool IsTypedArray() const;
2129 
2130   /**
2131    * Returns true if this value is an Uint8Array.
2132    */
2133   bool IsUint8Array() const;
2134 
2135   /**
2136    * Returns true if this value is an Uint8ClampedArray.
2137    */
2138   bool IsUint8ClampedArray() const;
2139 
2140   /**
2141    * Returns true if this value is an Int8Array.
2142    */
2143   bool IsInt8Array() const;
2144 
2145   /**
2146    * Returns true if this value is an Uint16Array.
2147    */
2148   bool IsUint16Array() const;
2149 
2150   /**
2151    * Returns true if this value is an Int16Array.
2152    */
2153   bool IsInt16Array() const;
2154 
2155   /**
2156    * Returns true if this value is an Uint32Array.
2157    */
2158   bool IsUint32Array() const;
2159 
2160   /**
2161    * Returns true if this value is an Int32Array.
2162    */
2163   bool IsInt32Array() const;
2164 
2165   /**
2166    * Returns true if this value is a Float32Array.
2167    */
2168   bool IsFloat32Array() const;
2169 
2170   /**
2171    * Returns true if this value is a Float64Array.
2172    */
2173   bool IsFloat64Array() const;
2174 
2175   /**
2176    * Returns true if this value is a DataView.
2177    */
2178   bool IsDataView() const;
2179 
2180   /**
2181    * Returns true if this value is a SharedArrayBuffer.
2182    * This is an experimental feature.
2183    */
2184   bool IsSharedArrayBuffer() const;
2185 
2186   /**
2187    * Returns true if this value is a JavaScript Proxy.
2188    */
2189   bool IsProxy() const;
2190 
2191   bool IsWebAssemblyCompiledModule() const;
2192 
2193   V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
2194       Local<Context> context) const;
2195   V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
2196       Local<Context> context) const;
2197   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
2198       Local<Context> context) const;
2199   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
2200       Local<Context> context) const;
2201   V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
2202       Local<Context> context) const;
2203   V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
2204       Local<Context> context) const;
2205   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
2206       Local<Context> context) const;
2207   V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
2208 
2209   V8_DEPRECATE_SOON("Use maybe version",
2210                     Local<Boolean> ToBoolean(Isolate* isolate) const);
2211   V8_DEPRECATE_SOON("Use maybe version",
2212                     Local<Number> ToNumber(Isolate* isolate) const);
2213   V8_DEPRECATE_SOON("Use maybe version",
2214                     Local<String> ToString(Isolate* isolate) const);
2215   V8_DEPRECATED("Use maybe version",
2216                 Local<String> ToDetailString(Isolate* isolate) const);
2217   V8_DEPRECATE_SOON("Use maybe version",
2218                     Local<Object> ToObject(Isolate* isolate) const);
2219   V8_DEPRECATE_SOON("Use maybe version",
2220                     Local<Integer> ToInteger(Isolate* isolate) const);
2221   V8_DEPRECATED("Use maybe version",
2222                 Local<Uint32> ToUint32(Isolate* isolate) const);
2223   V8_DEPRECATE_SOON("Use maybe version",
2224                     Local<Int32> ToInt32(Isolate* isolate) const);
2225 
2226   inline V8_DEPRECATE_SOON("Use maybe version",
2227                            Local<Boolean> ToBoolean() const);
2228   inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const);
2229   inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
2230   inline V8_DEPRECATED("Use maybe version",
2231                        Local<String> ToDetailString() const);
2232   inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
2233   inline V8_DEPRECATE_SOON("Use maybe version",
2234                            Local<Integer> ToInteger() const);
2235   inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const);
2236   inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const);
2237 
2238   /**
2239    * Attempts to convert a string to an array index.
2240    * Returns an empty handle if the conversion fails.
2241    */
2242   V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const);
2243   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
2244       Local<Context> context) const;
2245 
2246   V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2247   V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2248   V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2249       Local<Context> context) const;
2250   V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2251       Local<Context> context) const;
2252   V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2253 
2254   V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2255   V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2256   V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2257   V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2258   V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2259 
2260   /** JS == */
2261   V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2262   V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2263                                            Local<Value> that) const;
2264   bool StrictEquals(Local<Value> that) const;
2265   bool SameValue(Local<Value> that) const;
2266 
2267   template <class T> V8_INLINE static Value* Cast(T* value);
2268 
2269   Local<String> TypeOf(Isolate*);
2270 
2271  private:
2272   V8_INLINE bool QuickIsUndefined() const;
2273   V8_INLINE bool QuickIsNull() const;
2274   V8_INLINE bool QuickIsNullOrUndefined() const;
2275   V8_INLINE bool QuickIsString() const;
2276   bool FullIsUndefined() const;
2277   bool FullIsNull() const;
2278   bool FullIsString() const;
2279 };
2280 
2281 
2282 /**
2283  * The superclass of primitive values.  See ECMA-262 4.3.2.
2284  */
2285 class V8_EXPORT Primitive : public Value { };
2286 
2287 
2288 /**
2289  * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
2290  * or false value.
2291  */
2292 class V8_EXPORT Boolean : public Primitive {
2293  public:
2294   bool Value() const;
2295   V8_INLINE static Boolean* Cast(v8::Value* obj);
2296   V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2297 
2298  private:
2299   static void CheckCast(v8::Value* obj);
2300 };
2301 
2302 
2303 /**
2304  * A superclass for symbols and strings.
2305  */
2306 class V8_EXPORT Name : public Primitive {
2307  public:
2308   /**
2309    * Returns the identity hash for this object. The current implementation
2310    * uses an inline property on the object to store the identity hash.
2311    *
2312    * The return value will never be 0. Also, it is not guaranteed to be
2313    * unique.
2314    */
2315   int GetIdentityHash();
2316 
2317   V8_INLINE static Name* Cast(Value* obj);
2318 
2319  private:
2320   static void CheckCast(Value* obj);
2321 };
2322 
2323 
2324 enum class NewStringType { kNormal, kInternalized };
2325 
2326 
2327 /**
2328  * A JavaScript string value (ECMA-262, 4.3.17).
2329  */
2330 class V8_EXPORT String : public Name {
2331  public:
2332   static const int kMaxLength = (1 << 28) - 16;
2333 
2334   enum Encoding {
2335     UNKNOWN_ENCODING = 0x1,
2336     TWO_BYTE_ENCODING = 0x0,
2337     ONE_BYTE_ENCODING = 0x8
2338   };
2339   /**
2340    * Returns the number of characters in this string.
2341    */
2342   int Length() const;
2343 
2344   /**
2345    * Returns the number of bytes in the UTF-8 encoded
2346    * representation of this string.
2347    */
2348   int Utf8Length() const;
2349 
2350   /**
2351    * Returns whether this string is known to contain only one byte data.
2352    * Does not read the string.
2353    * False negatives are possible.
2354    */
2355   bool IsOneByte() const;
2356 
2357   /**
2358    * Returns whether this string contain only one byte data.
2359    * Will read the entire string in some cases.
2360    */
2361   bool ContainsOnlyOneByte() const;
2362 
2363   /**
2364    * Write the contents of the string to an external buffer.
2365    * If no arguments are given, expects the buffer to be large
2366    * enough to hold the entire string and NULL terminator. Copies
2367    * the contents of the string and the NULL terminator into the
2368    * buffer.
2369    *
2370    * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2371    * before the end of the buffer.
2372    *
2373    * Copies up to length characters into the output buffer.
2374    * Only null-terminates if there is enough space in the buffer.
2375    *
2376    * \param buffer The buffer into which the string will be copied.
2377    * \param start The starting position within the string at which
2378    * copying begins.
2379    * \param length The number of characters to copy from the string.  For
2380    *    WriteUtf8 the number of bytes in the buffer.
2381    * \param nchars_ref The number of characters written, can be NULL.
2382    * \param options Various options that might affect performance of this or
2383    *    subsequent operations.
2384    * \return The number of characters copied to the buffer excluding the null
2385    *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
2386    *    including the null terminator (if written).
2387    */
2388   enum WriteOptions {
2389     NO_OPTIONS = 0,
2390     HINT_MANY_WRITES_EXPECTED = 1,
2391     NO_NULL_TERMINATION = 2,
2392     PRESERVE_ONE_BYTE_NULL = 4,
2393     // Used by WriteUtf8 to replace orphan surrogate code units with the
2394     // unicode replacement character. Needs to be set to guarantee valid UTF-8
2395     // output.
2396     REPLACE_INVALID_UTF8 = 8
2397   };
2398 
2399   // 16-bit character codes.
2400   int Write(uint16_t* buffer,
2401             int start = 0,
2402             int length = -1,
2403             int options = NO_OPTIONS) const;
2404   // One byte characters.
2405   int WriteOneByte(uint8_t* buffer,
2406                    int start = 0,
2407                    int length = -1,
2408                    int options = NO_OPTIONS) const;
2409   // UTF-8 encoded characters.
2410   int WriteUtf8(char* buffer,
2411                 int length = -1,
2412                 int* nchars_ref = NULL,
2413                 int options = NO_OPTIONS) const;
2414 
2415   /**
2416    * A zero length string.
2417    */
2418   V8_INLINE static Local<String> Empty(Isolate* isolate);
2419 
2420   /**
2421    * Returns true if the string is external
2422    */
2423   bool IsExternal() const;
2424 
2425   /**
2426    * Returns true if the string is both external and one-byte.
2427    */
2428   bool IsExternalOneByte() const;
2429 
2430   class V8_EXPORT ExternalStringResourceBase {  // NOLINT
2431    public:
~ExternalStringResourceBase()2432     virtual ~ExternalStringResourceBase() {}
2433 
IsCompressible()2434     virtual bool IsCompressible() const { return false; }
2435 
2436    protected:
ExternalStringResourceBase()2437     ExternalStringResourceBase() {}
2438 
2439     /**
2440      * Internally V8 will call this Dispose method when the external string
2441      * resource is no longer needed. The default implementation will use the
2442      * delete operator. This method can be overridden in subclasses to
2443      * control how allocated external string resources are disposed.
2444      */
Dispose()2445     virtual void Dispose() { delete this; }
2446 
2447     // Disallow copying and assigning.
2448     ExternalStringResourceBase(const ExternalStringResourceBase&) = delete;
2449     void operator=(const ExternalStringResourceBase&) = delete;
2450 
2451    private:
2452     friend class internal::Heap;
2453     friend class v8::String;
2454   };
2455 
2456   /**
2457    * An ExternalStringResource is a wrapper around a two-byte string
2458    * buffer that resides outside V8's heap. Implement an
2459    * ExternalStringResource to manage the life cycle of the underlying
2460    * buffer.  Note that the string data must be immutable.
2461    */
2462   class V8_EXPORT ExternalStringResource
2463       : public ExternalStringResourceBase {
2464    public:
2465     /**
2466      * Override the destructor to manage the life cycle of the underlying
2467      * buffer.
2468      */
~ExternalStringResource()2469     virtual ~ExternalStringResource() {}
2470 
2471     /**
2472      * The string data from the underlying buffer.
2473      */
2474     virtual const uint16_t* data() const = 0;
2475 
2476     /**
2477      * The length of the string. That is, the number of two-byte characters.
2478      */
2479     virtual size_t length() const = 0;
2480 
2481    protected:
ExternalStringResource()2482     ExternalStringResource() {}
2483   };
2484 
2485   /**
2486    * An ExternalOneByteStringResource is a wrapper around an one-byte
2487    * string buffer that resides outside V8's heap. Implement an
2488    * ExternalOneByteStringResource to manage the life cycle of the
2489    * underlying buffer.  Note that the string data must be immutable
2490    * and that the data must be Latin-1 and not UTF-8, which would require
2491    * special treatment internally in the engine and do not allow efficient
2492    * indexing.  Use String::New or convert to 16 bit data for non-Latin1.
2493    */
2494 
2495   class V8_EXPORT ExternalOneByteStringResource
2496       : public ExternalStringResourceBase {
2497    public:
2498     /**
2499      * Override the destructor to manage the life cycle of the underlying
2500      * buffer.
2501      */
~ExternalOneByteStringResource()2502     virtual ~ExternalOneByteStringResource() {}
2503     /** The string data from the underlying buffer.*/
2504     virtual const char* data() const = 0;
2505     /** The number of Latin-1 characters in the string.*/
2506     virtual size_t length() const = 0;
2507    protected:
ExternalOneByteStringResource()2508     ExternalOneByteStringResource() {}
2509   };
2510 
2511   /**
2512    * If the string is an external string, return the ExternalStringResourceBase
2513    * regardless of the encoding, otherwise return NULL.  The encoding of the
2514    * string is returned in encoding_out.
2515    */
2516   V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
2517       Encoding* encoding_out) const;
2518 
2519   /**
2520    * Get the ExternalStringResource for an external string.  Returns
2521    * NULL if IsExternal() doesn't return true.
2522    */
2523   V8_INLINE ExternalStringResource* GetExternalStringResource() const;
2524 
2525   /**
2526    * Get the ExternalOneByteStringResource for an external one-byte string.
2527    * Returns NULL if IsExternalOneByte() doesn't return true.
2528    */
2529   const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
2530 
2531   V8_INLINE static String* Cast(v8::Value* obj);
2532 
2533   // TODO(dcarney): remove with deprecation of New functions.
2534   enum NewStringType {
2535     kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2536     kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
2537   };
2538 
2539   /** Allocates a new string from UTF-8 data.*/
2540   static V8_DEPRECATE_SOON(
2541       "Use maybe version",
2542       Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2543                                 NewStringType type = kNormalString,
2544                                 int length = -1));
2545 
2546   /** Allocates a new string from UTF-8 data. Only returns an empty value when
2547    * length > kMaxLength. **/
2548   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2549       Isolate* isolate, const char* data, v8::NewStringType type,
2550       int length = -1);
2551 
2552   /** Allocates a new string from Latin-1 data.*/
2553   static V8_DEPRECATED(
2554       "Use maybe version",
2555       Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2556                                    NewStringType type = kNormalString,
2557                                    int length = -1));
2558 
2559   /** Allocates a new string from Latin-1 data.  Only returns an empty value
2560    * when length > kMaxLength. **/
2561   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2562       Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2563       int length = -1);
2564 
2565   /** Allocates a new string from UTF-16 data.*/
2566   static V8_DEPRECATE_SOON(
2567       "Use maybe version",
2568       Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2569                                    NewStringType type = kNormalString,
2570                                    int length = -1));
2571 
2572   /** Allocates a new string from UTF-16 data. Only returns an empty value when
2573    * length > kMaxLength. **/
2574   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2575       Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2576       int length = -1);
2577 
2578   /**
2579    * Creates a new string by concatenating the left and the right strings
2580    * passed in as parameters.
2581    */
2582   static Local<String> Concat(Local<String> left, Local<String> right);
2583 
2584   /**
2585    * Creates a new external string using the data defined in the given
2586    * resource. When the external string is no longer live on V8's heap the
2587    * resource will be disposed by calling its Dispose method. The caller of
2588    * this function should not otherwise delete or modify the resource. Neither
2589    * should the underlying buffer be deallocated or modified except through the
2590    * destructor of the external string resource.
2591    */
2592   static V8_DEPRECATED("Use maybe version",
2593                        Local<String> NewExternal(
2594                            Isolate* isolate, ExternalStringResource* resource));
2595   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2596       Isolate* isolate, ExternalStringResource* resource);
2597 
2598   /**
2599    * Associate an external string resource with this string by transforming it
2600    * in place so that existing references to this string in the JavaScript heap
2601    * will use the external string resource. The external string resource's
2602    * character contents need to be equivalent to this string.
2603    * Returns true if the string has been changed to be an external string.
2604    * The string is not modified if the operation fails. See NewExternal for
2605    * information on the lifetime of the resource.
2606    */
2607   bool MakeExternal(ExternalStringResource* resource);
2608 
2609   /**
2610    * Creates a new external string using the one-byte data defined in the given
2611    * resource. When the external string is no longer live on V8's heap the
2612    * resource will be disposed by calling its Dispose method. The caller of
2613    * this function should not otherwise delete or modify the resource. Neither
2614    * should the underlying buffer be deallocated or modified except through the
2615    * destructor of the external string resource.
2616    */
2617   static V8_DEPRECATE_SOON(
2618       "Use maybe version",
2619       Local<String> NewExternal(Isolate* isolate,
2620                                 ExternalOneByteStringResource* resource));
2621   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2622       Isolate* isolate, ExternalOneByteStringResource* resource);
2623 
2624   /**
2625    * Associate an external string resource with this string by transforming it
2626    * in place so that existing references to this string in the JavaScript heap
2627    * will use the external string resource. The external string resource's
2628    * character contents need to be equivalent to this string.
2629    * Returns true if the string has been changed to be an external string.
2630    * The string is not modified if the operation fails. See NewExternal for
2631    * information on the lifetime of the resource.
2632    */
2633   bool MakeExternal(ExternalOneByteStringResource* resource);
2634 
2635   /**
2636    * Returns true if this string can be made external.
2637    */
2638   bool CanMakeExternal();
2639 
2640   /**
2641    * Converts an object to a UTF-8-encoded character array.  Useful if
2642    * you want to print the object.  If conversion to a string fails
2643    * (e.g. due to an exception in the toString() method of the object)
2644    * then the length() method returns 0 and the * operator returns
2645    * NULL.
2646    */
2647   class V8_EXPORT Utf8Value {
2648    public:
2649     explicit Utf8Value(Local<v8::Value> obj);
2650     ~Utf8Value();
2651     char* operator*() { return str_; }
2652     const char* operator*() const { return str_; }
length()2653     int length() const { return length_; }
2654 
2655     // Disallow copying and assigning.
2656     Utf8Value(const Utf8Value&) = delete;
2657     void operator=(const Utf8Value&) = delete;
2658 
2659    private:
2660     char* str_;
2661     int length_;
2662   };
2663 
2664   /**
2665    * Converts an object to a two-byte string.
2666    * If conversion to a string fails (eg. due to an exception in the toString()
2667    * method of the object) then the length() method returns 0 and the * operator
2668    * returns NULL.
2669    */
2670   class V8_EXPORT Value {
2671    public:
2672     explicit Value(Local<v8::Value> obj);
2673     ~Value();
2674     uint16_t* operator*() { return str_; }
2675     const uint16_t* operator*() const { return str_; }
length()2676     int length() const { return length_; }
2677 
2678     // Disallow copying and assigning.
2679     Value(const Value&) = delete;
2680     void operator=(const Value&) = delete;
2681 
2682    private:
2683     uint16_t* str_;
2684     int length_;
2685   };
2686 
2687  private:
2688   void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2689                                         Encoding encoding) const;
2690   void VerifyExternalStringResource(ExternalStringResource* val) const;
2691   static void CheckCast(v8::Value* obj);
2692 };
2693 
2694 
2695 /**
2696  * A JavaScript symbol (ECMA-262 edition 6)
2697  */
2698 class V8_EXPORT Symbol : public Name {
2699  public:
2700   // Returns the print name string of the symbol, or undefined if none.
2701   Local<Value> Name() const;
2702 
2703   // Create a symbol. If name is not empty, it will be used as the description.
2704   static Local<Symbol> New(Isolate* isolate,
2705                            Local<String> name = Local<String>());
2706 
2707   // Access global symbol registry.
2708   // Note that symbols created this way are never collected, so
2709   // they should only be used for statically fixed properties.
2710   // Also, there is only one global name space for the names used as keys.
2711   // To minimize the potential for clashes, use qualified names as keys.
2712   static Local<Symbol> For(Isolate *isolate, Local<String> name);
2713 
2714   // Retrieve a global symbol. Similar to |For|, but using a separate
2715   // registry that is not accessible by (and cannot clash with) JavaScript code.
2716   static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2717 
2718   // Well-known symbols
2719   static Local<Symbol> GetIterator(Isolate* isolate);
2720   static Local<Symbol> GetUnscopables(Isolate* isolate);
2721   static Local<Symbol> GetToPrimitive(Isolate* isolate);
2722   static Local<Symbol> GetToStringTag(Isolate* isolate);
2723   static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
2724 
2725   V8_INLINE static Symbol* Cast(Value* obj);
2726 
2727  private:
2728   Symbol();
2729   static void CheckCast(Value* obj);
2730 };
2731 
2732 
2733 /**
2734  * A private symbol
2735  *
2736  * This is an experimental feature. Use at your own risk.
2737  */
2738 class V8_EXPORT Private : public Data {
2739  public:
2740   // Returns the print name string of the private symbol, or undefined if none.
2741   Local<Value> Name() const;
2742 
2743   // Create a private symbol. If name is not empty, it will be the description.
2744   static Local<Private> New(Isolate* isolate,
2745                             Local<String> name = Local<String>());
2746 
2747   // Retrieve a global private symbol. If a symbol with this name has not
2748   // been retrieved in the same isolate before, it is created.
2749   // Note that private symbols created this way are never collected, so
2750   // they should only be used for statically fixed properties.
2751   // Also, there is only one global name space for the names used as keys.
2752   // To minimize the potential for clashes, use qualified names as keys,
2753   // e.g., "Class#property".
2754   static Local<Private> ForApi(Isolate* isolate, Local<String> name);
2755 
2756  private:
2757   Private();
2758 };
2759 
2760 
2761 /**
2762  * A JavaScript number value (ECMA-262, 4.3.20)
2763  */
2764 class V8_EXPORT Number : public Primitive {
2765  public:
2766   double Value() const;
2767   static Local<Number> New(Isolate* isolate, double value);
2768   V8_INLINE static Number* Cast(v8::Value* obj);
2769  private:
2770   Number();
2771   static void CheckCast(v8::Value* obj);
2772 };
2773 
2774 
2775 /**
2776  * A JavaScript value representing a signed integer.
2777  */
2778 class V8_EXPORT Integer : public Number {
2779  public:
2780   static Local<Integer> New(Isolate* isolate, int32_t value);
2781   static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2782   int64_t Value() const;
2783   V8_INLINE static Integer* Cast(v8::Value* obj);
2784  private:
2785   Integer();
2786   static void CheckCast(v8::Value* obj);
2787 };
2788 
2789 
2790 /**
2791  * A JavaScript value representing a 32-bit signed integer.
2792  */
2793 class V8_EXPORT Int32 : public Integer {
2794  public:
2795   int32_t Value() const;
2796   V8_INLINE static Int32* Cast(v8::Value* obj);
2797 
2798  private:
2799   Int32();
2800   static void CheckCast(v8::Value* obj);
2801 };
2802 
2803 
2804 /**
2805  * A JavaScript value representing a 32-bit unsigned integer.
2806  */
2807 class V8_EXPORT Uint32 : public Integer {
2808  public:
2809   uint32_t Value() const;
2810   V8_INLINE static Uint32* Cast(v8::Value* obj);
2811 
2812  private:
2813   Uint32();
2814   static void CheckCast(v8::Value* obj);
2815 };
2816 
2817 /**
2818  * PropertyAttribute.
2819  */
2820 enum PropertyAttribute {
2821   /** None. **/
2822   None = 0,
2823   /** ReadOnly, i.e., not writable. **/
2824   ReadOnly = 1 << 0,
2825   /** DontEnum, i.e., not enumerable. **/
2826   DontEnum = 1 << 1,
2827   /** DontDelete, i.e., not configurable. **/
2828   DontDelete = 1 << 2
2829 };
2830 
2831 /**
2832  * Accessor[Getter|Setter] are used as callback functions when
2833  * setting|getting a particular property. See Object and ObjectTemplate's
2834  * method SetAccessor.
2835  */
2836 typedef void (*AccessorGetterCallback)(
2837     Local<String> property,
2838     const PropertyCallbackInfo<Value>& info);
2839 typedef void (*AccessorNameGetterCallback)(
2840     Local<Name> property,
2841     const PropertyCallbackInfo<Value>& info);
2842 
2843 
2844 typedef void (*AccessorSetterCallback)(
2845     Local<String> property,
2846     Local<Value> value,
2847     const PropertyCallbackInfo<void>& info);
2848 typedef void (*AccessorNameSetterCallback)(
2849     Local<Name> property,
2850     Local<Value> value,
2851     const PropertyCallbackInfo<void>& info);
2852 
2853 
2854 /**
2855  * Access control specifications.
2856  *
2857  * Some accessors should be accessible across contexts.  These
2858  * accessors have an explicit access control parameter which specifies
2859  * the kind of cross-context access that should be allowed.
2860  *
2861  * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2862  */
2863 enum AccessControl {
2864   DEFAULT               = 0,
2865   ALL_CAN_READ          = 1,
2866   ALL_CAN_WRITE         = 1 << 1,
2867   PROHIBITS_OVERWRITING = 1 << 2
2868 };
2869 
2870 /**
2871  * Property filter bits. They can be or'ed to build a composite filter.
2872  */
2873 enum PropertyFilter {
2874   ALL_PROPERTIES = 0,
2875   ONLY_WRITABLE = 1,
2876   ONLY_ENUMERABLE = 2,
2877   ONLY_CONFIGURABLE = 4,
2878   SKIP_STRINGS = 8,
2879   SKIP_SYMBOLS = 16
2880 };
2881 
2882 /**
2883  * Keys/Properties filter enums:
2884  *
2885  * KeyCollectionMode limits the range of collected properties. kOwnOnly limits
2886  * the collected properties to the given Object only. kIncludesPrototypes will
2887  * include all keys of the objects's prototype chain as well.
2888  */
2889 enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes };
2890 
2891 /**
2892  * kIncludesIndices allows for integer indices to be collected, while
2893  * kSkipIndices will exclude integer indicies from being collected.
2894  */
2895 enum class IndexFilter { kIncludeIndices, kSkipIndices };
2896 
2897 /**
2898  * Integrity level for objects.
2899  */
2900 enum class IntegrityLevel { kFrozen, kSealed };
2901 
2902 /**
2903  * A JavaScript object (ECMA-262, 4.3.3)
2904  */
2905 class V8_EXPORT Object : public Value {
2906  public:
2907   V8_DEPRECATE_SOON("Use maybe version",
2908                     bool Set(Local<Value> key, Local<Value> value));
2909   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2910                                         Local<Value> key, Local<Value> value);
2911 
2912   V8_DEPRECATE_SOON("Use maybe version",
2913                     bool Set(uint32_t index, Local<Value> value));
2914   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2915                                         Local<Value> value);
2916 
2917   // Implements CreateDataProperty (ECMA-262, 7.3.4).
2918   //
2919   // Defines a configurable, writable, enumerable property with the given value
2920   // on the object unless the property already exists and is not configurable
2921   // or the object is not extensible.
2922   //
2923   // Returns true on success.
2924   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2925                                                        Local<Name> key,
2926                                                        Local<Value> value);
2927   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2928                                                        uint32_t index,
2929                                                        Local<Value> value);
2930 
2931   // Implements DefineOwnProperty.
2932   //
2933   // In general, CreateDataProperty will be faster, however, does not allow
2934   // for specifying attributes.
2935   //
2936   // Returns true on success.
2937   V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
2938       Local<Context> context, Local<Name> key, Local<Value> value,
2939       PropertyAttribute attributes = None);
2940 
2941   // Implements Object.DefineProperty(O, P, Attributes), see Ecma-262 19.1.2.4.
2942   //
2943   // The defineProperty function is used to add an own property or
2944   // update the attributes of an existing own property of an object.
2945   //
2946   // Both data and accessor descriptors can be used.
2947   //
2948   // In general, CreateDataProperty is faster, however, does not allow
2949   // for specifying attributes or an accessor descriptor.
2950   //
2951   // The PropertyDescriptor can change when redefining a property.
2952   //
2953   // Returns true on success.
2954   V8_WARN_UNUSED_RESULT Maybe<bool> DefineProperty(
2955       Local<Context> context, Local<Name> key, PropertyDescriptor& descriptor);
2956 
2957   // Sets an own property on this object bypassing interceptors and
2958   // overriding accessors or read-only properties.
2959   //
2960   // Note that if the object has an interceptor the property will be set
2961   // locally, but since the interceptor takes precedence the local property
2962   // will only be returned if the interceptor doesn't return a value.
2963   //
2964   // Note also that this only works for named properties.
2965   V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2966                 bool ForceSet(Local<Value> key, Local<Value> value,
2967                               PropertyAttribute attribs = None));
2968   V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty",
2969                     Maybe<bool> ForceSet(Local<Context> context,
2970                                          Local<Value> key, Local<Value> value,
2971                                          PropertyAttribute attribs = None));
2972 
2973   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2974   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2975                                               Local<Value> key);
2976 
2977   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2978   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2979                                               uint32_t index);
2980 
2981   /**
2982    * Gets the property attributes of a property which can be None or
2983    * any combination of ReadOnly, DontEnum and DontDelete. Returns
2984    * None when the property doesn't exist.
2985    */
2986   V8_DEPRECATED("Use maybe version",
2987                 PropertyAttribute GetPropertyAttributes(Local<Value> key));
2988   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
2989       Local<Context> context, Local<Value> key);
2990 
2991   /**
2992    * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2993    */
2994   V8_DEPRECATED("Use maybe version",
2995                 Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2996   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
2997       Local<Context> context, Local<String> key);
2998 
2999   V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
3000   /**
3001    * Object::Has() calls the abstract operation HasProperty(O, P) described
3002    * in ECMA-262, 7.3.10. Has() returns
3003    * true, if the object has the property, either own or on the prototype chain.
3004    * Interceptors, i.e., PropertyQueryCallbacks, are called if present.
3005    *
3006    * Has() has the same side effects as JavaScript's `variable in object`.
3007    * For example, calling Has() on a revoked proxy will throw an exception.
3008    *
3009    * \note Has() converts the key to a name, which possibly calls back into
3010    * JavaScript.
3011    *
3012    * See also v8::Object::HasOwnProperty() and
3013    * v8::Object::HasRealNamedProperty().
3014    */
3015   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3016                                         Local<Value> key);
3017 
3018   V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
3019   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3020   Maybe<bool> Delete(Local<Context> context, Local<Value> key);
3021 
3022   V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
3023   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
3024 
3025   V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
3026   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3027   Maybe<bool> Delete(Local<Context> context, uint32_t index);
3028 
3029   V8_DEPRECATED("Use maybe version",
3030                 bool SetAccessor(Local<String> name,
3031                                  AccessorGetterCallback getter,
3032                                  AccessorSetterCallback setter = 0,
3033                                  Local<Value> data = Local<Value>(),
3034                                  AccessControl settings = DEFAULT,
3035                                  PropertyAttribute attribute = None));
3036   V8_DEPRECATED("Use maybe version",
3037                 bool SetAccessor(Local<Name> name,
3038                                  AccessorNameGetterCallback getter,
3039                                  AccessorNameSetterCallback setter = 0,
3040                                  Local<Value> data = Local<Value>(),
3041                                  AccessControl settings = DEFAULT,
3042                                  PropertyAttribute attribute = None));
3043   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3044   Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
3045                           AccessorNameGetterCallback getter,
3046                           AccessorNameSetterCallback setter = 0,
3047                           MaybeLocal<Value> data = MaybeLocal<Value>(),
3048                           AccessControl settings = DEFAULT,
3049                           PropertyAttribute attribute = None);
3050 
3051   void SetAccessorProperty(Local<Name> name, Local<Function> getter,
3052                            Local<Function> setter = Local<Function>(),
3053                            PropertyAttribute attribute = None,
3054                            AccessControl settings = DEFAULT);
3055 
3056   /**
3057    * Functionality for private properties.
3058    * This is an experimental feature, use at your own risk.
3059    * Note: Private properties are not inherited. Do not rely on this, since it
3060    * may change.
3061    */
3062   Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
3063   Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
3064                          Local<Value> value);
3065   Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
3066   MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
3067 
3068   /**
3069    * Returns an array containing the names of the enumerable properties
3070    * of this object, including properties from prototype objects.  The
3071    * array returned by this method contains the same values as would
3072    * be enumerated by a for-in statement over this object.
3073    */
3074   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
3075   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3076       Local<Context> context);
3077   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3078       Local<Context> context, KeyCollectionMode mode,
3079       PropertyFilter property_filter, IndexFilter index_filter);
3080 
3081   /**
3082    * This function has the same functionality as GetPropertyNames but
3083    * the returned array doesn't contain the names of properties from
3084    * prototype objects.
3085    */
3086   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
3087   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3088       Local<Context> context);
3089 
3090   /**
3091    * Returns an array containing the names of the filtered properties
3092    * of this object, including properties from prototype objects.  The
3093    * array returned by this method contains the same values as would
3094    * be enumerated by a for-in statement over this object.
3095    */
3096   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3097       Local<Context> context, PropertyFilter filter);
3098 
3099   /**
3100    * Get the prototype object.  This does not skip objects marked to
3101    * be skipped by __proto__ and it does not consult the security
3102    * handler.
3103    */
3104   Local<Value> GetPrototype();
3105 
3106   /**
3107    * Set the prototype object.  This does not skip objects marked to
3108    * be skipped by __proto__ and it does not consult the security
3109    * handler.
3110    */
3111   V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype));
3112   V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
3113                                                  Local<Value> prototype);
3114 
3115   /**
3116    * Finds an instance of the given function template in the prototype
3117    * chain.
3118    */
3119   Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
3120 
3121   /**
3122    * Call builtin Object.prototype.toString on this object.
3123    * This is different from Value::ToString() that may call
3124    * user-defined toString function. This one does not.
3125    */
3126   V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString());
3127   V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
3128       Local<Context> context);
3129 
3130   /**
3131    * Returns the name of the function invoked as a constructor for this object.
