1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 /** \mainpage V8 API Reference Guide
6 *
7 * V8 is Google's open source JavaScript engine.
8 *
9 * This set of documents provides reference material generated from the
10 * V8 header file, include/v8.h.
11 *
12 * For other documentation see http://code.google.com/apis/v8/
13 */
14
15 #ifndef INCLUDE_V8_H_
16 #define INCLUDE_V8_H_
17
18 #include <stddef.h>
19 #include <stdint.h>
20 #include <stdio.h>
21 #include <memory>
22 #include <utility>
23 #include <vector>
24
25 #include "v8-version.h" // NOLINT(build/include)
26 #include "v8config.h" // NOLINT(build/include)
27
28 // We reserve the V8_* prefix for macros defined in V8 public API and
29 // assume there are no name conflicts with the embedder's code.
30
31 #ifdef V8_OS_WIN
32
33 // Setup for Windows DLL export/import. When building the V8 DLL the
34 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
35 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
36 // static library or building a program which uses the V8 static library neither
37 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
38 #ifdef BUILDING_V8_SHARED
39 # define V8_EXPORT __declspec(dllexport)
40 #elif USING_V8_SHARED
41 # define V8_EXPORT __declspec(dllimport)
42 #else
43 # define V8_EXPORT
44 #endif // BUILDING_V8_SHARED
45
46 #else // V8_OS_WIN
47
48 // Setup for Linux shared library export.
49 #if V8_HAS_ATTRIBUTE_VISIBILITY
50 # ifdef BUILDING_V8_SHARED
51 # define V8_EXPORT __attribute__ ((visibility("default")))
52 # else
53 # define V8_EXPORT
54 # endif
55 #else
56 # define V8_EXPORT
57 #endif
58
59 #endif // V8_OS_WIN
60
61 /**
62 * The v8 JavaScript engine.
63 */
64 namespace v8 {
65
66 class AccessorSignature;
67 class Array;
68 class ArrayBuffer;
69 class Boolean;
70 class BooleanObject;
71 class Context;
72 class CpuProfiler;
73 class Data;
74 class Date;
75 class External;
76 class Function;
77 class FunctionTemplate;
78 class HeapProfiler;
79 class ImplementationUtilities;
80 class Int32;
81 class Integer;
82 class Isolate;
83 template <class T>
84 class Maybe;
85 class Name;
86 class Number;
87 class NumberObject;
88 class Object;
89 class ObjectOperationDescriptor;
90 class ObjectTemplate;
91 class Platform;
92 class Primitive;
93 class Promise;
94 class PropertyDescriptor;
95 class Proxy;
96 class RawOperationDescriptor;
97 class Script;
98 class SharedArrayBuffer;
99 class Signature;
100 class StartupData;
101 class StackFrame;
102 class StackTrace;
103 class String;
104 class StringObject;
105 class Symbol;
106 class SymbolObject;
107 class Private;
108 class Uint32;
109 class Utils;
110 class Value;
111 template <class T> class Local;
112 template <class T>
113 class MaybeLocal;
114 template <class T> class Eternal;
115 template<class T> class NonCopyablePersistentTraits;
116 template<class T> class PersistentBase;
117 template <class T, class M = NonCopyablePersistentTraits<T> >
118 class Persistent;
119 template <class T>
120 class Global;
121 template<class K, class V, class T> class PersistentValueMap;
122 template <class K, class V, class T>
123 class PersistentValueMapBase;
124 template <class K, class V, class T>
125 class GlobalValueMap;
126 template<class V, class T> class PersistentValueVector;
127 template<class T, class P> class WeakCallbackObject;
128 class FunctionTemplate;
129 class ObjectTemplate;
130 class Data;
131 template<typename T> class FunctionCallbackInfo;
132 template<typename T> class PropertyCallbackInfo;
133 class StackTrace;
134 class StackFrame;
135 class Isolate;
136 class CallHandlerHelper;
137 class EscapableHandleScope;
138 template<typename T> class ReturnValue;
139
140 namespace experimental {
141 class FastAccessorBuilder;
142 } // namespace experimental
143
144 namespace internal {
145 class Arguments;
146 class Heap;
147 class HeapObject;
148 class Isolate;
149 class Object;
150 struct StreamedSource;
151 template<typename T> class CustomArguments;
152 class PropertyCallbackArguments;
153 class FunctionCallbackArguments;
154 class GlobalHandles;
155 } // namespace internal
156
157
158 /**
159 * General purpose unique identifier.
160 */
161 class UniqueId {
162 public:
UniqueId(intptr_t data)163 explicit UniqueId(intptr_t data)
164 : data_(data) {}
165
166 bool operator==(const UniqueId& other) const {
167 return data_ == other.data_;
168 }
169
170 bool operator!=(const UniqueId& other) const {
171 return data_ != other.data_;
172 }
173
174 bool operator<(const UniqueId& other) const {
175 return data_ < other.data_;
176 }
177
178 private:
179 intptr_t data_;
180 };
181
182 // --- Handles ---
183
184 #define TYPE_CHECK(T, S) \
185 while (false) { \
186 *(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \
187 }
188
189
190 /**
191 * An object reference managed by the v8 garbage collector.
192 *
193 * All objects returned from v8 have to be tracked by the garbage
194 * collector so that it knows that the objects are still alive. Also,
195 * because the garbage collector may move objects, it is unsafe to
196 * point directly to an object. Instead, all objects are stored in
197 * handles which are known by the garbage collector and updated
198 * whenever an object moves. Handles should always be passed by value
199 * (except in cases like out-parameters) and they should never be
200 * allocated on the heap.
201 *
202 * There are two types of handles: local and persistent handles.
203 * Local handles are light-weight and transient and typically used in
204 * local operations. They are managed by HandleScopes. Persistent
205 * handles can be used when storing objects across several independent
206 * operations and have to be explicitly deallocated when they're no
207 * longer used.
208 *
209 * It is safe to extract the object stored in the handle by
210 * dereferencing the handle (for instance, to extract the Object* from
211 * a Local<Object>); the value will still be governed by a handle
212 * behind the scenes and the same rules apply to these values as to
213 * their handles.
214 */
215 template <class T>
216 class Local {
217 public:
Local()218 V8_INLINE Local() : val_(0) {}
219 template <class S>
Local(Local<S> that)220 V8_INLINE Local(Local<S> that)
221 : val_(reinterpret_cast<T*>(*that)) {
222 /**
223 * This check fails when trying to convert between incompatible
224 * handles. For example, converting from a Local<String> to a
225 * Local<Number>.
226 */
227 TYPE_CHECK(T, S);
228 }
229
230 /**
231 * Returns true if the handle is empty.
232 */
IsEmpty()233 V8_INLINE bool IsEmpty() const { return val_ == 0; }
234
235 /**
236 * Sets the handle to be empty. IsEmpty() will then return true.
237 */
Clear()238 V8_INLINE void Clear() { val_ = 0; }
239
240 V8_INLINE T* operator->() const { return val_; }
241
242 V8_INLINE T* operator*() const { return val_; }
243
244 /**
245 * Checks whether two handles are the same.
246 * Returns true if both are empty, or if the objects
247 * to which they refer are identical.
248 * The handles' references are not checked.
249 */
250 template <class S>
251 V8_INLINE bool operator==(const Local<S>& that) const {
252 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
253 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
254 if (a == 0) return b == 0;
255 if (b == 0) return false;
256 return *a == *b;
257 }
258
259 template <class S> V8_INLINE bool operator==(
260 const PersistentBase<S>& that) const {
261 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
262 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
263 if (a == 0) return b == 0;
264 if (b == 0) return false;
265 return *a == *b;
266 }
267
268 /**
269 * Checks whether two handles are different.
270 * Returns true if only one of the handles is empty, or if
271 * the objects to which they refer are different.
272 * The handles' references are not checked.
273 */
274 template <class S>
275 V8_INLINE bool operator!=(const Local<S>& that) const {
276 return !operator==(that);
277 }
278
279 template <class S> V8_INLINE bool operator!=(
280 const Persistent<S>& that) const {
281 return !operator==(that);
282 }
283
Cast(Local<S> that)284 template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
285 #ifdef V8_ENABLE_CHECKS
286 // If we're going to perform the type check then we have to check
287 // that the handle isn't empty before doing the checked cast.
288 if (that.IsEmpty()) return Local<T>();
289 #endif
290 return Local<T>(T::Cast(*that));
291 }
292
293 template <class S>
As()294 V8_INLINE Local<S> As() const {
295 return Local<S>::Cast(*this);
296 }
297
298 /**
299 * Create a local handle for the content of another handle.
300 * The referee is kept alive by the local handle even when
301 * the original handle is destroyed/disposed.
302 */
303 V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
304 V8_INLINE static Local<T> New(Isolate* isolate,
305 const PersistentBase<T>& that);
306
307 private:
308 friend class Utils;
309 template<class F> friend class Eternal;
310 template<class F> friend class PersistentBase;
311 template<class F, class M> friend class Persistent;
312 template<class F> friend class Local;
313 template <class F>
314 friend class MaybeLocal;
315 template<class F> friend class FunctionCallbackInfo;
316 template<class F> friend class PropertyCallbackInfo;
317 friend class String;
318 friend class Object;
319 friend class Context;
320 friend class Private;
321 template<class F> friend class internal::CustomArguments;
322 friend Local<Primitive> Undefined(Isolate* isolate);
323 friend Local<Primitive> Null(Isolate* isolate);
324 friend Local<Boolean> True(Isolate* isolate);
325 friend Local<Boolean> False(Isolate* isolate);
326 friend class HandleScope;
327 friend class EscapableHandleScope;
328 template <class F1, class F2, class F3>
329 friend class PersistentValueMapBase;
330 template<class F1, class F2> friend class PersistentValueVector;
331 template <class F>
332 friend class ReturnValue;
333
Local(T * that)334 explicit V8_INLINE Local(T* that) : val_(that) {}
335 V8_INLINE static Local<T> New(Isolate* isolate, T* that);
336 T* val_;
337 };
338
339
340 #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
341 // Handle is an alias for Local for historical reasons.