3132    */
3133   Local<String> GetConstructorName();
3134 
3135   /**
3136    * Sets the integrity level of the object.
3137    */
3138   Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level);
3139 
3140   /** Gets the number of internal fields for this Object. */
3141   int InternalFieldCount();
3142 
3143   /** Same as above, but works for Persistents */
InternalFieldCount(const PersistentBase<Object> & object)3144   V8_INLINE static int InternalFieldCount(
3145       const PersistentBase<Object>& object) {
3146     return object.val_->InternalFieldCount();
3147   }
3148 
3149   /** Gets the value from an internal field. */
3150   V8_INLINE Local<Value> GetInternalField(int index);
3151 
3152   /** Sets the value in an internal field. */
3153   void SetInternalField(int index, Local<Value> value);
3154 
3155   /**
3156    * Gets a 2-byte-aligned native pointer from an internal field. This field
3157    * must have been set by SetAlignedPointerInInternalField, everything else
3158    * leads to undefined behavior.
3159    */
3160   V8_INLINE void* GetAlignedPointerFromInternalField(int index);
3161 
3162   /** Same as above, but works for Persistents */
GetAlignedPointerFromInternalField(const PersistentBase<Object> & object,int index)3163   V8_INLINE static void* GetAlignedPointerFromInternalField(
3164       const PersistentBase<Object>& object, int index) {
3165     return object.val_->GetAlignedPointerFromInternalField(index);
3166   }
3167 
3168   /**
3169    * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
3170    * a field, GetAlignedPointerFromInternalField must be used, everything else
3171    * leads to undefined behavior.
3172    */
3173   void SetAlignedPointerInInternalField(int index, void* value);
3174   void SetAlignedPointerInInternalFields(int argc, int indices[],
3175                                          void* values[]);
3176 
3177   // Testers for local properties.
3178   V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
3179 
3180   /**
3181    * HasOwnProperty() is like JavaScript's Object.prototype.hasOwnProperty().
3182    *
3183    * See also v8::Object::Has() and v8::Object::HasRealNamedProperty().
3184    */
3185   V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3186                                                    Local<Name> key);
3187   V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3188                                                    uint32_t index);
3189   V8_DEPRECATE_SOON("Use maybe version",
3190                     bool HasRealNamedProperty(Local<String> key));
3191   /**
3192    * Use HasRealNamedProperty() if you want to check if an object has an own
3193    * property without causing side effects, i.e., without calling interceptors.
3194    *
3195    * This function is similar to v8::Object::HasOwnProperty(), but it does not
3196    * call interceptors.
3197    *
3198    * \note Consider using non-masking interceptors, i.e., the interceptors are
3199    * not called if the receiver has the real named property. See
3200    * `v8::PropertyHandlerFlags::kNonMasking`.
3201    *
3202    * See also v8::Object::Has().
3203    */
3204   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
3205                                                          Local<Name> key);
3206   V8_DEPRECATE_SOON("Use maybe version",
3207                     bool HasRealIndexedProperty(uint32_t index));
3208   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
3209       Local<Context> context, uint32_t index);
3210   V8_DEPRECATE_SOON("Use maybe version",
3211                     bool HasRealNamedCallbackProperty(Local<String> key));
3212   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
3213       Local<Context> context, Local<Name> key);
3214 
3215   /**
3216    * If result.IsEmpty() no real property was located in the prototype chain.
3217    * This means interceptors in the prototype chain are not called.
3218    */
3219   V8_DEPRECATED(
3220       "Use maybe version",
3221       Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
3222   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
3223       Local<Context> context, Local<Name> key);
3224 
3225   /**
3226    * Gets the property attributes of a real property in the prototype chain,
3227    * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
3228    * Interceptors in the prototype chain are not called.
3229    */
3230   V8_DEPRECATED(
3231       "Use maybe version",
3232       Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
3233           Local<String> key));
3234   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
3235   GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
3236                                                  Local<Name> key);
3237 
3238   /**
3239    * If result.IsEmpty() no real property was located on the object or
3240    * in the prototype chain.
3241    * This means interceptors in the prototype chain are not called.
3242    */
3243   V8_DEPRECATED("Use maybe version",
3244                 Local<Value> GetRealNamedProperty(Local<String> key));
3245   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
3246       Local<Context> context, Local<Name> key);
3247 
3248   /**
3249    * Gets the property attributes of a real property which can be
3250    * None or any combination of ReadOnly, DontEnum and DontDelete.
3251    * Interceptors in the prototype chain are not called.
3252    */
3253   V8_DEPRECATED("Use maybe version",
3254                 Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3255                     Local<String> key));
3256   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3257       Local<Context> context, Local<Name> key);
3258 
3259   /** Tests for a named lookup interceptor.*/
3260   bool HasNamedLookupInterceptor();
3261 
3262   /** Tests for an index lookup interceptor.*/
3263   bool HasIndexedLookupInterceptor();
3264 
3265   /**
3266    * Returns the identity hash for this object. The current implementation
3267    * uses a hidden property on the object to store the identity hash.
3268    *
3269    * The return value will never be 0. Also, it is not guaranteed to be
3270    * unique.
3271    */
3272   int GetIdentityHash();
3273 
3274   /**
3275    * Clone this object with a fast but shallow copy.  Values will point
3276    * to the same values as the original object.
3277    */
3278   // TODO(dcarney): take an isolate and optionally bail out?
3279   Local<Object> Clone();
3280 
3281   /**
3282    * Returns the context in which the object was created.
3283    */
3284   Local<Context> CreationContext();
3285 
3286   /** Same as above, but works for Persistents */
CreationContext(const PersistentBase<Object> & object)3287   V8_INLINE static Local<Context> CreationContext(
3288       const PersistentBase<Object>& object) {
3289     return object.val_->CreationContext();
3290   }
3291 
3292   /**
3293    * Checks whether a callback is set by the
3294    * ObjectTemplate::SetCallAsFunctionHandler method.
3295    * When an Object is callable this method returns true.
3296    */
3297   bool IsCallable();
3298 
3299   /**
3300    * True if this object is a constructor.
3301    */
3302   bool IsConstructor();
3303 
3304   /**
3305    * Call an Object as a function if a callback is set by the
3306    * ObjectTemplate::SetCallAsFunctionHandler method.
3307    */
3308   V8_DEPRECATED("Use maybe version",
3309                 Local<Value> CallAsFunction(Local<Value> recv, int argc,
3310                                             Local<Value> argv[]));
3311   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
3312                                                          Local<Value> recv,
3313                                                          int argc,
3314                                                          Local<Value> argv[]);
3315 
3316   /**
3317    * Call an Object as a constructor if a callback is set by the
3318    * ObjectTemplate::SetCallAsFunctionHandler method.
3319    * Note: This method behaves like the Function::NewInstance method.
3320    */
3321   V8_DEPRECATED("Use maybe version",
3322                 Local<Value> CallAsConstructor(int argc, Local<Value> argv[]));
3323   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
3324       Local<Context> context, int argc, Local<Value> argv[]);
3325 
3326   /**
3327    * Return the isolate to which the Object belongs to.
3328    */
3329   V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
3330 
3331   static Local<Object> New(Isolate* isolate);
3332 
3333   V8_INLINE static Object* Cast(Value* obj);
3334 
3335  private:
3336   Object();
3337   static void CheckCast(Value* obj);
3338   Local<Value> SlowGetInternalField(int index);
3339   void* SlowGetAlignedPointerFromInternalField(int index);
3340 };
3341 
3342 
3343 /**
3344  * An instance of the built-in array constructor (ECMA-262, 15.4.2).
3345  */
3346 class V8_EXPORT Array : public Object {
3347  public:
3348   uint32_t Length() const;
3349 
3350   /**
3351    * Clones an element at index |index|.  Returns an empty
3352    * handle if cloning fails (for any reason).
3353    */
3354   V8_DEPRECATED("Cloning is not supported.",
3355                 Local<Object> CloneElementAt(uint32_t index));
3356   V8_DEPRECATED("Cloning is not supported.",
3357                 MaybeLocal<Object> CloneElementAt(Local<Context> context,
3358                                                   uint32_t index));
3359 
3360   /**
3361    * Creates a JavaScript array with the given length. If the length
3362    * is negative the returned array will have length 0.
3363    */
3364   static Local<Array> New(Isolate* isolate, int length = 0);
3365 
3366   V8_INLINE static Array* Cast(Value* obj);
3367  private:
3368   Array();
3369   static void CheckCast(Value* obj);
3370 };
3371 
3372 
3373 /**
3374  * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
3375  */
3376 class V8_EXPORT Map : public Object {
3377  public:
3378   size_t Size() const;
3379   void Clear();
3380   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
3381                                               Local<Value> key);
3382   V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
3383                                             Local<Value> key,
3384                                             Local<Value> value);
3385   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3386                                         Local<Value> key);
3387   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3388                                            Local<Value> key);
3389 
3390   /**
3391    * Returns an array of length Size() * 2, where index N is the Nth key and
3392    * index N + 1 is the Nth value.
3393    */
3394   Local<Array> AsArray() const;
3395 
3396   /**
3397    * Creates a new empty Map.
3398    */
3399   static Local<Map> New(Isolate* isolate);
3400 
3401   V8_INLINE static Map* Cast(Value* obj);
3402 
3403  private:
3404   Map();
3405   static void CheckCast(Value* obj);
3406 };
3407 
3408 
3409 /**
3410  * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3411  */
3412 class V8_EXPORT Set : public Object {
3413  public:
3414   size_t Size() const;
3415   void Clear();
3416   V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3417                                             Local<Value> key);
3418   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3419                                         Local<Value> key);
3420   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3421                                            Local<Value> key);
3422 
3423   /**
3424    * Returns an array of the keys in this Set.
3425    */
3426   Local<Array> AsArray() const;
3427 
3428   /**
3429    * Creates a new empty Set.
3430    */
3431   static Local<Set> New(Isolate* isolate);
3432 
3433   V8_INLINE static Set* Cast(Value* obj);
3434 
3435  private:
3436   Set();
3437   static void CheckCast(Value* obj);
3438 };
3439 
3440 
3441 template<typename T>
3442 class ReturnValue {
3443  public:
ReturnValue(const ReturnValue<S> & that)3444   template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3445       : value_(that.value_) {
3446     TYPE_CHECK(T, S);
3447   }
3448   // Local setters
3449   template <typename S>
3450   V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3451                               void Set(const Persistent<S>& handle));
3452   template <typename S>
3453   V8_INLINE void Set(const Global<S>& handle);
3454   template <typename S>
3455   V8_INLINE void Set(const Local<S> handle);
3456   // Fast primitive setters
3457   V8_INLINE void Set(bool value);
3458   V8_INLINE void Set(double i);
3459   V8_INLINE void Set(int32_t i);
3460   V8_INLINE void Set(uint32_t i);
3461   // Fast JS primitive setters
3462   V8_INLINE void SetNull();
3463   V8_INLINE void SetUndefined();
3464   V8_INLINE void SetEmptyString();
3465   // Convenience getter for Isolate
3466   V8_INLINE Isolate* GetIsolate() const;
3467 
3468   // Pointer setter: Uncompilable to prevent inadvertent misuse.
3469   template <typename S>
3470   V8_INLINE void Set(S* whatever);
3471 
3472   // Getter. Creates a new Local<> so it comes with a certain performance
3473   // hit. If the ReturnValue was not yet set, this will return the undefined
3474   // value.
3475   V8_INLINE Local<Value> Get() const;
3476 
3477  private:
3478   template<class F> friend class ReturnValue;
3479   template<class F> friend class FunctionCallbackInfo;
3480   template<class F> friend class PropertyCallbackInfo;
3481   template <class F, class G, class H>
3482   friend class PersistentValueMapBase;
SetInternal(internal::Object * value)3483   V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3484   V8_INLINE internal::Object* GetDefaultValue();
3485   V8_INLINE explicit ReturnValue(internal::Object** slot);
3486   internal::Object** value_;
3487 };
3488 
3489 
3490 /**
3491  * The argument information given to function call callbacks.  This
3492  * class provides access to information about the context of the call,
3493  * including the receiver, the number and values of arguments, and
3494  * the holder of the function.
3495  */
3496 template<typename T>
3497 class FunctionCallbackInfo {
3498  public:
3499   V8_INLINE int Length() const;
3500   V8_INLINE Local<Value> operator[](int i) const;
3501   V8_INLINE V8_DEPRECATED("Use Data() to explicitly pass Callee instead",
3502                           Local<Function> Callee() const);
3503   V8_INLINE Local<Object> This() const;
3504   V8_INLINE Local<Object> Holder() const;
3505   V8_INLINE Local<Value> NewTarget() const;
3506   V8_INLINE bool IsConstructCall() const;
3507   V8_INLINE Local<Value> Data() const;
3508   V8_INLINE Isolate* GetIsolate() const;
3509   V8_INLINE ReturnValue<T> GetReturnValue() const;
3510   // This shouldn't be public, but the arm compiler needs it.
3511   static const int kArgsLength = 8;
3512 
3513  protected:
3514   friend class internal::FunctionCallbackArguments;
3515   friend class internal::CustomArguments<FunctionCallbackInfo>;
3516   static const int kHolderIndex = 0;
3517   static const int kIsolateIndex = 1;
3518   static const int kReturnValueDefaultValueIndex = 2;
3519   static const int kReturnValueIndex = 3;
3520   static const int kDataIndex = 4;
3521   static const int kCalleeIndex = 5;
3522   static const int kContextSaveIndex = 6;
3523   static const int kNewTargetIndex = 7;
3524 
3525   V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3526                                  internal::Object** values, int length);
3527   internal::Object** implicit_args_;
3528   internal::Object** values_;
3529   int length_;
3530 };
3531 
3532 
3533 /**
3534  * The information passed to a property callback about the context
3535  * of the property access.
3536  */
3537 template<typename T>
3538 class PropertyCallbackInfo {
3539  public:
3540   /**
3541    * \return The isolate of the property access.
3542    */
3543   V8_INLINE Isolate* GetIsolate() const;
3544 
3545   /**
3546    * \return The data set in the configuration, i.e., in
3547    * `NamedPropertyHandlerConfiguration` or
3548    * `IndexedPropertyHandlerConfiguration.`
3549    */
3550   V8_INLINE Local<Value> Data() const;
3551 
3552   /**
3553    * \return The receiver. In many cases, this is the object on which the
3554    * property access was intercepted. When using
3555    * `Reflect.get`, `Function.prototype.call`, or similar functions, it is the
3556    * object passed in as receiver or thisArg.
3557    *
3558    * \code
3559    *  void GetterCallback(Local<Name> name,
3560    *                      const v8::PropertyCallbackInfo<v8::Value>& info) {
3561    *     auto context = info.GetIsolate()->GetCurrentContext();
3562    *
3563    *     v8::Local<v8::Value> a_this =
3564    *         info.This()
3565    *             ->GetRealNamedProperty(context, v8_str("a"))
3566    *             .ToLocalChecked();
3567    *     v8::Local<v8::Value> a_holder =
3568    *         info.Holder()
3569    *             ->GetRealNamedProperty(context, v8_str("a"))
3570    *             .ToLocalChecked();
3571    *
3572    *    CHECK(v8_str("r")->Equals(context, a_this).FromJust());
3573    *    CHECK(v8_str("obj")->Equals(context, a_holder).FromJust());
3574    *
3575    *    info.GetReturnValue().Set(name);
3576    *  }
3577    *
3578    *  v8::Local<v8::FunctionTemplate> templ =
3579    *  v8::FunctionTemplate::New(isolate);
3580    *  templ->InstanceTemplate()->SetHandler(
3581    *      v8::NamedPropertyHandlerConfiguration(GetterCallback));
3582    *  LocalContext env;
3583    *  env->Global()
3584    *      ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
3585    *                                           .ToLocalChecked()
3586    *                                           ->NewInstance(env.local())
3587    *                                           .ToLocalChecked())
3588    *      .FromJust();
3589    *
3590    *  CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)");
3591    * \endcode
3592    */
3593   V8_INLINE Local<Object> This() const;
3594 
3595   /**
3596    * \return The object in the prototype chain of the receiver that has the
3597    * interceptor. Suppose you have `x` and its prototype is `y`, and `y`
3598    * has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`.
3599    * The Holder() could be a hidden object (the global object, rather
3600    * than the global proxy).
3601    *
3602    * \note For security reasons, do not pass the object back into the runtime.
3603    */
3604   V8_INLINE Local<Object> Holder() const;
3605 
3606   /**
3607    * \return The return value of the callback.
3608    * Can be changed by calling Set().
3609    * \code
3610    * info.GetReturnValue().Set(...)
3611    * \endcode
3612    *
3613    */
3614   V8_INLINE ReturnValue<T> GetReturnValue() const;
3615 
3616   /**
3617    * \return True if the intercepted function should throw if an error occurs.
3618    * Usually, `true` corresponds to `'use strict'`.
3619    *
3620    * \note Always `false` when intercepting `Reflect.set()`
3621    * independent of the language mode.
3622    */
3623   V8_INLINE bool ShouldThrowOnError() const;
3624 
3625   // This shouldn't be public, but the arm compiler needs it.
3626   static const int kArgsLength = 7;
3627 
3628  protected:
3629   friend class MacroAssembler;
3630   friend class internal::PropertyCallbackArguments;
3631   friend class internal::CustomArguments<PropertyCallbackInfo>;
3632   static const int kShouldThrowOnErrorIndex = 0;
3633   static const int kHolderIndex = 1;
3634   static const int kIsolateIndex = 2;
3635   static const int kReturnValueDefaultValueIndex = 3;
3636   static const int kReturnValueIndex = 4;
3637   static const int kDataIndex = 5;
3638   static const int kThisIndex = 6;
3639 
PropertyCallbackInfo(internal::Object ** args)3640   V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3641   internal::Object** args_;
3642 };
3643 
3644 
3645 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3646 
3647 enum class ConstructorBehavior { kThrow, kAllow };
3648 
3649 /**
3650  * A JavaScript function object (ECMA-262, 15.3).
3651  */
3652 class V8_EXPORT Function : public Object {
3653  public:
3654   /**
3655    * Create a function in the current execution context
3656    * for a given FunctionCallback.
3657    */
3658   static MaybeLocal<Function> New(
3659       Local<Context> context, FunctionCallback callback,
3660       Local<Value> data = Local<Value>(), int length = 0,
3661       ConstructorBehavior behavior = ConstructorBehavior::kAllow);
3662   static V8_DEPRECATE_SOON(
3663       "Use maybe version",
3664       Local<Function> New(Isolate* isolate, FunctionCallback callback,
3665                           Local<Value> data = Local<Value>(), int length = 0));
3666 
3667   V8_DEPRECATED("Use maybe version",
3668                 Local<Object> NewInstance(int argc, Local<Value> argv[]) const);
3669   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3670       Local<Context> context, int argc, Local<Value> argv[]) const;
3671 
3672   V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const);
NewInstance(Local<Context> context)3673   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3674       Local<Context> context) const {
3675     return NewInstance(context, 0, nullptr);
3676   }
3677 
3678   V8_DEPRECATE_SOON("Use maybe version",
3679                     Local<Value> Call(Local<Value> recv, int argc,
3680                                       Local<Value> argv[]));
3681   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3682                                                Local<Value> recv, int argc,
3683                                                Local<Value> argv[]);
3684 
3685   void SetName(Local<String> name);
3686   Local<Value> GetName() const;
3687 
3688   /**
3689    * Name inferred from variable or property assignment of this function.
3690    * Used to facilitate debugging and profiling of JavaScript code written
3691    * in an OO style, where many functions are anonymous but are assigned
3692    * to object properties.
3693    */
3694   Local<Value> GetInferredName() const;
3695 
3696   /**
3697    * displayName if it is set, otherwise name if it is configured, otherwise
3698    * function name, otherwise inferred name.
3699    */
3700   Local<Value> GetDebugName() const;
3701 
3702   /**
3703    * User-defined name assigned to the "displayName" property of this function.
3704    * Used to facilitate debugging and profiling of JavaScript code.
3705    */
3706   Local<Value> GetDisplayName() const;
3707 
3708   /**
3709    * Returns zero based line number of function body and
3710    * kLineOffsetNotFound if no information available.
3711    */
3712   int GetScriptLineNumber() const;
3713   /**
3714    * Returns zero based column number of function body and
3715    * kLineOffsetNotFound if no information available.
3716    */
3717   int GetScriptColumnNumber() const;
3718 
3719   /**
3720    * Tells whether this function is builtin.
3721    */
3722   V8_DEPRECATED("this should no longer be used.", bool IsBuiltin() const);
3723 
3724   /**
3725    * Returns scriptId.
3726    */
3727   int ScriptId() const;
3728 
3729   /**
3730    * Returns the original function if this function is bound, else returns
3731    * v8::Undefined.
3732    */
3733   Local<Value> GetBoundFunction() const;
3734 
3735   ScriptOrigin GetScriptOrigin() const;
3736   V8_INLINE static Function* Cast(Value* obj);
3737   static const int kLineOffsetNotFound;
3738 
3739  private:
3740   Function();
3741   static void CheckCast(Value* obj);
3742 };
3743 
3744 
3745 /**
3746  * An instance of the built-in Promise constructor (ES6 draft).
3747  */
3748 class V8_EXPORT Promise : public Object {
3749  public:
3750   /**
3751    * State of the promise. Each value corresponds to one of the possible values
3752    * of the [[PromiseState]] field.
3753    */
3754   enum PromiseState { kPending, kFulfilled, kRejected };
3755 
3756   class V8_EXPORT Resolver : public Object {
3757    public:
3758     /**
3759      * Create a new resolver, along with an associated promise in pending state.
3760      */
3761     static V8_DEPRECATE_SOON("Use maybe version",
3762                              Local<Resolver> New(Isolate* isolate));
3763     static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3764         Local<Context> context);
3765 
3766     /**
3767      * Extract the associated promise.
3768      */
3769     Local<Promise> GetPromise();
3770 
3771     /**
3772      * Resolve/reject the associated promise with a given value.
3773      * Ignored if the promise is no longer pending.
3774      */
3775     V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3776     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3777     Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3778 
3779     V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3780     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3781     Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3782 
3783     V8_INLINE static Resolver* Cast(Value* obj);
3784 
3785    private:
3786     Resolver();
3787     static void CheckCast(Value* obj);
3788   };
3789 
3790   /**
3791    * Register a resolution/rejection handler with a promise.
3792    * The handler is given the respective resolution/rejection value as
3793    * an argument. If the promise is already resolved/rejected, the handler is
3794    * invoked at the end of turn.
3795    */
3796   V8_DEPRECATED("Use maybe version",
3797                 Local<Promise> Catch(Local<Function> handler));
3798   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3799                                                   Local<Function> handler);
3800 
3801   V8_DEPRECATED("Use maybe version",
3802                 Local<Promise> Then(Local<Function> handler));
3803   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3804                                                  Local<Function> handler);
3805 
3806   /**
3807    * Returns true if the promise has at least one derived promise, and
3808    * therefore resolve/reject handlers (including default handler).
3809    */
3810   bool HasHandler();
3811 
3812   /**
3813    * Returns the content of the [[PromiseResult]] field. The Promise must not
3814    * be pending.
3815    */
3816   Local<Value> Result();
3817 
3818   /**
3819    * Returns the value of the [[PromiseState]] field.
3820    */
3821   PromiseState State();
3822 
3823   V8_INLINE static Promise* Cast(Value* obj);
3824 
3825  private:
3826   Promise();
3827   static void CheckCast(Value* obj);
3828 };
3829 
3830 /**
3831  * An instance of a Property Descriptor, see Ecma-262 6.2.4.
3832  *
3833  * Properties in a descriptor are present or absent. If you do not set
3834  * `enumerable`, `configurable`, and `writable`, they are absent. If `value`,
3835  * `get`, or `set` are absent, but you must specify them in the constructor, use
3836  * empty handles.
3837  *
3838  * Accessors `get` and `set` must be callable or undefined if they are present.
3839  *
3840  * \note Only query properties if they are present, i.e., call `x()` only if
3841  * `has_x()` returns true.
3842  *
3843  * \code
3844  * // var desc = {writable: false}
3845  * v8::PropertyDescriptor d(Local<Value>()), false);
3846  * d.value(); // error, value not set
3847  * if (d.has_writable()) {
3848  *   d.writable(); // false
3849  * }
3850  *
3851  * // var desc = {value: undefined}
3852  * v8::PropertyDescriptor d(v8::Undefined(isolate));
3853  *
3854  * // var desc = {get: undefined}
3855  * v8::PropertyDescriptor d(v8::Undefined(isolate), Local<Value>()));
3856  * \endcode
3857  */
3858 class V8_EXPORT PropertyDescriptor {
3859  public:
3860   // GenericDescriptor
3861   PropertyDescriptor();
3862 
3863   // DataDescriptor
3864   PropertyDescriptor(Local<Value> value);
3865 
3866   // DataDescriptor with writable property
3867   PropertyDescriptor(Local<Value> value, bool writable);
3868 
3869   // AccessorDescriptor
3870   PropertyDescriptor(Local<Value> get, Local<Value> set);
3871 
3872   ~PropertyDescriptor();
3873 
3874   Local<Value> value() const;
3875   bool has_value() const;
3876 
3877   Local<Value> get() const;
3878   bool has_get() const;
3879   Local<Value> set() const;
3880   bool has_set() const;
3881 
3882   void set_enumerable(bool enumerable);
3883   bool enumerable() const;
3884   bool has_enumerable() const;
3885 
3886   void set_configurable(bool configurable);
3887   bool configurable() const;
3888   bool has_configurable() const;
3889 
3890   bool writable() const;
3891   bool has_writable() const;
3892 
3893   struct PrivateData;
get_private()3894   PrivateData* get_private() const { return private_; }
3895 
3896   PropertyDescriptor(const PropertyDescriptor&) = delete;
3897   void operator=(const PropertyDescriptor&) = delete;
3898 
3899  private:
3900   PrivateData* private_;
3901 };
3902 
3903 /**
3904  * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
3905  * 26.2.1).
3906  */
3907 class V8_EXPORT Proxy : public Object {
3908  public:
3909   Local<Object> GetTarget();
3910   Local<Value> GetHandler();
3911   bool IsRevoked();
3912   void Revoke();
3913 
3914   /**
3915    * Creates a new Proxy for the target object.
3916    */
3917   static MaybeLocal<Proxy> New(Local<Context> context,
3918                                Local<Object> local_target,
3919                                Local<Object> local_handler);
3920 
3921   V8_INLINE static Proxy* Cast(Value* obj);
3922 
3923  private:
3924   Proxy();
3925   static void CheckCast(Value* obj);
3926 };
3927 
3928 class V8_EXPORT WasmCompiledModule : public Object {
3929  public:
3930   typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> SerializedModule;
3931   // A buffer that is owned by the caller.
3932   typedef std::pair<const uint8_t*, size_t> CallerOwnedBuffer;
3933   // Get the wasm-encoded bytes that were used to compile this module.
3934   Local<String> GetWasmWireBytes();
3935 
3936   // Serialize the compiled module. The serialized data does not include the
3937   // uncompiled bytes.
3938   SerializedModule Serialize();
3939 
3940   // If possible, deserialize the module, otherwise compile it from the provided
3941   // uncompiled bytes.
3942   static MaybeLocal<WasmCompiledModule> DeserializeOrCompile(
3943       Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3944       const CallerOwnedBuffer& wire_bytes);
3945   V8_INLINE static WasmCompiledModule* Cast(Value* obj);
3946 
3947  private:
3948   static MaybeLocal<WasmCompiledModule> Deserialize(
3949       Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3950       const CallerOwnedBuffer& wire_bytes);
3951   static MaybeLocal<WasmCompiledModule> Compile(Isolate* isolate,
3952                                                 const uint8_t* start,
3953                                                 size_t length);
3954   WasmCompiledModule();
3955   static void CheckCast(Value* obj);
3956 };
3957 
3958 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3959 // The number of required internal fields can be defined by embedder.
3960 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3961 #endif
3962 
3963 
3964 enum class ArrayBufferCreationMode { kInternalized, kExternalized };
3965 
3966 
3967 /**
3968  * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3969  */
3970 class V8_EXPORT ArrayBuffer : public Object {
3971  public:
3972   /**
3973    * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3974    * The allocator is a global V8 setting. It has to be set via
3975    * Isolate::CreateParams.
3976    *
3977    * Memory allocated through this allocator by V8 is accounted for as external
3978    * memory by V8. Note that V8 keeps track of the memory for all internalized
3979    * |ArrayBuffer|s. Responsibility for tracking external memory (using
3980    * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
3981    * embedder upon externalization and taken over upon internalization (creating
3982    * an internalized buffer from an existing buffer).
3983    *
3984    * Note that it is unsafe to call back into V8 from any of the allocator
3985    * functions.
3986    */
3987   class V8_EXPORT Allocator { // NOLINT
3988    public:
~Allocator()3989     virtual ~Allocator() {}
3990 
3991     /**
3992      * Allocate |length| bytes. Return NULL if allocation is not successful.
3993      * Memory should be initialized to zeroes.
3994      */
3995     virtual void* Allocate(size_t length) = 0;
3996 
3997     /**
3998      * Allocate |length| bytes. Return NULL if allocation is not successful.
3999      * Memory does not have to be initialized.
4000      */
4001     virtual void* AllocateUninitialized(size_t length) = 0;
4002 
4003     /**
4004      * Free the memory block of size |length|, pointed to by |data|.
4005      * That memory is guaranteed to be previously allocated by |Allocate|.
4006      */
4007     virtual void Free(void* data, size_t length) = 0;
4008 
4009     /**
4010      * malloc/free based convenience allocator.
4011      *
4012      * Caller takes ownership.
4013      */
4014     static Allocator* NewDefaultAllocator();
4015   };
4016 
4017   /**
4018    * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
4019    * returns an instance of this class, populated, with a pointer to data
4020    * and byte length.
4021    *
4022    * The Data pointer of ArrayBuffer::Contents is always allocated with
4023    * Allocator::Allocate that is set via Isolate::CreateParams.
4024    */
4025   class V8_EXPORT Contents { // NOLINT
4026    public:
Contents()4027     Contents() : data_(NULL), byte_length_(0) {}
4028 
Data()4029     void* Data() const { return data_; }
ByteLength()4030     size_t ByteLength() const { return byte_length_; }
4031 
4032    private:
4033     void* data_;
4034     size_t byte_length_;
4035 
4036     friend class ArrayBuffer;
4037   };
4038 
4039 
4040   /**
4041    * Data length in bytes.
4042    */
4043   size_t ByteLength() const;
4044 
4045   /**
4046    * Create a new ArrayBuffer. Allocate |byte_length| bytes.
4047    * Allocated memory will be owned by a created ArrayBuffer and
4048    * will be deallocated when it is garbage-collected,
4049    * unless the object is externalized.
4050    */
4051   static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
4052 
4053   /**
4054    * Create a new ArrayBuffer over an existing memory block.
4055    * The created array buffer is by default immediately in externalized state.
4056    * The memory block will not be reclaimed when a created ArrayBuffer
4057    * is garbage-collected.
4058    */
4059   static Local<ArrayBuffer> New(
4060       Isolate* isolate, void* data, size_t byte_length,
4061       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4062 
4063   /**
4064    * Returns true if ArrayBuffer is externalized, that is, does not
4065    * own its memory block.
4066    */
4067   bool IsExternal() const;
4068 
4069   /**
4070    * Returns true if this ArrayBuffer may be neutered.
4071    */
4072   bool IsNeuterable() const;
4073 
4074   /**
4075    * Neuters this ArrayBuffer and all its views (typed arrays).
4076    * Neutering sets the byte length of the buffer and all typed arrays to zero,
4077    * preventing JavaScript from ever accessing underlying backing store.
4078    * ArrayBuffer should have been externalized and must be neuterable.
4079    */
4080   void Neuter();
4081 
4082   /**
4083    * Make this ArrayBuffer external. The pointer to underlying memory block
4084    * and byte length are returned as |Contents| structure. After ArrayBuffer
4085    * had been externalized, it does no longer own the memory block. The caller
4086    * should take steps to free memory when it is no longer needed.
4087    *
4088    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4089    * that has been set via Isolate::CreateParams.
4090    */
4091   Contents Externalize();
4092 
4093   /**
4094    * Get a pointer to the ArrayBuffer's underlying memory block without
4095    * externalizing it. If the ArrayBuffer is not externalized, this pointer
4096    * will become invalid as soon as the ArrayBuffer gets garbage collected.
4097    *
4098    * The embedder should make sure to hold a strong reference to the
4099    * ArrayBuffer while accessing this pointer.
4100    *
4101    * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
4102    */
4103   Contents GetContents();
4104 
4105   V8_INLINE static ArrayBuffer* Cast(Value* obj);
4106 
4107   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4108 
4109  private:
4110   ArrayBuffer();
4111   static void CheckCast(Value* obj);
4112 };
4113 
4114 
4115 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
4116 // The number of required internal fields can be defined by embedder.
4117 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
4118 #endif
4119 
4120 
4121 /**
4122  * A base class for an instance of one of "views" over ArrayBuffer,
4123  * including TypedArrays and DataView (ES6 draft 15.13).
4124  */
4125 class V8_EXPORT ArrayBufferView : public Object {
4126  public:
4127   /**
4128    * Returns underlying ArrayBuffer.
4129    */
4130   Local<ArrayBuffer> Buffer();
4131   /**
4132    * Byte offset in |Buffer|.
4133    */
4134   size_t ByteOffset();
4135   /**
4136    * Size of a view in bytes.
4137    */
4138   size_t ByteLength();
4139 
4140   /**
4141    * Copy the contents of the ArrayBufferView's buffer to an embedder defined
4142    * memory without additional overhead that calling ArrayBufferView::Buffer
4143    * might incur.
4144    *
4145    * Will write at most min(|byte_length|, ByteLength) bytes starting at
4146    * ByteOffset of the underlying buffer to the memory starting at |dest|.
4147    * Returns the number of bytes actually written.
4148    */
4149   size_t CopyContents(void* dest, size_t byte_length);
4150 
4151   /**
4152    * Returns true if ArrayBufferView's backing ArrayBuffer has already been
4153    * allocated.
4154    */
4155   bool HasBuffer() const;
4156 
4157   V8_INLINE static ArrayBufferView* Cast(Value* obj);
4158 
4159   static const int kInternalFieldCount =
4160       V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
4161 
4162  private:
4163   ArrayBufferView();
4164   static void CheckCast(Value* obj);
4165 };
4166 
4167 
4168 /**
4169  * A base class for an instance of TypedArray series of constructors
4170  * (ES6 draft 15.13.6).
4171  */
4172 class V8_EXPORT TypedArray : public ArrayBufferView {
4173  public:
4174   /**
4175    * Number of elements in this typed array
4176    * (e.g. for Int16Array, |ByteLength|/2).
4177    */
4178   size_t Length();
4179 
4180   V8_INLINE static TypedArray* Cast(Value* obj);
4181 
4182  private:
4183   TypedArray();
4184   static void CheckCast(Value* obj);
4185 };
4186 
4187 
4188 /**
4189  * An instance of Uint8Array constructor (ES6 draft 15.13.6).
4190  */
4191 class V8_EXPORT Uint8Array : public TypedArray {
4192  public:
4193   static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
4194                                size_t byte_offset, size_t length);
4195   static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4196                                size_t byte_offset, size_t length);
4197   V8_INLINE static Uint8Array* Cast(Value* obj);
4198 
4199  private:
4200   Uint8Array();
4201   static void CheckCast(Value* obj);
4202 };
4203 
4204 
4205 /**
4206  * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
4207  */
4208 class V8_EXPORT Uint8ClampedArray : public TypedArray {
4209  public:
4210   static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
4211                                       size_t byte_offset, size_t length);
4212   static Local<Uint8ClampedArray> New(
4213       Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
4214       size_t length);
4215   V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
4216 
4217  private:
4218   Uint8ClampedArray();
4219   static void CheckCast(Value* obj);
4220 };
4221 
4222 /**
4223  * An instance of Int8Array constructor (ES6 draft 15.13.6).
4224  */
4225 class V8_EXPORT Int8Array : public TypedArray {
4226  public:
4227   static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
4228                               size_t byte_offset, size_t length);
4229   static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4230                               size_t byte_offset, size_t length);
4231   V8_INLINE static Int8Array* Cast(Value* obj);
4232 
4233  private:
4234   Int8Array();
4235   static void CheckCast(Value* obj);
4236 };
4237 
4238 
4239 /**
4240  * An instance of Uint16Array constructor (ES6 draft 15.13.6).
4241  */
4242 class V8_EXPORT Uint16Array : public TypedArray {
4243  public:
4244   static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
4245                                 size_t byte_offset, size_t length);
4246   static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4247                                 size_t byte_offset, size_t length);
4248   V8_INLINE static Uint16Array* Cast(Value* obj);
4249 
4250  private:
4251   Uint16Array();
4252   static void CheckCast(Value* obj);
4253 };
4254 
4255 
4256 /**
4257  * An instance of Int16Array constructor (ES6 draft 15.13.6).
4258  */
4259 class V8_EXPORT Int16Array : public TypedArray {
4260  public:
4261   static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
4262                                size_t byte_offset, size_t length);
4263   static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4264                                size_t byte_offset, size_t length);
4265   V8_INLINE static Int16Array* Cast(Value* obj);
4266 
4267  private:
4268   Int16Array();
4269   static void CheckCast(Value* obj);
4270 };
4271 
4272 
4273 /**
4274  * An instance of Uint32Array constructor (ES6 draft 15.13.6).
4275  */
4276 class V8_EXPORT Uint32Array : public TypedArray {
4277  public:
4278   static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
4279                                 size_t byte_offset, size_t length);
4280   static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4281                                 size_t byte_offset, size_t length);
4282   V8_INLINE static Uint32Array* Cast(Value* obj);
4283 
4284  private:
4285   Uint32Array();
4286   static void CheckCast(Value* obj);
4287 };
4288 
4289 
4290 /**
4291  * An instance of Int32Array constructor (ES6 draft 15.13.6).
4292  */
4293 class V8_EXPORT Int32Array : public TypedArray {
4294  public:
4295   static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
4296                                size_t byte_offset, size_t length);
4297   static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4298                                size_t byte_offset, size_t length);
4299   V8_INLINE static Int32Array* Cast(Value* obj);
4300 
4301  private:
4302   Int32Array();
4303   static void CheckCast(Value* obj);
4304 };
4305 
4306 
4307 /**
4308  * An instance of Float32Array constructor (ES6 draft 15.13.6).
4309  */
4310 class V8_EXPORT Float32Array : public TypedArray {
4311  public:
4312   static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
4313                                  size_t byte_offset, size_t length);
4314   static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4315                                  size_t byte_offset, size_t length);
4316   V8_INLINE static Float32Array* Cast(Value* obj);
4317 
4318  private:
4319   Float32Array();
4320   static void CheckCast(Value* obj);
4321 };
4322 
4323 
4324 /**
4325  * An instance of Float64Array constructor (ES6 draft 15.13.6).
4326  */
4327 class V8_EXPORT Float64Array : public TypedArray {
4328  public:
4329   static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
4330                                  size_t byte_offset, size_t length);
4331   static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4332                                  size_t byte_offset, size_t length);
4333   V8_INLINE static Float64Array* Cast(Value* obj);
4334 
4335  private:
4336   Float64Array();
4337   static void CheckCast(Value* obj);
4338 };
4339 
4340 
4341 /**
4342  * An instance of DataView constructor (ES6 draft 15.13.7).
4343  */
4344 class V8_EXPORT DataView : public ArrayBufferView {
4345  public:
4346   static Local<DataView> New(Local<ArrayBuffer> array_buffer,
4347                              size_t byte_offset, size_t length);
4348   static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
4349                              size_t byte_offset, size_t length);
4350   V8_INLINE static DataView* Cast(Value* obj);
4351 
4352  private:
4353   DataView();
4354   static void CheckCast(Value* obj);
4355 };
4356 
4357 
4358 /**
4359  * An instance of the built-in SharedArrayBuffer constructor.
4360  * This API is experimental and may change significantly.
4361  */
4362 class V8_EXPORT SharedArrayBuffer : public Object {
4363  public:
4364   /**
4365    * The contents of an |SharedArrayBuffer|. Externalization of
4366    * |SharedArrayBuffer| returns an instance of this class, populated, with a
4367    * pointer to data and byte length.
4368    *
4369    * The Data pointer of SharedArrayBuffer::Contents is always allocated with
4370    * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
4371    * v8::Isolate::CreateParams::array_buffer_allocator.
4372    *
4373    * This API is experimental and may change significantly.
4374    */
4375   class V8_EXPORT Contents {  // NOLINT
4376    public:
Contents()4377     Contents() : data_(NULL), byte_length_(0) {}
4378 
Data()4379     void* Data() const { return data_; }
ByteLength()4380     size_t ByteLength() const { return byte_length_; }
4381 
4382    private:
4383     void* data_;
4384     size_t byte_length_;
4385 
4386     friend class SharedArrayBuffer;
4387   };
4388 
4389 
4390   /**
4391    * Data length in bytes.
4392    */
4393   size_t ByteLength() const;
4394 
4395   /**
4396    * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
4397    * Allocated memory will be owned by a created SharedArrayBuffer and
4398    * will be deallocated when it is garbage-collected,
4399    * unless the object is externalized.
4400    */
4401   static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
4402 
4403   /**
4404    * Create a new SharedArrayBuffer over an existing memory block.  The created
4405    * array buffer is immediately in externalized state unless otherwise
4406    * specified. The memory block will not be reclaimed when a created
4407    * SharedArrayBuffer is garbage-collected.
4408    */
4409   static Local<SharedArrayBuffer> New(
4410       Isolate* isolate, void* data, size_t byte_length,
4411       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4412 
4413   /**
4414    * Returns true if SharedArrayBuffer is externalized, that is, does not
4415    * own its memory block.
4416    */
4417   bool IsExternal() const;
4418 
4419   /**
4420    * Make this SharedArrayBuffer external. The pointer to underlying memory
4421    * block and byte length are returned as |Contents| structure. After
4422    * SharedArrayBuffer had been externalized, it does no longer own the memory
4423    * block. The caller should take steps to free memory when it is no longer
4424    * needed.
4425    *
4426    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4427    * by the allocator specified in
4428    * v8::Isolate::CreateParams::array_buffer_allocator.
4429    *
4430    */
4431   Contents Externalize();
4432 
4433   /**
4434    * Get a pointer to the ArrayBuffer's underlying memory block without
4435    * externalizing it. If the ArrayBuffer is not externalized, this pointer
4436    * will become invalid as soon as the ArrayBuffer became garbage collected.
4437    *
4438    * The embedder should make sure to hold a strong reference to the
4439    * ArrayBuffer while accessing this pointer.
4440    *
4441    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4442    * by the allocator specified in
4443    * v8::Isolate::CreateParams::array_buffer_allocator.
4444    */
4445   Contents GetContents();
4446 
4447   V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
4448 
4449   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4450 
4451  private:
4452   SharedArrayBuffer();
4453   static void CheckCast(Value* obj);
4454 };
4455 
4456 
4457 /**
4458  * An instance of the built-in Date constructor (ECMA-262, 15.9).
4459  */
4460 class V8_EXPORT Date : public Object {
4461  public:
4462   static V8_DEPRECATE_SOON("Use maybe version.",
4463                            Local<Value> New(Isolate* isolate, double time));
4464   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
4465                                                      double time);
4466 
4467   /**
4468    * A specialization of Value::NumberValue that is more efficient
4469    * because we know the structure of this object.
4470    */
4471   double ValueOf() const;
4472 
4473   V8_INLINE static Date* Cast(Value* obj);
4474 
4475   /**
4476    * Notification that the embedder has changed the time zone,
4477    * daylight savings time, or other date / time configuration
4478    * parameters.  V8 keeps a cache of various values used for
4479    * date / time computation.  This notification will reset
4480    * those cached values for the current context so that date /
4481    * time configuration changes would be reflected in the Date
4482    * object.
4483    *
4484    * This API should not be called more than needed as it will
4485    * negatively impact the performance of date operations.
4486    */
4487   static void DateTimeConfigurationChangeNotification(Isolate* isolate);
4488 
4489  private:
4490   static void CheckCast(Value* obj);
4491 };
4492 
4493 
4494 /**
4495  * A Number object (ECMA-262, 4.3.21).
4496  */
4497 class V8_EXPORT NumberObject : public Object {
4498  public:
4499   static Local<Value> New(Isolate* isolate, double value);
4500 
4501   double ValueOf() const;
4502 
4503   V8_INLINE static NumberObject* Cast(Value* obj);
4504 
4505  private:
4506   static void CheckCast(Value* obj);
4507 };
4508 
4509 
4510 /**
4511  * A Boolean object (ECMA-262, 4.3.15).
4512  */
4513 class V8_EXPORT BooleanObject : public Object {
4514  public:
4515   static Local<Value> New(Isolate* isolate, bool value);
4516   V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value));
4517 
4518   bool ValueOf() const;
4519 
4520   V8_INLINE static BooleanObject* Cast(Value* obj);
4521 
4522  private:
4523   static void CheckCast(Value* obj);
4524 };
4525 
4526 
4527 /**
4528  * A String object (ECMA-262, 4.3.18).
4529  */
4530 class V8_EXPORT StringObject : public Object {
4531  public:
4532   static Local<Value> New(Local<String> value);
4533 
4534   Local<String> ValueOf() const;
4535 
4536   V8_INLINE static StringObject* Cast(Value* obj);
4537 
4538  private:
4539   static void CheckCast(Value* obj);
4540 };
4541 
4542 
4543 /**
4544  * A Symbol object (ECMA-262 edition 6).
4545  */
4546 class V8_EXPORT SymbolObject : public Object {
4547  public:
4548   static Local<Value> New(Isolate* isolate, Local<Symbol> value);
4549 
4550   Local<Symbol> ValueOf() const;
4551 
4552   V8_INLINE static SymbolObject* Cast(Value* obj);
4553 
4554  private:
4555   static void CheckCast(Value* obj);
4556 };
4557 
4558 
4559 /**
4560  * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
4561  */
4562 class V8_EXPORT RegExp : public Object {
4563  public:
4564   /**
4565    * Regular expression flag bits. They can be or'ed to enable a set
4566    * of flags.
4567    */
4568   enum Flags {
4569     kNone = 0,
4570     kGlobal = 1,
4571     kIgnoreCase = 2,
4572     kMultiline = 4,
4573     kSticky = 8,
4574     kUnicode = 16
4575   };
4576 
4577   /**
4578    * Creates a regular expression from the given pattern string and
4579    * the flags bit field. May throw a JavaScript exception as
4580    * described in ECMA-262, 15.10.4.1.
4581    *
4582    * For example,
4583    *   RegExp::New(v8::String::New("foo"),
4584    *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
4585    * is equivalent to evaluating "/foo/gm".
4586    */
4587   static V8_DEPRECATE_SOON("Use maybe version",
4588                            Local<RegExp> New(Local<String> pattern,
4589                                              Flags flags));
4590   static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
4591                                                       Local<String> pattern,
4592                                                       Flags flags);
4593 
4594   /**
4595    * Returns the value of the source property: a string representing
4596    * the regular expression.
4597    */
4598   Local<String> GetSource() const;
4599 
4600   /**
4601    * Returns the flags bit field.
4602    */
4603   Flags GetFlags() const;
4604 
4605   V8_INLINE static RegExp* Cast(Value* obj);
4606 
4607  private:
4608   static void CheckCast(Value* obj);
4609 };
4610 
4611 
4612 /**
4613  * A JavaScript value that wraps a C++ void*. This type of value is mainly used
4614  * to associate C++ data structures with JavaScript objects.
4615  */
4616 class V8_EXPORT External : public Value {
4617  public:
4618   static Local<External> New(Isolate* isolate, void* value);
4619   V8_INLINE static External* Cast(Value* obj);
4620   void* Value() const;
4621  private:
4622   static void CheckCast(v8::Value* obj);
4623 };
4624 
4625 #define V8_INTRINSICS_LIST(F)                    \
4626   F(ArrayProto_entries, array_entries_iterator)  \
4627   F(ArrayProto_forEach, array_for_each_iterator) \
4628   F(ArrayProto_keys, array_keys_iterator)        \
4629   F(ArrayProto_values, array_values_iterator)
4630 
4631 enum Intrinsic {
4632 #define V8_DECL_INTRINSIC(name, iname) k##name,
4633   V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
4634 #undef V8_DECL_INTRINSIC
4635 };
4636 
4637 
4638 // --- Templates ---
4639 
4640 
4641 /**
4642  * The superclass of object and function templates.
4643  */
4644 class V8_EXPORT Template : public Data {
4645  public:
4646   /**
4647    * Adds a property to each instance created by this template.
4648    *
4649    * The property must be defined either as a primitive value, or a template.
4650    */
4651   void Set(Local<Name> name, Local<Data> value,
4652            PropertyAttribute attributes = None);
4653   void SetPrivate(Local<Private> name, Local<Data> value,
4654                   PropertyAttribute attributes = None);
4655   V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4656 
4657   void SetAccessorProperty(
4658      Local<Name> name,
4659      Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4660      Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4661      PropertyAttribute attribute = None,
4662      AccessControl settings = DEFAULT);
4663 
4664   /**
4665    * Whenever the property with the given name is accessed on objects
4666    * created from this Template the getter and setter callbacks
4667    * are called instead of getting and setting the property directly
4668    * on the JavaScript object.
4669    *
4670    * \param name The name of the property for which an accessor is added.
4671    * \param getter The callback to invoke when getting the property.
4672    * \param setter The callback to invoke when setting the property.
4673    * \param data A piece of data that will be passed to the getter and setter
4674    *   callbacks whenever they are invoked.
4675    * \param settings Access control settings for the accessor. This is a bit
4676    *   field consisting of one of more of
4677    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4678    *   The default is to not allow cross-context access.
4679    *   ALL_CAN_READ means that all cross-context reads are allowed.
4680    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4681    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4682    *   cross-context access.
4683    * \param attribute The attributes of the property for which an accessor
4684    *   is added.
4685    * \param signature The signature describes valid receivers for the accessor
4686    *   and is used to perform implicit instance checks against them. If the
4687    *   receiver is incompatible (i.e. is not an instance of the constructor as
4688    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4689    *   thrown and no callback is invoked.
4690    */
4691   void SetNativeDataProperty(
4692       Local<String> name, AccessorGetterCallback getter,
4693       AccessorSetterCallback setter = 0,
4694       // TODO(dcarney): gcc can't handle Local below
4695       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4696       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4697       AccessControl settings = DEFAULT);
4698   void SetNativeDataProperty(
4699       Local<Name> name, AccessorNameGetterCallback getter,
4700       AccessorNameSetterCallback setter = 0,
4701       // TODO(dcarney): gcc can't handle Local below
4702       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4703       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4704       AccessControl settings = DEFAULT);
4705 
4706   /**
4707    * Like SetNativeDataProperty, but V8 will replace the native data property
4708    * with a real data property on first access.
4709    */
4710   void SetLazyDataProperty(Local<Name> name, AccessorNameGetterCallback getter,
4711                            Local<Value> data = Local<Value>(),
4712                            PropertyAttribute attribute = None);
4713 
4714   /**
4715    * During template instantiation, sets the value with the intrinsic property
4716    * from the correct context.
4717    */
4718   void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
4719                                 PropertyAttribute attribute = None);
4720 
4721  private:
4722   Template();
4723 
4724   friend class ObjectTemplate;
4725   friend class FunctionTemplate;
4726 };
4727 
4728 
4729 /**
4730  * NamedProperty[Getter|Setter] are used as interceptors on object.
4731  * See ObjectTemplate::SetNamedPropertyHandler.
4732  */
4733 typedef void (*NamedPropertyGetterCallback)(
4734     Local<String> property,
4735     const PropertyCallbackInfo<Value>& info);
4736 
4737 
4738 /**
4739  * Returns the value if the setter intercepts the request.
4740  * Otherwise, returns an empty handle.
4741  */
4742 typedef void (*NamedPropertySetterCallback)(
4743     Local<String> property,
4744     Local<Value> value,
4745     const PropertyCallbackInfo<Value>& info);
4746 
4747 
4748 /**
4749  * Returns a non-empty handle if the interceptor intercepts the request.
4750  * The result is an integer encoding property attributes (like v8::None,
4751  * v8::DontEnum, etc.)
4752  */
4753 typedef void (*NamedPropertyQueryCallback)(
4754     Local<String> property,
4755     const PropertyCallbackInfo<Integer>& info);
4756 
4757 
4758 /**
4759  * Returns a non-empty handle if the deleter intercepts the request.
4760  * The return value is true if the property could be deleted and false
4761  * otherwise.
4762  */
4763 typedef void (*NamedPropertyDeleterCallback)(
4764     Local<String> property,
4765     const PropertyCallbackInfo<Boolean>& info);
4766 
4767 
4768 /**
4769  * Returns an array containing the names of the properties the named
4770  * property getter intercepts.
4771  */
4772 typedef void (*NamedPropertyEnumeratorCallback)(
4773     const PropertyCallbackInfo<Array>& info);
4774 
4775 
4776 // TODO(dcarney): Deprecate and remove previous typedefs, and replace
4777 // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4778 
4779 /**
4780  * Interceptor for get requests on an object.
4781  *
4782  * Use `info.GetReturnValue().Set()` to set the return value of the
4783  * intercepted get request.
4784  *
4785  * \param property The name of the property for which the request was
4786  * intercepted.
4787  * \param info Information about the intercepted request, such as
4788  * isolate, receiver, return value, or whether running in `'use strict`' mode.
4789  * See `PropertyCallbackInfo`.
4790  *
4791  * \code
4792  *  void GetterCallback(
4793  *    Local<Name> name,
4794  *    const v8::PropertyCallbackInfo<v8::Value>& info) {
4795  *      info.GetReturnValue().Set(v8_num(42));
4796  *  }
4797  *
4798  *  v8::Local<v8::FunctionTemplate> templ =
4799  *      v8::FunctionTemplate::New(isolate);
4800  *  templ->InstanceTemplate()->SetHandler(
4801  *      v8::NamedPropertyHandlerConfiguration(GetterCallback));
4802  *  LocalContext env;
4803  *  env->Global()
4804  *      ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
4805  *                                             .ToLocalChecked()
4806  *                                             ->NewInstance(env.local())
4807  *                                             .ToLocalChecked())
4808  *      .FromJust();
4809  *  v8::Local<v8::Value> result = CompileRun("obj.a = 17; obj.a");
4810  *  CHECK(v8_num(42)->Equals(env.local(), result).FromJust());
4811  * \endcode
4812  *
4813  * See also `ObjectTemplate::SetHandler`.
4814  */
4815 typedef void (*GenericNamedPropertyGetterCallback)(
4816     Local<Name> property, const PropertyCallbackInfo<Value>& info);
4817 
4818 /**
4819  * Interceptor for set requests on an object.
4820  *
4821  * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4822  * or not. If the setter successfully intercepts the request, i.e., if the
4823  * request should not be further executed, call
4824  * `info.GetReturnValue().Set(value)`. If the setter
4825  * did not intercept the request, i.e., if the request should be handled as
4826  * if no interceptor is present, do not not call `Set()`.
4827  *
4828  * \param property The name of the property for which the request was
4829  * intercepted.
4830  * \param value The value which the property will have if the request
4831  * is not intercepted.
4832  * \param info Information about the intercepted request, such as
4833  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4834  * See `PropertyCallbackInfo`.
4835  *
4836  * See also
4837  * `ObjectTemplate::SetHandler.`
4838  */
4839 typedef void (*GenericNamedPropertySetterCallback)(
4840     Local<Name> property, Local<Value> value,
4841     const PropertyCallbackInfo<Value>& info);
4842 
4843 /**
4844  * Intercepts all requests that query the attributes of the
4845  * property, e.g., getOwnPropertyDescriptor(), propertyIsEnumerable(), and
4846  * defineProperty().
4847  *
4848  * Use `info.GetReturnValue().Set(value)` to set the property attributes. The
4849  * value is an interger encoding a `v8::PropertyAttribute`.
4850  *
4851  * \param property The name of the property for which the request was
4852  * intercepted.
4853  * \param info Information about the intercepted request, such as
4854  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4855  * See `PropertyCallbackInfo`.
4856  *
4857  * \note Some functions query the property attributes internally, even though
4858  * they do not return the attributes. For example, `hasOwnProperty()` can
4859  * trigger this interceptor depending on the state of the object.
4860  *
4861  * See also
4862  * `ObjectTemplate::SetHandler.`
4863  */
4864 typedef void (*GenericNamedPropertyQueryCallback)(
4865     Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4866 
4867 /**
4868  * Interceptor for delete requests on an object.
4869  *
4870  * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4871  * or not. If the deleter successfully intercepts the request, i.e., if the
4872  * request should not be further executed, call
4873  * `info.GetReturnValue().Set(value)` with a boolean `value`. The `value` is
4874  * used as the return value of `delete`.
4875  *
4876  * \param property The name of the property for which the request was
4877  * intercepted.
4878  * \param info Information about the intercepted request, such as
4879  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4880  * See `PropertyCallbackInfo`.
4881  *
4882  * \note If you need to mimic the behavior of `delete`, i.e., throw in strict
4883  * mode instead of returning false, use `info.ShouldThrowOnError()` to determine
4884  * if you are in strict mode.
4885  *
4886  * See also `ObjectTemplate::SetHandler.`
4887  */
4888 typedef void (*GenericNamedPropertyDeleterCallback)(
4889     Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4890 
4891 
4892 /**
4893  * Returns an array containing the names of the properties the named
4894  * property getter intercepts.
4895  */
4896 typedef void (*GenericNamedPropertyEnumeratorCallback)(
4897     const PropertyCallbackInfo<Array>& info);
4898 
4899 /**
4900  * Interceptor for defineProperty requests on an object.
4901  *
4902  * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4903  * or not. If the definer successfully intercepts the request, i.e., if the
4904  * request should not be further executed, call
4905  * `info.GetReturnValue().Set(value)`. If the definer
4906  * did not intercept the request, i.e., if the request should be handled as
4907  * if no interceptor is present, do not not call `Set()`.
4908  *
4909  * \param property The name of the property for which the request was
4910  * intercepted.
4911  * \param desc The property descriptor which is used to define the
4912  * property if the request is not intercepted.
4913  * \param info Information about the intercepted request, such as
4914  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4915  * See `PropertyCallbackInfo`.
4916  *
4917  * See also `ObjectTemplate::SetHandler`.
4918  */
4919 typedef void (*GenericNamedPropertyDefinerCallback)(
4920     Local<Name> property, const PropertyDescriptor& desc,
4921     const PropertyCallbackInfo<Value>& info);
4922 
4923 /**
4924  * Interceptor for getOwnPropertyDescriptor requests on an object.
4925  *
4926  * Use `info.GetReturnValue().Set()` to set the return value of the
4927  * intercepted request. The return value must be an object that
4928  * can be converted to a PropertyDescriptor, e.g., a `v8::value` returned from
4929  * `v8::Object::getOwnPropertyDescriptor`.
4930  *
4931  * \param property The name of the property for which the request was
4932  * intercepted.
4933  * \info Information about the intercepted request, such as
4934  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4935  * See `PropertyCallbackInfo`.
4936  *
4937  * \note If GetOwnPropertyDescriptor is intercepted, it will
4938  * always return true, i.e., indicate that the property was found.
4939  *
4940  * See also `ObjectTemplate::SetHandler`.
4941  */
4942 typedef void (*GenericNamedPropertyDescriptorCallback)(
4943     Local<Name> property, const PropertyCallbackInfo<Value>& info);
4944 
4945 /**
4946  * See `v8::GenericNamedPropertyGetterCallback`.
4947  */
4948 typedef void (*IndexedPropertyGetterCallback)(
4949     uint32_t index,
4950     const PropertyCallbackInfo<Value>& info);
4951 
4952 /**
4953  * See `v8::GenericNamedPropertySetterCallback`.
4954  */
4955 typedef void (*IndexedPropertySetterCallback)(
4956     uint32_t index,
4957     Local<Value> value,
4958     const PropertyCallbackInfo<Value>& info);
4959 
4960 /**
4961  * See `v8::GenericNamedPropertyQueryCallback`.
4962  */
4963 typedef void (*IndexedPropertyQueryCallback)(
4964     uint32_t index,
4965     const PropertyCallbackInfo<Integer>& info);
4966 
4967 /**
4968  * See `v8::GenericNamedPropertyDeleterCallback`.
4969  */
4970 typedef void (*IndexedPropertyDeleterCallback)(
4971     uint32_t index,
4972     const PropertyCallbackInfo<Boolean>& info);
4973 
4974 /**
4975  * See `v8::GenericNamedPropertyEnumeratorCallback`.
4976  */
4977 typedef void (*IndexedPropertyEnumeratorCallback)(
4978     const PropertyCallbackInfo<Array>& info);
4979 
4980 /**
4981  * See `v8::GenericNamedPropertyDefinerCallback`.
4982  */
4983 typedef void (*IndexedPropertyDefinerCallback)(
4984     uint32_t index, const PropertyDescriptor& desc,
4985     const PropertyCallbackInfo<Value>& info);
4986 
4987 /**
4988  * See `v8::GenericNamedPropertyDescriptorCallback`.
4989  */
4990 typedef void (*IndexedPropertyDescriptorCallback)(
4991     uint32_t index, const PropertyCallbackInfo<Value>& info);
4992 
4993 /**
4994  * Access type specification.
4995  */
4996 enum AccessType {
4997   ACCESS_GET,
4998   ACCESS_SET,
4999   ACCESS_HAS,
5000   ACCESS_DELETE,
5001   ACCESS_KEYS
5002 };
5003 
5004 
5005 /**
5006  * Returns true if the given context should be allowed to access the given
5007  * object.
5008  */
5009 typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
5010                                     Local<Object> accessed_object,
5011                                     Local<Value> data);
5012 
5013 /**
5014  * A FunctionTemplate is used to create functions at runtime. There
5015  * can only be one function created from a FunctionTemplate in a
5016  * context.  The lifetime of the created function is equal to the
5017  * lifetime of the context.  So in case the embedder needs to create
5018  * temporary functions that can be collected using Scripts is
5019  * preferred.
5020  *
5021  * Any modification of a FunctionTemplate after first instantiation will trigger
5022  * a crash.
5023  *
5024  * A FunctionTemplate can have properties, these properties are added to the
5025  * function object when it is created.
5026  *
5027  * A FunctionTemplate has a corresponding instance template which is
5028  * used to create object instances when the function is used as a
5029  * constructor. Properties added to the instance template are added to
5030  * each object instance.
5031  *
5032  * A FunctionTemplate can have a prototype template. The prototype template
5033  * is used to create the prototype object of the function.
5034  *
5035  * The following example shows how to use a FunctionTemplate:
5036  *
5037  * \code
5038  *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(isolate);
5039  *    t->Set(isolate, "func_property", v8::Number::New(isolate, 1));
5040  *
5041  *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
5042  *    proto_t->Set(isolate,
5043  *                 "proto_method",
5044  *                 v8::FunctionTemplate::New(isolate, InvokeCallback));
5045  *    proto_t->Set(isolate, "proto_const", v8::Number::New(isolate, 2));
5046  *
5047  *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
5048  *    instance_t->SetAccessor(String::NewFromUtf8(isolate, "instance_accessor"),
5049  *                            InstanceAccessorCallback);
5050  *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback);
5051  *    instance_t->Set(String::NewFromUtf8(isolate, "instance_property"),
5052  *                    Number::New(isolate, 3));
5053  *
5054  *    v8::Local<v8::Function> function = t->GetFunction();
5055  *    v8::Local<v8::Object> instance = function->NewInstance();
5056  * \endcode
5057  *
5058  * Let's use "function" as the JS variable name of the function object
5059  * and "instance" for the instance object created above.  The function
5060  * and the instance will have the following properties:
5061  *
5062  * \code
5063  *   func_property in function == true;
5064  *   function.func_property == 1;
5065  *
5066  *   function.prototype.proto_method() invokes 'InvokeCallback'
5067  *   function.prototype.proto_const == 2;
5068  *
5069  *   instance instanceof function == true;
5070  *   instance.instance_accessor calls 'InstanceAccessorCallback'
5071  *   instance.instance_property == 3;
5072  * \endcode
5073  *
5074  * A FunctionTemplate can inherit from another one by calling the
5075  * FunctionTemplate::Inherit method.  The following graph illustrates
5076  * the semantics of inheritance:
5077  *
5078  * \code
5079  *   FunctionTemplate Parent  -> Parent() . prototype -> { }
5080  *     ^                                                  ^
5081  *     | Inherit(Parent)                                  | .__proto__
5082  *     |                                                  |
5083  *   FunctionTemplate Child   -> Child()  . prototype -> { }
5084  * \endcode
5085  *
5086  * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
5087  * object of the Child() function has __proto__ pointing to the
5088  * Parent() function's prototype object. An instance of the Child
5089  * function has all properties on Parent's instance templates.
5090  *
5091  * Let Parent be the FunctionTemplate initialized in the previous
5092  * section and create a Child FunctionTemplate by:
5093  *
5094  * \code
5095  *   Local<FunctionTemplate> parent = t;
5096  *   Local<FunctionTemplate> child = FunctionTemplate::New();
5097  *   child->Inherit(parent);
5098  *
5099  *   Local<Function> child_function = child->GetFunction();
5100  *   Local<Object> child_instance = child_function->NewInstance();
5101  * \endcode
5102  *
5103  * The Child function and Child instance will have the following
5104  * properties:
5105  *
5106  * \code
5107  *   child_func.prototype.__proto__ == function.prototype;
5108  *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
5109  *   child_instance.instance_property == 3;
5110  * \endcode
5111  */
5112 class V8_EXPORT FunctionTemplate : public Template {
5113  public:
5114   /** Creates a function template.*/
5115   static Local<FunctionTemplate> New(
5116       Isolate* isolate, FunctionCallback callback = 0,
5117       Local<Value> data = Local<Value>(),
5118       Local<Signature> signature = Local<Signature>(), int length = 0,
5119       ConstructorBehavior behavior = ConstructorBehavior::kAllow);
5120 
5121   /** Get a template included in the snapshot by index. */
5122   static MaybeLocal<FunctionTemplate> FromSnapshot(Isolate* isolate,
5123                                                    size_t index);
5124 
5125   /**
5126    * Creates a function template with a fast handler. If a fast handler is set,
5127    * the callback cannot be null.
5128    */
5129   static Local<FunctionTemplate> NewWithFastHandler(
5130       Isolate* isolate, FunctionCallback callback,
5131       experimental::FastAccessorBuilder* fast_handler = nullptr,
5132       Local<Value> data = Local<Value>(),
5133       Local<Signature> signature = Local<Signature>(), int length = 0);
5134 
5135   /**
5136    * Creates a function template backed/cached by a private property.