342 template <class T>
343 using Handle = Local<T>;
344 #endif
345
346
347 /**
348 * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
349 * the Local<> is empty before it can be used.
350 *
351 * If an API method returns a MaybeLocal<>, the API method can potentially fail
352 * either because an exception is thrown, or because an exception is pending,
353 * e.g. because a previous API call threw an exception that hasn't been caught
354 * yet, or because a TerminateExecution exception was thrown. In that case, an
355 * empty MaybeLocal is returned.
356 */
357 template <class T>
358 class MaybeLocal {
359 public:
MaybeLocal()360 V8_INLINE MaybeLocal() : val_(nullptr) {}
361 template <class S>
MaybeLocal(Local<S> that)362 V8_INLINE MaybeLocal(Local<S> that)
363 : val_(reinterpret_cast<T*>(*that)) {
364 TYPE_CHECK(T, S);
365 }
366
IsEmpty()367 V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
368
369 template <class S>
ToLocal(Local<S> * out)370 V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
371 out->val_ = IsEmpty() ? nullptr : this->val_;
372 return !IsEmpty();
373 }
374
375 // Will crash if the MaybeLocal<> is empty.
376 V8_INLINE Local<T> ToLocalChecked();
377
378 template <class S>
FromMaybe(Local<S> default_value)379 V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
380 return IsEmpty() ? default_value : Local<S>(val_);
381 }
382
383 private:
384 T* val_;
385 };
386
387
388 // Eternal handles are set-once handles that live for the life of the isolate.
389 template <class T> class Eternal {
390 public:
Eternal()391 V8_INLINE Eternal() : index_(kInitialValue) { }
392 template<class S>
Eternal(Isolate * isolate,Local<S> handle)393 V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
394 Set(isolate, handle);
395 }
396 // Can only be safely called if already set.
397 V8_INLINE Local<T> Get(Isolate* isolate);
IsEmpty()398 V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
399 template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
400
401 private:
402 static const int kInitialValue = -1;
403 int index_;
404 };
405
406
407 static const int kInternalFieldsInWeakCallback = 2;
408
409
410 template <typename T>
411 class WeakCallbackInfo {
412 public:
413 typedef void (*Callback)(const WeakCallbackInfo<T>& data);
414
WeakCallbackInfo(Isolate * isolate,T * parameter,void * internal_fields[kInternalFieldsInWeakCallback],Callback * callback)415 WeakCallbackInfo(Isolate* isolate, T* parameter,
416 void* internal_fields[kInternalFieldsInWeakCallback],
417 Callback* callback)
418 : isolate_(isolate), parameter_(parameter), callback_(callback) {
419 for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
420 internal_fields_[i] = internal_fields[i];
421 }
422 }
423
GetIsolate()424 V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetParameter()425 V8_INLINE T* GetParameter() const { return parameter_; }
426 V8_INLINE void* GetInternalField(int index) const;
427
428 V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField1()429 void* GetInternalField1() const) {
430 return internal_fields_[0];
431 }
432 V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField2()433 void* GetInternalField2() const) {
434 return internal_fields_[1];
435 }
436
437 V8_DEPRECATED("Not realiable once SetSecondPassCallback() was used.",
IsFirstPass()438 bool IsFirstPass() const) {
439 return callback_ != nullptr;
440 }
441
442 // When first called, the embedder MUST Reset() the Global which triggered the
443 // callback. The Global itself is unusable for anything else. No v8 other api
444 // calls may be called in the first callback. Should additional work be
445 // required, the embedder must set a second pass callback, which will be
446 // called after all the initial callbacks are processed.
447 // Calling SetSecondPassCallback on the second pass will immediately crash.
SetSecondPassCallback(Callback callback)448 void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
449
450 private:
451 Isolate* isolate_;
452 T* parameter_;
453 Callback* callback_;
454 void* internal_fields_[kInternalFieldsInWeakCallback];
455 };
456
457
458 // kParameter will pass a void* parameter back to the callback, kInternalFields
459 // will pass the first two internal fields back to the callback, kFinalizer
460 // will pass a void* parameter back, but is invoked before the object is
461 // actually collected, so it can be resurrected. In the last case, it is not
462 // possible to request a second pass callback.
463 enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer };
464
465 /**
466 * An object reference that is independent of any handle scope. Where
467 * a Local handle only lives as long as the HandleScope in which it was
468 * allocated, a PersistentBase handle remains valid until it is explicitly
469 * disposed.
470 *
471 * A persistent handle contains a reference to a storage cell within
472 * the v8 engine which holds an object value and which is updated by
473 * the garbage collector whenever the object is moved. A new storage
474 * cell can be created using the constructor or PersistentBase::Reset and
475 * existing handles can be disposed using PersistentBase::Reset.
476 *
477 */
478 template <class T> class PersistentBase {
479 public:
480 /**
481 * If non-empty, destroy the underlying storage cell
482 * IsEmpty() will return true after this call.
483 */
484 V8_INLINE void Reset();
485 /**
486 * If non-empty, destroy the underlying storage cell
487 * and create a new one with the contents of other if other is non empty
488 */
489 template <class S>
490 V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
491
492 /**
493 * If non-empty, destroy the underlying storage cell
494 * and create a new one with the contents of other if other is non empty
495 */
496 template <class S>
497 V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
498
IsEmpty()499 V8_INLINE bool IsEmpty() const { return val_ == NULL; }
Empty()500 V8_INLINE void Empty() { val_ = 0; }
501
Get(Isolate * isolate)502 V8_INLINE Local<T> Get(Isolate* isolate) const {
503 return Local<T>::New(isolate, *this);
504 }
505
506 template <class S>
507 V8_INLINE bool operator==(const PersistentBase<S>& that) const {
508 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
509 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
510 if (a == NULL) return b == NULL;
511 if (b == NULL) return false;
512 return *a == *b;
513 }
514
515 template <class S>
516 V8_INLINE bool operator==(const Local<S>& that) const {
517 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
518 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
519 if (a == NULL) return b == NULL;
520 if (b == NULL) return false;
521 return *a == *b;
522 }
523
524 template <class S>
525 V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
526 return !operator==(that);
527 }
528
529 template <class S>
530 V8_INLINE bool operator!=(const Local<S>& that) const {
531 return !operator==(that);
532 }
533
534 /**
535 * Install a finalization callback on this object.
536 * NOTE: There is no guarantee as to *when* or even *if* the callback is
537 * invoked. The invocation is performed solely on a best effort basis.
538 * As always, GC-based finalization should *not* be relied upon for any
539 * critical form of resource management!
540 */
541 template <typename P>
542 V8_INLINE void SetWeak(P* parameter,
543 typename WeakCallbackInfo<P>::Callback callback,
544 WeakCallbackType type);
545
546 /**
547 * Turns this handle into a weak phantom handle without finalization callback.
548 * The handle will be reset automatically when the garbage collector detects
549 * that the object is no longer reachable.
550 * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall
551 * returns how many phantom handles were reset by the garbage collector.
552 */
553 V8_INLINE void SetWeak();
554
555 template<typename P>
556 V8_INLINE P* ClearWeak();
557
558 // TODO(dcarney): remove this.
ClearWeak()559 V8_INLINE void ClearWeak() { ClearWeak<void>(); }
560
561 /**
562 * Allows the embedder to tell the v8 garbage collector that a certain object
563 * is alive. Only allowed when the embedder is asked to trace its heap by
564 * EmbedderHeapTracer.
565 */
566 V8_INLINE void RegisterExternalReference(Isolate* isolate) const;
567
568 /**
569 * Marks the reference to this object independent. Garbage collector is free
570 * to ignore any object groups containing this object. Weak callback for an
571 * independent handle should not assume that it will be preceded by a global
572 * GC prologue callback or followed by a global GC epilogue callback.
573 */
574 V8_INLINE void MarkIndependent();
575
576 /**
577 * Marks the reference to this object as active. The scavenge garbage
578 * collection should not reclaim the objects marked as active.
579 * This bit is cleared after the each garbage collection pass.
580 */
581 V8_INLINE void MarkActive();
582
583 V8_INLINE bool IsIndependent() const;
584
585 /** Checks if the handle holds the only reference to an object. */
586 V8_INLINE bool IsNearDeath() const;
587
588 /** Returns true if the handle's reference is weak. */
589 V8_INLINE bool IsWeak() const;
590
591 /**
592 * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
593 * description in v8-profiler.h for details.
594 */
595 V8_INLINE void SetWrapperClassId(uint16_t class_id);
596
597 /**
598 * Returns the class ID previously assigned to this handle or 0 if no class ID
599 * was previously assigned.
600 */
601 V8_INLINE uint16_t WrapperClassId() const;
602
603 PersistentBase(const PersistentBase& other) = delete; // NOLINT
604 void operator=(const PersistentBase&) = delete;
605
606 private:
607 friend class Isolate;
608 friend class Utils;
609 template<class F> friend class Local;
610 template<class F1, class F2> friend class Persistent;
611 template <class F>
612 friend class Global;
613 template<class F> friend class PersistentBase;
614 template<class F> friend class ReturnValue;
615 template <class F1, class F2, class F3>
616 friend class PersistentValueMapBase;
617 template<class F1, class F2> friend class PersistentValueVector;
618 friend class Object;
619
PersistentBase(T * val)620 explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
621 V8_INLINE static T* New(Isolate* isolate, T* that);
622
623 T* val_;
624 };
625
626
627 /**
628 * Default traits for Persistent. This class does not allow
629 * use of the copy constructor or assignment operator.