5137    */
5138   static Local<FunctionTemplate> NewWithCache(
5139       Isolate* isolate, FunctionCallback callback,
5140       Local<Private> cache_property, Local<Value> data = Local<Value>(),
5141       Local<Signature> signature = Local<Signature>(), int length = 0);
5142 
5143   /** Returns the unique function instance in the current execution context.*/
5144   V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
5145   V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
5146       Local<Context> context);
5147 
5148   /**
5149    * Similar to Context::NewRemoteContext, this creates an instance that
5150    * isn't backed by an actual object.
5151    *
5152    * The InstanceTemplate of this FunctionTemplate must have access checks with
5153    * handlers installed.
5154    */
5155   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewRemoteInstance();
5156 
5157   /**
5158    * Set the call-handler callback for a FunctionTemplate.  This
5159    * callback is called whenever the function created from this
5160    * FunctionTemplate is called.
5161    */
5162   void SetCallHandler(
5163       FunctionCallback callback, Local<Value> data = Local<Value>(),
5164       experimental::FastAccessorBuilder* fast_handler = nullptr);
5165 
5166   /** Set the predefined length property for the FunctionTemplate. */
5167   void SetLength(int length);
5168 
5169   /** Get the InstanceTemplate. */
5170   Local<ObjectTemplate> InstanceTemplate();
5171 
5172   /**
5173    * Causes the function template to inherit from a parent function template.
5174    * This means the the function's prototype.__proto__ is set to the parent
5175    * function's prototype.
5176    **/
5177   void Inherit(Local<FunctionTemplate> parent);
5178 
5179   /**
5180    * A PrototypeTemplate is the template used to create the prototype object
5181    * of the function created by this template.
5182    */
5183   Local<ObjectTemplate> PrototypeTemplate();
5184 
5185   /**
5186    * A PrototypeProviderTemplate is another function template whose prototype
5187    * property is used for this template. This is mutually exclusive with setting
5188    * a prototype template indirectly by calling PrototypeTemplate() or using
5189    * Inherit().
5190    **/
5191   void SetPrototypeProviderTemplate(Local<FunctionTemplate> prototype_provider);
5192 
5193   /**
5194    * Set the class name of the FunctionTemplate.  This is used for
5195    * printing objects created with the function created from the
5196    * FunctionTemplate as its constructor.
5197    */
5198   void SetClassName(Local<String> name);
5199 
5200 
5201   /**
5202    * When set to true, no access check will be performed on the receiver of a
5203    * function call.  Currently defaults to true, but this is subject to change.
5204    */
5205   void SetAcceptAnyReceiver(bool value);
5206 
5207   /**
5208    * Determines whether the __proto__ accessor ignores instances of
5209    * the function template.  If instances of the function template are
5210    * ignored, __proto__ skips all instances and instead returns the
5211    * next object in the prototype chain.
5212    *
5213    * Call with a value of true to make the __proto__ accessor ignore
5214    * instances of the function template.  Call with a value of false
5215    * to make the __proto__ accessor not ignore instances of the
5216    * function template.  By default, instances of a function template
5217    * are not ignored.
5218    */
5219   void SetHiddenPrototype(bool value);
5220 
5221   /**
5222    * Sets the ReadOnly flag in the attributes of the 'prototype' property
5223    * of functions created from this FunctionTemplate to true.
5224    */
5225   void ReadOnlyPrototype();
5226 
5227   /**
5228    * Removes the prototype property from functions created from this
5229    * FunctionTemplate.
5230    */
5231   void RemovePrototype();
5232 
5233   /**
5234    * Returns true if the given object is an instance of this function
5235    * template.
5236    */
5237   bool HasInstance(Local<Value> object);
5238 
5239  private:
5240   FunctionTemplate();
5241   friend class Context;
5242   friend class ObjectTemplate;
5243 };
5244 
5245 /**
5246  * Configuration flags for v8::NamedPropertyHandlerConfiguration or
5247  * v8::IndexedPropertyHandlerConfiguration.
5248  */
5249 enum class PropertyHandlerFlags {
5250   /**
5251    * None.
5252    */
5253   kNone = 0,
5254 
5255   /**
5256    * See ALL_CAN_READ above.
5257    */
5258   kAllCanRead = 1,
5259 
5260   /** Will not call into interceptor for properties on the receiver or prototype
5261    * chain, i.e., only call into interceptor for properties that do not exist.
5262    * Currently only valid for named interceptors.
5263    */
5264   kNonMasking = 1 << 1,
5265 
5266   /**
5267    * Will not call into interceptor for symbol lookup.  Only meaningful for
5268    * named interceptors.
5269    */
5270   kOnlyInterceptStrings = 1 << 2,
5271 };
5272 
5273 struct NamedPropertyHandlerConfiguration {
5274   NamedPropertyHandlerConfiguration(
5275       /** Note: getter is required */
5276       GenericNamedPropertyGetterCallback getter = 0,
5277       GenericNamedPropertySetterCallback setter = 0,
5278       GenericNamedPropertyQueryCallback query = 0,
5279       GenericNamedPropertyDeleterCallback deleter = 0,
5280       GenericNamedPropertyEnumeratorCallback enumerator = 0,
5281       Local<Value> data = Local<Value>(),
5282       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5283       : getter(getter),
5284         setter(setter),
5285         query(query),
5286         deleter(deleter),
5287         enumerator(enumerator),
5288         definer(0),
5289         descriptor(0),
5290         data(data),
5291         flags(flags) {}
5292 
5293   NamedPropertyHandlerConfiguration(
5294       GenericNamedPropertyGetterCallback getter,
5295       GenericNamedPropertySetterCallback setter,
5296       GenericNamedPropertyDescriptorCallback descriptor,
5297       GenericNamedPropertyDeleterCallback deleter,
5298       GenericNamedPropertyEnumeratorCallback enumerator,
5299       GenericNamedPropertyDefinerCallback definer,
5300       Local<Value> data = Local<Value>(),
5301       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5302       : getter(getter),
5303         setter(setter),
5304         query(0),
5305         deleter(deleter),
5306         enumerator(enumerator),
5307         definer(definer),
5308         descriptor(descriptor),
5309         data(data),
5310         flags(flags) {}
5311 
5312   GenericNamedPropertyGetterCallback getter;
5313   GenericNamedPropertySetterCallback setter;
5314   GenericNamedPropertyQueryCallback query;
5315   GenericNamedPropertyDeleterCallback deleter;
5316   GenericNamedPropertyEnumeratorCallback enumerator;
5317   GenericNamedPropertyDefinerCallback definer;
5318   GenericNamedPropertyDescriptorCallback descriptor;
5319   Local<Value> data;
5320   PropertyHandlerFlags flags;
5321 };
5322 
5323 
5324 struct IndexedPropertyHandlerConfiguration {
5325   IndexedPropertyHandlerConfiguration(
5326       /** Note: getter is required */
5327       IndexedPropertyGetterCallback getter = 0,
5328       IndexedPropertySetterCallback setter = 0,
5329       IndexedPropertyQueryCallback query = 0,
5330       IndexedPropertyDeleterCallback deleter = 0,
5331       IndexedPropertyEnumeratorCallback enumerator = 0,
5332       Local<Value> data = Local<Value>(),
5333       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5334       : getter(getter),
5335         setter(setter),
5336         query(query),
5337         deleter(deleter),
5338         enumerator(enumerator),
5339         definer(0),
5340         descriptor(0),
5341         data(data),
5342         flags(flags) {}
5343 
5344   IndexedPropertyHandlerConfiguration(
5345       IndexedPropertyGetterCallback getter,
5346       IndexedPropertySetterCallback setter,
5347       IndexedPropertyDescriptorCallback descriptor,
5348       IndexedPropertyDeleterCallback deleter,
5349       IndexedPropertyEnumeratorCallback enumerator,
5350       IndexedPropertyDefinerCallback definer,
5351       Local<Value> data = Local<Value>(),
5352       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5353       : getter(getter),
5354         setter(setter),
5355         query(0),
5356         deleter(deleter),
5357         enumerator(enumerator),
5358         definer(definer),
5359         descriptor(descriptor),
5360         data(data),
5361         flags(flags) {}
5362 
5363   IndexedPropertyGetterCallback getter;
5364   IndexedPropertySetterCallback setter;
5365   IndexedPropertyQueryCallback query;
5366   IndexedPropertyDeleterCallback deleter;
5367   IndexedPropertyEnumeratorCallback enumerator;
5368   IndexedPropertyDefinerCallback definer;
5369   IndexedPropertyDescriptorCallback descriptor;
5370   Local<Value> data;
5371   PropertyHandlerFlags flags;
5372 };
5373 
5374 
5375 /**
5376  * An ObjectTemplate is used to create objects at runtime.
5377  *
5378  * Properties added to an ObjectTemplate are added to each object
5379  * created from the ObjectTemplate.
5380  */
5381 class V8_EXPORT ObjectTemplate : public Template {
5382  public:
5383   /** Creates an ObjectTemplate. */
5384   static Local<ObjectTemplate> New(
5385       Isolate* isolate,
5386       Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
5387   static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New());
5388 
5389   /** Get a template included in the snapshot by index. */
5390   static MaybeLocal<ObjectTemplate> FromSnapshot(Isolate* isolate,
5391                                                  size_t index);
5392 
5393   /** Creates a new instance of this template.*/
5394   V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
5395   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
5396 
5397   /**
5398    * Sets an accessor on the object template.
5399    *
5400    * Whenever the property with the given name is accessed on objects
5401    * created from this ObjectTemplate the getter and setter callbacks
5402    * are called instead of getting and setting the property directly
5403    * on the JavaScript object.
5404    *
5405    * \param name The name of the property for which an accessor is added.
5406    * \param getter The callback to invoke when getting the property.
5407    * \param setter The callback to invoke when setting the property.
5408    * \param data A piece of data that will be passed to the getter and setter
5409    *   callbacks whenever they are invoked.
5410    * \param settings Access control settings for the accessor. This is a bit
5411    *   field consisting of one of more of
5412    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
5413    *   The default is to not allow cross-context access.
5414    *   ALL_CAN_READ means that all cross-context reads are allowed.
5415    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
5416    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
5417    *   cross-context access.
5418    * \param attribute The attributes of the property for which an accessor
5419    *   is added.
5420    * \param signature The signature describes valid receivers for the accessor
5421    *   and is used to perform implicit instance checks against them. If the
5422    *   receiver is incompatible (i.e. is not an instance of the constructor as
5423    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
5424    *   thrown and no callback is invoked.
5425    */
5426   void SetAccessor(
5427       Local<String> name, AccessorGetterCallback getter,
5428       AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5429       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5430       Local<AccessorSignature> signature = Local<AccessorSignature>());
5431   void SetAccessor(
5432       Local<Name> name, AccessorNameGetterCallback getter,
5433       AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5434       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5435       Local<AccessorSignature> signature = Local<AccessorSignature>());
5436 
5437   /**
5438    * Sets a named property handler on the object template.
5439    *
5440    * Whenever a property whose name is a string is accessed on objects created
5441    * from this object template, the provided callback is invoked instead of
5442    * accessing the property directly on the JavaScript object.
5443    *
5444    * SetNamedPropertyHandler() is different from SetHandler(), in
5445    * that the latter can intercept symbol-named properties as well as
5446    * string-named properties when called with a
5447    * NamedPropertyHandlerConfiguration. New code should use SetHandler().
5448    *
5449    * \param getter The callback to invoke when getting a property.
5450    * \param setter The callback to invoke when setting a property.
5451    * \param query The callback to invoke to check if a property is present,
5452    *   and if present, get its attributes.
5453    * \param deleter The callback to invoke when deleting a property.
5454    * \param enumerator The callback to invoke to enumerate all the named
5455    *   properties of an object.
5456    * \param data A piece of data that will be passed to the callbacks
5457    *   whenever they are invoked.
5458    */
5459   // TODO(dcarney): deprecate
5460   void SetNamedPropertyHandler(NamedPropertyGetterCallback getter,
5461                                NamedPropertySetterCallback setter = 0,
5462                                NamedPropertyQueryCallback query = 0,
5463                                NamedPropertyDeleterCallback deleter = 0,
5464                                NamedPropertyEnumeratorCallback enumerator = 0,
5465                                Local<Value> data = Local<Value>());
5466 
5467   /**
5468    * Sets a named property handler on the object template.
5469    *
5470    * Whenever a property whose name is a string or a symbol is accessed on
5471    * objects created from this object template, the provided callback is
5472    * invoked instead of accessing the property directly on the JavaScript
5473    * object.
5474    *
5475    * @param configuration The NamedPropertyHandlerConfiguration that defines the
5476    * callbacks to invoke when accessing a property.
5477    */
5478   void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
5479 
5480   /**
5481    * Sets an indexed property handler on the object template.
5482    *
5483    * Whenever an indexed property is accessed on objects created from
5484    * this object template, the provided callback is invoked instead of
5485    * accessing the property directly on the JavaScript object.
5486    *
5487    * \param getter The callback to invoke when getting a property.
5488    * \param setter The callback to invoke when setting a property.
5489    * \param query The callback to invoke to check if an object has a property.
5490    * \param deleter The callback to invoke when deleting a property.
5491    * \param enumerator The callback to invoke to enumerate all the indexed
5492    *   properties of an object.
5493    * \param data A piece of data that will be passed to the callbacks
5494    *   whenever they are invoked.
5495    */
5496   // TODO(dcarney): deprecate
5497   void SetIndexedPropertyHandler(
5498       IndexedPropertyGetterCallback getter,
5499       IndexedPropertySetterCallback setter = 0,
5500       IndexedPropertyQueryCallback query = 0,
5501       IndexedPropertyDeleterCallback deleter = 0,
5502       IndexedPropertyEnumeratorCallback enumerator = 0,
5503       Local<Value> data = Local<Value>()) {
5504     SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
5505                                                    deleter, enumerator, data));
5506   }
5507 
5508   /**
5509    * Sets an indexed property handler on the object template.
5510    *
5511    * Whenever an indexed property is accessed on objects created from
5512    * this object template, the provided callback is invoked instead of
5513    * accessing the property directly on the JavaScript object.
5514    *
5515    * @param configuration The IndexedPropertyHandlerConfiguration that defines
5516    * the callbacks to invoke when accessing a property.
5517    */
5518   void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
5519 
5520   /**
5521    * Sets the callback to be used when calling instances created from
5522    * this template as a function.  If no callback is set, instances
5523    * behave like normal JavaScript objects that cannot be called as a
5524    * function.
5525    */
5526   void SetCallAsFunctionHandler(FunctionCallback callback,
5527                                 Local<Value> data = Local<Value>());
5528 
5529   /**
5530    * Mark object instances of the template as undetectable.
5531    *
5532    * In many ways, undetectable objects behave as though they are not
5533    * there.  They behave like 'undefined' in conditionals and when
5534    * printed.  However, properties can be accessed and called as on
5535    * normal objects.
5536    */
5537   void MarkAsUndetectable();
5538 
5539   /**
5540    * Sets access check callback on the object template and enables access
5541    * checks.
5542    *
5543    * When accessing properties on instances of this object template,
5544    * the access check callback will be called to determine whether or
5545    * not to allow cross-context access to the properties.
5546    */
5547   void SetAccessCheckCallback(AccessCheckCallback callback,
5548                               Local<Value> data = Local<Value>());
5549 
5550   /**
5551    * Like SetAccessCheckCallback but invokes an interceptor on failed access
5552    * checks instead of looking up all-can-read properties. You can only use
5553    * either this method or SetAccessCheckCallback, but not both at the same
5554    * time.
5555    */
5556   void SetAccessCheckCallbackAndHandler(
5557       AccessCheckCallback callback,
5558       const NamedPropertyHandlerConfiguration& named_handler,
5559       const IndexedPropertyHandlerConfiguration& indexed_handler,
5560       Local<Value> data = Local<Value>());
5561 
5562   /**
5563    * Gets the number of internal fields for objects generated from
5564    * this template.
5565    */
5566   int InternalFieldCount();
5567 
5568   /**
5569    * Sets the number of internal fields for objects generated from
5570    * this template.
5571    */
5572   void SetInternalFieldCount(int value);
5573 
5574   /**
5575    * Returns true if the object will be an immutable prototype exotic object.
5576    */
5577   bool IsImmutableProto();
5578 
5579   /**
5580    * Makes the ObjectTempate for an immutable prototype exotic object, with an
5581    * immutable __proto__.
5582    */
5583   void SetImmutableProto();
5584 
5585  private:
5586   ObjectTemplate();
5587   static Local<ObjectTemplate> New(internal::Isolate* isolate,
5588                                    Local<FunctionTemplate> constructor);
5589   friend class FunctionTemplate;
5590 };
5591 
5592 
5593 /**
5594  * A Signature specifies which receiver is valid for a function.
5595  */
5596 class V8_EXPORT Signature : public Data {
5597  public:
5598   static Local<Signature> New(
5599       Isolate* isolate,
5600       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5601 
5602  private:
5603   Signature();
5604 };
5605 
5606 
5607 /**
5608  * An AccessorSignature specifies which receivers are valid parameters
5609  * to an accessor callback.
5610  */
5611 class V8_EXPORT AccessorSignature : public Data {
5612  public:
5613   static Local<AccessorSignature> New(
5614       Isolate* isolate,
5615       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5616 
5617  private:
5618   AccessorSignature();
5619 };
5620 
5621 
5622 // --- Extensions ---
5623 
5624 class V8_EXPORT ExternalOneByteStringResourceImpl
5625     : public String::ExternalOneByteStringResource {
5626  public:
ExternalOneByteStringResourceImpl()5627   ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
ExternalOneByteStringResourceImpl(const char * data,size_t length)5628   ExternalOneByteStringResourceImpl(const char* data, size_t length)
5629       : data_(data), length_(length) {}
data()5630   const char* data() const { return data_; }
length()5631   size_t length() const { return length_; }
5632 
5633  private:
5634   const char* data_;
5635   size_t length_;
5636 };
5637 
5638 /**
5639  * Ignore
5640  */
5641 class V8_EXPORT Extension {  // NOLINT
5642  public:
5643   // Note that the strings passed into this constructor must live as long
5644   // as the Extension itself.
5645   Extension(const char* name,
5646             const char* source = 0,
5647             int dep_count = 0,
5648             const char** deps = 0,
5649             int source_length = -1);
~Extension()5650   virtual ~Extension() { }
GetNativeFunctionTemplate(Isolate * isolate,Local<String> name)5651   virtual Local<FunctionTemplate> GetNativeFunctionTemplate(
5652       Isolate* isolate, Local<String> name) {
5653     return Local<FunctionTemplate>();
5654   }
5655 
name()5656   const char* name() const { return name_; }
source_length()5657   size_t source_length() const { return source_length_; }
source()5658   const String::ExternalOneByteStringResource* source() const {
5659     return &source_; }
dependency_count()5660   int dependency_count() { return dep_count_; }
dependencies()5661   const char** dependencies() { return deps_; }
set_auto_enable(bool value)5662   void set_auto_enable(bool value) { auto_enable_ = value; }
auto_enable()5663   bool auto_enable() { return auto_enable_; }
5664 
5665   // Disallow copying and assigning.
5666   Extension(const Extension&) = delete;
5667   void operator=(const Extension&) = delete;
5668 
5669  private:
5670   const char* name_;
5671   size_t source_length_;  // expected to initialize before source_
5672   ExternalOneByteStringResourceImpl source_;
5673   int dep_count_;
5674   const char** deps_;
5675   bool auto_enable_;
5676 };
5677 
5678 
5679 void V8_EXPORT RegisterExtension(Extension* extension);
5680 
5681 
5682 // --- Statics ---
5683 
5684 V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
5685 V8_INLINE Local<Primitive> Null(Isolate* isolate);
5686 V8_INLINE Local<Boolean> True(Isolate* isolate);
5687 V8_INLINE Local<Boolean> False(Isolate* isolate);
5688 
5689 /**
5690  * A set of constraints that specifies the limits of the runtime's memory use.
5691  * You must set the heap size before initializing the VM - the size cannot be
5692  * adjusted after the VM is initialized.
5693  *
5694  * If you are using threads then you should hold the V8::Locker lock while
5695  * setting the stack limit and you must set a non-default stack limit separately
5696  * for each thread.
5697  *
5698  * The arguments for set_max_semi_space_size, set_max_old_space_size,
5699  * set_max_executable_size, set_code_range_size specify limits in MB.
5700  */
5701 class V8_EXPORT ResourceConstraints {
5702  public:
5703   ResourceConstraints();
5704 
5705   /**
5706    * Configures the constraints with reasonable default values based on the
5707    * capabilities of the current device the VM is running on.
5708    *
5709    * \param physical_memory The total amount of physical memory on the current
5710    *   device, in bytes.
5711    * \param virtual_memory_limit The amount of virtual memory on the current
5712    *   device, in bytes, or zero, if there is no limit.
5713    */
5714   void ConfigureDefaults(uint64_t physical_memory,
5715                          uint64_t virtual_memory_limit);
5716 
max_semi_space_size()5717   int max_semi_space_size() const { return max_semi_space_size_; }
set_max_semi_space_size(int limit_in_mb)5718   void set_max_semi_space_size(int limit_in_mb) {
5719     max_semi_space_size_ = limit_in_mb;
5720   }
max_old_space_size()5721   int max_old_space_size() const { return max_old_space_size_; }
set_max_old_space_size(int limit_in_mb)5722   void set_max_old_space_size(int limit_in_mb) {
5723     max_old_space_size_ = limit_in_mb;
5724   }
max_executable_size()5725   int max_executable_size() const { return max_executable_size_; }
set_max_executable_size(int limit_in_mb)5726   void set_max_executable_size(int limit_in_mb) {
5727     max_executable_size_ = limit_in_mb;
5728   }
stack_limit()5729   uint32_t* stack_limit() const { return stack_limit_; }
5730   // Sets an address beyond which the VM's stack may not grow.
set_stack_limit(uint32_t * value)5731   void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
code_range_size()5732   size_t code_range_size() const { return code_range_size_; }
set_code_range_size(size_t limit_in_mb)5733   void set_code_range_size(size_t limit_in_mb) {
5734     code_range_size_ = limit_in_mb;
5735   }
max_zone_pool_size()5736   size_t max_zone_pool_size() const { return max_zone_pool_size_; }
set_max_zone_pool_size(const size_t bytes)5737   void set_max_zone_pool_size(const size_t bytes) {
5738     max_zone_pool_size_ = bytes;
5739   }
5740 
5741  private:
5742   int max_semi_space_size_;
5743   int max_old_space_size_;
5744   int max_executable_size_;
5745   uint32_t* stack_limit_;
5746   size_t code_range_size_;
5747   size_t max_zone_pool_size_;
5748 };
5749 
5750 
5751 // --- Exceptions ---
5752 
5753 
5754 typedef void (*FatalErrorCallback)(const char* location, const char* message);
5755 
5756 typedef void (*OOMErrorCallback)(const char* location, bool is_heap_oom);
5757 
5758 typedef void (*MessageCallback)(Local<Message> message, Local<Value> data);
5759 
5760 // --- Tracing ---
5761 
5762 typedef void (*LogEventCallback)(const char* name, int event);
5763 
5764 /**
5765  * Create new error objects by calling the corresponding error object
5766  * constructor with the message.
5767  */
5768 class V8_EXPORT Exception {
5769  public:
5770   static Local<Value> RangeError(Local<String> message);
5771   static Local<Value> ReferenceError(Local<String> message);
5772   static Local<Value> SyntaxError(Local<String> message);
5773   static Local<Value> TypeError(Local<String> message);
5774   static Local<Value> Error(Local<String> message);
5775 
5776   /**
5777    * Creates an error message for the given exception.
5778    * Will try to reconstruct the original stack trace from the exception value,
5779    * or capture the current stack trace if not available.
5780    */
5781   static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
5782   V8_DEPRECATED("Use version with an Isolate*",
5783                 static Local<Message> CreateMessage(Local<Value> exception));
5784 
5785   /**
5786    * Returns the original stack trace that was captured at the creation time
5787    * of a given exception, or an empty handle if not available.
5788    */
5789   static Local<StackTrace> GetStackTrace(Local<Value> exception);
5790 };
5791 
5792 
5793 // --- Counters Callbacks ---
5794 
5795 typedef int* (*CounterLookupCallback)(const char* name);
5796 
5797 typedef void* (*CreateHistogramCallback)(const char* name,
5798                                          int min,
5799                                          int max,
5800                                          size_t buckets);
5801 
5802 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
5803 
5804 // --- Memory Allocation Callback ---
5805 enum ObjectSpace {
5806   kObjectSpaceNewSpace = 1 << 0,
5807   kObjectSpaceOldSpace = 1 << 1,
5808   kObjectSpaceCodeSpace = 1 << 2,
5809   kObjectSpaceMapSpace = 1 << 3,
5810   kObjectSpaceLoSpace = 1 << 4,
5811   kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
5812                     kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
5813                     kObjectSpaceLoSpace
5814 };
5815 
5816   enum AllocationAction {
5817     kAllocationActionAllocate = 1 << 0,
5818     kAllocationActionFree = 1 << 1,
5819     kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
5820   };
5821 
5822 // --- Enter/Leave Script Callback ---
5823 typedef void (*BeforeCallEnteredCallback)(Isolate*);
5824 typedef void (*CallCompletedCallback)(Isolate*);
5825 typedef void (*DeprecatedCallCompletedCallback)();
5826 
5827 /**
5828  * PromiseHook with type kInit is called when a new promise is
5829  * created. When a new promise is created as part of the chain in the
5830  * case of Promise.then or in the intermediate promises created by
5831  * Promise.{race, all}/AsyncFunctionAwait, we pass the parent promise
5832  * otherwise we pass undefined.
5833  *
5834  * PromiseHook with type kResolve is called at the beginning of
5835  * resolve or reject function defined by CreateResolvingFunctions.
5836  *
5837  * PromiseHook with type kBefore is called at the beginning of the
5838  * PromiseReactionJob.
5839  *
5840  * PromiseHook with type kAfter is called right at the end of the
5841  * PromiseReactionJob.
5842  */
5843 enum class PromiseHookType { kInit, kResolve, kBefore, kAfter };
5844 
5845 typedef void (*PromiseHook)(PromiseHookType type, Local<Promise> promise,
5846                             Local<Value> parent);
5847 
5848 // --- Promise Reject Callback ---
5849 enum PromiseRejectEvent {
5850   kPromiseRejectWithNoHandler = 0,
5851   kPromiseHandlerAddedAfterReject = 1
5852 };
5853 
5854 class PromiseRejectMessage {
5855  public:
PromiseRejectMessage(Local<Promise> promise,PromiseRejectEvent event,Local<Value> value,Local<StackTrace> stack_trace)5856   PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
5857                        Local<Value> value, Local<StackTrace> stack_trace)
5858       : promise_(promise),
5859         event_(event),
5860         value_(value),
5861         stack_trace_(stack_trace) {}
5862 
GetPromise()5863   V8_INLINE Local<Promise> GetPromise() const { return promise_; }
GetEvent()5864   V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
GetValue()5865   V8_INLINE Local<Value> GetValue() const { return value_; }
5866 
5867   V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()",
5868                 V8_INLINE Local<StackTrace> GetStackTrace() const) {
5869     return stack_trace_;
5870   }
5871 
5872  private:
5873   Local<Promise> promise_;
5874   PromiseRejectEvent event_;
5875   Local<Value> value_;
5876   Local<StackTrace> stack_trace_;
5877 };
5878 
5879 typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
5880 
5881 // --- Microtasks Callbacks ---
5882 typedef void (*MicrotasksCompletedCallback)(Isolate*);
5883 typedef void (*MicrotaskCallback)(void* data);
5884 
5885 
5886 /**
5887  * Policy for running microtasks:
5888  *   - explicit: microtasks are invoked with Isolate::RunMicrotasks() method;
5889  *   - scoped: microtasks invocation is controlled by MicrotasksScope objects;
5890  *   - auto: microtasks are invoked when the script call depth decrements
5891  *           to zero.
5892  */
5893 enum class MicrotasksPolicy { kExplicit, kScoped, kAuto };
5894 
5895 
5896 /**
5897  * This scope is used to control microtasks when kScopeMicrotasksInvocation
5898  * is used on Isolate. In this mode every non-primitive call to V8 should be
5899  * done inside some MicrotasksScope.
5900  * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks
5901  * exits.
5902  * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger
5903  * microtasks.
5904  */
5905 class V8_EXPORT MicrotasksScope {
5906  public:
5907   enum Type { kRunMicrotasks, kDoNotRunMicrotasks };
5908 
5909   MicrotasksScope(Isolate* isolate, Type type);
5910   ~MicrotasksScope();
5911 
5912   /**
5913    * Runs microtasks if no kRunMicrotasks scope is currently active.
5914    */
5915   static void PerformCheckpoint(Isolate* isolate);
5916 
5917   /**
5918    * Returns current depth of nested kRunMicrotasks scopes.
5919    */
5920   static int GetCurrentDepth(Isolate* isolate);
5921 
5922   /**
5923    * Returns true while microtasks are being executed.
5924    */
5925   static bool IsRunningMicrotasks(Isolate* isolate);
5926 
5927   // Prevent copying.
5928   MicrotasksScope(const MicrotasksScope&) = delete;
5929   MicrotasksScope& operator=(const MicrotasksScope&) = delete;
5930 
5931  private:
5932   internal::Isolate* const isolate_;
5933   bool run_;
5934 };
5935 
5936 
5937 // --- Failed Access Check Callback ---
5938 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
5939                                           AccessType type,
5940                                           Local<Value> data);
5941 
5942 // --- AllowCodeGenerationFromStrings callbacks ---
5943 
5944 /**
5945  * Callback to check if code generation from strings is allowed. See
5946  * Context::AllowCodeGenerationFromStrings.
5947  */
5948 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
5949 
5950 // --- WASM compilation callbacks ---
5951 
5952 /**
5953  * Callback to check if a buffer source may be compiled to WASM, given
5954  * the compilation is attempted as a promise or not.
5955  */
5956 
5957 typedef bool (*AllowWasmCompileCallback)(Isolate* isolate, Local<Value> source,
5958                                          bool as_promise);
5959 
5960 typedef bool (*AllowWasmInstantiateCallback)(Isolate* isolate,
5961                                              Local<Value> module_or_bytes,
5962                                              MaybeLocal<Value> ffi,
5963                                              bool as_promise);
5964 
5965 // --- Garbage Collection Callbacks ---
5966 
5967 /**
5968  * Applications can register callback functions which will be called before and
5969  * after certain garbage collection operations.  Allocations are not allowed in
5970  * the callback functions, you therefore cannot manipulate objects (set or
5971  * delete properties for example) since it is possible such operations will
5972  * result in the allocation of objects.
5973  */
5974 enum GCType {
5975   kGCTypeScavenge = 1 << 0,
5976   kGCTypeMarkSweepCompact = 1 << 1,
5977   kGCTypeIncrementalMarking = 1 << 2,
5978   kGCTypeProcessWeakCallbacks = 1 << 3,
5979   kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
5980                kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
5981 };
5982 
5983 /**
5984  * GCCallbackFlags is used to notify additional information about the GC
5985  * callback.
5986  *   - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for
5987  *     constructing retained object infos.
5988  *   - kGCCallbackFlagForced: The GC callback is for a forced GC for testing.
5989  *   - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback
5990  *     is called synchronously without getting posted to an idle task.
5991  *   - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called
5992  *     in a phase where V8 is trying to collect all available garbage
5993  *     (e.g., handling a low memory notification).
5994  */
5995 enum GCCallbackFlags {
5996   kNoGCCallbackFlags = 0,
5997   kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
5998   kGCCallbackFlagForced = 1 << 2,
5999   kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3,
6000   kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4,
6001   kGCCallbackFlagCollectAllExternalMemory = 1 << 5,
6002 };
6003 
6004 typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
6005 
6006 typedef void (*InterruptCallback)(Isolate* isolate, void* data);
6007 
6008 
6009 /**
6010  * Collection of V8 heap information.
6011  *
6012  * Instances of this class can be passed to v8::V8::HeapStatistics to
6013  * get heap statistics from V8.