630 * At present kResetInDestructor is not set, but that will change in a future
631 * version.
632 */
633 template<class T>
634 class NonCopyablePersistentTraits {
635 public:
636 typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
637 static const bool kResetInDestructor = false;
638 template<class S, class M>
Copy(const Persistent<S,M> & source,NonCopyablePersistent * dest)639 V8_INLINE static void Copy(const Persistent<S, M>& source,
640 NonCopyablePersistent* dest) {
641 Uncompilable<Object>();
642 }
643 // TODO(dcarney): come up with a good compile error here.
Uncompilable()644 template<class O> V8_INLINE static void Uncompilable() {
645 TYPE_CHECK(O, Primitive);
646 }
647 };
648
649
650 /**
651 * Helper class traits to allow copying and assignment of Persistent.
652 * This will clone the contents of storage cell, but not any of the flags, etc.
653 */
654 template<class T>
655 struct CopyablePersistentTraits {
656 typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
657 static const bool kResetInDestructor = true;
658 template<class S, class M>
CopyCopyablePersistentTraits659 static V8_INLINE void Copy(const Persistent<S, M>& source,
660 CopyablePersistent* dest) {
661 // do nothing, just allow copy
662 }
663 };
664
665
666 /**
667 * A PersistentBase which allows copy and assignment.
668 *
669 * Copy, assignment and destructor behavior is controlled by the traits
670 * class M.
671 *
672 * Note: Persistent class hierarchy is subject to future changes.
673 */
674 template <class T, class M> class Persistent : public PersistentBase<T> {
675 public:
676 /**
677 * A Persistent with no storage cell.
678 */
Persistent()679 V8_INLINE Persistent() : PersistentBase<T>(0) { }
680 /**
681 * Construct a Persistent from a Local.
682 * When the Local is non-empty, a new storage cell is created
683 * pointing to the same object, and no flags are set.
684 */
685 template <class S>
Persistent(Isolate * isolate,Local<S> that)686 V8_INLINE Persistent(Isolate* isolate, Local<S> that)
687 : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
688 TYPE_CHECK(T, S);
689 }
690 /**
691 * Construct a Persistent from a Persistent.
692 * When the Persistent is non-empty, a new storage cell is created
693 * pointing to the same object, and no flags are set.
694 */
695 template <class S, class M2>
Persistent(Isolate * isolate,const Persistent<S,M2> & that)696 V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
697 : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
698 TYPE_CHECK(T, S);
699 }
700 /**
701 * The copy constructors and assignment operator create a Persistent
702 * exactly as the Persistent constructor, but the Copy function from the
703 * traits class is called, allowing the setting of flags based on the
704 * copied Persistent.
705 */
Persistent(const Persistent & that)706 V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
707 Copy(that);
708 }
709 template <class S, class M2>
Persistent(const Persistent<S,M2> & that)710 V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
711 Copy(that);
712 }
713 V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
714 Copy(that);
715 return *this;
716 }
717 template <class S, class M2>
718 V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
719 Copy(that);
720 return *this;
721 }
722 /**
723 * The destructor will dispose the Persistent based on the
724 * kResetInDestructor flags in the traits class. Since not calling dispose
725 * can result in a memory leak, it is recommended to always set this flag.
726 */
~Persistent()727 V8_INLINE ~Persistent() {
728 if (M::kResetInDestructor) this->Reset();
729 }
730
731 // TODO(dcarney): this is pretty useless, fix or remove
732 template <class S>
Cast(const Persistent<S> & that)733 V8_INLINE static Persistent<T>& Cast(const Persistent<S>& that) { // NOLINT
734 #ifdef V8_ENABLE_CHECKS
735 // If we're going to perform the type check then we have to check
736 // that the handle isn't empty before doing the checked cast.
737 if (!that.IsEmpty()) T::Cast(*that);
738 #endif
739 return reinterpret_cast<Persistent<T>&>(const_cast<Persistent<S>&>(that));
740 }
741
742 // TODO(dcarney): this is pretty useless, fix or remove
743 template <class S>
As()744 V8_INLINE Persistent<S>& As() const { // NOLINT
745 return Persistent<S>::Cast(*this);
746 }
747
748 private:
749 friend class Isolate;
750 friend class Utils;
751 template<class F> friend class Local;
752 template<class F1, class F2> friend class Persistent;
753 template<class F> friend class ReturnValue;
754
Persistent(T * that)755 explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {}
756 V8_INLINE T* operator*() const { return this->val_; }
757 template<class S, class M2>
758 V8_INLINE void Copy(const Persistent<S, M2>& that);
759 };
760
761
762 /**
763 * A PersistentBase which has move semantics.
764 *
765 * Note: Persistent class hierarchy is subject to future changes.
766 */
767 template <class T>
768 class Global : public PersistentBase<T> {
769 public:
770 /**
771 * A Global with no storage cell.
772 */
Global()773 V8_INLINE Global() : PersistentBase<T>(nullptr) {}
774 /**
775 * Construct a Global from a Local.
776 * When the Local is non-empty, a new storage cell is created
777 * pointing to the same object, and no flags are set.
778 */
779 template <class S>
Global(Isolate * isolate,Local<S> that)780 V8_INLINE Global(Isolate* isolate, Local<S> that)
781 : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
782 TYPE_CHECK(T, S);
783 }
784 /**
785 * Construct a Global from a PersistentBase.
786 * When the Persistent is non-empty, a new storage cell is created
787 * pointing to the same object, and no flags are set.
788 */
789 template <class S>
Global(Isolate * isolate,const PersistentBase<S> & that)790 V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
791 : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
792 TYPE_CHECK(T, S);
793 }
794 /**
795 * Move constructor.
796 */
Global(Global && other)797 V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) { // NOLINT
798 other.val_ = nullptr;
799 }
~Global()800 V8_INLINE ~Global() { this->Reset(); }
801 /**
802 * Move via assignment.
803 */
804 template <class S>
805 V8_INLINE Global& operator=(Global<S>&& rhs) { // NOLINT
806 TYPE_CHECK(T, S);
807 if (this != &rhs) {
808 this->Reset();
809 this->val_ = rhs.val_;
810 rhs.val_ = nullptr;
811 }
812 return *this;
813 }
814 /**
815 * Pass allows returning uniques from functions, etc.
816 */
Pass()817 Global Pass() { return static_cast<Global&&>(*this); } // NOLINT
818
819 /*
820 * For compatibility with Chromium's base::Bind (base::Passed).
821 */
822 typedef void MoveOnlyTypeForCPP03;
823
824 Global(const Global&) = delete;
825 void operator=(const Global&) = delete;
826
827 private:
828 template <class F>
829 friend class ReturnValue;
830 V8_INLINE T* operator*() const { return this->val_; }
831 };
832
833
834 // UniquePersistent is an alias for Global for historical reason.
835 template <class T>
836 using UniquePersistent = Global<T>;
837
838
839 /**
840 * A stack-allocated class that governs a number of local handles.
841 * After a handle scope has been created, all local handles will be
842 * allocated within that handle scope until either the handle scope is
843 * deleted or another handle scope is created. If there is already a
844 * handle scope and a new one is created, all allocations will take
845 * place in the new handle scope until it is deleted. After that,
846 * new handles will again be allocated in the original handle scope.
847 *
848 * After the handle scope of a local handle has been deleted the
849 * garbage collector will no longer track the object stored in the
850 * handle and may deallocate it. The behavior of accessing a handle
851 * for which the handle scope has been deleted is undefined.
852 */
853 class V8_EXPORT HandleScope {
854 public:
855 explicit HandleScope(Isolate* isolate);
856
857 ~HandleScope();
858
859 /**
860 * Counts the number of allocated handles.
861 */
862 static int NumberOfHandles(Isolate* isolate);
863
GetIsolate()864 V8_INLINE Isolate* GetIsolate() const {
865 return reinterpret_cast<Isolate*>(isolate_);
866 }
867
868 HandleScope(const HandleScope&) = delete;
869 void operator=(const HandleScope&) = delete;
870 void* operator new(size_t size);
871 void operator delete(void*, size_t);
872
873 protected:
HandleScope()874 V8_INLINE HandleScope() {}
875
876 void Initialize(Isolate* isolate);
877
878 static internal::Object** CreateHandle(internal::Isolate* isolate,
879 internal::Object* value);
880
881 private:
882 // Uses heap_object to obtain the current Isolate.
883 static internal::Object** CreateHandle(internal::HeapObject* heap_object,
884 internal::Object* value);
885
886 internal::Isolate* isolate_;
887 internal::Object** prev_next_;
888 internal::Object** prev_limit_;
889
890 // Local::New uses CreateHandle with an Isolate* parameter.
891 template<class F> friend class Local;
892
893 // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
894 // a HeapObject* in their shortcuts.
895 friend class Object;
896 friend class Context;
897 };
898
899
900 /**
901 * A HandleScope which first allocates a handle in the current scope
902 * which will be later filled with the escape value.
903 */
904 class V8_EXPORT EscapableHandleScope : public HandleScope {
905 public:
906 explicit EscapableHandleScope(Isolate* isolate);
~EscapableHandleScope()907 V8_INLINE ~EscapableHandleScope() {}
908
909 /**
910 * Pushes the value into the previous scope and returns a handle to it.
911 * Cannot be called twice.