6014  */
6015 class V8_EXPORT HeapStatistics {
6016  public:
6017   HeapStatistics();
total_heap_size()6018   size_t total_heap_size() { return total_heap_size_; }
total_heap_size_executable()6019   size_t total_heap_size_executable() { return total_heap_size_executable_; }
total_physical_size()6020   size_t total_physical_size() { return total_physical_size_; }
total_available_size()6021   size_t total_available_size() { return total_available_size_; }
used_heap_size()6022   size_t used_heap_size() { return used_heap_size_; }
heap_size_limit()6023   size_t heap_size_limit() { return heap_size_limit_; }
malloced_memory()6024   size_t malloced_memory() { return malloced_memory_; }
peak_malloced_memory()6025   size_t peak_malloced_memory() { return peak_malloced_memory_; }
does_zap_garbage()6026   size_t does_zap_garbage() { return does_zap_garbage_; }
6027 
6028  private:
6029   size_t total_heap_size_;
6030   size_t total_heap_size_executable_;
6031   size_t total_physical_size_;
6032   size_t total_available_size_;
6033   size_t used_heap_size_;
6034   size_t heap_size_limit_;
6035   size_t malloced_memory_;
6036   size_t peak_malloced_memory_;
6037   bool does_zap_garbage_;
6038 
6039   friend class V8;
6040   friend class Isolate;
6041 };
6042 
6043 
6044 class V8_EXPORT HeapSpaceStatistics {
6045  public:
6046   HeapSpaceStatistics();
space_name()6047   const char* space_name() { return space_name_; }
space_size()6048   size_t space_size() { return space_size_; }
space_used_size()6049   size_t space_used_size() { return space_used_size_; }
space_available_size()6050   size_t space_available_size() { return space_available_size_; }
physical_space_size()6051   size_t physical_space_size() { return physical_space_size_; }
6052 
6053  private:
6054   const char* space_name_;
6055   size_t space_size_;
6056   size_t space_used_size_;
6057   size_t space_available_size_;
6058   size_t physical_space_size_;
6059 
6060   friend class Isolate;
6061 };
6062 
6063 
6064 class V8_EXPORT HeapObjectStatistics {
6065  public:
6066   HeapObjectStatistics();
object_type()6067   const char* object_type() { return object_type_; }
object_sub_type()6068   const char* object_sub_type() { return object_sub_type_; }
object_count()6069   size_t object_count() { return object_count_; }
object_size()6070   size_t object_size() { return object_size_; }
6071 
6072  private:
6073   const char* object_type_;
6074   const char* object_sub_type_;
6075   size_t object_count_;
6076   size_t object_size_;
6077 
6078   friend class Isolate;
6079 };
6080 
6081 class V8_EXPORT HeapCodeStatistics {
6082  public:
6083   HeapCodeStatistics();
code_and_metadata_size()6084   size_t code_and_metadata_size() { return code_and_metadata_size_; }
bytecode_and_metadata_size()6085   size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; }
6086 
6087  private:
6088   size_t code_and_metadata_size_;
6089   size_t bytecode_and_metadata_size_;
6090 
6091   friend class Isolate;
6092 };
6093 
6094 class RetainedObjectInfo;
6095 
6096 
6097 /**
6098  * FunctionEntryHook is the type of the profile entry hook called at entry to
6099  * any generated function when function-level profiling is enabled.
6100  *
6101  * \param function the address of the function that's being entered.
6102  * \param return_addr_location points to a location on stack where the machine
6103  *    return address resides. This can be used to identify the caller of
6104  *    \p function, and/or modified to divert execution when \p function exits.
6105  *
6106  * \note the entry hook must not cause garbage collection.
6107  */
6108 typedef void (*FunctionEntryHook)(uintptr_t function,
6109                                   uintptr_t return_addr_location);
6110 
6111 /**
6112  * A JIT code event is issued each time code is added, moved or removed.
6113  *
6114  * \note removal events are not currently issued.
6115  */
6116 struct JitCodeEvent {
6117   enum EventType {
6118     CODE_ADDED,
6119     CODE_MOVED,
6120     CODE_REMOVED,
6121     CODE_ADD_LINE_POS_INFO,
6122     CODE_START_LINE_INFO_RECORDING,
6123     CODE_END_LINE_INFO_RECORDING
6124   };
6125   // Definition of the code position type. The "POSITION" type means the place
6126   // in the source code which are of interest when making stack traces to
6127   // pin-point the source location of a stack frame as close as possible.
6128   // The "STATEMENT_POSITION" means the place at the beginning of each
6129   // statement, and is used to indicate possible break locations.
6130   enum PositionType { POSITION, STATEMENT_POSITION };
6131 
6132   // Type of event.
6133   EventType type;
6134   // Start of the instructions.
6135   void* code_start;
6136   // Size of the instructions.
6137   size_t code_len;
6138   // Script info for CODE_ADDED event.
6139   Local<UnboundScript> script;
6140   // User-defined data for *_LINE_INFO_* event. It's used to hold the source
6141   // code line information which is returned from the
6142   // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
6143   // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
6144   void* user_data;
6145 
6146   struct name_t {
6147     // Name of the object associated with the code, note that the string is not
6148     // zero-terminated.
6149     const char* str;
6150     // Number of chars in str.
6151     size_t len;
6152   };
6153 
6154   struct line_info_t {
6155     // PC offset
6156     size_t offset;
6157     // Code postion
6158     size_t pos;
6159     // The position type.
6160     PositionType position_type;
6161   };
6162 
6163   union {
6164     // Only valid for CODE_ADDED.
6165     struct name_t name;
6166 
6167     // Only valid for CODE_ADD_LINE_POS_INFO
6168     struct line_info_t line_info;
6169 
6170     // New location of instructions. Only valid for CODE_MOVED.
6171     void* new_code_start;
6172   };
6173 };
6174 
6175 /**
6176  * Option flags passed to the SetRAILMode function.
6177  * See documentation https://developers.google.com/web/tools/chrome-devtools/
6178  * profile/evaluate-performance/rail
6179  */
6180 enum RAILMode {
6181   // Response performance mode: In this mode very low virtual machine latency
6182   // is provided. V8 will try to avoid JavaScript execution interruptions.
6183   // Throughput may be throttled.
6184   PERFORMANCE_RESPONSE,
6185   // Animation performance mode: In this mode low virtual machine latency is
6186   // provided. V8 will try to avoid as many JavaScript execution interruptions
6187   // as possible. Throughput may be throttled. This is the default mode.
6188   PERFORMANCE_ANIMATION,
6189   // Idle performance mode: The embedder is idle. V8 can complete deferred work
6190   // in this mode.
6191   PERFORMANCE_IDLE,
6192   // Load performance mode: In this mode high throughput is provided. V8 may
6193   // turn off latency optimizations.
6194   PERFORMANCE_LOAD
6195 };
6196 
6197 /**
6198  * Option flags passed to the SetJitCodeEventHandler function.
6199  */
6200 enum JitCodeEventOptions {
6201   kJitCodeEventDefault = 0,
6202   // Generate callbacks for already existent code.
6203   kJitCodeEventEnumExisting = 1
6204 };
6205 
6206 
6207 /**
6208  * Callback function passed to SetJitCodeEventHandler.
6209  *
6210  * \param event code add, move or removal event.
6211  */
6212 typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
6213 
6214 
6215 /**
6216  * Interface for iterating through all external resources in the heap.
6217  */
6218 class V8_EXPORT ExternalResourceVisitor {  // NOLINT
6219  public:
~ExternalResourceVisitor()6220   virtual ~ExternalResourceVisitor() {}
VisitExternalString(Local<String> string)6221   virtual void VisitExternalString(Local<String> string) {}
6222 };
6223 
6224 
6225 /**
6226  * Interface for iterating through all the persistent handles in the heap.
6227  */
6228 class V8_EXPORT PersistentHandleVisitor {  // NOLINT
6229  public:
~PersistentHandleVisitor()6230   virtual ~PersistentHandleVisitor() {}
VisitPersistentHandle(Persistent<Value> * value,uint16_t class_id)6231   virtual void VisitPersistentHandle(Persistent<Value>* value,
6232                                      uint16_t class_id) {}
6233 };
6234 
6235 /**
6236  * Memory pressure level for the MemoryPressureNotification.
6237  * kNone hints V8 that there is no memory pressure.
6238  * kModerate hints V8 to speed up incremental garbage collection at the cost of
6239  * of higher latency due to garbage collection pauses.
6240  * kCritical hints V8 to free memory as soon as possible. Garbage collection
6241  * pauses at this level will be large.
6242  */
6243 enum class MemoryPressureLevel { kNone, kModerate, kCritical };
6244 
6245 /**
6246  * Interface for tracing through the embedder heap. During a v8 garbage
6247  * collection, v8 collects hidden fields of all potential wrappers, and at the
6248  * end of its marking phase iterates the collection and asks the embedder to
6249  * trace through its heap and use reporter to report each JavaScript object
6250  * reachable from any of the given wrappers.
6251  *
6252  * Before the first call to the TraceWrappersFrom function TracePrologue will be
6253  * called. When the garbage collection cycle is finished, TraceEpilogue will be
6254  * called.
6255  */
6256 class V8_EXPORT EmbedderHeapTracer {
6257  public:
6258   enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION };
6259 
6260   struct AdvanceTracingActions {
AdvanceTracingActionsAdvanceTracingActions6261     explicit AdvanceTracingActions(ForceCompletionAction force_completion_)
6262         : force_completion(force_completion_) {}
6263 
6264     ForceCompletionAction force_completion;
6265   };
6266 
6267   /**
6268    * Called by v8 to register internal fields of found wrappers.
6269    *
6270    * The embedder is expected to store them somewhere and trace reachable
6271    * wrappers from them when called through |AdvanceTracing|.
6272    */
6273   virtual void RegisterV8References(
6274       const std::vector<std::pair<void*, void*> >& internal_fields) = 0;
6275 
6276   /**
6277    * Called at the beginning of a GC cycle.
6278    */
6279   virtual void TracePrologue() = 0;
6280 
6281   /**
6282    * Called to to make a tracing step in the embedder.
6283    *
6284    * The embedder is expected to trace its heap starting from wrappers reported
6285    * by RegisterV8References method, and report back all reachable wrappers.
6286    * Furthermore, the embedder is expected to stop tracing by the given
6287    * deadline.
6288    *
6289    * Returns true if there is still work to do.
6290    */
6291   virtual bool AdvanceTracing(double deadline_in_ms,
6292                               AdvanceTracingActions actions) = 0;
6293 
6294   /**
6295    * Called at the end of a GC cycle.
6296    *
6297    * Note that allocation is *not* allowed within |TraceEpilogue|.
6298    */
6299   virtual void TraceEpilogue() = 0;
6300 
6301   /**
6302    * Called upon entering the final marking pause. No more incremental marking
6303    * steps will follow this call.
6304    */
6305   virtual void EnterFinalPause() = 0;
6306 
6307   /**
6308    * Called when tracing is aborted.
6309    *
6310    * The embedder is expected to throw away all intermediate data and reset to
6311    * the initial state.
6312    */
6313   virtual void AbortTracing() = 0;
6314 
6315   /**
6316    * Returns the number of wrappers that are still to be traced by the embedder.
6317    */
NumberOfWrappersToTrace()6318   virtual size_t NumberOfWrappersToTrace() { return 0; }
6319 
6320  protected:
6321   virtual ~EmbedderHeapTracer() = default;
6322 };
6323 
6324 /**
6325  * Callback and supporting data used in SnapshotCreator to implement embedder
6326  * logic to serialize internal fields.
6327  */
6328 struct SerializeInternalFieldsCallback {
6329   typedef StartupData (*CallbackFunction)(Local<Object> holder, int index,
6330                                           void* data);
6331   SerializeInternalFieldsCallback(CallbackFunction function = nullptr,
6332                                   void* data_arg = nullptr)
callbackSerializeInternalFieldsCallback6333       : callback(function), data(data_arg) {}
6334   CallbackFunction callback;
6335   void* data;
6336 };
6337 
6338 /**
6339  * Callback and supporting data used to implement embedder logic to deserialize
6340  * internal fields.
6341  */
6342 struct DeserializeInternalFieldsCallback {
6343   typedef void (*CallbackFunction)(Local<Object> holder, int index,
6344                                    StartupData payload, void* data);
6345   DeserializeInternalFieldsCallback(CallbackFunction function = nullptr,
6346                                     void* data_arg = nullptr)
callbackDeserializeInternalFieldsCallback6347       : callback(function), data(data_arg) {}
6348   void (*callback)(Local<Object> holder, int index, StartupData payload,
6349                    void* data);
6350   void* data;
6351 };
6352 
6353 /**
6354  * Isolate represents an isolated instance of the V8 engine.  V8 isolates have
6355  * completely separate states.  Objects from one isolate must not be used in
6356  * other isolates.  The embedder can create multiple isolates and use them in
6357  * parallel in multiple threads.  An isolate can be entered by at most one
6358  * thread at any given time.  The Locker/Unlocker API must be used to
6359  * synchronize.
6360  */
6361 class V8_EXPORT Isolate {
6362  public:
6363   /**
6364    * Initial configuration parameters for a new Isolate.
6365    */
6366   struct CreateParams {
CreateParamsCreateParams6367     CreateParams()
6368         : entry_hook(nullptr),
6369           code_event_handler(nullptr),
6370           snapshot_blob(nullptr),
6371           counter_lookup_callback(nullptr),
6372           create_histogram_callback(nullptr),
6373           add_histogram_sample_callback(nullptr),
6374           array_buffer_allocator(nullptr),
6375           external_references(nullptr),
6376           allow_atomics_wait(true) {}
6377 
6378     /**
6379      * The optional entry_hook allows the host application to provide the
6380      * address of a function that's invoked on entry to every V8-generated
6381      * function.  Note that entry_hook is invoked at the very start of each
6382      * generated function. Furthermore, if an entry_hook is given, V8 will
6383      * not use a snapshot, including custom snapshots.
6384      */
6385     FunctionEntryHook entry_hook;
6386 
6387     /**
6388      * Allows the host application to provide the address of a function that is
6389      * notified each time code is added, moved or removed.
6390      */
6391     JitCodeEventHandler code_event_handler;
6392 
6393     /**
6394      * ResourceConstraints to use for the new Isolate.
6395      */
6396     ResourceConstraints constraints;
6397 
6398     /**
6399      * Explicitly specify a startup snapshot blob. The embedder owns the blob.
6400      */
6401     StartupData* snapshot_blob;
6402 
6403 
6404     /**
6405      * Enables the host application to provide a mechanism for recording
6406      * statistics counters.
6407      */
6408     CounterLookupCallback counter_lookup_callback;
6409 
6410     /**
6411      * Enables the host application to provide a mechanism for recording
6412      * histograms. The CreateHistogram function returns a
6413      * histogram which will later be passed to the AddHistogramSample
6414      * function.
6415      */
6416     CreateHistogramCallback create_histogram_callback;
6417     AddHistogramSampleCallback add_histogram_sample_callback;
6418 
6419     /**
6420      * The ArrayBuffer::Allocator to use for allocating and freeing the backing
6421      * store of ArrayBuffers.
6422      */
6423     ArrayBuffer::Allocator* array_buffer_allocator;
6424 
6425     /**
6426      * Specifies an optional nullptr-terminated array of raw addresses in the
6427      * embedder that V8 can match against during serialization and use for
6428      * deserialization. This array and its content must stay valid for the
6429      * entire lifetime of the isolate.
6430      */
6431     intptr_t* external_references;
6432 
6433     /**
6434      * Whether calling Atomics.wait (a function that may block) is allowed in
6435      * this isolate.
6436      */
6437     bool allow_atomics_wait;
6438   };
6439 
6440 
6441   /**
6442    * Stack-allocated class which sets the isolate for all operations
6443    * executed within a local scope.
6444    */
6445   class V8_EXPORT Scope {
6446    public:
Scope(Isolate * isolate)6447     explicit Scope(Isolate* isolate) : isolate_(isolate) {
6448       isolate->Enter();
6449     }
6450 
~Scope()6451     ~Scope() { isolate_->Exit(); }
6452 
6453     // Prevent copying of Scope objects.
6454     Scope(const Scope&) = delete;
6455     Scope& operator=(const Scope&) = delete;
6456 
6457    private:
6458     Isolate* const isolate_;
6459   };
6460 
6461 
6462   /**
6463    * Assert that no Javascript code is invoked.
6464    */
6465   class V8_EXPORT DisallowJavascriptExecutionScope {
6466    public:
6467     enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
6468 
6469     DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
6470     ~DisallowJavascriptExecutionScope();
6471 
6472     // Prevent copying of Scope objects.
6473     DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&) =
6474         delete;
6475     DisallowJavascriptExecutionScope& operator=(
6476         const DisallowJavascriptExecutionScope&) = delete;
6477 
6478    private:
6479     bool on_failure_;
6480     void* internal_;
6481   };
6482 
6483 
6484   /**
6485    * Introduce exception to DisallowJavascriptExecutionScope.
6486    */
6487   class V8_EXPORT AllowJavascriptExecutionScope {
6488    public:
6489     explicit AllowJavascriptExecutionScope(Isolate* isolate);
6490     ~AllowJavascriptExecutionScope();
6491 
6492     // Prevent copying of Scope objects.
6493     AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&) =
6494         delete;
6495     AllowJavascriptExecutionScope& operator=(
6496         const AllowJavascriptExecutionScope&) = delete;
6497 
6498    private:
6499     void* internal_throws_;
6500     void* internal_assert_;
6501   };
6502 
6503   /**
6504    * Do not run microtasks while this scope is active, even if microtasks are
6505    * automatically executed otherwise.
6506    */
6507   class V8_EXPORT SuppressMicrotaskExecutionScope {
6508    public:
6509     explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
6510     ~SuppressMicrotaskExecutionScope();
6511 
6512     // Prevent copying of Scope objects.
6513     SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&) =
6514         delete;
6515     SuppressMicrotaskExecutionScope& operator=(
6516         const SuppressMicrotaskExecutionScope&) = delete;
6517 
6518    private:
6519     internal::Isolate* const isolate_;
6520   };
6521 
6522   /**
6523    * Types of garbage collections that can be requested via
6524    * RequestGarbageCollectionForTesting.
6525    */
6526   enum GarbageCollectionType {
6527     kFullGarbageCollection,
6528     kMinorGarbageCollection
6529   };
6530 
6531   /**
6532    * Features reported via the SetUseCounterCallback callback. Do not change
6533    * assigned numbers of existing items; add new features to the end of this
6534    * list.
6535    */
6536   enum UseCounterFeature {
6537     kUseAsm = 0,
6538     kBreakIterator = 1,
6539     kLegacyConst = 2,
6540     kMarkDequeOverflow = 3,
6541     kStoreBufferOverflow = 4,
6542     kSlotsBufferOverflow = 5,
6543     kObjectObserve = 6,
6544     kForcedGC = 7,
6545     kSloppyMode = 8,
6546     kStrictMode = 9,
6547     kStrongMode = 10,
6548     kRegExpPrototypeStickyGetter = 11,
6549     kRegExpPrototypeToString = 12,
6550     kRegExpPrototypeUnicodeGetter = 13,
6551     kIntlV8Parse = 14,
6552     kIntlPattern = 15,
6553     kIntlResolved = 16,
6554     kPromiseChain = 17,
6555     kPromiseAccept = 18,
6556     kPromiseDefer = 19,
6557     kHtmlCommentInExternalScript = 20,
6558     kHtmlComment = 21,
6559     kSloppyModeBlockScopedFunctionRedefinition = 22,
6560     kForInInitializer = 23,
6561     kArrayProtectorDirtied = 24,
6562     kArraySpeciesModified = 25,
6563     kArrayPrototypeConstructorModified = 26,
6564     kArrayInstanceProtoModified = 27,
6565     kArrayInstanceConstructorModified = 28,
6566     kLegacyFunctionDeclaration = 29,
6567     kRegExpPrototypeSourceGetter = 30,
6568     kRegExpPrototypeOldFlagGetter = 31,
6569     kDecimalWithLeadingZeroInStrictMode = 32,
6570     kLegacyDateParser = 33,
6571     kDefineGetterOrSetterWouldThrow = 34,
6572     kFunctionConstructorReturnedUndefined = 35,
6573     kAssigmentExpressionLHSIsCallInSloppy = 36,
6574     kAssigmentExpressionLHSIsCallInStrict = 37,
6575     kPromiseConstructorReturnedUndefined = 38,
6576 
6577     // If you add new values here, you'll also need to update Chromium's:
6578     // UseCounter.h, V8PerIsolateData.cpp, histograms.xml
6579     kUseCounterFeatureCount  // This enum value must be last.
6580   };
6581 
6582   enum MessageErrorLevel {
6583     kMessageLog = (1 << 0),
6584     kMessageDebug = (1 << 1),
6585     kMessageInfo = (1 << 2),
6586     kMessageError = (1 << 3),
6587     kMessageWarning = (1 << 4),
6588     kMessageAll = kMessageLog | kMessageDebug | kMessageInfo | kMessageError |
6589                   kMessageWarning,
6590   };
6591 
6592   typedef void (*UseCounterCallback)(Isolate* isolate,
6593                                      UseCounterFeature feature);
6594 
6595 
6596   /**
6597    * Creates a new isolate.  Does not change the currently entered
6598    * isolate.
6599    *
6600    * When an isolate is no longer used its resources should be freed
6601    * by calling Dispose().  Using the delete operator is not allowed.
6602    *
6603    * V8::Initialize() must have run prior to this.
6604    */
6605   static Isolate* New(const CreateParams& params);
6606 
6607   /**
6608    * Returns the entered isolate for the current thread or NULL in
6609    * case there is no current isolate.
6610    *
6611    * This method must not be invoked before V8::Initialize() was invoked.
6612    */
6613   static Isolate* GetCurrent();
6614 
6615   /**
6616    * Custom callback used by embedders to help V8 determine if it should abort
6617    * when it throws and no internal handler is predicted to catch the
6618    * exception. If --abort-on-uncaught-exception is used on the command line,
6619    * then V8 will abort if either:
6620    * - no custom callback is set.
6621    * - the custom callback set returns true.
6622    * Otherwise, the custom callback will not be called and V8 will not abort.
6623    */
6624   typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
6625   void SetAbortOnUncaughtExceptionCallback(
6626       AbortOnUncaughtExceptionCallback callback);
6627 
6628   /**
6629    * Optional notification that the system is running low on memory.
6630    * V8 uses these notifications to guide heuristics.
6631    * It is allowed to call this function from another thread while
6632    * the isolate is executing long running JavaScript code.
6633    */
6634   void MemoryPressureNotification(MemoryPressureLevel level);
6635 
6636   /**
6637    * Methods below this point require holding a lock (using Locker) in
6638    * a multi-threaded environment.
6639    */
6640 
6641   /**
6642    * Sets this isolate as the entered one for the current thread.
6643    * Saves the previously entered one (if any), so that it can be
6644    * restored when exiting.  Re-entering an isolate is allowed.
6645    */
6646   void Enter();
6647 
6648   /**
6649    * Exits this isolate by restoring the previously entered one in the
6650    * current thread.  The isolate may still stay the same, if it was
6651    * entered more than once.
6652    *
6653    * Requires: this == Isolate::GetCurrent().
6654    */
6655   void Exit();
6656 
6657   /**
6658    * Disposes the isolate.  The isolate must not be entered by any
6659    * thread to be disposable.
6660    */
6661   void Dispose();
6662 
6663   /**
6664    * Discards all V8 thread-specific data for the Isolate. Should be used
6665    * if a thread is terminating and it has used an Isolate that will outlive
6666    * the thread -- all thread-specific data for an Isolate is discarded when
6667    * an Isolate is disposed so this call is pointless if an Isolate is about
6668    * to be Disposed.
6669    */
6670   void DiscardThreadSpecificMetadata();
6671 
6672   /**
6673    * Associate embedder-specific data with the isolate. |slot| has to be
6674    * between 0 and GetNumberOfDataSlots() - 1.
6675    */
6676   V8_INLINE void SetData(uint32_t slot, void* data);
6677 
6678   /**
6679    * Retrieve embedder-specific data from the isolate.
6680    * Returns NULL if SetData has never been called for the given |slot|.
6681    */
6682   V8_INLINE void* GetData(uint32_t slot);
6683 
6684   /**
6685    * Returns the maximum number of available embedder data slots. Valid slots
6686    * are in the range of 0 - GetNumberOfDataSlots() - 1.
6687    */
6688   V8_INLINE static uint32_t GetNumberOfDataSlots();
6689 
6690   /**
6691    * Get statistics about the heap memory usage.
6692    */
6693   void GetHeapStatistics(HeapStatistics* heap_statistics);
6694 
6695   /**
6696    * Returns the number of spaces in the heap.
6697    */
6698   size_t NumberOfHeapSpaces();
6699 
6700   /**
6701    * Get the memory usage of a space in the heap.
6702    *
6703    * \param space_statistics The HeapSpaceStatistics object to fill in
6704    *   statistics.
6705    * \param index The index of the space to get statistics from, which ranges
6706    *   from 0 to NumberOfHeapSpaces() - 1.
6707    * \returns true on success.
6708    */
6709   bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
6710                               size_t index);
6711 
6712   /**
6713    * Returns the number of types of objects tracked in the heap at GC.
6714    */
6715   size_t NumberOfTrackedHeapObjectTypes();
6716 
6717   /**
6718    * Get statistics about objects in the heap.
6719    *
6720    * \param object_statistics The HeapObjectStatistics object to fill in
6721    *   statistics of objects of given type, which were live in the previous GC.
6722    * \param type_index The index of the type of object to fill details about,
6723    *   which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
6724    * \returns true on success.
6725    */
6726   bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
6727                                        size_t type_index);
6728 
6729   /**
6730    * Get statistics about code and its metadata in the heap.
6731    *
6732    * \param object_statistics The HeapCodeStatistics object to fill in
6733    *   statistics of code, bytecode and their metadata.
6734    * \returns true on success.
6735    */
6736   bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics);
6737 
6738   /**
6739    * Get a call stack sample from the isolate.
6740    * \param state Execution state.
6741    * \param frames Caller allocated buffer to store stack frames.
6742    * \param frames_limit Maximum number of frames to capture. The buffer must
6743    *                     be large enough to hold the number of frames.
6744    * \param sample_info The sample info is filled up by the function
6745    *                    provides number of actual captured stack frames and
6746    *                    the current VM state.
6747    * \note GetStackSample should only be called when the JS thread is paused or
6748    *       interrupted. Otherwise the behavior is undefined.
6749    */
6750   void GetStackSample(const RegisterState& state, void** frames,
6751                       size_t frames_limit, SampleInfo* sample_info);
6752 
6753   /**
6754    * Adjusts the amount of registered external memory. Used to give V8 an
6755    * indication of the amount of externally allocated memory that is kept alive
6756    * by JavaScript objects. V8 uses this to decide when to perform global
6757    * garbage collections. Registering externally allocated memory will trigger
6758    * global garbage collections more often than it would otherwise in an attempt
6759    * to garbage collect the JavaScript objects that keep the externally
6760    * allocated memory alive.
6761    *
6762    * \param change_in_bytes the change in externally allocated memory that is
6763    *   kept alive by JavaScript objects.
6764    * \returns the adjusted value.
6765    */
6766   V8_INLINE int64_t
6767       AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
6768 
6769   /**
6770    * Returns the number of phantom handles without callbacks that were reset
6771    * by the garbage collector since the last call to this function.
6772    */
6773   size_t NumberOfPhantomHandleResetsSinceLastCall();
6774 
6775   /**
6776    * Returns heap profiler for this isolate. Will return NULL until the isolate
6777    * is initialized.
6778    */
6779   HeapProfiler* GetHeapProfiler();
6780 
6781   /**
6782    * Returns CPU profiler for this isolate. Will return NULL unless the isolate
6783    * is initialized. It is the embedder's responsibility to stop all CPU
6784    * profiling activities if it has started any.
6785    */
6786   V8_DEPRECATE_SOON("CpuProfiler should be created with CpuProfiler::New call.",
6787                     CpuProfiler* GetCpuProfiler());
6788 
6789   /** Returns true if this isolate has a current context. */
6790   bool InContext();
6791 
6792   /**
6793    * Returns the context of the currently running JavaScript, or the context
6794    * on the top of the stack if no JavaScript is running.
6795    */
6796   Local<Context> GetCurrentContext();
6797 
6798   /**
6799    * Returns the context of the calling JavaScript code.  That is the
6800    * context of the top-most JavaScript frame.  If there are no
6801    * JavaScript frames an empty handle is returned.
6802    */
6803   V8_DEPRECATE_SOON(
6804       "Calling context concept is not compatible with tail calls, and will be "
6805       "removed.",
6806       Local<Context> GetCallingContext());
6807 
6808   /** Returns the last context entered through V8's C++ API. */
6809   Local<Context> GetEnteredContext();
6810 
6811   /**
6812    * Returns either the last context entered through V8's C++ API, or the
6813    * context of the currently running microtask while processing microtasks.
6814    * If a context is entered while executing a microtask, that context is
6815    * returned.
6816    */
6817   Local<Context> GetEnteredOrMicrotaskContext();
6818 
6819   /**
6820    * Schedules an exception to be thrown when returning to JavaScript.  When an
6821    * exception has been scheduled it is illegal to invoke any JavaScript
6822    * operation; the caller must return immediately and only after the exception
6823    * has been handled does it become legal to invoke JavaScript operations.
6824    */
6825   Local<Value> ThrowException(Local<Value> exception);
6826 
6827   /**
6828    * Allows the host application to group objects together. If one
6829    * object in the group is alive, all objects in the group are alive.
6830    * After each garbage collection, object groups are removed. It is
6831    * intended to be used in the before-garbage-collection callback
6832    * function, for instance to simulate DOM tree connections among JS
6833    * wrapper objects. Object groups for all dependent handles need to
6834    * be provided for kGCTypeMarkSweepCompact collections, for all other
6835    * garbage collection types it is sufficient to provide object groups
6836    * for partially dependent handles only.
6837    */
6838   template <typename T>
6839   V8_DEPRECATED("Use EmbedderHeapTracer",
6840                 void SetObjectGroupId(const Persistent<T>& object,
6841                                       UniqueId id));
6842 
6843   /**
6844    * Allows the host application to declare implicit references from an object
6845    * group to an object. If the objects of the object group are alive, the child
6846    * object is alive too. After each garbage collection, all implicit references
6847    * are removed. It is intended to be used in the before-garbage-collection
6848    * callback function.
6849    */
6850   template <typename T>
6851   V8_DEPRECATED("Use EmbedderHeapTracer",
6852                 void SetReferenceFromGroup(UniqueId id,
6853                                            const Persistent<T>& child));
6854 
6855   /**
6856    * Allows the host application to declare implicit references from an object
6857    * to another object. If the parent object is alive, the child object is alive
6858    * too. After each garbage collection, all implicit references are removed. It
6859    * is intended to be used in the before-garbage-collection callback function.
6860    */
6861   template <typename T, typename S>
6862   V8_DEPRECATED("Use EmbedderHeapTracer",
6863                 void SetReference(const Persistent<T>& parent,
6864                                   const Persistent<S>& child));
6865 
6866   typedef void (*GCCallback)(Isolate* isolate, GCType type,
6867                              GCCallbackFlags flags);
6868 
6869   /**
6870    * Enables the host application to receive a notification before a
6871    * garbage collection. Allocations are allowed in the callback function,
6872    * but the callback is not re-entrant: if the allocation inside it will
6873    * trigger the garbage collection, the callback won't be called again.
6874    * It is possible to specify the GCType filter for your callback. But it is
6875    * not possible to register the same callback function two times with
6876    * different GCType filters.
6877    */
6878   void AddGCPrologueCallback(GCCallback callback,
6879                              GCType gc_type_filter = kGCTypeAll);
6880 
6881   /**
6882    * This function removes callback which was installed by
6883    * AddGCPrologueCallback function.
6884    */
6885   void RemoveGCPrologueCallback(GCCallback callback);
6886 
6887   /**
6888    * Sets the embedder heap tracer for the isolate.
6889    */
6890   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
6891 
6892   /**
6893    * Enables the host application to receive a notification after a
6894    * garbage collection. Allocations are allowed in the callback function,
6895    * but the callback is not re-entrant: if the allocation inside it will
6896    * trigger the garbage collection, the callback won't be called again.
6897    * It is possible to specify the GCType filter for your callback. But it is
6898    * not possible to register the same callback function two times with
6899    * different GCType filters.
6900    */
6901   void AddGCEpilogueCallback(GCCallback callback,
6902                              GCType gc_type_filter = kGCTypeAll);
6903 
6904   /**
6905    * This function removes callback which was installed by
6906    * AddGCEpilogueCallback function.
6907    */
6908   void RemoveGCEpilogueCallback(GCCallback callback);
6909 
6910   /**
6911    * Forcefully terminate the current thread of JavaScript execution
6912    * in the given isolate.
6913    *
6914    * This method can be used by any thread even if that thread has not
6915    * acquired the V8 lock with a Locker object.
6916    */
6917   void TerminateExecution();
6918 
6919   /**
6920    * Is V8 terminating JavaScript execution.
6921    *
6922    * Returns true if JavaScript execution is currently terminating
6923    * because of a call to TerminateExecution.  In that case there are
6924    * still JavaScript frames on the stack and the termination
6925    * exception is still active.
6926    */
6927   bool IsExecutionTerminating();
6928 
6929   /**
6930    * Resume execution capability in the given isolate, whose execution
6931    * was previously forcefully terminated using TerminateExecution().
6932    *
6933    * When execution is forcefully terminated using TerminateExecution(),
6934    * the isolate can not resume execution until all JavaScript frames
6935    * have propagated the uncatchable exception which is generated.  This
6936    * method allows the program embedding the engine to handle the
6937    * termination event and resume execution capability, even if
6938    * JavaScript frames remain on the stack.
6939    *
6940    * This method can be used by any thread even if that thread has not
6941    * acquired the V8 lock with a Locker object.
6942    */
6943   void CancelTerminateExecution();
6944 
6945   /**
6946    * Request V8 to interrupt long running JavaScript code and invoke
6947    * the given |callback| passing the given |data| to it. After |callback|
6948    * returns control will be returned to the JavaScript code.
6949    * There may be a number of interrupt requests in flight.
6950    * Can be called from another thread without acquiring a |Locker|.
6951    * Registered |callback| must not reenter interrupted Isolate.
6952    */
6953   void RequestInterrupt(InterruptCallback callback, void* data);
6954 
6955   /**
6956    * Request garbage collection in this Isolate. It is only valid to call this
6957    * function if --expose_gc was specified.
6958    *
6959    * This should only be used for testing purposes and not to enforce a garbage
6960    * collection schedule. It has strong negative impact on the garbage
6961    * collection performance. Use IdleNotificationDeadline() or
6962    * LowMemoryNotification() instead to influence the garbage collection
6963    * schedule.
6964    */
6965   void RequestGarbageCollectionForTesting(GarbageCollectionType type);
6966 
6967   /**
6968    * Set the callback to invoke for logging event.
6969    */
6970   void SetEventLogger(LogEventCallback that);
6971 
6972   /**
6973    * Adds a callback to notify the host application right before a script
6974    * is about to run. If a script re-enters the runtime during executing, the
6975    * BeforeCallEnteredCallback is invoked for each re-entrance.
6976    * Executing scripts inside the callback will re-trigger the callback.
6977    */
6978   void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6979 
6980   /**
6981    * Removes callback that was installed by AddBeforeCallEnteredCallback.
6982    */
6983   void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6984 
6985   /**
6986    * Adds a callback to notify the host application when a script finished
6987    * running.  If a script re-enters the runtime during executing, the
6988    * CallCompletedCallback is only invoked when the outer-most script
6989    * execution ends.  Executing scripts inside the callback do not trigger
6990    * further callbacks.
6991    */
6992   void AddCallCompletedCallback(CallCompletedCallback callback);
6993   V8_DEPRECATE_SOON(
6994       "Use callback with parameter",
6995       void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback));
6996 
6997   /**
6998    * Removes callback that was installed by AddCallCompletedCallback.
6999    */
7000   void RemoveCallCompletedCallback(CallCompletedCallback callback);
7001   V8_DEPRECATE_SOON(
7002       "Use callback with parameter",
7003       void RemoveCallCompletedCallback(
7004           DeprecatedCallCompletedCallback callback));
7005 
7006   /**
7007    * Experimental: Set the PromiseHook callback for various promise
7008    * lifecycle events.
7009    */
7010   void SetPromiseHook(PromiseHook hook);
7011 
7012   /**
7013    * Set callback to notify about promise reject with no handler, or
7014    * revocation of such a previous notification once the handler is added.
7015    */
7016   void SetPromiseRejectCallback(PromiseRejectCallback callback);
7017 
7018   /**
7019    * Experimental: Runs the Microtask Work Queue until empty
7020    * Any exceptions thrown by microtask callbacks are swallowed.
7021    */
7022   void RunMicrotasks();
7023 
7024   /**
7025    * Experimental: Enqueues the callback to the Microtask Work Queue
7026    */
7027   void EnqueueMicrotask(Local<Function> microtask);
7028 
7029   /**
7030    * Experimental: Enqueues the callback to the Microtask Work Queue
7031    */
7032   void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
7033 
7034   /**
7035    * Experimental: Controls how Microtasks are invoked. See MicrotasksPolicy
7036    * for details.
7037    */
7038   void SetMicrotasksPolicy(MicrotasksPolicy policy);
7039   V8_DEPRECATE_SOON("Use SetMicrotasksPolicy",
7040                     void SetAutorunMicrotasks(bool autorun));
7041 
7042   /**
7043    * Experimental: Returns the policy controlling how Microtasks are invoked.
7044    */
7045   MicrotasksPolicy GetMicrotasksPolicy() const;
7046   V8_DEPRECATE_SOON("Use GetMicrotasksPolicy",
7047                     bool WillAutorunMicrotasks() const);
7048 
7049   /**
7050    * Experimental: adds a callback to notify the host application after
7051    * microtasks were run. The callback is triggered by explicit RunMicrotasks
7052    * call or automatic microtasks execution (see SetAutorunMicrotasks).
7053    *
7054    * Callback will trigger even if microtasks were attempted to run,
7055    * but the microtasks queue was empty and no single microtask was actually
7056    * executed.
7057    *
7058    * Executing scriptsinside the callback will not re-trigger microtasks and
7059    * the callback.
7060    */
7061   void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
7062 
7063   /**
7064    * Removes callback that was installed by AddMicrotasksCompletedCallback.
7065    */
7066   void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
7067 
7068   /**
7069    * Sets a callback for counting the number of times a feature of V8 is used.
7070    */
7071   void SetUseCounterCallback(UseCounterCallback callback);
7072 
7073   /**
7074    * Enables the host application to provide a mechanism for recording
7075    * statistics counters.
7076    */
7077   void SetCounterFunction(CounterLookupCallback);
7078 
7079   /**
7080    * Enables the host application to provide a mechanism for recording
7081    * histograms. The CreateHistogram function returns a
7082    * histogram which will later be passed to the AddHistogramSample
7083    * function.
7084    */
7085   void SetCreateHistogramFunction(CreateHistogramCallback);
7086   void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
7087 
7088   /**
7089    * Optional notification that the embedder is idle.
7090    * V8 uses the notification to perform garbage collection.
7091    * This call can be used repeatedly if the embedder remains idle.
7092    * Returns true if the embedder should stop calling IdleNotificationDeadline
7093    * until real work has been done.  This indicates that V8 has done
7094    * as much cleanup as it will be able to do.
7095    *
7096    * The deadline_in_seconds argument specifies the deadline V8 has to finish
7097    * garbage collection work. deadline_in_seconds is compared with
7098    * MonotonicallyIncreasingTime() and should be based on the same timebase as
7099    * that function. There is no guarantee that the actual work will be done
7100    * within the time limit.
7101    */
7102   bool IdleNotificationDeadline(double deadline_in_seconds);
7103 
7104   V8_DEPRECATED("use IdleNotificationDeadline()",
7105                 bool IdleNotification(int idle_time_in_ms));
7106 
7107   /**
7108    * Optional notification that the system is running low on memory.
7109    * V8 uses these notifications to attempt to free memory.
7110    */
7111   void LowMemoryNotification();
7112 
7113   /**
7114    * Optional notification that a context has been disposed. V8 uses
7115    * these notifications to guide the GC heuristic. Returns the number
7116    * of context disposals - including this one - since the last time
7117    * V8 had a chance to clean up.
7118    *
7119    * The optional parameter |dependant_context| specifies whether the disposed
7120    * context was depending on state from other contexts or not.
7121    */
7122   int ContextDisposedNotification(bool dependant_context = true);
7123 
7124   /**
7125    * Optional notification that the isolate switched to the foreground.
7126    * V8 uses these notifications to guide heuristics.
7127    */
7128   void IsolateInForegroundNotification();
7129 
7130   /**
7131    * Optional notification that the isolate switched to the background.
7132    * V8 uses these notifications to guide heuristics.
7133    */
7134   void IsolateInBackgroundNotification();
7135 
7136   /**
7137    * Optional notification to tell V8 the current performance requirements
7138    * of the embedder based on RAIL.
7139    * V8 uses these notifications to guide heuristics.
7140    * This is an unfinished experimental feature. Semantics and implementation
7141    * may change frequently.
7142    */
7143   void SetRAILMode(RAILMode rail_mode);
7144 
7145   /**
7146    * Optional notification to tell V8 the current isolate is used for debugging
7147    * and requires higher heap limit.
7148    */
7149   void IncreaseHeapLimitForDebugging();
7150 
7151   /**
7152    * Restores the original heap limit after IncreaseHeapLimitForDebugging().
7153    */
7154   void RestoreOriginalHeapLimit();
7155 
7156   /**
7157    * Returns true if the heap limit was increased for debugging and the
7158    * original heap limit was not restored yet.
7159    */
7160   bool IsHeapLimitIncreasedForDebugging();
7161 
7162   /**
7163    * Allows the host application to provide the address of a function that is
7164    * notified each time code is added, moved or removed.
7165    *
7166    * \param options options for the JIT code event handler.
7167    * \param event_handler the JIT code event handler, which will be invoked
7168    *     each time code is added, moved or removed.
7169    * \note \p event_handler won't get notified of existent code.
7170    * \note since code removal notifications are not currently issued, the
7171    *     \p event_handler may get notifications of code that overlaps earlier
7172    *     code notifications. This happens when code areas are reused, and the
7173    *     earlier overlapping code areas should therefore be discarded.
7174    * \note the events passed to \p event_handler and the strings they point to
7175    *     are not guaranteed to live past each call. The \p event_handler must
7176    *     copy strings and other parameters it needs to keep around.
7177    * \note the set of events declared in JitCodeEvent::EventType is expected to
7178    *     grow over time, and the JitCodeEvent structure is expected to accrue
7179    *     new members. The \p event_handler function must ignore event codes
7180    *     it does not recognize to maintain future compatibility.
7181    * \note Use Isolate::CreateParams to get events for code executed during
7182    *     Isolate setup.
7183    */
7184   void SetJitCodeEventHandler(JitCodeEventOptions options,
7185                               JitCodeEventHandler event_handler);
7186 
7187   /**
7188    * Modifies the stack limit for this Isolate.
7189    *
7190    * \param stack_limit An address beyond which the Vm's stack may not grow.
7191    *
7192    * \note  If you are using threads then you should hold the V8::Locker lock
7193    *     while setting the stack limit and you must set a non-default stack
7194    *     limit separately for each thread.
7195    */
7196   void SetStackLimit(uintptr_t stack_limit);
7197 
7198   /**
7199    * Returns a memory range that can potentially contain jitted code.
7200    *
7201    * On Win64, embedders are advised to install function table callbacks for
7202    * these ranges, as default SEH won't be able to unwind through jitted code.
7203    *
7204    * The first page of the code range is reserved for the embedder and is
7205    * committed, writable, and executable.
7206    *
7207    * Might be empty on other platforms.
7208    *
7209    * https://code.google.com/p/v8/issues/detail?id=3598
7210    */
7211   void GetCodeRange(void** start, size_t* length_in_bytes);
7212 
7213   /** Set the callback to invoke in case of fatal errors. */
7214   void SetFatalErrorHandler(FatalErrorCallback that);
7215 
7216   /** Set the callback to invoke in case of OOM errors. */
7217   void SetOOMErrorHandler(OOMErrorCallback that);
7218 
7219   /**
7220    * Set the callback to invoke to check if code generation from
7221    * strings should be allowed.
7222    */
7223   void SetAllowCodeGenerationFromStringsCallback(
7224       AllowCodeGenerationFromStringsCallback callback);
7225 
7226   /**
7227    * Set the callback to invoke to check if wasm compilation from
7228    * the specified object is allowed. By default, wasm compilation
7229    * is allowed.
7230    *
7231    * Similar for instantiate.
7232    */
7233   void SetAllowWasmCompileCallback(AllowWasmCompileCallback callback);
7234   void SetAllowWasmInstantiateCallback(AllowWasmInstantiateCallback callback);
7235 
7236   /**
7237   * Check if V8 is dead and therefore unusable.  This is the case after
7238   * fatal errors such as out-of-memory situations.
7239   */
7240   bool IsDead();
7241 
7242   /**
7243    * Adds a message listener (errors only).
7244    *
7245    * The same message listener can be added more than once and in that
7246    * case it will be called more than once for each message.
7247    *
7248    * If data is specified, it will be passed to the callback when it is called.
7249    * Otherwise, the exception object will be passed to the callback instead.
7250    */
7251   bool AddMessageListener(MessageCallback that,
7252                           Local<Value> data = Local<Value>());
7253 
7254   /**
7255    * Adds a message listener.
7256    *
7257    * The same message listener can be added more than once and in that
7258    * case it will be called more than once for each message.
7259    *
7260    * If data is specified, it will be passed to the callback when it is called.
7261    * Otherwise, the exception object will be passed to the callback instead.
7262    *
7263    * A listener can listen for particular error levels by providing a mask.
7264    */
7265   bool AddMessageListenerWithErrorLevel(MessageCallback that,
7266                                         int message_levels,
7267                                         Local<Value> data = Local<Value>());
7268 
7269   /**
7270    * Remove all message listeners from the specified callback function.
7271    */
7272   void RemoveMessageListeners(MessageCallback that);
7273 
7274   /** Callback function for reporting failed access checks.*/
7275   void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
7276 
7277   /**
7278    * Tells V8 to capture current stack trace when uncaught exception occurs
7279    * and report it to the message listeners. The option is off by default.
7280    */
7281   void SetCaptureStackTraceForUncaughtExceptions(
7282       bool capture, int frame_limit = 10,
7283       StackTrace::StackTraceOptions options = StackTrace::kOverview);
7284 
7285   /**
7286    * Iterates through all external resources referenced from current isolate
7287    * heap.  GC is not invoked prior to iterating, therefore there is no
7288    * guarantee that visited objects are still alive.
7289    */
7290   void VisitExternalResources(ExternalResourceVisitor* visitor);
7291 
7292   /**
7293    * Iterates through all the persistent handles in the current isolate's heap
7294    * that have class_ids.
7295    */
7296   void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
7297 
7298   /**
7299    * Iterates through all the persistent handles in the current isolate's heap
7300    * that have class_ids and are candidates to be marked as partially dependent
7301    * handles. This will visit handles to young objects created since the last
7302    * garbage collection but is free to visit an arbitrary superset of these
7303    * objects.
7304    */
7305   void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
7306 
7307   /**
7308    * Iterates through all the persistent handles in the current isolate's heap
7309    * that have class_ids and are weak to be marked as inactive if there is no
7310    * pending activity for the handle.
7311    */
7312   void VisitWeakHandles(PersistentHandleVisitor* visitor);
7313 
7314   /**
7315    * Check if this isolate is in use.
7316    * True if at least one thread Enter'ed this isolate.
7317    */
7318   bool IsInUse();
7319 
7320   Isolate() = delete;
7321   ~Isolate() = delete;
7322   Isolate(const Isolate&) = delete;
7323   Isolate& operator=(const Isolate&) = delete;
7324   void* operator new(size_t size) = delete;
7325   void operator delete(void*, size_t) = delete;
7326 
7327  private:
7328   template <class K, class V, class Traits>
7329   friend class PersistentValueMapBase;
7330 
7331   void SetObjectGroupId(internal::Object** object, UniqueId id);
7332   void SetReferenceFromGroup(UniqueId id, internal::Object** object);
7333   void SetReference(internal::Object** parent, internal::Object** child);
7334   void ReportExternalAllocationLimitReached();
7335 };
7336 
7337 class V8_EXPORT StartupData {
7338  public:
7339   const char* data;
7340   int raw_size;
7341 };
7342 
7343 
7344 /**
7345  * EntropySource is used as a callback function when v8 needs a source
7346  * of entropy.
7347  */
7348 typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
7349 
7350 /**
7351  * ReturnAddressLocationResolver is used as a callback function when v8 is
7352  * resolving the location of a return address on the stack. Profilers that
7353  * change the return address on the stack can use this to resolve the stack
7354  * location to whereever the profiler stashed the original return address.
7355  *
7356  * \param return_addr_location A location on stack where a machine
7357  *    return address resides.
7358  * \returns Either return_addr_location, or else a pointer to the profiler's
7359  *    copy of the original return address.
7360  *
7361  * \note The resolver function must not cause garbage collection.
7362  */
7363 typedef uintptr_t (*ReturnAddressLocationResolver)(
7364     uintptr_t return_addr_location);
7365 
7366 
7367 /**
7368  * Container class for static utility functions.
7369  */
7370 class V8_EXPORT V8 {
7371  public:
7372   /** Set the callback to invoke in case of fatal errors. */
7373   V8_INLINE static V8_DEPRECATED(
7374       "Use isolate version",
7375       void SetFatalErrorHandler(FatalErrorCallback that));
7376 
7377   /**
7378    * Set the callback to invoke to check if code generation from
7379    * strings should be allowed.
7380    */
7381   V8_INLINE static V8_DEPRECATED(
7382       "Use isolate version", void SetAllowCodeGenerationFromStringsCallback(
7383                                  AllowCodeGenerationFromStringsCallback that));
7384 
7385   /**
7386   * Check if V8 is dead and therefore unusable.  This is the case after
7387   * fatal errors such as out-of-memory situations.
7388   */
7389   V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead());
7390 
7391   /**
7392    * Hand startup data to V8, in case the embedder has chosen to build
7393    * V8 with external startup data.
7394    *
7395    * Note:
7396    * - By default the startup data is linked into the V8 library, in which
7397    *   case this function is not meaningful.
7398    * - If this needs to be called, it needs to be called before V8
7399    *   tries to make use of its built-ins.
7400    * - To avoid unnecessary copies of data, V8 will point directly into the
7401    *   given data blob, so pretty please keep it around until V8 exit.
7402    * - Compression of the startup blob might be useful, but needs to
7403    *   handled entirely on the embedders' side.
7404    * - The call will abort if the data is invalid.
7405    */
7406   static void SetNativesDataBlob(StartupData* startup_blob);
7407   static void SetSnapshotDataBlob(StartupData* startup_blob);
7408 
7409   /**
7410    * Bootstrap an isolate and a context from scratch to create a startup
7411    * snapshot. Include the side-effects of running the optional script.
7412    * Returns { NULL, 0 } on failure.
7413    * The caller acquires ownership of the data array in the return value.
7414    */
7415   static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL);
7416 
7417   /**
7418    * Bootstrap an isolate and a context from the cold startup blob, run the
7419    * warm-up script to trigger code compilation. The side effects are then
7420    * discarded. The resulting startup snapshot will include compiled code.
7421    * Returns { NULL, 0 } on failure.
7422    * The caller acquires ownership of the data array in the return value.
7423    * The argument startup blob is untouched.
7424    */
7425   static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob,
7426                                             const char* warmup_source);
7427 
7428   /**
7429    * Adds a message listener.
7430    *
7431    * The same message listener can be added more than once and in that
7432    * case it will be called more than once for each message.
7433    *
7434    * If data is specified, it will be passed to the callback when it is called.
7435    * Otherwise, the exception object will be passed to the callback instead.
7436    */
7437   V8_INLINE static V8_DEPRECATED(
7438       "Use isolate version",
7439       bool AddMessageListener(MessageCallback that,
7440                               Local<Value> data = Local<Value>()));
7441 
7442   /**
7443    * Remove all message listeners from the specified callback function.
7444    */
7445   V8_INLINE static V8_DEPRECATED(
7446       "Use isolate version", void RemoveMessageListeners(MessageCallback that));
7447 
7448   /**
7449    * Tells V8 to capture current stack trace when uncaught exception occurs
7450    * and report it to the message listeners. The option is off by default.
7451    */
7452   V8_INLINE static V8_DEPRECATED(
7453       "Use isolate version",
7454       void SetCaptureStackTraceForUncaughtExceptions(
7455           bool capture, int frame_limit = 10,
7456           StackTrace::StackTraceOptions options = StackTrace::kOverview));
7457 
7458   /**
7459    * Sets V8 flags from a string.
7460    */
7461   static void SetFlagsFromString(const char* str, int length);
7462 
7463   /**
7464    * Sets V8 flags from the command line.
7465    */
7466   static void SetFlagsFromCommandLine(int* argc,
7467                                       char** argv,
7468                                       bool remove_flags);
7469 
7470   /** Get the version string. */
7471   static const char* GetVersion();
7472 
7473   /** Callback function for reporting failed access checks.*/
7474   V8_INLINE static V8_DEPRECATED(
7475       "Use isolate version",
7476       void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback));
7477 
7478   /**
7479    * Enables the host application to receive a notification before a
7480    * garbage collection.  Allocations are not allowed in the
7481    * callback function, you therefore cannot manipulate objects (set
7482    * or delete properties for example) since it is possible such
7483    * operations will result in the allocation of objects. It is possible
7484    * to specify the GCType filter for your callback. But it is not possible to
7485    * register the same callback function two times with different
7486    * GCType filters.
7487    */
7488   static V8_DEPRECATED(
7489       "Use isolate version",
7490       void AddGCPrologueCallback(GCCallback callback,
7491                                  GCType gc_type_filter = kGCTypeAll));
7492 
7493   /**
7494    * This function removes callback which was installed by
7495    * AddGCPrologueCallback function.
7496    */
7497   V8_INLINE static V8_DEPRECATED(
7498       "Use isolate version",
7499       void RemoveGCPrologueCallback(GCCallback callback));
7500 
7501   /**
7502    * Enables the host application to receive a notification after a
7503    * garbage collection.  Allocations are not allowed in the
7504    * callback function, you therefore cannot manipulate objects (set
7505    * or delete properties for example) since it is possible such
7506    * operations will result in the allocation of objects. It is possible
7507    * to specify the GCType filter for your callback. But it is not possible to
7508    * register the same callback function two times with different
7509    * GCType filters.
7510    */
7511   static V8_DEPRECATED(
7512       "Use isolate version",
7513       void AddGCEpilogueCallback(GCCallback callback,
7514                                  GCType gc_type_filter = kGCTypeAll));
7515 
7516   /**
7517    * This function removes callback which was installed by
7518    * AddGCEpilogueCallback function.
7519    */
7520   V8_INLINE static V8_DEPRECATED(
7521       "Use isolate version",
7522       void RemoveGCEpilogueCallback(GCCallback callback));
7523 
7524   /**
7525    * Initializes V8. This function needs to be called before the first Isolate
7526    * is created. It always returns true.
7527    */
7528   static bool Initialize();
7529 
7530   /**
7531    * Allows the host application to provide a callback which can be used
7532    * as a source of entropy for random number generators.
7533    */
7534   static void SetEntropySource(EntropySource source);
7535 
7536   /**
7537    * Allows the host application to provide a callback that allows v8 to
7538    * cooperate with a profiler that rewrites return addresses on stack.
7539    */
7540   static void SetReturnAddressLocationResolver(
7541       ReturnAddressLocationResolver return_address_resolver);
7542 
7543   /**
7544    * Forcefully terminate the current thread of JavaScript execution
7545    * in the given isolate.
7546    *
7547    * This method can be used by any thread even if that thread has not
7548    * acquired the V8 lock with a Locker object.
7549    *
7550    * \param isolate The isolate in which to terminate the current JS execution.
7551    */
7552   V8_INLINE static V8_DEPRECATED("Use isolate version",
7553                                  void TerminateExecution(Isolate* isolate));
7554 
7555   /**
7556    * Is V8 terminating JavaScript execution.
7557    *
7558    * Returns true if JavaScript execution is currently terminating
7559    * because of a call to TerminateExecution.  In that case there are
7560    * still JavaScript frames on the stack and the termination
7561    * exception is still active.
7562    *
7563    * \param isolate The isolate in which to check.
7564    */
7565   V8_INLINE static V8_DEPRECATED(
7566       "Use isolate version",
7567       bool IsExecutionTerminating(Isolate* isolate = NULL));
7568 
7569   /**
7570    * Resume execution capability in the given isolate, whose execution
7571    * was previously forcefully terminated using TerminateExecution().
7572    *
7573    * When execution is forcefully terminated using TerminateExecution(),
7574    * the isolate can not resume execution until all JavaScript frames
7575    * have propagated the uncatchable exception which is generated.  This
7576    * method allows the program embedding the engine to handle the
7577    * termination event and resume execution capability, even if
7578    * JavaScript frames remain on the stack.
7579    *
7580    * This method can be used by any thread even if that thread has not
7581    * acquired the V8 lock with a Locker object.
7582    *
7583    * \param isolate The isolate in which to resume execution capability.
7584    */
7585   V8_INLINE static V8_DEPRECATED(
7586       "Use isolate version", void CancelTerminateExecution(Isolate* isolate));
7587 
7588   /**
7589    * Releases any resources used by v8 and stops any utility threads
7590    * that may be running.  Note that disposing v8 is permanent, it
7591    * cannot be reinitialized.
7592    *
7593    * It should generally not be necessary to dispose v8 before exiting
7594    * a process, this should happen automatically.  It is only necessary
7595    * to use if the process needs the resources taken up by v8.
7596    */
7597   static bool Dispose();
7598 
7599   /**
7600    * Iterates through all external resources referenced from current isolate
7601    * heap.  GC is not invoked prior to iterating, therefore there is no
7602    * guarantee that visited objects are still alive.
7603    */
7604   V8_INLINE static V8_DEPRECATED(
7605       "Use isolate version",
7606       void VisitExternalResources(ExternalResourceVisitor* visitor));
7607 
7608   /**
7609    * Iterates through all the persistent handles in the current isolate's heap
7610    * that have class_ids.
7611    */
7612   V8_INLINE static V8_DEPRECATED(
7613       "Use isolate version",
7614       void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor));
7615 
7616   /**
7617    * Iterates through all the persistent handles in isolate's heap that have
7618    * class_ids.
7619    */
7620   V8_INLINE static V8_DEPRECATED(
7621       "Use isolate version",
7622       void VisitHandlesWithClassIds(Isolate* isolate,
7623                                     PersistentHandleVisitor* visitor));
7624 
7625   /**
7626    * Iterates through all the persistent handles in the current isolate's heap
7627    * that have class_ids and are candidates to be marked as partially dependent
7628    * handles. This will visit handles to young objects created since the last
7629    * garbage collection but is free to visit an arbitrary superset of these
7630    * objects.
7631    */
7632   V8_INLINE static V8_DEPRECATED(
7633       "Use isolate version",
7634       void VisitHandlesForPartialDependence(Isolate* isolate,
7635                                             PersistentHandleVisitor* visitor));
7636 
7637   /**
7638    * Initialize the ICU library bundled with V8. The embedder should only
7639    * invoke this method when using the bundled ICU. Returns true on success.
7640    *
7641    * If V8 was compiled with the ICU data in an external file, the location
7642    * of the data file has to be provided.
7643    */
7644   V8_DEPRECATE_SOON(
7645       "Use version with default location.",
7646       static bool InitializeICU(const char* icu_data_file = nullptr));
7647 
7648   /**
7649    * Initialize the ICU library bundled with V8. The embedder should only
7650    * invoke this method when using the bundled ICU. If V8 was compiled with
7651    * the ICU data in an external file and when the default location of that
7652    * file should be used, a path to the executable must be provided.
7653    * Returns true on success.
7654    *
7655    * The default is a file called icudtl.dat side-by-side with the executable.
7656    *
7657    * Optionally, the location of the data file can be provided to override the
7658    * default.
7659    */
7660   static bool InitializeICUDefaultLocation(const char* exec_path,
7661                                            const char* icu_data_file = nullptr);
7662 
7663   /**
7664    * Initialize the external startup data. The embedder only needs to
7665    * invoke this method when external startup data was enabled in a build.
7666    *
7667    * If V8 was compiled with the startup data in an external file, then
7668    * V8 needs to be given those external files during startup. There are
7669    * three ways to do this:
7670    * - InitializeExternalStartupData(const char*)
7671    *   This will look in the given directory for files "natives_blob.bin"
7672    *   and "snapshot_blob.bin" - which is what the default build calls them.
7673    * - InitializeExternalStartupData(const char*, const char*)
7674    *   As above, but will directly use the two given file names.
7675    * - Call SetNativesDataBlob, SetNativesDataBlob.
7676    *   This will read the blobs from the given data structures and will
7677    *   not perform any file IO.
7678    */
7679   static void InitializeExternalStartupData(const char* directory_path);
7680   static void InitializeExternalStartupData(const char* natives_blob,
7681                                             const char* snapshot_blob);
7682   /**
7683    * Sets the v8::Platform to use. This should be invoked before V8 is
7684    * initialized.
7685    */
7686   static void InitializePlatform(Platform* platform);
7687 
7688   /**
7689    * Clears all references to the v8::Platform. This should be invoked after
7690    * V8 was disposed.
7691    */
7692   static void ShutdownPlatform();
7693 
7694  private:
7695   V8();
7696 
7697   static internal::Object** GlobalizeReference(internal::Isolate* isolate,
7698                                                internal::Object** handle);
7699   static internal::Object** CopyPersistent(internal::Object** handle);
7700   static void DisposeGlobal(internal::Object** global_handle);
7701   static void MakeWeak(internal::Object** location, void* data,
7702                        WeakCallbackInfo<void>::Callback weak_callback,
7703                        WeakCallbackType type);
7704   static void MakeWeak(internal::Object** location, void* data,
7705                        // Must be 0 or -1.
7706                        int internal_field_index1,
7707                        // Must be 1 or -1.
7708                        int internal_field_index2,
7709                        WeakCallbackInfo<void>::Callback weak_callback);
7710   static void MakeWeak(internal::Object*** location_addr);
7711   static void* ClearWeak(internal::Object** location);
7712   static void Eternalize(Isolate* isolate,
7713                          Value* handle,
7714                          int* index);
7715   static Local<Value> GetEternal(Isolate* isolate, int index);
7716 
7717   static void RegisterExternallyReferencedObject(internal::Object** object,
7718                                                  internal::Isolate* isolate);
7719 
7720   template <class K, class V, class T>
7721   friend class PersistentValueMapBase;
7722 
7723   static void FromJustIsNothing();
7724   static void ToLocalEmpty();
7725   static void InternalFieldOutOfBounds(int index);
7726   template <class T> friend class Local;
7727   template <class T>
7728   friend class MaybeLocal;
7729   template <class T>
7730   friend class Maybe;
7731   template <class T>
7732   friend class WeakCallbackInfo;
7733   template <class T> friend class Eternal;
7734   template <class T> friend class PersistentBase;
7735   template <class T, class M> friend class Persistent;
7736   friend class Context;
7737 };
7738 
7739 /**
7740  * Helper class to create a snapshot data blob.
7741  */
7742 class V8_EXPORT SnapshotCreator {
7743  public:
7744   enum class FunctionCodeHandling { kClear, kKeep };
7745 
7746   /**
7747    * Create and enter an isolate, and set it up for serialization.
7748    * The isolate is either created from scratch or from an existing snapshot.
7749    * The caller keeps ownership of the argument snapshot.
7750    * \param existing_blob existing snapshot from which to create this one.
7751    * \param external_references a null-terminated array of external references
7752    *        that must be equivalent to CreateParams::external_references.
7753    */
7754   SnapshotCreator(intptr_t* external_references = nullptr,
7755                   StartupData* existing_blob = nullptr);
7756 
7757   ~SnapshotCreator();
7758 
7759   /**
7760    * \returns the isolate prepared by the snapshot creator.
7761    */
7762   Isolate* GetIsolate();
7763 
7764   /**
7765    * Set the default context to be included in the snapshot blob.
7766    * The snapshot will not contain the global proxy, and we expect one or a
7767    * global object template to create one, to be provided upon deserialization.
7768    */
7769   void SetDefaultContext(Local<Context> context);
7770 
7771   /**
7772    * Add additional context to be included in the snapshot blob.
7773    * The snapshot will include the global proxy.
7774    *
7775    * \param callback optional callback to serialize internal fields.
7776    *
7777    * \returns the index of the context in the snapshot blob.
7778    */
7779   size_t AddContext(Local<Context> context,
7780                     SerializeInternalFieldsCallback callback =
7781                         SerializeInternalFieldsCallback());
7782 
7783   /**
7784    * Add a template to be included in the snapshot blob.
7785    * \returns the index of the template in the snapshot blob.
7786    */
7787   size_t AddTemplate(Local<Template> template_obj);
7788 
7789   /**
7790    * Created a snapshot data blob.
7791    * This must not be called from within a handle scope.
7792    * \param function_code_handling whether to include compiled function code
7793    *        in the snapshot.
7794    * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The
7795    *        caller acquires ownership of the data array in the return value.
7796    */
7797   StartupData CreateBlob(FunctionCodeHandling function_code_handling);
7798 
7799   // Disallow copying and assigning.
7800   SnapshotCreator(const SnapshotCreator&) = delete;
7801   void operator=(const SnapshotCreator&) = delete;
7802 
7803  private:
7804   void* data_;
7805 };
7806 
7807 /**
7808  * A simple Maybe type, representing an object which may or may not have a
7809  * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
7810  *
7811  * If an API method returns a Maybe<>, the API method can potentially fail
7812  * either because an exception is thrown, or because an exception is pending,
7813  * e.g. because a previous API call threw an exception that hasn't been caught
7814  * yet, or because a TerminateExecution exception was thrown. In that case, a
7815  * "Nothing" value is returned.
7816  */
7817 template <class T>
7818 class Maybe {
7819  public:
IsNothing()7820   V8_INLINE bool IsNothing() const { return !has_value_; }
IsJust()7821   V8_INLINE bool IsJust() const { return has_value_; }
7822 
7823   // Will crash if the Maybe<> is nothing.
ToChecked()7824   V8_INLINE T ToChecked() const { return FromJust(); }
7825 
To(T * out)7826   V8_WARN_UNUSED_RESULT V8_INLINE bool To(T* out) const {
7827     if (V8_LIKELY(IsJust())) *out = value_;
7828     return IsJust();
7829   }
7830 
7831   // Will crash if the Maybe<> is nothing.
FromJust()7832   V8_INLINE T FromJust() const {
7833     if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
7834     return value_;
7835   }
7836 
FromMaybe(const T & default_value)7837   V8_INLINE T FromMaybe(const T& default_value) const {
7838     return has_value_ ? value_ : default_value;
7839   }
7840 
7841   V8_INLINE bool operator==(const Maybe& other) const {
7842     return (IsJust() == other.IsJust()) &&
7843            (!IsJust() || FromJust() == other.FromJust());
7844   }
7845 
7846   V8_INLINE bool operator!=(const Maybe& other) const {
7847     return !operator==(other);
7848   }
7849 
7850  private:
Maybe()7851   Maybe() : has_value_(false) {}
Maybe(const T & t)7852   explicit Maybe(const T& t) : has_value_(true), value_(t) {}
7853 
7854   bool has_value_;
7855   T value_;
7856 
7857   template <class U>
7858   friend Maybe<U> Nothing();
7859   template <class U>
7860   friend Maybe<U> Just(const U& u);
7861 };
7862 
7863 
7864 template <class T>
Nothing()7865 inline Maybe<T> Nothing() {
7866   return Maybe<T>();
7867 }
7868 
7869 
7870 template <class T>
Just(const T & t)7871 inline Maybe<T> Just(const T& t) {
7872   return Maybe<T>(t);
7873 }
7874 
7875 
7876 /**
7877  * An external exception handler.