912 */
913 template <class T>
Escape(Local<T> value)914 V8_INLINE Local<T> Escape(Local<T> value) {
915 internal::Object** slot =
916 Escape(reinterpret_cast<internal::Object**>(*value));
917 return Local<T>(reinterpret_cast<T*>(slot));
918 }
919
920 EscapableHandleScope(const EscapableHandleScope&) = delete;
921 void operator=(const EscapableHandleScope&) = delete;
922 void* operator new(size_t size);
923 void operator delete(void*, size_t);
924
925 private:
926 internal::Object** Escape(internal::Object** escape_value);
927 internal::Object** escape_slot_;
928 };
929
930 class V8_EXPORT SealHandleScope {
931 public:
932 SealHandleScope(Isolate* isolate);
933 ~SealHandleScope();
934
935 SealHandleScope(const SealHandleScope&) = delete;
936 void operator=(const SealHandleScope&) = delete;
937 void* operator new(size_t size);
938 void operator delete(void*, size_t);
939
940 private:
941 internal::Isolate* const isolate_;
942 internal::Object** prev_limit_;
943 int prev_sealed_level_;
944 };
945
946
947 // --- Special objects ---
948
949
950 /**
951 * The superclass of values and API object templates.
952 */
953 class V8_EXPORT Data {
954 private:
955 Data();
956 };
957
958
959 /**
960 * The optional attributes of ScriptOrigin.
961 */
962 class ScriptOriginOptions {
963 public:
964 V8_INLINE ScriptOriginOptions(bool is_shared_cross_origin = false,
965 bool is_opaque = false, bool is_wasm = false,
966 bool is_module = false)
967 : flags_((is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
968 (is_wasm ? kIsWasm : 0) | (is_opaque ? kIsOpaque : 0) |
969 (is_module ? kIsModule : 0)) {}
ScriptOriginOptions(int flags)970 V8_INLINE ScriptOriginOptions(int flags)
971 : flags_(flags &
972 (kIsSharedCrossOrigin | kIsOpaque | kIsWasm | kIsModule)) {}
973
IsSharedCrossOrigin()974 bool IsSharedCrossOrigin() const {
975 return (flags_ & kIsSharedCrossOrigin) != 0;
976 }
IsOpaque()977 bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
IsWasm()978 bool IsWasm() const { return (flags_ & kIsWasm) != 0; }
IsModule()979 bool IsModule() const { return (flags_ & kIsModule) != 0; }
980
Flags()981 int Flags() const { return flags_; }
982
983 private:
984 enum {
985 kIsSharedCrossOrigin = 1,
986 kIsOpaque = 1 << 1,
987 kIsWasm = 1 << 2,
988 kIsModule = 1 << 3
989 };
990 const int flags_;
991 };
992
993 /**
994 * The origin, within a file, of a script.
995 */
996 class ScriptOrigin {
997 public:
998 V8_INLINE ScriptOrigin(
999 Local<Value> resource_name,
1000 Local<Integer> resource_line_offset = Local<Integer>(),
1001 Local<Integer> resource_column_offset = Local<Integer>(),
1002 Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1003 Local<Integer> script_id = Local<Integer>(),
1004 Local<Value> source_map_url = Local<Value>(),
1005 Local<Boolean> resource_is_opaque = Local<Boolean>(),
1006 Local<Boolean> is_wasm = Local<Boolean>(),
1007 Local<Boolean> is_module = Local<Boolean>());
1008
1009 V8_INLINE Local<Value> ResourceName() const;
1010 V8_INLINE Local<Integer> ResourceLineOffset() const;
1011 V8_INLINE Local<Integer> ResourceColumnOffset() const;
1012 /**
1013 * Returns true for embedder's debugger scripts
1014 */
1015 V8_INLINE Local<Integer> ScriptID() const;
1016 V8_INLINE Local<Value> SourceMapUrl() const;
Options()1017 V8_INLINE ScriptOriginOptions Options() const { return options_; }
1018
1019 private:
1020 Local<Value> resource_name_;
1021 Local<Integer> resource_line_offset_;
1022 Local<Integer> resource_column_offset_;
1023 ScriptOriginOptions options_;
1024 Local<Integer> script_id_;
1025 Local<Value> source_map_url_;
1026 };
1027
1028
1029 /**
1030 * A compiled JavaScript script, not yet tied to a Context.
1031 */
1032 class V8_EXPORT UnboundScript {
1033 public:
1034 /**
1035 * Binds the script to the currently entered context.
1036 */
1037 Local<Script> BindToCurrentContext();
1038
1039 int GetId();
1040 Local<Value> GetScriptName();
1041
1042 /**
1043 * Data read from magic sourceURL comments.
1044 */
1045 Local<Value> GetSourceURL();
1046 /**
1047 * Data read from magic sourceMappingURL comments.
1048 */
1049 Local<Value> GetSourceMappingURL();
1050
1051 /**
1052 * Returns zero based line number of the code_pos location in the script.
1053 * -1 will be returned if no information available.
1054 */
1055 int GetLineNumber(int code_pos);
1056
1057 static const int kNoScriptId = 0;
1058 };
1059
1060 /**
1061 * This is an unfinished experimental feature, and is only exposed
1062 * here for internal testing purposes. DO NOT USE.
1063 *
1064 * A compiled JavaScript module.
1065 */
1066 class V8_EXPORT Module {
1067 public:
1068 /**
1069 * Returns the number of modules requested by this module.
1070 */
1071 int GetModuleRequestsLength() const;
1072
1073 /**
1074 * Returns the ith module specifier in this module.
1075 * i must be < GetModuleRequestsLength() and >= 0.
1076 */
1077 Local<String> GetModuleRequest(int i) const;
1078
1079 /**
1080 * Returns the identity hash for this object.
1081 */
1082 int GetIdentityHash() const;
1083
1084 typedef MaybeLocal<Module> (*ResolveCallback)(Local<Context> context,
1085 Local<String> specifier,
1086 Local<Module> referrer);
1087
1088 /**
1089 * ModuleDeclarationInstantiation
1090 *
1091 * Returns false if an exception occurred during instantiation.
1092 */
1093 V8_WARN_UNUSED_RESULT bool Instantiate(Local<Context> context,
1094 ResolveCallback callback);
1095
1096 /**
1097 * ModuleEvaluation
1098 */
1099 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Evaluate(Local<Context> context);
1100 };
1101
1102 /**
1103 * A compiled JavaScript script, tied to a Context which was active when the
1104 * script was compiled.
1105 */
1106 class V8_EXPORT Script {
1107 public:
1108 /**
1109 * A shorthand for ScriptCompiler::Compile().
1110 */
1111 static V8_DEPRECATE_SOON(
1112 "Use maybe version",
1113 Local<Script> Compile(Local<String> source,
1114 ScriptOrigin* origin = nullptr));
1115 static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1116 Local<Context> context, Local<String> source,
1117 ScriptOrigin* origin = nullptr);
1118
1119 static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1120 Compile(Local<String> source,
1121 Local<String> file_name));
1122
1123 /**
1124 * Runs the script returning the resulting value. It will be run in the
1125 * context in which it was created (ScriptCompiler::CompileBound or
1126 * UnboundScript::BindToCurrentContext()).
1127 */
1128 V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1129 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1130
1131 /**
1132 * Returns the corresponding context-unbound script.
1133 */
1134 Local<UnboundScript> GetUnboundScript();
1135 };
1136
1137
1138 /**
1139 * For compiling scripts.
1140 */
1141 class V8_EXPORT ScriptCompiler {
1142 public:
1143 /**
1144 * Compilation data that the embedder can cache and pass back to speed up
1145 * future compilations. The data is produced if the CompilerOptions passed to
1146 * the compilation functions in ScriptCompiler contains produce_data_to_cache
1147 * = true. The data to cache can then can be retrieved from
1148 * UnboundScript.
1149 */
1150 struct V8_EXPORT CachedData {
1151 enum BufferPolicy {
1152 BufferNotOwned,
1153 BufferOwned
1154 };
1155
CachedDataCachedData1156 CachedData()
1157 : data(NULL),
1158 length(0),
1159 rejected(false),
1160 buffer_policy(BufferNotOwned) {}
1161
1162 // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1163 // data and guarantees that it stays alive until the CachedData object is
1164 // destroyed. If the policy is BufferOwned, the given data will be deleted
1165 // (with delete[]) when the CachedData object is destroyed.
1166 CachedData(const uint8_t* data, int length,
1167 BufferPolicy buffer_policy = BufferNotOwned);
1168 ~CachedData();
1169 // TODO(marja): Async compilation; add constructors which take a callback
1170 // which will be called when V8 no longer needs the data.
1171 const uint8_t* data;
1172 int length;
1173 bool rejected;
1174 BufferPolicy buffer_policy;
1175
1176 // Prevent copying.
1177 CachedData(const CachedData&) = delete;
1178 CachedData& operator=(const CachedData&) = delete;
1179 };
1180
1181 /**
1182 * Source code which can be then compiled to a UnboundScript or Script.
1183 */
1184 class Source {
1185 public:
1186 // Source takes ownership of CachedData.
1187 V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1188 CachedData* cached_data = NULL);
1189 V8_INLINE Source(Local<String> source_string,
1190 CachedData* cached_data = NULL);
1191 V8_INLINE ~Source();
1192
1193 // Ownership of the CachedData or its buffers is *not* transferred to the
1194 // caller. The CachedData object is alive as long as the Source object is
1195 // alive.
1196 V8_INLINE const CachedData* GetCachedData() const;
1197
1198 V8_INLINE const ScriptOriginOptions& GetResourceOptions() const;
1199
1200 // Prevent copying.
1201 Source(const Source&) = delete;
1202 Source& operator=(const Source&) = delete;
1203
1204 private:
1205 friend class ScriptCompiler;
1206
1207 Local<String> source_string;
1208
1209 // Origin information
1210 Local<Value> resource_name;
1211 Local<Integer> resource_line_offset;
1212 Local<Integer> resource_column_offset;
1213 ScriptOriginOptions resource_options;
1214 Local<Value> source_map_url;
1215
1216 // Cached data from previous compilation (if a kConsume*Cache flag is
1217 // set), or hold newly generated cache data (kProduce*Cache flags) are
1218 // set when calling a compile method.
1219 CachedData* cached_data;
1220 };
1221
1222 /**
1223 * For streaming incomplete script data to V8. The embedder should implement a
1224 * subclass of this class.
1225 */
1226 class V8_EXPORT ExternalSourceStream {
1227 public:
~ExternalSourceStream()1228 virtual ~ExternalSourceStream() {}
1229
1230 /**
1231 * V8 calls this to request the next chunk of data from the embedder. This
1232 * function will be called on a background thread, so it's OK to block and
1233 * wait for the data, if the embedder doesn't have data yet. Returns the
1234 * length of the data returned. When the data ends, GetMoreData should
1235 * return 0. Caller takes ownership of the data.
1236 *
1237 * When streaming UTF-8 data, V8 handles multi-byte characters split between
1238 * two data chunks, but doesn't handle multi-byte characters split between
1239 * more than two data chunks. The embedder can avoid this problem by always
1240 * returning at least 2 bytes of data.
1241 *
1242 * If the embedder wants to cancel the streaming, they should make the next
1243 * GetMoreData call return 0. V8 will interpret it as end of data (and most
1244 * probably, parsing will fail). The streaming task will return as soon as
1245 * V8 has parsed the data it received so far.
1246 */
1247 virtual size_t GetMoreData(const uint8_t** src) = 0;
1248
1249 /**
1250 * V8 calls this method to set a 'bookmark' at the current position in
1251 * the source stream, for the purpose of (maybe) later calling
1252 * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1253 * calls to GetMoreData should return the same data as they did when
1254 * SetBookmark was called earlier.
1255 *
1256 * The embedder may return 'false' to indicate it cannot provide this
1257 * functionality.
1258 */
1259 virtual bool SetBookmark();
1260
1261 /**
1262 * V8 calls this to return to a previously set bookmark.
1263 */
1264 virtual void ResetToBookmark();
1265 };
1266
1267
1268 /**
1269 * Source code which can be streamed into V8 in pieces. It will be parsed
1270 * while streaming. It can be compiled after the streaming is complete.
1271 * StreamedSource must be kept alive while the streaming task is ran (see
1272 * ScriptStreamingTask below).
1273 */
1274 class V8_EXPORT StreamedSource {
1275 public:
1276 enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
1277
1278 StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1279 ~StreamedSource();
1280
1281 // Ownership of the CachedData or its buffers is *not* transferred to the
1282 // caller. The CachedData object is alive as long as the StreamedSource
1283 // object is alive.
1284 const CachedData* GetCachedData() const;
1285
impl()1286 internal::StreamedSource* impl() const { return impl_; }
1287
1288 // Prevent copying.
1289 StreamedSource(const StreamedSource&) = delete;
1290 StreamedSource& operator=(const StreamedSource&) = delete;
1291
1292 private:
1293 internal::StreamedSource* impl_;
1294 };
1295
1296 /**
1297 * A streaming task which the embedder must run on a background thread to
1298 * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1299 */
1300 class ScriptStreamingTask {
1301 public:
~ScriptStreamingTask()1302 virtual ~ScriptStreamingTask() {}
1303 virtual void Run() = 0;
1304 };
1305
1306 enum CompileOptions {
1307 kNoCompileOptions = 0,
1308 kProduceParserCache,
1309 kConsumeParserCache,
1310 kProduceCodeCache,
1311 kConsumeCodeCache
1312 };
1313
1314 /**
1315 * Compiles the specified script (context-independent).
1316 * Cached data as part of the source object can be optionally produced to be
1317 * consumed later to speed up compilation of identical source scripts.
1318 *
1319 * Note that when producing cached data, the source must point to NULL for
1320 * cached data. When consuming cached data, the cached data must have been
1321 * produced by the same version of V8.
1322 *
1323 * \param source Script source code.
1324 * \return Compiled script object (context independent; for running it must be
1325 * bound to a context).
1326 */
1327 static V8_DEPRECATED("Use maybe version",
1328 Local<UnboundScript> CompileUnbound(
1329 Isolate* isolate, Source* source,
1330 CompileOptions options = kNoCompileOptions));
1331 static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
1332 Isolate* isolate, Source* source,
1333 CompileOptions options = kNoCompileOptions);
1334
1335 /**
1336 * Compiles the specified script (bound to current context).
1337 *
1338 * \param source Script source code.
1339 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1340 * using pre_data speeds compilation if it's done multiple times.
1341 * Owned by caller, no references are kept when this function returns.
1342 * \return Compiled script object, bound to the context that was active
1343 * when this function was called. When run it will always use this
1344 * context.
1345 */
1346 static V8_DEPRECATED(
1347 "Use maybe version",
1348 Local<Script> Compile(Isolate* isolate, Source* source,
1349 CompileOptions options = kNoCompileOptions));
1350 static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1351 Local<Context> context, Source* source,
1352 CompileOptions options = kNoCompileOptions);
1353
1354 /**
1355 * Returns a task which streams script data into V8, or NULL if the script
1356 * cannot be streamed. The user is responsible for running the task on a
1357 * background thread and deleting it. When ran, the task starts parsing the
1358 * script, and it will request data from the StreamedSource as needed. When
1359 * ScriptStreamingTask::Run exits, all data has been streamed and the script
1360 * can be compiled (see Compile below).
1361 *
1362 * This API allows to start the streaming with as little data as possible, and
1363 * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1364 */
1365 static ScriptStreamingTask* StartStreamingScript(
1366 Isolate* isolate, StreamedSource* source,
1367 CompileOptions options = kNoCompileOptions);
1368
1369 /**
1370 * Compiles a streamed script (bound to current context).
1371 *
1372 * This can only be called after the streaming has finished
1373 * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1374 * during streaming, so the embedder needs to pass the full source here.
1375 */
1376 static V8_DEPRECATED("Use maybe version",
1377 Local<Script> Compile(Isolate* isolate,
1378 StreamedSource* source,
1379 Local<String> full_source_string,
1380 const ScriptOrigin& origin));
1381 static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1382 Local<Context> context, StreamedSource* source,
1383 Local<String> full_source_string, const ScriptOrigin& origin);
1384
1385 /**
1386 * Return a version tag for CachedData for the current V8 version & flags.
1387 *
1388 * This value is meant only for determining whether a previously generated
1389 * CachedData instance is still valid; the tag has no other meaing.
1390 *
1391 * Background: The data carried by CachedData may depend on the exact
1392 * V8 version number or currently compiler flags. This means when
1393 * persisting CachedData, the embedder must take care to not pass in
1394 * data from another V8 version, or the same version with different
1395 * features enabled.
1396 *
1397 * The easiest way to do so is to clear the embedder's cache on any
1398 * such change.
1399 *
1400 * Alternatively, this tag can be stored alongside the cached data and
1401 * compared when it is being used.
1402 */
1403 static uint32_t CachedDataVersionTag();
1404
1405 /**
1406 * This is an unfinished experimental feature, and is only exposed
1407 * here for internal testing purposes. DO NOT USE.
1408 *
1409 * Compile an ES module, returning a Module that encapsulates
1410 * the compiled code.
1411 *
1412 * Corresponds to the ParseModule abstract operation in the
1413 * ECMAScript specification.
1414 */
1415 static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule(
1416 Isolate* isolate, Source* source);
1417
1418 /**
1419 * Compile a function for a given context. This is equivalent to running
1420 *
1421 * with (obj) {
1422 * return function(args) { ... }
1423 * }
1424 *
1425 * It is possible to specify multiple context extensions (obj in the above
1426 * example).
1427 */
1428 static V8_DEPRECATE_SOON("Use maybe version",
1429 Local<Function> CompileFunctionInContext(
1430 Isolate* isolate, Source* source,
1431 Local<Context> context, size_t arguments_count,
1432 Local<String> arguments[],
1433 size_t context_extension_count,
1434 Local<Object> context_extensions[]));
1435 static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
1436 Local<Context> context, Source* source, size_t arguments_count,
1437 Local<String> arguments[], size_t context_extension_count,
1438 Local<Object> context_extensions[]);
1439
1440 private:
1441 static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1442 Isolate* isolate, Source* source, CompileOptions options);
1443 };
1444
1445
1446 /**
1447 * An error message.
1448 */
1449 class V8_EXPORT Message {
1450 public:
1451 Local<String> Get() const;
1452
1453 V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1454 V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
1455 Local<Context> context) const;
1456
1457 /**
1458 * Returns the origin for the script from where the function causing the
1459 * error originates.
1460 */
1461 ScriptOrigin GetScriptOrigin() const;
1462
1463 /**
1464 * Returns the resource name for the script from where the function causing
1465 * the error originates.
1466 */
1467 Local<Value> GetScriptResourceName() const;
1468
1469 /**
1470 * Exception stack trace. By default stack traces are not captured for
1471 * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1472 * to change this option.
1473 */
1474 Local<StackTrace> GetStackTrace() const;
1475
1476 /**
1477 * Returns the number, 1-based, of the line where the error occurred.
1478 */
1479 V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1480 V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1481
1482 /**
1483 * Returns the index within the script of the first character where
1484 * the error occurred.
1485 */
1486 int GetStartPosition() const;
1487
1488 /**
1489 * Returns the index within the script of the last character where
1490 * the error occurred.
1491 */
1492 int GetEndPosition() const;
1493
1494 /**
1495 * Returns the error level of the message.
1496 */
1497 int ErrorLevel() const;
1498
1499 /**
1500 * Returns the index within the line of the first character where
1501 * the error occurred.
1502 */
1503 V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1504 V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1505
1506 /**
1507 * Returns the index within the line of the last character where
1508 * the error occurred.