7878  */
7879 class V8_EXPORT TryCatch {
7880  public:
7881   /**
7882    * Creates a new try/catch block and registers it with v8.  Note that
7883    * all TryCatch blocks should be stack allocated because the memory
7884    * location itself is compared against JavaScript try/catch blocks.
7885    */
7886   V8_DEPRECATED("Use isolate version", TryCatch());
7887 
7888   /**
7889    * Creates a new try/catch block and registers it with v8.  Note that
7890    * all TryCatch blocks should be stack allocated because the memory
7891    * location itself is compared against JavaScript try/catch blocks.
7892    */
7893   TryCatch(Isolate* isolate);
7894 
7895   /**
7896    * Unregisters and deletes this try/catch block.
7897    */
7898   ~TryCatch();
7899 
7900   /**
7901    * Returns true if an exception has been caught by this try/catch block.
7902    */
7903   bool HasCaught() const;
7904 
7905   /**
7906    * For certain types of exceptions, it makes no sense to continue execution.
7907    *
7908    * If CanContinue returns false, the correct action is to perform any C++
7909    * cleanup needed and then return.  If CanContinue returns false and
7910    * HasTerminated returns true, it is possible to call
7911    * CancelTerminateExecution in order to continue calling into the engine.
7912    */
7913   bool CanContinue() const;
7914 
7915   /**
7916    * Returns true if an exception has been caught due to script execution
7917    * being terminated.
7918    *
7919    * There is no JavaScript representation of an execution termination
7920    * exception.  Such exceptions are thrown when the TerminateExecution
7921    * methods are called to terminate a long-running script.
7922    *
7923    * If such an exception has been thrown, HasTerminated will return true,
7924    * indicating that it is possible to call CancelTerminateExecution in order
7925    * to continue calling into the engine.
7926    */
7927   bool HasTerminated() const;
7928 
7929   /**
7930    * Throws the exception caught by this TryCatch in a way that avoids
7931    * it being caught again by this same TryCatch.  As with ThrowException
7932    * it is illegal to execute any JavaScript operations after calling
7933    * ReThrow; the caller must return immediately to where the exception
7934    * is caught.
7935    */
7936   Local<Value> ReThrow();
7937 
7938   /**
7939    * Returns the exception caught by this try/catch block.  If no exception has
7940    * been caught an empty handle is returned.
7941    *
7942    * The returned handle is valid until this TryCatch block has been destroyed.
7943    */
7944   Local<Value> Exception() const;
7945 
7946   /**
7947    * Returns the .stack property of the thrown object.  If no .stack
7948    * property is present an empty handle is returned.
7949    */
7950   V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const);
7951   V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
7952       Local<Context> context) const;
7953 
7954   /**
7955    * Returns the message associated with this exception.  If there is
7956    * no message associated an empty handle is returned.
7957    *
7958    * The returned handle is valid until this TryCatch block has been
7959    * destroyed.
7960    */
7961   Local<v8::Message> Message() const;
7962 
7963   /**
7964    * Clears any exceptions that may have been caught by this try/catch block.
7965    * After this method has been called, HasCaught() will return false. Cancels
7966    * the scheduled exception if it is caught and ReThrow() is not called before.
7967    *
7968    * It is not necessary to clear a try/catch block before using it again; if
7969    * another exception is thrown the previously caught exception will just be
7970    * overwritten.  However, it is often a good idea since it makes it easier
7971    * to determine which operation threw a given exception.
7972    */
7973   void Reset();
7974 
7975   /**
7976    * Set verbosity of the external exception handler.
7977    *
7978    * By default, exceptions that are caught by an external exception
7979    * handler are not reported.  Call SetVerbose with true on an
7980    * external exception handler to have exceptions caught by the
7981    * handler reported as if they were not caught.
7982    */
7983   void SetVerbose(bool value);
7984 
7985   /**
7986    * Set whether or not this TryCatch should capture a Message object
7987    * which holds source information about where the exception
7988    * occurred.  True by default.
7989    */
7990   void SetCaptureMessage(bool value);
7991 
7992   /**
7993    * There are cases when the raw address of C++ TryCatch object cannot be
7994    * used for comparisons with addresses into the JS stack. The cases are:
7995    * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
7996    * 2) Address sanitizer allocates local C++ object in the heap when
7997    *    UseAfterReturn mode is enabled.
7998    * This method returns address that can be used for comparisons with
7999    * addresses into the JS stack. When neither simulator nor ASAN's
8000    * UseAfterReturn is enabled, then the address returned will be the address
8001    * of the C++ try catch handler itself.
8002    */
JSStackComparableAddress(TryCatch * handler)8003   static void* JSStackComparableAddress(TryCatch* handler) {
8004     if (handler == NULL) return NULL;
8005     return handler->js_stack_comparable_address_;
8006   }
8007 
8008   TryCatch(const TryCatch&) = delete;
8009   void operator=(const TryCatch&) = delete;
8010   void* operator new(size_t size);
8011   void operator delete(void*, size_t);
8012 
8013  private:
8014   void ResetInternal();
8015 
8016   internal::Isolate* isolate_;
8017   TryCatch* next_;
8018   void* exception_;
8019   void* message_obj_;
8020   void* js_stack_comparable_address_;
8021   bool is_verbose_ : 1;
8022   bool can_continue_ : 1;
8023   bool capture_message_ : 1;
8024   bool rethrow_ : 1;
8025   bool has_terminated_ : 1;
8026 
8027   friend class internal::Isolate;
8028 };
8029 
8030 
8031 // --- Context ---
8032 
8033 
8034 /**
8035  * A container for extension names.
8036  */
8037 class V8_EXPORT ExtensionConfiguration {
8038  public:
ExtensionConfiguration()8039   ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count,const char * names[])8040   ExtensionConfiguration(int name_count, const char* names[])
8041       : name_count_(name_count), names_(names) { }
8042 
begin()8043   const char** begin() const { return &names_[0]; }
end()8044   const char** end()  const { return &names_[name_count_]; }
8045 
8046  private:
8047   const int name_count_;
8048   const char** names_;
8049 };
8050 
8051 /**
8052  * A sandboxed execution context with its own set of built-in objects
8053  * and functions.
8054  */
8055 class V8_EXPORT Context {
8056  public:
8057   /**
8058    * Returns the global proxy object.
8059    *
8060    * Global proxy object is a thin wrapper whose prototype points to actual
8061    * context's global object with the properties like Object, etc. This is done
8062    * that way for security reasons (for more details see
8063    * https://wiki.mozilla.org/Gecko:SplitWindow).
8064    *
8065    * Please note that changes to global proxy object prototype most probably
8066    * would break VM---v8 expects only global object as a prototype of global
8067    * proxy object.
8068    */
8069   Local<Object> Global();
8070 
8071   /**
8072    * Detaches the global object from its context before
8073    * the global object can be reused to create a new context.
8074    */
8075   void DetachGlobal();
8076 
8077   /**
8078    * Creates a new context and returns a handle to the newly allocated
8079    * context.
8080    *
8081    * \param isolate The isolate in which to create the context.
8082    *
8083    * \param extensions An optional extension configuration containing
8084    * the extensions to be installed in the newly created context.
8085    *
8086    * \param global_template An optional object template from which the
8087    * global object for the newly created context will be created.
8088    *
8089    * \param global_object An optional global object to be reused for
8090    * the newly created context. This global object must have been
8091    * created by a previous call to Context::New with the same global
8092    * template. The state of the global object will be completely reset
8093    * and only object identify will remain.
8094    */
8095   static Local<Context> New(
8096       Isolate* isolate, ExtensionConfiguration* extensions = NULL,
8097       MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
8098       MaybeLocal<Value> global_object = MaybeLocal<Value>());
8099 
8100   /**
8101    * Create a new context from a (non-default) context snapshot. There
8102    * is no way to provide a global object template since we do not create
8103    * a new global object from template, but we can reuse a global object.
8104    *
8105    * \param isolate See v8::Context::New.
8106    *
8107    * \param context_snapshot_index The index of the context snapshot to
8108    * deserialize from. Use v8::Context::New for the default snapshot.
8109    *
8110    * \param internal_fields_deserializer Optional callback to deserialize
8111    * internal fields. It should match the SerializeInternalFieldCallback used
8112    * to serialize.
8113    *
8114    * \param extensions See v8::Context::New.
8115    *
8116    * \param global_object See v8::Context::New.
8117    */
8118 
8119   static MaybeLocal<Context> FromSnapshot(
8120       Isolate* isolate, size_t context_snapshot_index,
8121       DeserializeInternalFieldsCallback internal_fields_deserializer =
8122           DeserializeInternalFieldsCallback(),
8123       ExtensionConfiguration* extensions = nullptr,
8124       MaybeLocal<Value> global_object = MaybeLocal<Value>());
8125 
8126   /**
8127    * Returns an global object that isn't backed by an actual context.
8128    *
8129    * The global template needs to have access checks with handlers installed.
8130    * If an existing global object is passed in, the global object is detached
8131    * from its context.
8132    *
8133    * Note that this is different from a detached context where all accesses to
8134    * the global proxy will fail. Instead, the access check handlers are invoked.
8135    *
8136    * It is also not possible to detach an object returned by this method.
8137    * Instead, the access check handlers need to return nothing to achieve the
8138    * same effect.
8139    *
8140    * It is possible, however, to create a new context from the global object
8141    * returned by this method.
8142    */
8143   static MaybeLocal<Object> NewRemoteContext(
8144       Isolate* isolate, Local<ObjectTemplate> global_template,
8145       MaybeLocal<Value> global_object = MaybeLocal<Value>());
8146 
8147   /**
8148    * Sets the security token for the context.  To access an object in
8149    * another context, the security tokens must match.
8150    */
8151   void SetSecurityToken(Local<Value> token);
8152 
8153   /** Restores the security token to the default value. */
8154   void UseDefaultSecurityToken();
8155 
8156   /** Returns the security token of this context.*/
8157   Local<Value> GetSecurityToken();
8158 
8159   /**
8160    * Enter this context.  After entering a context, all code compiled
8161    * and run is compiled and run in this context.  If another context
8162    * is already entered, this old context is saved so it can be
8163    * restored when the new context is exited.
8164    */
8165   void Enter();
8166 
8167   /**
8168    * Exit this context.  Exiting the current context restores the
8169    * context that was in place when entering the current context.
8170    */
8171   void Exit();
8172 
8173   /** Returns an isolate associated with a current context. */
8174   Isolate* GetIsolate();
8175 
8176   /**
8177    * The field at kDebugIdIndex is reserved for V8 debugger implementation.
8178    * The value is propagated to the scripts compiled in given Context and
8179    * can be used for filtering scripts.
8180    */
8181   enum EmbedderDataFields { kDebugIdIndex = 0 };
8182 
8183   /**
8184    * Gets the embedder data with the given index, which must have been set by a
8185    * previous call to SetEmbedderData with the same index. Note that index 0
8186    * currently has a special meaning for Chrome's debugger.
8187    */
8188   V8_INLINE Local<Value> GetEmbedderData(int index);
8189 
8190   /**
8191    * Gets the binding object used by V8 extras. Extra natives get a reference
8192    * to this object and can use it to "export" functionality by adding
8193    * properties. Extra natives can also "import" functionality by accessing
8194    * properties added by the embedder using the V8 API.
8195    */
8196   Local<Object> GetExtrasBindingObject();
8197 
8198   /**
8199    * Sets the embedder data with the given index, growing the data as
8200    * needed. Note that index 0 currently has a special meaning for Chrome's
8201    * debugger.
8202    */
8203   void SetEmbedderData(int index, Local<Value> value);
8204 
8205   /**
8206    * Gets a 2-byte-aligned native pointer from the embedder data with the given
8207    * index, which must have been set by a previous call to
8208    * SetAlignedPointerInEmbedderData with the same index. Note that index 0
8209    * currently has a special meaning for Chrome's debugger.
8210    */
8211   V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
8212 
8213   /**
8214    * Sets a 2-byte-aligned native pointer in the embedder data with the given
8215    * index, growing the data as needed. Note that index 0 currently has a
8216    * special meaning for Chrome's debugger.
8217    */
8218   void SetAlignedPointerInEmbedderData(int index, void* value);
8219 
8220   /**
8221    * Control whether code generation from strings is allowed. Calling
8222    * this method with false will disable 'eval' and the 'Function'
8223    * constructor for code running in this context. If 'eval' or the
8224    * 'Function' constructor are used an exception will be thrown.
8225    *
8226    * If code generation from strings is not allowed the
8227    * V8::AllowCodeGenerationFromStrings callback will be invoked if
8228    * set before blocking the call to 'eval' or the 'Function'
8229    * constructor. If that callback returns true, the call will be
8230    * allowed, otherwise an exception will be thrown. If no callback is
8231    * set an exception will be thrown.
8232    */
8233   void AllowCodeGenerationFromStrings(bool allow);
8234 
8235   /**
8236    * Returns true if code generation from strings is allowed for the context.
8237    * For more details see AllowCodeGenerationFromStrings(bool) documentation.
8238    */
8239   bool IsCodeGenerationFromStringsAllowed();
8240 
8241   /**
8242    * Sets the error description for the exception that is thrown when
8243    * code generation from strings is not allowed and 'eval' or the 'Function'
8244    * constructor are called.
8245    */
8246   void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
8247 
8248   /**
8249    * Estimate the memory in bytes retained by this context.
8250    */
8251   size_t EstimatedSize();
8252 
8253   /**
8254    * Stack-allocated class which sets the execution context for all
8255    * operations executed within a local scope.
8256    */
8257   class Scope {
8258    public:
Scope(Local<Context> context)8259     explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
8260       context_->Enter();
8261     }
~Scope()8262     V8_INLINE ~Scope() { context_->Exit(); }
8263 
8264    private:
8265     Local<Context> context_;
8266   };
8267 
8268  private:
8269   friend class Value;
8270   friend class Script;
8271   friend class Object;
8272   friend class Function;
8273 
8274   Local<Value> SlowGetEmbedderData(int index);
8275   void* SlowGetAlignedPointerFromEmbedderData(int index);
8276 };
8277 
8278 
8279 /**
8280  * Multiple threads in V8 are allowed, but only one thread at a time is allowed
8281  * to use any given V8 isolate, see the comments in the Isolate class. The
8282  * definition of 'using a V8 isolate' includes accessing handles or holding onto
8283  * object pointers obtained from V8 handles while in the particular V8 isolate.
8284  * It is up to the user of V8 to ensure, perhaps with locking, that this
8285  * constraint is not violated. In addition to any other synchronization
8286  * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
8287  * used to signal thread switches to V8.
8288  *
8289  * v8::Locker is a scoped lock object. While it's active, i.e. between its
8290  * construction and destruction, the current thread is allowed to use the locked
8291  * isolate. V8 guarantees that an isolate can be locked by at most one thread at
8292  * any time. In other words, the scope of a v8::Locker is a critical section.
8293  *
8294  * Sample usage:
8295 * \code
8296  * ...
8297  * {
8298  *   v8::Locker locker(isolate);
8299  *   v8::Isolate::Scope isolate_scope(isolate);
8300  *   ...
8301  *   // Code using V8 and isolate goes here.
8302  *   ...
8303  * } // Destructor called here
8304  * \endcode
8305  *
8306  * If you wish to stop using V8 in a thread A you can do this either by
8307  * destroying the v8::Locker object as above or by constructing a v8::Unlocker
8308  * object:
8309  *
8310  * \code
8311  * {
8312  *   isolate->Exit();
8313  *   v8::Unlocker unlocker(isolate);
8314  *   ...
8315  *   // Code not using V8 goes here while V8 can run in another thread.
8316  *   ...
8317  * } // Destructor called here.
8318  * isolate->Enter();
8319  * \endcode
8320  *
8321  * The Unlocker object is intended for use in a long-running callback from V8,
8322  * where you want to release the V8 lock for other threads to use.
8323  *
8324  * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
8325  * given thread. This can be useful if you have code that can be called either
8326  * from code that holds the lock or from code that does not. The Unlocker is
8327  * not recursive so you can not have several Unlockers on the stack at once, and
8328  * you can not use an Unlocker in a thread that is not inside a Locker's scope.
8329  *
8330  * An unlocker will unlock several lockers if it has to and reinstate the
8331  * correct depth of locking on its destruction, e.g.:
8332  *
8333  * \code
8334  * // V8 not locked.
8335  * {
8336  *   v8::Locker locker(isolate);
8337  *   Isolate::Scope isolate_scope(isolate);
8338  *   // V8 locked.
8339  *   {
8340  *     v8::Locker another_locker(isolate);
8341  *     // V8 still locked (2 levels).
8342  *     {
8343  *       isolate->Exit();
8344  *       v8::Unlocker unlocker(isolate);
8345  *       // V8 not locked.
8346  *     }
8347  *     isolate->Enter();
8348  *     // V8 locked again (2 levels).
8349  *   }
8350  *   // V8 still locked (1 level).
8351  * }
8352  * // V8 Now no longer locked.
8353  * \endcode
8354  */
8355 class V8_EXPORT Unlocker {
8356  public:
8357   /**
8358    * Initialize Unlocker for a given Isolate.
8359    */
Unlocker(Isolate * isolate)8360   V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
8361 
8362   ~Unlocker();
8363  private:
8364   void Initialize(Isolate* isolate);
8365 
8366   internal::Isolate* isolate_;
8367 };
8368 
8369 
8370 class V8_EXPORT Locker {
8371  public:
8372   /**
8373    * Initialize Locker for a given Isolate.
8374    */
Locker(Isolate * isolate)8375   V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
8376 
8377   ~Locker();
8378 
8379   /**
8380    * Returns whether or not the locker for a given isolate, is locked by the
8381    * current thread.
8382    */
8383   static bool IsLocked(Isolate* isolate);
8384 
8385   /**
8386    * Returns whether v8::Locker is being used by this V8 instance.
8387    */
8388   static bool IsActive();
8389 
8390   // Disallow copying and assigning.
8391   Locker(const Locker&) = delete;
8392   void operator=(const Locker&) = delete;
8393 
8394  private:
8395   void Initialize(Isolate* isolate);
8396 
8397   bool has_lock_;
8398   bool top_level_;
8399   internal::Isolate* isolate_;
8400 };
8401 
8402 
8403 // --- Implementation ---
8404 
8405 
8406 namespace internal {
8407 
8408 const int kApiPointerSize = sizeof(void*);  // NOLINT
8409 const int kApiIntSize = sizeof(int);  // NOLINT
8410 const int kApiInt64Size = sizeof(int64_t);  // NOLINT
8411 
8412 // Tag information for HeapObject.
8413 const int kHeapObjectTag = 1;
8414 const int kHeapObjectTagSize = 2;
8415 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
8416 
8417 // Tag information for Smi.
8418 const int kSmiTag = 0;
8419 const int kSmiTagSize = 1;
8420 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
8421 
8422 template <size_t ptr_size> struct SmiTagging;
8423 
8424 template<int kSmiShiftSize>
IntToSmi(int value)8425 V8_INLINE internal::Object* IntToSmi(int value) {
8426   int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
8427   uintptr_t tagged_value =
8428       (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
8429   return reinterpret_cast<internal::Object*>(tagged_value);
8430 }
8431 
8432 // Smi constants for 32-bit systems.
8433 template <> struct SmiTagging<4> {
8434   enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
8435   static int SmiShiftSize() { return kSmiShiftSize; }
8436   static int SmiValueSize() { return kSmiValueSize; }
8437   V8_INLINE static int SmiToInt(const internal::Object* value) {
8438     int shift_bits = kSmiTagSize + kSmiShiftSize;
8439     // Throw away top 32 bits and shift down (requires >> to be sign extending).
8440     return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
8441   }
8442   V8_INLINE static internal::Object* IntToSmi(int value) {
8443     return internal::IntToSmi<kSmiShiftSize>(value);
8444   }
8445   V8_INLINE static bool IsValidSmi(intptr_t value) {
8446     // To be representable as an tagged small integer, the two
8447     // most-significant bits of 'value' must be either 00 or 11 due to
8448     // sign-extension. To check this we add 01 to the two
8449     // most-significant bits, and check if the most-significant bit is 0
8450     //
8451     // CAUTION: The original code below:
8452     // bool result = ((value + 0x40000000) & 0x80000000) == 0;
8453     // may lead to incorrect results according to the C language spec, and
8454     // in fact doesn't work correctly with gcc4.1.1 in some cases: The
8455     // compiler may produce undefined results in case of signed integer
8456     // overflow. The computation must be done w/ unsigned ints.
8457     return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
8458   }
8459 };
8460 
8461 // Smi constants for 64-bit systems.
8462 template <> struct SmiTagging<8> {
8463   enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
8464   static int SmiShiftSize() { return kSmiShiftSize; }
8465   static int SmiValueSize() { return kSmiValueSize; }
8466   V8_INLINE static int SmiToInt(const internal::Object* value) {
8467     int shift_bits = kSmiTagSize + kSmiShiftSize;
8468     // Shift down and throw away top 32 bits.
8469     return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
8470   }
8471   V8_INLINE static internal::Object* IntToSmi(int value) {
8472     return internal::IntToSmi<kSmiShiftSize>(value);
8473   }
8474   V8_INLINE static bool IsValidSmi(intptr_t value) {
8475     // To be representable as a long smi, the value must be a 32-bit integer.
8476     return (value == static_cast<int32_t>(value));
8477   }
8478 };
8479 
8480 typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
8481 const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
8482 const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
8483 V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
8484 V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
8485 
8486 /**
8487  * This class exports constants and functionality from within v8 that
8488  * is necessary to implement inline functions in the v8 api.  Don't
8489  * depend on functions and constants defined here.
8490  */
8491 class Internals {
8492  public:
8493   // These values match non-compiler-dependent values defined within
8494   // the implementation of v8.
8495   static const int kHeapObjectMapOffset = 0;
8496   static const int kMapInstanceTypeAndBitFieldOffset =
8497       1 * kApiPointerSize + kApiIntSize;
8498   static const int kStringResourceOffset = 3 * kApiPointerSize;
8499 
8500   static const int kOddballKindOffset = 4 * kApiPointerSize + sizeof(double);
8501   static const int kForeignAddressOffset = kApiPointerSize;
8502   static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
8503   static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
8504   static const int kContextHeaderSize = 2 * kApiPointerSize;
8505   static const int kContextEmbedderDataIndex = 5;
8506   static const int kFullStringRepresentationMask = 0x0f;
8507   static const int kStringEncodingMask = 0x8;
8508   static const int kExternalTwoByteRepresentationTag = 0x02;
8509   static const int kExternalOneByteRepresentationTag = 0x0a;
8510 
8511   static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
8512   static const int kExternalMemoryOffset = 4 * kApiPointerSize;
8513   static const int kExternalMemoryLimitOffset =
8514       kExternalMemoryOffset + kApiInt64Size;
8515   static const int kIsolateRootsOffset = kExternalMemoryLimitOffset +
8516                                          kApiInt64Size + kApiInt64Size +
8517                                          kApiPointerSize + kApiPointerSize;
8518   static const int kUndefinedValueRootIndex = 4;
8519   static const int kTheHoleValueRootIndex = 5;
8520   static const int kNullValueRootIndex = 6;
8521   static const int kTrueValueRootIndex = 7;
8522   static const int kFalseValueRootIndex = 8;
8523   static const int kEmptyStringRootIndex = 9;
8524 
8525   static const int kNodeClassIdOffset = 1 * kApiPointerSize;
8526   static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
8527   static const int kNodeStateMask = 0x7;
8528   static const int kNodeStateIsWeakValue = 2;
8529   static const int kNodeStateIsPendingValue = 3;
8530   static const int kNodeStateIsNearDeathValue = 4;
8531   static const int kNodeIsIndependentShift = 3;
8532   static const int kNodeIsActiveShift = 4;
8533 
8534   static const int kJSApiObjectType = 0xb9;
8535   static const int kJSObjectType = 0xba;
8536   static const int kFirstNonstringType = 0x80;
8537   static const int kOddballType = 0x82;
8538   static const int kForeignType = 0x86;
8539 
8540   static const int kUndefinedOddballKind = 5;
8541   static const int kNullOddballKind = 3;
8542 
8543   static const uint32_t kNumIsolateDataSlots = 4;
8544 
8545   V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
8546   V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
8547 #ifdef V8_ENABLE_CHECKS
8548     CheckInitializedImpl(isolate);
8549 #endif
8550   }
8551 
8552   V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
8553     return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
8554             kHeapObjectTag);
8555   }
8556 
8557   V8_INLINE static int SmiValue(const internal::Object* value) {
8558     return PlatformSmiTagging::SmiToInt(value);
8559   }
8560 
8561   V8_INLINE static internal::Object* IntToSmi(int value) {
8562     return PlatformSmiTagging::IntToSmi(value);
8563   }
8564 
8565   V8_INLINE static bool IsValidSmi(intptr_t value) {
8566     return PlatformSmiTagging::IsValidSmi(value);
8567   }
8568 
8569   V8_INLINE static int GetInstanceType(const internal::Object* obj) {
8570     typedef internal::Object O;
8571     O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
8572     // Map::InstanceType is defined so that it will always be loaded into
8573     // the LS 8 bits of one 16-bit word, regardless of endianess.
8574     return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
8575   }
8576 
8577   V8_INLINE static int GetOddballKind(const internal::Object* obj) {
8578     typedef internal::Object O;
8579     return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
8580   }
8581 
8582   V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
8583     int representation = (instance_type & kFullStringRepresentationMask);
8584     return representation == kExternalTwoByteRepresentationTag;
8585   }
8586 
8587   V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
8588       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8589       return *addr & static_cast<uint8_t>(1U << shift);
8590   }
8591 
8592   V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
8593                                        bool value, int shift) {
8594       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8595       uint8_t mask = static_cast<uint8_t>(1U << shift);
8596       *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
8597   }
8598 
8599   V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
8600     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8601     return *addr & kNodeStateMask;
8602   }
8603 
8604   V8_INLINE static void UpdateNodeState(internal::Object** obj,
8605                                         uint8_t value) {
8606     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8607     *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
8608   }
8609 
8610   V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
8611                                         uint32_t slot,
8612                                         void* data) {
8613     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
8614                     kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8615     *reinterpret_cast<void**>(addr) = data;
8616   }
8617 
8618   V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
8619                                          uint32_t slot) {
8620     const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
8621         kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8622     return *reinterpret_cast<void* const*>(addr);
8623   }
8624 
8625   V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
8626                                               int index) {
8627     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
8628     return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
8629   }
8630 
8631   template <typename T>
8632   V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
8633     const uint8_t* addr =
8634         reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
8635     return *reinterpret_cast<const T*>(addr);
8636   }
8637 
8638   template <typename T>
8639   V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
8640     typedef internal::Object O;
8641     typedef internal::Internals I;
8642     O* ctx = *reinterpret_cast<O* const*>(context);
8643     int embedder_data_offset = I::kContextHeaderSize +
8644         (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
8645     O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
8646     int value_offset =
8647         I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
8648     return I::ReadField<T>(embedder_data, value_offset);
8649   }
8650 };
8651 
8652 }  // namespace internal
8653 
8654 
8655 template <class T>
8656 Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
8657   return New(isolate, that.val_);
8658 }
8659 
8660 template <class T>
8661 Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
8662   return New(isolate, that.val_);
8663 }
8664 
8665 
8666 template <class T>
8667 Local<T> Local<T>::New(Isolate* isolate, T* that) {
8668   if (that == NULL) return Local<T>();
8669   T* that_ptr = that;
8670   internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
8671   return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
8672       reinterpret_cast<internal::Isolate*>(isolate), *p)));
8673 }
8674 
8675 
8676 template<class T>
8677 template<class S>
8678 void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
8679   TYPE_CHECK(T, S);
8680   V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
8681 }
8682 
8683 
8684 template<class T>
8685 Local<T> Eternal<T>::Get(Isolate* isolate) {
8686   return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
8687 }
8688 
8689 
8690 template <class T>
8691 Local<T> MaybeLocal<T>::ToLocalChecked() {
8692   if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
8693   return Local<T>(val_);
8694 }
8695 
8696 
8697 template <class T>
8698 void* WeakCallbackInfo<T>::GetInternalField(int index) const {
8699 #ifdef V8_ENABLE_CHECKS
8700   if (index < 0 || index >= kInternalFieldsInWeakCallback) {
8701     V8::InternalFieldOutOfBounds(index);
8702   }
8703 #endif
8704   return internal_fields_[index];
8705 }
8706 
8707 
8708 template <class T>
8709 T* PersistentBase<T>::New(Isolate* isolate, T* that) {
8710   if (that == NULL) return NULL;
8711   internal::Object** p = reinterpret_cast<internal::Object**>(that);
8712   return reinterpret_cast<T*>(
8713       V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
8714                              p));
8715 }
8716 
8717 
8718 template <class T, class M>
8719 template <class S, class M2>
8720 void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
8721   TYPE_CHECK(T, S);
8722   this->Reset();
8723   if (that.IsEmpty()) return;
8724   internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
8725   this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
8726   M::Copy(that, this);
8727 }
8728 
8729 
8730 template <class T>
8731 bool PersistentBase<T>::IsIndependent() const {
8732   typedef internal::Internals I;
8733   if (this->IsEmpty()) return false;
8734   return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8735                         I::kNodeIsIndependentShift);
8736 }
8737 
8738 
8739 template <class T>
8740 bool PersistentBase<T>::IsNearDeath() const {
8741   typedef internal::Internals I;
8742   if (this->IsEmpty()) return false;
8743   uint8_t node_state =
8744       I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
8745   return node_state == I::kNodeStateIsNearDeathValue ||
8746       node_state == I::kNodeStateIsPendingValue;
8747 }
8748 
8749 
8750 template <class T>
8751 bool PersistentBase<T>::IsWeak() const {
8752   typedef internal::Internals I;
8753   if (this->IsEmpty()) return false;
8754   return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
8755       I::kNodeStateIsWeakValue;
8756 }
8757 
8758 
8759 template <class T>
8760 void PersistentBase<T>::Reset() {
8761   if (this->IsEmpty()) return;
8762   V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
8763   val_ = 0;
8764 }
8765 
8766 
8767 template <class T>
8768 template <class S>
8769 void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
8770   TYPE_CHECK(T, S);
8771   Reset();
8772   if (other.IsEmpty()) return;
8773   this->val_ = New(isolate, other.val_);
8774 }
8775 
8776 
8777 template <class T>
8778 template <class S>
8779 void PersistentBase<T>::Reset(Isolate* isolate,
8780                               const PersistentBase<S>& other) {
8781   TYPE_CHECK(T, S);
8782   Reset();
8783   if (other.IsEmpty()) return;
8784   this->val_ = New(isolate, other.val_);
8785 }
8786 
8787 
8788 template <class T>
8789 template <typename P>
8790 V8_INLINE void PersistentBase<T>::SetWeak(
8791     P* parameter, typename WeakCallbackInfo<P>::Callback callback,
8792     WeakCallbackType type) {
8793   typedef typename WeakCallbackInfo<void>::Callback Callback;
8794   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
8795                reinterpret_cast<Callback>(callback), type);
8796 }
8797 
8798 template <class T>
8799 void PersistentBase<T>::SetWeak() {
8800   V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_));
8801 }
8802 
8803 template <class T>
8804 template <typename P>
8805 P* PersistentBase<T>::ClearWeak() {
8806   return reinterpret_cast<P*>(
8807     V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
8808 }
8809 
8810 template <class T>
8811 void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const {
8812   if (IsEmpty()) return;
8813   V8::RegisterExternallyReferencedObject(
8814       reinterpret_cast<internal::Object**>(this->val_),
8815       reinterpret_cast<internal::Isolate*>(isolate));
8816 }
8817 
8818 template <class T>
8819 void PersistentBase<T>::MarkIndependent() {
8820   typedef internal::Internals I;
8821   if (this->IsEmpty()) return;
8822   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8823                     true,
8824                     I::kNodeIsIndependentShift);
8825 }
8826 
8827 template <class T>
8828 void PersistentBase<T>::MarkActive() {
8829   typedef internal::Internals I;
8830   if (this->IsEmpty()) return;
8831   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
8832                     I::kNodeIsActiveShift);
8833 }
8834 
8835 
8836 template <class T>
8837 void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
8838   typedef internal::Internals I;
8839   if (this->IsEmpty()) return;
8840   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8841   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8842   *reinterpret_cast<uint16_t*>(addr) = class_id;
8843 }
8844 
8845 
8846 template <class T>
8847 uint16_t PersistentBase<T>::WrapperClassId() const {
8848   typedef internal::Internals I;
8849   if (this->IsEmpty()) return 0;
8850   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8851   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8852   return *reinterpret_cast<uint16_t*>(addr);
8853 }
8854 
8855 
8856 template<typename T>
8857 ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
8858 
8859 template<typename T>
8860 template<typename S>
8861 void ReturnValue<T>::Set(const Persistent<S>& handle) {
8862   TYPE_CHECK(T, S);
8863   if (V8_UNLIKELY(handle.IsEmpty())) {
8864     *value_ = GetDefaultValue();
8865   } else {
8866     *value_ = *reinterpret_cast<internal::Object**>(*handle);
8867   }
8868 }
8869 
8870 template <typename T>
8871 template <typename S>
8872 void ReturnValue<T>::Set(const Global<S>& handle) {
8873   TYPE_CHECK(T, S);
8874   if (V8_UNLIKELY(handle.IsEmpty())) {
8875     *value_ = GetDefaultValue();
8876   } else {
8877     *value_ = *reinterpret_cast<internal::Object**>(*handle);
8878   }
8879 }
8880 
8881 template <typename T>
8882 template <typename S>
8883 void ReturnValue<T>::Set(const Local<S> handle) {
8884   TYPE_CHECK(T, S);
8885   if (V8_UNLIKELY(handle.IsEmpty())) {
8886     *value_ = GetDefaultValue();
8887   } else {
8888     *value_ = *reinterpret_cast<internal::Object**>(*handle);
8889   }
8890 }
8891 
8892 template<typename T>
8893 void ReturnValue<T>::Set(double i) {
8894   TYPE_CHECK(T, Number);
8895   Set(Number::New(GetIsolate(), i));
8896 }
8897 
8898 template<typename T>
8899 void ReturnValue<T>::Set(int32_t i) {
8900   TYPE_CHECK(T, Integer);
8901   typedef internal::Internals I;
8902   if (V8_LIKELY(I::IsValidSmi(i))) {
8903     *value_ = I::IntToSmi(i);
8904     return;
8905   }
8906   Set(Integer::New(GetIsolate(), i));
8907 }
8908 
8909 template<typename T>
8910 void ReturnValue<T>::Set(uint32_t i) {
8911   TYPE_CHECK(T, Integer);
8912   // Can't simply use INT32_MAX here for whatever reason.
8913   bool fits_into_int32_t = (i & (1U << 31)) == 0;
8914   if (V8_LIKELY(fits_into_int32_t)) {
8915     Set(static_cast<int32_t>(i));
8916     return;
8917   }
8918   Set(Integer::NewFromUnsigned(GetIsolate(), i));
8919 }
8920 
8921 template<typename T>
8922 void ReturnValue<T>::Set(bool value) {
8923   TYPE_CHECK(T, Boolean);
8924   typedef internal::Internals I;
8925   int root_index;
8926   if (value) {
8927     root_index = I::kTrueValueRootIndex;
8928   } else {
8929     root_index = I::kFalseValueRootIndex;
8930   }
8931   *value_ = *I::GetRoot(GetIsolate(), root_index);
8932 }
8933 
8934 template<typename T>
8935 void ReturnValue<T>::SetNull() {
8936   TYPE_CHECK(T, Primitive);
8937   typedef internal::Internals I;
8938   *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
8939 }
8940 
8941 template<typename T>
8942 void ReturnValue<T>::SetUndefined() {
8943   TYPE_CHECK(T, Primitive);
8944   typedef internal::Internals I;
8945   *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
8946 }
8947 
8948 template<typename T>
8949 void ReturnValue<T>::SetEmptyString() {
8950   TYPE_CHECK(T, String);
8951   typedef internal::Internals I;
8952   *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
8953 }
8954 
8955 template <typename T>
8956 Isolate* ReturnValue<T>::GetIsolate() const {
8957   // Isolate is always the pointer below the default value on the stack.
8958   return *reinterpret_cast<Isolate**>(&value_[-2]);
8959 }
8960 
8961 template <typename T>
8962 Local<Value> ReturnValue<T>::Get() const {
8963   typedef internal::Internals I;
8964   if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex))
8965     return Local<Value>(*Undefined(GetIsolate()));
8966   return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_));
8967 }
8968 
8969 template <typename T>
8970 template <typename S>
8971 void ReturnValue<T>::Set(S* whatever) {
8972   // Uncompilable to prevent inadvertent misuse.
8973   TYPE_CHECK(S*, Primitive);
8974 }
8975 
8976 template<typename T>
8977 internal::Object* ReturnValue<T>::GetDefaultValue() {
8978   // Default value is always the pointer below value_ on the stack.
8979   return value_[-1];
8980 }
8981 
8982 template <typename T>
8983 FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
8984                                               internal::Object** values,
8985                                               int length)
8986     : implicit_args_(implicit_args), values_(values), length_(length) {}
8987 
8988 template<typename T>
8989 Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
8990   if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
8991   return Local<Value>(reinterpret_cast<Value*>(values_ - i));
8992 }
8993 
8994 
8995 template<typename T>
8996 Local<Function> FunctionCallbackInfo<T>::Callee() const {
8997   return Local<Function>(reinterpret_cast<Function*>(
8998       &implicit_args_[kCalleeIndex]));
8999 }
9000 
9001 
9002 template<typename T>
9003 Local<Object> FunctionCallbackInfo<T>::This() const {
9004   return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
9005 }
9006 
9007 
9008 template<typename T>
9009 Local<Object> FunctionCallbackInfo<T>::Holder() const {
9010   return Local<Object>(reinterpret_cast<Object*>(
9011       &implicit_args_[kHolderIndex]));
9012 }
9013 
9014 template <typename T>
9015 Local<Value> FunctionCallbackInfo<T>::NewTarget() const {
9016   return Local<Value>(
9017       reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex]));
9018 }
9019 
9020 template <typename T>
9021 Local<Value> FunctionCallbackInfo<T>::Data() const {
9022   return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
9023 }
9024 
9025 
9026 template<typename T>
9027 Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
9028   return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
9029 }
9030 
9031 
9032 template<typename T>
9033 ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
9034   return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
9035 }
9036 
9037 
9038 template<typename T>
9039 bool FunctionCallbackInfo<T>::IsConstructCall() const {
9040   return !NewTarget()->IsUndefined();
9041 }
9042 
9043 
9044 template<typename T>
9045 int FunctionCallbackInfo<T>::Length() const {
9046   return length_;
9047 }
9048 
9049 ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
9050                            Local<Integer> resource_line_offset,
9051                            Local<Integer> resource_column_offset,
9052                            Local<Boolean> resource_is_shared_cross_origin,
9053                            Local<Integer> script_id,
9054                            Local<Value> source_map_url,
9055                            Local<Boolean> resource_is_opaque,
9056                            Local<Boolean> is_wasm, Local<Boolean> is_module)
9057     : resource_name_(resource_name),
9058       resource_line_offset_(resource_line_offset),
9059       resource_column_offset_(resource_column_offset),
9060       options_(!resource_is_shared_cross_origin.IsEmpty() &&
9061                    resource_is_shared_cross_origin->IsTrue(),
9062                !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue(),
9063                !is_wasm.IsEmpty() && is_wasm->IsTrue(),
9064                !is_module.IsEmpty() && is_module->IsTrue()),
9065       script_id_(script_id),
9066       source_map_url_(source_map_url) {}
9067 
9068 Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
9069 
9070 
9071 Local<Integer> ScriptOrigin::ResourceLineOffset() const {
9072   return resource_line_offset_;
9073 }
9074 
9075 
9076 Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
9077   return resource_column_offset_;
9078 }
9079 
9080 
9081 Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
9082 
9083 
9084 Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
9085 
9086 
9087 ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
9088                                CachedData* data)
9089     : source_string(string),
9090       resource_name(origin.ResourceName()),
9091       resource_line_offset(origin.ResourceLineOffset()),
9092       resource_column_offset(origin.ResourceColumnOffset()),
9093       resource_options(origin.Options()),
9094       source_map_url(origin.SourceMapUrl()),
9095       cached_data(data) {}
9096 
9097 
9098 ScriptCompiler::Source::Source(Local<String> string,
9099                                CachedData* data)
9100     : source_string(string), cached_data(data) {}
9101 
9102 
9103 ScriptCompiler::Source::~Source() {
9104   delete cached_data;
9105 }
9106 
9107 
9108 const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
9109     const {
9110   return cached_data;
9111 }
9112 
9113 const ScriptOriginOptions& ScriptCompiler::Source::GetResourceOptions() const {
9114   return resource_options;
9115 }
9116 
9117 Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
9118   return value ? True(isolate) : False(isolate);
9119 }
9120 
9121 void Template::Set(Isolate* isolate, const char* name, Local<Data> value) {
9122   Set(String::NewFromUtf8(isolate, name, NewStringType::kInternalized)
9123           .ToLocalChecked(),
9124       value);
9125 }
9126 
9127 
9128 Local<Value> Object::GetInternalField(int index) {
9129 #ifndef V8_ENABLE_CHECKS
9130   typedef internal::Object O;
9131   typedef internal::HeapObject HO;
9132   typedef internal::Internals I;
9133   O* obj = *reinterpret_cast<O**>(this);
9134   // Fast path: If the object is a plain JSObject, which is the common case, we
9135   // know where to find the internal fields and can return the value directly.
9136   auto instance_type = I::GetInstanceType(obj);
9137   if (instance_type == I::kJSObjectType ||
9138       instance_type == I::kJSApiObjectType) {
9139     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
9140     O* value = I::ReadField<O*>(obj, offset);
9141     O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
9142     return Local<Value>(reinterpret_cast<Value*>(result));
9143   }
9144 #endif
9145   return SlowGetInternalField(index);
9146 }
9147 
9148 
9149 void* Object::GetAlignedPointerFromInternalField(int index) {
9150 #ifndef V8_ENABLE_CHECKS
9151   typedef internal::Object O;
9152   typedef internal::Internals I;
9153   O* obj = *reinterpret_cast<O**>(this);
9154   // Fast path: If the object is a plain JSObject, which is the common case, we
9155   // know where to find the internal fields and can return the value directly.
9156   auto instance_type = I::GetInstanceType(obj);
9157   if (V8_LIKELY(instance_type == I::kJSObjectType ||
9158                 instance_type == I::kJSApiObjectType)) {
9159     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
9160     return I::ReadField<void*>(obj, offset);
9161   }
9162 #endif
9163   return SlowGetAlignedPointerFromInternalField(index);
9164 }
9165 
9166 String* String::Cast(v8::Value* value) {
9167 #ifdef V8_ENABLE_CHECKS
9168   CheckCast(value);
9169 #endif
9170   return static_cast<String*>(value);
9171 }
9172 
9173 
9174 Local<String> String::Empty(Isolate* isolate) {
9175   typedef internal::Object* S;
9176   typedef internal::Internals I;
9177   I::CheckInitialized(isolate);
9178   S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
9179   return Local<String>(reinterpret_cast<String*>(slot));
9180 }
9181 
9182 
9183 String::ExternalStringResource* String::GetExternalStringResource() const {
9184   typedef internal::Object O;
9185   typedef internal::Internals I;
9186   O* obj = *reinterpret_cast<O* const*>(this);
9187   String::ExternalStringResource* result;
9188   if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
9189     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
9190     result = reinterpret_cast<String::ExternalStringResource*>(value);
9191   } else {
9192     result = NULL;
9193   }
9194 #ifdef V8_ENABLE_CHECKS
9195   VerifyExternalStringResource(result);
9196 #endif
9197   return result;
9198 }
9199 
9200 
9201 String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
9202     String::Encoding* encoding_out) const {
9203   typedef internal::Object O;
9204   typedef internal::Internals I;
9205   O* obj = *reinterpret_cast<O* const*>(this);
9206   int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
9207   *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
9208   ExternalStringResourceBase* resource = NULL;
9209   if (type == I::kExternalOneByteRepresentationTag ||
9210       type == I::kExternalTwoByteRepresentationTag) {
9211     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
9212     resource = static_cast<ExternalStringResourceBase*>(value);
9213   }
9214 #ifdef V8_ENABLE_CHECKS
9215     VerifyExternalStringResourceBase(resource, *encoding_out);
9216 #endif
9217   return resource;
9218 }
9219 
9220 
9221 bool Value::IsUndefined() const {
9222 #ifdef V8_ENABLE_CHECKS
9223   return FullIsUndefined();
9224 #else
9225   return QuickIsUndefined();
9226 #endif
9227 }
9228 
9229 bool Value::QuickIsUndefined() const {
9230   typedef internal::Object O;
9231   typedef internal::Internals I;
9232   O* obj = *reinterpret_cast<O* const*>(this);
9233   if (!I::HasHeapObjectTag(obj)) return false;
9234   if (I::GetInstanceType(obj) != I::kOddballType) return false;
9235   return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
9236 }
9237 
9238 
9239 bool Value::IsNull() const {
9240 #ifdef V8_ENABLE_CHECKS
9241   return FullIsNull();
9242 #else
9243   return QuickIsNull();
9244 #endif
9245 }
9246 
9247 bool Value::QuickIsNull() const {
9248   typedef internal::Object O;
9249   typedef internal::Internals I;
9250   O* obj = *reinterpret_cast<O* const*>(this);
9251   if (!I::HasHeapObjectTag(obj)) return false;
9252   if (I::GetInstanceType(obj) != I::kOddballType) return false;
9253   return (I::GetOddballKind(obj) == I::kNullOddballKind);
9254 }
9255 
9256 bool Value::IsNullOrUndefined() const {
9257 #ifdef V8_ENABLE_CHECKS
9258   return FullIsNull() || FullIsUndefined();
9259 #else
9260   return QuickIsNullOrUndefined();
9261 #endif
9262 }
9263 
9264 bool Value::QuickIsNullOrUndefined() const {
9265   typedef internal::Object O;
9266   typedef internal::Internals I;
9267   O* obj = *reinterpret_cast<O* const*>(this);
9268   if (!I::HasHeapObjectTag(obj)) return false;
9269   if (I::GetInstanceType(obj) != I::kOddballType) return false;
9270   int kind = I::GetOddballKind(obj);
9271   return kind == I::kNullOddballKind || kind == I::kUndefinedOddballKind;
9272 }
9273 
9274 bool Value::IsString() const {
9275 #ifdef V8_ENABLE_CHECKS
9276   return FullIsString();
9277 #else
9278   return QuickIsString();
9279 #endif
9280 }
9281 
9282 bool Value::QuickIsString() const {
9283   typedef internal::Object O;
9284   typedef internal::Internals I;
9285   O* obj = *reinterpret_cast<O* const*>(this);
9286   if (!I::HasHeapObjectTag(obj)) return false;
9287   return (I::GetInstanceType(obj) < I::kFirstNonstringType);
9288 }
9289 
9290 
9291 template <class T> Value* Value::Cast(T* value) {
9292   return static_cast<Value*>(value);
9293 }
9294 
9295 
9296 Local<Boolean> Value::ToBoolean() const {
9297   return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
9298       .FromMaybe(Local<Boolean>());
9299 }
9300 
9301 
9302 Local<Number> Value::ToNumber() const {
9303   return ToNumber(Isolate::GetCurrent()->GetCurrentContext())
9304       .FromMaybe(Local<Number>());
9305 }
9306 
9307 
9308 Local<String> Value::ToString() const {
9309   return ToString(Isolate::GetCurrent()->GetCurrentContext())
9310       .FromMaybe(Local<String>());
9311 }
9312 
9313 
9314 Local<String> Value::ToDetailString() const {
9315   return ToDetailString(Isolate::GetCurrent()->GetCurrentContext())
9316       .FromMaybe(Local<String>());
9317 }
9318 
9319 
9320 Local<Object> Value::ToObject() const {
9321   return ToObject(Isolate::GetCurrent()->GetCurrentContext())
9322       .FromMaybe(Local<Object>());
9323 }
9324 
9325 
9326 Local<Integer> Value::ToInteger() const {
9327   return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
9328       .FromMaybe(Local<Integer>());
9329 }
9330 
9331 
9332 Local<Uint32> Value::ToUint32() const {
9333   return ToUint32(Isolate::GetCurrent()->GetCurrentContext())
9334       .FromMaybe(Local<Uint32>());
9335 }
9336 
9337 
9338 Local<Int32> Value::ToInt32() const {
9339   return ToInt32(Isolate::GetCurrent()->GetCurrentContext())
9340       .FromMaybe(Local<Int32>());
9341 }
9342 
9343 
9344 Boolean* Boolean::Cast(v8::Value* value) {
9345 #ifdef V8_ENABLE_CHECKS
9346   CheckCast(value);
9347 #endif
9348   return static_cast<Boolean*>(value);
9349 }
9350 
9351 
9352 Name* Name::Cast(v8::Value* value) {
9353 #ifdef V8_ENABLE_CHECKS
9354   CheckCast(value);
9355 #endif
9356   return static_cast<Name*>(value);
9357 }
9358 
9359 
9360 Symbol* Symbol::Cast(v8::Value* value) {
9361 #ifdef V8_ENABLE_CHECKS
9362   CheckCast(value);
9363 #endif
9364   return static_cast<Symbol*>(value);
9365 }
9366 
9367 
9368 Number* Number::Cast(v8::Value* value) {
9369 #ifdef V8_ENABLE_CHECKS
9370   CheckCast(value);
9371 #endif
9372   return static_cast<Number*>(value);
9373 }
9374 
9375 
9376 Integer* Integer::Cast(v8::Value* value) {
9377 #ifdef V8_ENABLE_CHECKS
9378   CheckCast(value);
9379 #endif
9380   return static_cast<Integer*>(value);
9381 }
9382 
9383 
9384 Int32* Int32::Cast(v8::Value* value) {
9385 #ifdef V8_ENABLE_CHECKS
9386   CheckCast(value);
9387 #endif
9388   return static_cast<Int32*>(value);
9389 }
9390 
9391 
9392 Uint32* Uint32::Cast(v8::Value* value) {
9393 #ifdef V8_ENABLE_CHECKS
9394   CheckCast(value);
9395 #endif
9396   return static_cast<Uint32*>(value);
9397 }
9398 
9399 
9400 Date* Date::Cast(v8::Value* value) {
9401 #ifdef V8_ENABLE_CHECKS
9402   CheckCast(value);
9403 #endif
9404   return static_cast<Date*>(value);
9405 }
9406 
9407 
9408 StringObject* StringObject::Cast(v8::Value* value) {
9409 #ifdef V8_ENABLE_CHECKS
9410   CheckCast(value);
9411 #endif
9412   return static_cast<StringObject*>(value);
9413 }
9414 
9415 
9416 SymbolObject* SymbolObject::Cast(v8::Value* value) {
9417 #ifdef V8_ENABLE_CHECKS
9418   CheckCast(value);
9419 #endif
9420   return static_cast<SymbolObject*>(value);
9421 }
9422 
9423 
9424 NumberObject* NumberObject::Cast(v8::Value* value) {
9425 #ifdef V8_ENABLE_CHECKS
9426   CheckCast(value);
9427 #endif
9428   return static_cast<NumberObject*>(value);
9429 }
9430 
9431 
9432 BooleanObject* BooleanObject::Cast(v8::Value* value) {
9433 #ifdef V8_ENABLE_CHECKS
9434   CheckCast(value);
9435 #endif
9436   return static_cast<BooleanObject*>(value);
9437 }
9438 
9439 
9440 RegExp* RegExp::Cast(v8::Value* value) {
9441 #ifdef V8_ENABLE_CHECKS
9442   CheckCast(value);
9443 #endif
9444   return static_cast<RegExp*>(value);
9445 }
9446 
9447 
9448 Object* Object::Cast(v8::Value* value) {
9449 #ifdef V8_ENABLE_CHECKS
9450   CheckCast(value);
9451 #endif
9452   return static_cast<Object*>(value);
9453 }
9454 
9455 
9456 Array* Array::Cast(v8::Value* value) {
9457 #ifdef V8_ENABLE_CHECKS
9458   CheckCast(value);
9459 #endif
9460   return static_cast<Array*>(value);
9461 }
9462 
9463 
9464 Map* Map::Cast(v8::Value* value) {
9465 #ifdef V8_ENABLE_CHECKS
9466   CheckCast(value);
9467 #endif
9468   return static_cast<Map*>(value);
9469 }
9470 
9471 
9472 Set* Set::Cast(v8::Value* value) {
9473 #ifdef V8_ENABLE_CHECKS
9474   CheckCast(value);
9475 #endif
9476   return static_cast<Set*>(value);
9477 }
9478 
9479 
9480 Promise* Promise::Cast(v8::Value* value) {
9481 #ifdef V8_ENABLE_CHECKS
9482   CheckCast(value);
9483 #endif
9484   return static_cast<Promise*>(value);
9485 }
9486 
9487 
9488 Proxy* Proxy::Cast(v8::Value* value) {
9489 #ifdef V8_ENABLE_CHECKS
9490   CheckCast(value);
9491 #endif
9492   return static_cast<Proxy*>(value);
9493 }
9494 
9495 WasmCompiledModule* WasmCompiledModule::Cast(v8::Value* value) {
9496 #ifdef V8_ENABLE_CHECKS
9497   CheckCast(value);
9498 #endif
9499   return static_cast<WasmCompiledModule*>(value);
9500 }
9501 
9502 Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
9503 #ifdef V8_ENABLE_CHECKS
9504   CheckCast(value);
9505 #endif
9506   return static_cast<Promise::Resolver*>(value);
9507 }
9508 
9509 
9510 ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
9511 #ifdef V8_ENABLE_CHECKS
9512   CheckCast(value);
9513 #endif
9514   return static_cast<ArrayBuffer*>(value);
9515 }
9516 
9517 
9518 ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
9519 #ifdef V8_ENABLE_CHECKS
9520   CheckCast(value);
9521 #endif
9522   return static_cast<ArrayBufferView*>(value);
9523 }
9524 
9525 
9526 TypedArray* TypedArray::Cast(v8::Value* value) {
9527 #ifdef V8_ENABLE_CHECKS
9528   CheckCast(value);
9529 #endif
9530   return static_cast<TypedArray*>(value);
9531 }
9532 
9533 
9534 Uint8Array* Uint8Array::Cast(v8::Value* value) {
9535 #ifdef V8_ENABLE_CHECKS
9536   CheckCast(value);
9537 #endif
9538   return static_cast<Uint8Array*>(value);
9539 }
9540 
9541 
9542 Int8Array* Int8Array::Cast(v8::Value* value) {
9543 #ifdef V8_ENABLE_CHECKS
9544   CheckCast(value);
9545 #endif
9546   return static_cast<Int8Array*>(value);
9547 }
9548 
9549 
9550 Uint16Array* Uint16Array::Cast(v8::Value* value) {
9551 #ifdef V8_ENABLE_CHECKS
9552   CheckCast(value);
9553 #endif
9554   return static_cast<Uint16Array*>(value);
9555 }
9556 
9557 
9558 Int16Array* Int16Array::Cast(v8::Value* value) {
9559 #ifdef V8_ENABLE_CHECKS
9560   CheckCast(value);
9561 #endif
9562   return static_cast<Int16Array*>(value);
9563 }
9564 
9565 
9566 Uint32Array* Uint32Array::Cast(v8::Value* value) {
9567 #ifdef V8_ENABLE_CHECKS
9568   CheckCast(value);
9569 #endif
9570   return static_cast<Uint32Array*>(value);
9571 }
9572 
9573 
9574 Int32Array* Int32Array::Cast(v8::Value* value) {
9575 #ifdef V8_ENABLE_CHECKS
9576   CheckCast(value);
9577 #endif
9578   return static_cast<Int32Array*>(value);
9579 }
9580 
9581 
9582 Float32Array* Float32Array::Cast(v8::Value* value) {
9583 #ifdef V8_ENABLE_CHECKS
9584   CheckCast(value);
9585 #endif
9586   return static_cast<Float32Array*>(value);
9587 }
9588 
9589 
9590 Float64Array* Float64Array::Cast(v8::Value* value) {
9591 #ifdef V8_ENABLE_CHECKS
9592   CheckCast(value);
9593 #endif
9594   return static_cast<Float64Array*>(value);
9595 }
9596 
9597 
9598 Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
9599 #ifdef V8_ENABLE_CHECKS
9600   CheckCast(value);
9601 #endif
9602   return static_cast<Uint8ClampedArray*>(value);
9603 }
9604 
9605 
9606 DataView* DataView::Cast(v8::Value* value) {
9607 #ifdef V8_ENABLE_CHECKS
9608   CheckCast(value);
9609 #endif
9610   return static_cast<DataView*>(value);
9611 }
9612 
9613 
9614 SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
9615 #ifdef V8_ENABLE_CHECKS
9616   CheckCast(value);
9617 #endif
9618   return static_cast<SharedArrayBuffer*>(value);
9619 }
9620 
9621 
9622 Function* Function::Cast(v8::Value* value) {
9623 #ifdef V8_ENABLE_CHECKS
9624   CheckCast(value);
9625 #endif
9626   return static_cast<Function*>(value);
9627 }
9628 
9629 
9630 External* External::Cast(v8::Value* value) {
9631 #ifdef V8_ENABLE_CHECKS
9632   CheckCast(value);
9633 #endif
9634   return static_cast<External*>(value);
9635 }
9636 
9637 
9638 template<typename T>
9639 Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
9640   return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
9641 }
9642 
9643 
9644 template<typename T>
9645 Local<Value> PropertyCallbackInfo<T>::Data() const {
9646   return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
9647 }
9648 
9649 
9650 template<typename T>
9651 Local<Object> PropertyCallbackInfo<T>::This() const {
9652   return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
9653 }
9654 
9655 
9656 template<typename T>
9657 Local<Object> PropertyCallbackInfo<T>::Holder() const {
9658   return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
9659 }
9660 
9661 
9662 template<typename T>
9663 ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
9664   return ReturnValue<T>(&args_[kReturnValueIndex]);
9665 }
9666 
9667 template <typename T>
9668 bool PropertyCallbackInfo<T>::ShouldThrowOnError() const {
9669   typedef internal::Internals I;
9670   return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0);
9671 }
9672 
9673 
9674 Local<Primitive> Undefined(Isolate* isolate) {
9675   typedef internal::Object* S;
9676   typedef internal::Internals I;
9677   I::CheckInitialized(isolate);
9678   S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
9679   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9680 }
9681 
9682 
9683 Local<Primitive> Null(Isolate* isolate) {
9684   typedef internal::Object* S;
9685   typedef internal::Internals I;
9686   I::CheckInitialized(isolate);
9687   S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
9688   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9689 }
9690 
9691 
9692 Local<Boolean> True(Isolate* isolate) {
9693   typedef internal::Object* S;
9694   typedef internal::Internals I;
9695   I::CheckInitialized(isolate);
9696   S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
9697   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9698 }
9699 
9700 
9701 Local<Boolean> False(Isolate* isolate) {
9702   typedef internal::Object* S;
9703   typedef internal::Internals I;
9704   I::CheckInitialized(isolate);
9705   S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
9706   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9707 }
9708 
9709 
9710 void Isolate::SetData(uint32_t slot, void* data) {
9711   typedef internal::Internals I;
9712   I::SetEmbedderData(this, slot, data);
9713 }
9714 
9715 
9716 void* Isolate::GetData(uint32_t slot) {
9717   typedef internal::Internals I;
9718   return I::GetEmbedderData(this, slot);
9719 }
9720 
9721 
9722 uint32_t Isolate::GetNumberOfDataSlots() {
9723   typedef internal::Internals I;
9724   return I::kNumIsolateDataSlots;
9725 }
9726 
9727 
9728 int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
9729     int64_t change_in_bytes) {
9730   typedef internal::Internals I;
9731   int64_t* external_memory = reinterpret_cast<int64_t*>(
9732       reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset);
9733   const int64_t external_memory_limit = *reinterpret_cast<int64_t*>(
9734       reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset);
9735   const int64_t amount = *external_memory + change_in_bytes;
9736   *external_memory = amount;
9737   if (change_in_bytes > 0 && amount > external_memory_limit) {
9738     ReportExternalAllocationLimitReached();
9739   }
9740   return *external_memory;
9741 }
9742 
9743 
9744 template<typename T>
9745 void Isolate::SetObjectGroupId(const Persistent<T>& object,
9746                                UniqueId id) {
9747   TYPE_CHECK(Value, T);
9748   SetObjectGroupId(reinterpret_cast<internal::Object**>(object.val_), id);
9749 }
9750 
9751 
9752 template<typename T>
9753 void Isolate::SetReferenceFromGroup(UniqueId id,
9754                                     const Persistent<T>& object) {
9755   TYPE_CHECK(Value, T);
9756   SetReferenceFromGroup(id, reinterpret_cast<internal::Object**>(object.val_));
9757 }
9758 
9759 
9760 template<typename T, typename S>
9761 void Isolate::SetReference(const Persistent<T>& parent,
9762                            const Persistent<S>& child) {
9763   TYPE_CHECK(Object, T);
9764   TYPE_CHECK(Value, S);
9765   SetReference(reinterpret_cast<internal::Object**>(parent.val_),
9766                reinterpret_cast<internal::Object**>(child.val_));
9767 }
9768 
9769 
9770 Local<Value> Context::GetEmbedderData(int index) {
9771 #ifndef V8_ENABLE_CHECKS
9772   typedef internal::Object O;
9773   typedef internal::HeapObject HO;
9774   typedef internal::Internals I;
9775   HO* context = *reinterpret_cast<HO**>(this);
9776   O** result =
9777       HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
9778   return Local<Value>(reinterpret_cast<Value*>(result));
9779 #else
9780   return SlowGetEmbedderData(index);
9781 #endif
9782 }
9783 
9784 
9785 void* Context::GetAlignedPointerFromEmbedderData(int index) {
9786 #ifndef V8_ENABLE_CHECKS
9787   typedef internal::Internals I;
9788   return I::ReadEmbedderData<void*>(this, index);
9789 #else
9790   return SlowGetAlignedPointerFromEmbedderData(index);
9791 #endif
9792 }
9793 
9794 
9795 void V8::SetAllowCodeGenerationFromStringsCallback(
9796     AllowCodeGenerationFromStringsCallback callback) {
9797   Isolate* isolate = Isolate::GetCurrent();
9798   isolate->SetAllowCodeGenerationFromStringsCallback(callback);
9799 }
9800 
9801 
9802 bool V8::IsDead() {
9803   Isolate* isolate = Isolate::GetCurrent();
9804   return isolate->IsDead();
9805 }
9806 
9807 
9808 bool V8::AddMessageListener(MessageCallback that, Local<Value> data) {
9809   Isolate* isolate = Isolate::GetCurrent();
9810   return isolate->AddMessageListener(that, data);
9811 }
9812 
9813 
9814 void V8::RemoveMessageListeners(MessageCallback that) {
9815   Isolate* isolate = Isolate::GetCurrent();
9816   isolate->RemoveMessageListeners(that);
9817 }
9818 
9819 
9820 void V8::SetFailedAccessCheckCallbackFunction(
9821     FailedAccessCheckCallback callback) {
9822   Isolate* isolate = Isolate::GetCurrent();
9823   isolate->SetFailedAccessCheckCallbackFunction(callback);
9824 }
9825 
9826 
9827 void V8::SetCaptureStackTraceForUncaughtExceptions(
9828     bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
9829   Isolate* isolate = Isolate::GetCurrent();
9830   isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
9831                                                      options);
9832 }
9833 
9834 
9835 void V8::SetFatalErrorHandler(FatalErrorCallback callback) {
9836   Isolate* isolate = Isolate::GetCurrent();
9837   isolate->SetFatalErrorHandler(callback);
9838 }
9839 
9840 void V8::RemoveGCPrologueCallback(GCCallback callback) {
9841   Isolate* isolate = Isolate::GetCurrent();
9842   isolate->RemoveGCPrologueCallback(
9843       reinterpret_cast<Isolate::GCCallback>(callback));
9844 }
9845 
9846 
9847 void V8::RemoveGCEpilogueCallback(GCCallback callback) {
9848   Isolate* isolate = Isolate::GetCurrent();
9849   isolate->RemoveGCEpilogueCallback(
9850       reinterpret_cast<Isolate::GCCallback>(callback));
9851 }
9852 
9853 void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); }
9854 
9855 
9856 bool V8::IsExecutionTerminating(Isolate* isolate) {
9857   if (isolate == NULL) {
9858     isolate = Isolate::GetCurrent();
9859   }
9860   return isolate->IsExecutionTerminating();
9861 }
9862 
9863 
9864 void V8::CancelTerminateExecution(Isolate* isolate) {
9865   isolate->CancelTerminateExecution();
9866 }
9867 
9868 
9869 void V8::VisitExternalResources(ExternalResourceVisitor* visitor) {
9870   Isolate* isolate = Isolate::GetCurrent();
9871   isolate->VisitExternalResources(visitor);
9872 }
9873 
9874 
9875 void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
9876   Isolate* isolate = Isolate::GetCurrent();
9877   isolate->VisitHandlesWithClassIds(visitor);
9878 }
9879 
9880 
9881 void V8::VisitHandlesWithClassIds(Isolate* isolate,
9882                                   PersistentHandleVisitor* visitor) {
9883   isolate->VisitHandlesWithClassIds(visitor);
9884 }
9885 
9886 
9887 void V8::VisitHandlesForPartialDependence(Isolate* isolate,
9888                                           PersistentHandleVisitor* visitor) {
9889   isolate->VisitHandlesForPartialDependence(visitor);
9890 }
9891 
9892 /**
9893  * \example shell.cc
9894  * A simple shell that takes a list of expressions on the
9895  * command-line and executes them.
9896  */
9897 
9898 
9899 /**
9900  * \example process.cc
9901  */
9902 
9903 
9904 }  // namespace v8
9905 
9906 
9907 #undef TYPE_CHECK
9908 
9909 
9910 #endif  // INCLUDE_V8_H_
9911