1509 */
1510 V8_DEPRECATED("Use maybe version", int GetEndColumn() const);
1511 V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1512
1513 /**
1514 * Passes on the value set by the embedder when it fed the script from which
1515 * this Message was generated to V8.
1516 */
1517 bool IsSharedCrossOrigin() const;
1518 bool IsOpaque() const;
1519
1520 // TODO(1245381): Print to a string instead of on a FILE.
1521 static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1522
1523 static const int kNoLineNumberInfo = 0;
1524 static const int kNoColumnInfo = 0;
1525 static const int kNoScriptIdInfo = 0;
1526 };
1527
1528
1529 /**
1530 * Representation of a JavaScript stack trace. The information collected is a
1531 * snapshot of the execution stack and the information remains valid after
1532 * execution continues.
1533 */
1534 class V8_EXPORT StackTrace {
1535 public:
1536 /**
1537 * Flags that determine what information is placed captured for each
1538 * StackFrame when grabbing the current stack trace.
1539 */
1540 enum StackTraceOptions {
1541 kLineNumber = 1,
1542 kColumnOffset = 1 << 1 | kLineNumber,
1543 kScriptName = 1 << 2,
1544 kFunctionName = 1 << 3,
1545 kIsEval = 1 << 4,
1546 kIsConstructor = 1 << 5,
1547 kScriptNameOrSourceURL = 1 << 6,
1548 kScriptId = 1 << 7,
1549 kExposeFramesAcrossSecurityOrigins = 1 << 8,
1550 kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1551 kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1552 };
1553
1554 /**
1555 * Returns a StackFrame at a particular index.
1556 */
1557 Local<StackFrame> GetFrame(uint32_t index) const;
1558
1559 /**
1560 * Returns the number of StackFrames.
1561 */
1562 int GetFrameCount() const;
1563
1564 /**
1565 * Returns StackTrace as a v8::Array that contains StackFrame objects.
1566 */
1567 Local<Array> AsArray();
1568
1569 /**
1570 * Grab a snapshot of the current JavaScript execution stack.
1571 *
1572 * \param frame_limit The maximum number of stack frames we want to capture.
1573 * \param options Enumerates the set of things we will capture for each
1574 * StackFrame.
1575 */
1576 static Local<StackTrace> CurrentStackTrace(
1577 Isolate* isolate,
1578 int frame_limit,
1579 StackTraceOptions options = kOverview);
1580 };
1581
1582
1583 /**
1584 * A single JavaScript stack frame.
1585 */
1586 class V8_EXPORT StackFrame {
1587 public:
1588 /**
1589 * Returns the number, 1-based, of the line for the associate function call.
1590 * This method will return Message::kNoLineNumberInfo if it is unable to
1591 * retrieve the line number, or if kLineNumber was not passed as an option
1592 * when capturing the StackTrace.
1593 */
1594 int GetLineNumber() const;
1595
1596 /**
1597 * Returns the 1-based column offset on the line for the associated function
1598 * call.
1599 * This method will return Message::kNoColumnInfo if it is unable to retrieve
1600 * the column number, or if kColumnOffset was not passed as an option when
1601 * capturing the StackTrace.
1602 */
1603 int GetColumn() const;
1604
1605 /**
1606 * Returns the id of the script for the function for this StackFrame.
1607 * This method will return Message::kNoScriptIdInfo if it is unable to
1608 * retrieve the script id, or if kScriptId was not passed as an option when
1609 * capturing the StackTrace.
1610 */
1611 int GetScriptId() const;
1612
1613 /**
1614 * Returns the name of the resource that contains the script for the
1615 * function for this StackFrame.
1616 */
1617 Local<String> GetScriptName() const;
1618
1619 /**
1620 * Returns the name of the resource that contains the script for the
1621 * function for this StackFrame or sourceURL value if the script name
1622 * is undefined and its source ends with //# sourceURL=... string or
1623 * deprecated //@ sourceURL=... string.
1624 */
1625 Local<String> GetScriptNameOrSourceURL() const;
1626
1627 /**
1628 * Returns the name of the function associated with this stack frame.
1629 */
1630 Local<String> GetFunctionName() const;
1631
1632 /**
1633 * Returns whether or not the associated function is compiled via a call to
1634 * eval().
1635 */
1636 bool IsEval() const;
1637
1638 /**
1639 * Returns whether or not the associated function is called as a
1640 * constructor via "new".
1641 */
1642 bool IsConstructor() const;
1643 };
1644
1645
1646 // A StateTag represents a possible state of the VM.
1647 enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
1648
1649 // A RegisterState represents the current state of registers used
1650 // by the sampling profiler API.
1651 struct RegisterState {
RegisterStateRegisterState1652 RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {}
1653 void* pc; // Instruction pointer.
1654 void* sp; // Stack pointer.
1655 void* fp; // Frame pointer.
1656 };
1657
1658 // The output structure filled up by GetStackSample API function.
1659 struct SampleInfo {
1660 size_t frames_count; // Number of frames collected.
1661 StateTag vm_state; // Current VM state.
1662 void* external_callback_entry; // External callback address if VM is
1663 // executing an external callback.
1664 };
1665
1666 /**
1667 * A JSON Parser and Stringifier.
1668 */
1669 class V8_EXPORT JSON {
1670 public:
1671 /**
1672 * Tries to parse the string |json_string| and returns it as value if
1673 * successful.
1674 *
1675 * \param json_string The string to parse.
1676 * \return The corresponding value if successfully parsed.
1677 */
1678 static V8_DEPRECATED("Use the maybe version taking context",
1679 Local<Value> Parse(Local<String> json_string));
1680 static V8_DEPRECATE_SOON("Use the maybe version taking context",
1681 MaybeLocal<Value> Parse(Isolate* isolate,
1682 Local<String> json_string));
1683 static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1684 Local<Context> context, Local<String> json_string);
1685
1686 /**
1687 * Tries to stringify the JSON-serializable object |json_object| and returns
1688 * it as string if successful.
1689 *
1690 * \param json_object The JSON-serializable object to stringify.
1691 * \return The corresponding string if successfully stringified.
1692 */
1693 static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify(
1694 Local<Context> context, Local<Object> json_object,
1695 Local<String> gap = Local<String>());
1696 };
1697
1698 /**
1699 * Value serialization compatible with the HTML structured clone algorithm.
1700 * The format is backward-compatible (i.e. safe to store to disk).
1701 *
1702 * WARNING: This API is under development, and changes (including incompatible
1703 * changes to the API or wire format) may occur without notice until this
1704 * warning is removed.
1705 */
1706 class V8_EXPORT ValueSerializer {
1707 public:
1708 class V8_EXPORT Delegate {
1709 public:
~Delegate()1710 virtual ~Delegate() {}
1711
1712 /*
1713 * Handles the case where a DataCloneError would be thrown in the structured
1714 * clone spec. Other V8 embedders may throw some other appropriate exception
1715 * type.
1716 */
1717 virtual void ThrowDataCloneError(Local<String> message) = 0;
1718
1719 /*
1720 * The embedder overrides this method to write some kind of host object, if
1721 * possible. If not, a suitable exception should be thrown and
1722 * Nothing<bool>() returned.
1723 */
1724 virtual Maybe<bool> WriteHostObject(Isolate* isolate, Local<Object> object);
1725
1726 /*
1727 * Called when the ValueSerializer is going to serialize a
1728 * SharedArrayBuffer object. The embedder must return an ID for the
1729 * object, using the same ID if this SharedArrayBuffer has already been
1730 * serialized in this buffer. When deserializing, this ID will be passed to
1731 * ValueDeserializer::TransferSharedArrayBuffer as |transfer_id|.
1732 *
1733 * If the object cannot be serialized, an
1734 * exception should be thrown and Nothing<uint32_t>() returned.
1735 */
1736 virtual Maybe<uint32_t> GetSharedArrayBufferId(
1737 Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer);
1738
1739 /*
1740 * Allocates memory for the buffer of at least the size provided. The actual
1741 * size (which may be greater or equal) is written to |actual_size|. If no
1742 * buffer has been allocated yet, nullptr will be provided.
1743 *
1744 * If the memory cannot be allocated, nullptr should be returned.
1745 * |actual_size| will be ignored. It is assumed that |old_buffer| is still
1746 * valid in this case and has not been modified.
1747 */
1748 virtual void* ReallocateBufferMemory(void* old_buffer, size_t size,
1749 size_t* actual_size);
1750
1751 /*
1752 * Frees a buffer allocated with |ReallocateBufferMemory|.
1753 */
1754 virtual void FreeBufferMemory(void* buffer);
1755 };
1756
1757 explicit ValueSerializer(Isolate* isolate);
1758 ValueSerializer(Isolate* isolate, Delegate* delegate);
1759 ~ValueSerializer();
1760
1761 /*
1762 * Writes out a header, which includes the format version.
1763 */
1764 void WriteHeader();
1765
1766 /*
1767 * Serializes a JavaScript value into the buffer.
1768 */
1769 V8_WARN_UNUSED_RESULT Maybe<bool> WriteValue(Local<Context> context,
1770 Local<Value> value);
1771
1772 /*
1773 * Returns the stored data. This serializer should not be used once the buffer
1774 * is released. The contents are undefined if a previous write has failed.
1775 */
1776 V8_DEPRECATE_SOON("Use Release()", std::vector<uint8_t> ReleaseBuffer());
1777
1778 /*
1779 * Returns the stored data (allocated using the delegate's
1780 * AllocateBufferMemory) and its size. This serializer should not be used once
1781 * the buffer is released. The contents are undefined if a previous write has
1782 * failed.
1783 */
1784 V8_WARN_UNUSED_RESULT std::pair<uint8_t*, size_t> Release();
1785
1786 /*
1787 * Marks an ArrayBuffer as havings its contents transferred out of band.
1788 * Pass the corresponding ArrayBuffer in the deserializing context to
1789 * ValueDeserializer::TransferArrayBuffer.
1790 */
1791 void TransferArrayBuffer(uint32_t transfer_id,
1792 Local<ArrayBuffer> array_buffer);
1793
1794 /*
1795 * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1796 */
1797 V8_DEPRECATE_SOON("Use Delegate::GetSharedArrayBufferId",
1798 void TransferSharedArrayBuffer(
1799 uint32_t transfer_id,
1800 Local<SharedArrayBuffer> shared_array_buffer));
1801
1802 /*
1803 * Indicate whether to treat ArrayBufferView objects as host objects,
1804 * i.e. pass them to Delegate::WriteHostObject. This should not be
1805 * called when no Delegate was passed.
1806 *
1807 * The default is not to treat ArrayBufferViews as host objects.
1808 */
1809 void SetTreatArrayBufferViewsAsHostObjects(bool mode);
1810
1811 /*
1812 * Write raw data in various common formats to the buffer.
1813 * Note that integer types are written in base-128 varint format, not with a
1814 * binary copy. For use during an override of Delegate::WriteHostObject.
1815 */
1816 void WriteUint32(uint32_t value);
1817 void WriteUint64(uint64_t value);
1818 void WriteDouble(double value);
1819 void WriteRawBytes(const void* source, size_t length);
1820
1821 private:
1822 ValueSerializer(const ValueSerializer&) = delete;
1823 void operator=(const ValueSerializer&) = delete;
1824
1825 struct PrivateData;
1826 PrivateData* private_;
1827 };
1828
1829 /**
1830 * Deserializes values from data written with ValueSerializer, or a compatible
1831 * implementation.
1832 *
1833 * WARNING: This API is under development, and changes (including incompatible
1834 * changes to the API or wire format) may occur without notice until this
1835 * warning is removed.
1836 */
1837 class V8_EXPORT ValueDeserializer {
1838 public:
1839 class V8_EXPORT Delegate {
1840 public:
~Delegate()1841 virtual ~Delegate() {}
1842
1843 /*
1844 * The embedder overrides this method to read some kind of host object, if
1845 * possible. If not, a suitable exception should be thrown and
1846 * MaybeLocal<Object>() returned.
1847 */
1848 virtual MaybeLocal<Object> ReadHostObject(Isolate* isolate);
1849 };
1850
1851 ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size);
1852 ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size,
1853 Delegate* delegate);
1854 ~ValueDeserializer();
1855
1856 /*
1857 * Reads and validates a header (including the format version).
1858 * May, for example, reject an invalid or unsupported wire format.
1859 */
1860 V8_WARN_UNUSED_RESULT Maybe<bool> ReadHeader(Local<Context> context);
1861
1862 /*
1863 * Deserializes a JavaScript value from the buffer.
1864 */
1865 V8_WARN_UNUSED_RESULT MaybeLocal<Value> ReadValue(Local<Context> context);
1866
1867 /*
1868 * Accepts the array buffer corresponding to the one passed previously to
1869 * ValueSerializer::TransferArrayBuffer.
1870 */
1871 void TransferArrayBuffer(uint32_t transfer_id,
1872 Local<ArrayBuffer> array_buffer);
1873
1874 /*
1875 * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1876 * The id is not necessarily in the same namespace as unshared ArrayBuffer
1877 * objects.
1878 */
1879 void TransferSharedArrayBuffer(uint32_t id,
1880 Local<SharedArrayBuffer> shared_array_buffer);
1881
1882 /*
1883 * Must be called before ReadHeader to enable support for reading the legacy
1884 * wire format (i.e., which predates this being shipped).
1885 *
1886 * Don't use this unless you need to read data written by previous versions of
1887 * blink::ScriptValueSerializer.
1888 */
1889 void SetSupportsLegacyWireFormat(bool supports_legacy_wire_format);
1890
1891 /*
1892 * Reads the underlying wire format version. Likely mostly to be useful to
1893 * legacy code reading old wire format versions. Must be called after
1894 * ReadHeader.
1895 */
1896 uint32_t GetWireFormatVersion() const;
1897
1898 /*
1899 * Reads raw data in various common formats to the buffer.
1900 * Note that integer types are read in base-128 varint format, not with a
1901 * binary copy. For use during an override of Delegate::ReadHostObject.
1902 */
1903 V8_WARN_UNUSED_RESULT bool ReadUint32(uint32_t* value);
1904 V8_WARN_UNUSED_RESULT bool ReadUint64(uint64_t* value);
1905 V8_WARN_UNUSED_RESULT bool ReadDouble(double* value);
1906 V8_WARN_UNUSED_RESULT bool ReadRawBytes(size_t length, const void** data);
1907
1908 private:
1909 ValueDeserializer(const ValueDeserializer&) = delete;
1910 void operator=(const ValueDeserializer&) = delete;
1911
1912 struct PrivateData;
1913 PrivateData* private_;
1914 };
1915
1916 /**
1917 * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1918 * but can be created without entering a v8::Context and hence shouldn't
1919 * escape to JavaScript.
1920 */
1921 class V8_EXPORT NativeWeakMap : public Data {
1922 public:
1923 static Local<NativeWeakMap> New(Isolate* isolate);
1924 void Set(Local<Value> key, Local<Value> value);
1925 Local<Value> Get(Local<Value> key);
1926 bool Has(Local<Value> key);
1927 bool Delete(Local<Value> key);
1928 };
1929
1930
1931 // --- Value ---
1932
1933
1934 /**
1935 * The superclass of all JavaScript values and objects.
1936 */
1937 class V8_EXPORT Value : public Data {
1938 public:
1939 /**
1940 * Returns true if this value is the undefined value. See ECMA-262
1941 * 4.3.10.
1942 */
1943 V8_INLINE bool IsUndefined() const;
1944
1945 /**
1946 * Returns true if this value is the null value. See ECMA-262
1947 * 4.3.11.
1948 */
1949 V8_INLINE bool IsNull() const;
1950
1951 /**
1952 * Returns true if this value is either the null or the undefined value.
1953 * See ECMA-262
1954 * 4.3.11. and 4.3.12
1955 */
1956 V8_INLINE bool IsNullOrUndefined() const;
1957
1958 /**
1959 * Returns true if this value is true.
1960 */
1961 bool IsTrue() const;
1962
1963 /**
1964 * Returns true if this value is false.
1965 */
1966 bool IsFalse() const;
1967
1968 /**
1969 * Returns true if this value is a symbol or a string.
1970 */
1971 bool IsName() const;
1972
1973 /**
1974 * Returns true if this value is an instance of the String type.
1975 * See ECMA-262 8.4.
1976 */
1977 V8_INLINE bool IsString() const;
1978
1979 /**
1980 * Returns true if this value is a symbol.
1981 */
1982 bool IsSymbol() const;
1983
1984 /**
1985 * Returns true if this value is a function.
1986 */
1987 bool IsFunction() const;
1988
1989 /**
1990 * Returns true if this value is an array. Note that it will return false for
1991 * an Proxy for an array.
1992 */
1993 bool IsArray() const;
1994
1995 /**
1996 * Returns true if this value is an object.
1997 */
1998 bool IsObject() const;
1999
2000 /**
2001 * Returns true if this value is boolean.
2002 */
2003 bool IsBoolean() const;
2004
2005 /**
2006 * Returns true if this value is a number.
2007 */
2008 bool IsNumber() const;
2009
2010 /**
2011 * Returns true if this value is external.
2012 */
2013 bool IsExternal() const;
2014
2015 /**
2016 * Returns true if this value is a 32-bit signed integer.
2017 */
2018 bool IsInt32() const;
2019
2020 /**
2021 * Returns true if this value is a 32-bit unsigned integer.
2022 */
2023 bool IsUint32() const;
2024
2025 /**
2026 * Returns true if this value is a Date.
2027 */
2028 bool IsDate() const;
2029
2030 /**
2031 * Returns true if this value is an Arguments object.
2032 */
2033 bool IsArgumentsObject() const;
2034
2035 /**
2036 * Returns true if this value is a Boolean object.
2037 */
2038 bool IsBooleanObject() const;
2039
2040 /**
2041 * Returns true if this value is a Number object.
2042 */
2043 bool IsNumberObject() const;
2044
2045 /**
2046 * Returns true if this value is a String object.
2047 */
2048 bool IsStringObject() const;
2049
2050 /**
2051 * Returns true if this value is a Symbol object.
2052 */
2053 bool IsSymbolObject() const;
2054
2055 /**
2056 * Returns true if this value is a NativeError.
2057 */
2058 bool IsNativeError() const;
2059
2060 /**
2061 * Returns true if this value is a RegExp.
2062 */
2063 bool IsRegExp() const;
2064
2065 /**
2066 * Returns true if this value is an async function.
2067 */
2068 bool IsAsyncFunction() const;
2069
2070 /**
2071 * Returns true if this value is a Generator function.
2072 */
2073 bool IsGeneratorFunction() const;
2074
2075 /**
2076 * Returns true if this value is a Generator object (iterator).
2077 */
2078 bool IsGeneratorObject() const;
2079
2080 /**
2081 * Returns true if this value is a Promise.
2082 */
2083 bool IsPromise() const;
2084
2085 /**
2086 * Returns true if this value is a Map.
2087 */
2088 bool IsMap() const;
2089
2090 /**
2091 * Returns true if this value is a Set.
2092 */
2093 bool IsSet() const;
2094
2095 /**
2096 * Returns true if this value is a Map Iterator.
2097 */
2098 bool IsMapIterator() const;
2099
2100 /**
2101 * Returns true if this value is a Set Iterator.
2102 */
2103 bool IsSetIterator() const;
2104
2105 /**
2106 * Returns true if this value is a WeakMap.
2107 */
2108 bool IsWeakMap() const;
2109
2110 /**
2111 * Returns true if this value is a WeakSet.
2112 */
2113 bool IsWeakSet() const;
2114
2115 /**
2116 * Returns true if this value is an ArrayBuffer.
2117 */
2118 bool IsArrayBuffer() const;
2119
2120 /**
2121 * Returns true if this value is an ArrayBufferView.
2122 */
2123 bool IsArrayBufferView() const;
2124
2125 /**
2126 * Returns true if this value is one of TypedArrays.
2127 */
2128 bool IsTypedArray() const;
2129
2130 /**
2131 * Returns true if this value is an Uint8Array.
2132 */
2133 bool IsUint8Array() const;
2134
2135 /**
2136 * Returns true if this value is an Uint8ClampedArray.
2137 */
2138 bool IsUint8ClampedArray() const;
2139
2140 /**
2141 * Returns true if this value is an Int8Array.
2142 */
2143 bool IsInt8Array() const;
2144
2145 /**
2146 * Returns true if this value is an Uint16Array.
2147 */
2148 bool IsUint16Array() const;
2149
2150 /**
2151 * Returns true if this value is an Int16Array.
2152 */
2153 bool IsInt16Array() const;
2154
2155 /**
2156 * Returns true if this value is an Uint32Array.
2157 */
2158 bool IsUint32Array() const;
2159
2160 /**
2161 * Returns true if this value is an Int32Array.
2162 */
2163 bool IsInt32Array() const;
2164
2165 /**
2166 * Returns true if this value is a Float32Array.
2167 */
2168 bool IsFloat32Array() const;
2169
2170 /**
2171 * Returns true if this value is a Float64Array.
2172 */
2173 bool IsFloat64Array() const;
2174
2175 /**
2176 * Returns true if this value is a DataView.
2177 */
2178 bool IsDataView() const;
2179
2180 /**
2181 * Returns true if this value is a SharedArrayBuffer.
2182 * This is an experimental feature.
2183 */
2184 bool IsSharedArrayBuffer() const;
2185
2186 /**
2187 * Returns true if this value is a JavaScript Proxy.
2188 */
2189 bool IsProxy() const;
2190
2191 bool IsWebAssemblyCompiledModule() const;
2192
2193 V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
2194 Local<Context> context) const;
2195 V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
2196 Local<Context> context) const;
2197 V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
2198 Local<Context> context) const;
2199 V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
2200 Local<Context> context) const;
2201 V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
2202 Local<Context> context) const;
2203 V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
2204 Local<Context> context) const;
2205 V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
2206 Local<Context> context) const;
2207 V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
2208
2209 V8_DEPRECATE_SOON("Use maybe version",
2210 Local<Boolean> ToBoolean(Isolate* isolate) const);
2211 V8_DEPRECATE_SOON("Use maybe version",
2212 Local<Number> ToNumber(Isolate* isolate) const);
2213 V8_DEPRECATE_SOON("Use maybe version",
2214 Local<String> ToString(Isolate* isolate) const);
2215 V8_DEPRECATED("Use maybe version",
2216 Local<String> ToDetailString(Isolate* isolate) const);
2217 V8_DEPRECATE_SOON("Use maybe version",
2218 Local<Object> ToObject(Isolate* isolate) const);
2219 V8_DEPRECATE_SOON("Use maybe version",
2220 Local<Integer> ToInteger(Isolate* isolate) const);
2221 V8_DEPRECATED("Use maybe version",
2222 Local<Uint32> ToUint32(Isolate* isolate) const);
2223 V8_DEPRECATE_SOON("Use maybe version",
2224 Local<Int32> ToInt32(Isolate* isolate) const);
2225
2226 inline V8_DEPRECATE_SOON("Use maybe version",
2227 Local<Boolean> ToBoolean() const);
2228 inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const);
2229 inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
2230 inline V8_DEPRECATED("Use maybe version",
2231 Local<String> ToDetailString() const);
2232 inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
2233 inline V8_DEPRECATE_SOON("Use maybe version",
2234 Local<Integer> ToInteger() const);
2235 inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const);
2236 inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const);
2237
2238 /**
2239 * Attempts to convert a string to an array index.
2240 * Returns an empty handle if the conversion fails.
2241 */
2242 V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const);
2243 V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
2244 Local<Context> context) const;
2245
2246 V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2247 V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2248 V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2249 Local<Context> context) const;
2250 V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2251 Local<Context> context) const;
2252 V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2253
2254 V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2255 V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2256 V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2257 V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2258 V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2259
2260 /** JS == */
2261 V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2262 V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2263 Local<Value> that) const;
2264 bool StrictEquals(Local<Value> that) const;
2265 bool SameValue(Local<Value> that) const;
2266
2267 template <class T> V8_INLINE static Value* Cast(T* value);
2268
2269 Local<String> TypeOf(Isolate*);
2270
2271 private:
2272 V8_INLINE bool QuickIsUndefined() const;
2273 V8_INLINE bool QuickIsNull() const;
2274 V8_INLINE bool QuickIsNullOrUndefined() const;
2275 V8_INLINE bool QuickIsString() const;
2276 bool FullIsUndefined() const;
2277 bool FullIsNull() const;
2278 bool FullIsString() const;
2279 };
2280
2281
2282 /**
2283 * The superclass of primitive values. See ECMA-262 4.3.2.
2284 */
2285 class V8_EXPORT Primitive : public Value { };
2286
2287
2288 /**
2289 * A primitive boolean value (ECMA-262, 4.3.14). Either the true
2290 * or false value.
2291 */
2292 class V8_EXPORT Boolean : public Primitive {
2293 public:
2294 bool Value() const;
2295 V8_INLINE static Boolean* Cast(v8::Value* obj);
2296 V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2297
2298 private:
2299 static void CheckCast(v8::Value* obj);
2300 };
2301
2302
2303 /**
2304 * A superclass for symbols and strings.
2305 */
2306 class V8_EXPORT Name : public Primitive {
2307 public:
2308 /**
2309 * Returns the identity hash for this object. The current implementation
2310 * uses an inline property on the object to store the identity hash.
2311 *
2312 * The return value will never be 0. Also, it is not guaranteed to be
2313 * unique.
2314 */
2315 int GetIdentityHash();
2316
2317 V8_INLINE static Name* Cast(Value* obj);
2318
2319 private:
2320 static void CheckCast(Value* obj);
2321 };
2322
2323
2324 enum class NewStringType { kNormal, kInternalized };
2325
2326
2327 /**
2328 * A JavaScript string value (ECMA-262, 4.3.17).
2329 */
2330 class V8_EXPORT String : public Name {
2331 public:
2332 static const int kMaxLength = (1 << 28) - 16;
2333
2334 enum Encoding {
2335 UNKNOWN_ENCODING = 0x1,
2336 TWO_BYTE_ENCODING = 0x0,
2337 ONE_BYTE_ENCODING = 0x8
2338 };
2339 /**
2340 * Returns the number of characters in this string.
2341 */
2342 int Length() const;
2343
2344 /**
2345 * Returns the number of bytes in the UTF-8 encoded
2346 * representation of this string.
2347 */
2348 int Utf8Length() const;
2349
2350 /**
2351 * Returns whether this string is known to contain only one byte data.
2352 * Does not read the string.
2353 * False negatives are possible.
2354 */
2355 bool IsOneByte() const;
2356
2357 /**
2358 * Returns whether this string contain only one byte data.
2359 * Will read the entire string in some cases.
2360 */
2361 bool ContainsOnlyOneByte() const;
2362
2363 /**
2364 * Write the contents of the string to an external buffer.
2365 * If no arguments are given, expects the buffer to be large
2366 * enough to hold the entire string and NULL terminator. Copies
2367 * the contents of the string and the NULL terminator into the
2368 * buffer.
2369 *
2370 * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2371 * before the end of the buffer.
2372 *
2373 * Copies up to length characters into the output buffer.
2374 * Only null-terminates if there is enough space in the buffer.
2375 *
2376 * \param buffer The buffer into which the string will be copied.
2377 * \param start The starting position within the string at which
2378 * copying begins.
2379 * \param length The number of characters to copy from the string. For
2380 * WriteUtf8 the number of bytes in the buffer.
2381 * \param nchars_ref The number of characters written, can be NULL.
2382 * \param options Various options that might affect performance of this or
2383 * subsequent operations.
2384 * \return The number of characters copied to the buffer excluding the null
2385 * terminator. For WriteUtf8: The number of bytes copied to the buffer
2386 * including the null terminator (if written).
2387 */
2388 enum WriteOptions {
2389 NO_OPTIONS = 0,
2390 HINT_MANY_WRITES_EXPECTED = 1,
2391 NO_NULL_TERMINATION = 2,
2392 PRESERVE_ONE_BYTE_NULL = 4,
2393 // Used by WriteUtf8 to replace orphan surrogate code units with the
2394 // unicode replacement character. Needs to be set to guarantee valid UTF-8
2395 // output.
2396 REPLACE_INVALID_UTF8 = 8
2397 };
2398
2399 // 16-bit character codes.
2400 int Write(uint16_t* buffer,
2401 int start = 0,
2402 int length = -1,
2403 int options = NO_OPTIONS) const;
2404 // One byte characters.
2405 int WriteOneByte(uint8_t* buffer,
2406 int start = 0,
2407 int length = -1,
2408 int options = NO_OPTIONS) const;
2409 // UTF-8 encoded characters.
2410 int WriteUtf8(char* buffer,
2411 int length = -1,
2412 int* nchars_ref = NULL,
2413 int options = NO_OPTIONS) const;
2414
2415 /**
2416 * A zero length string.
2417 */
2418 V8_INLINE static Local<String> Empty(Isolate* isolate);
2419
2420 /**
2421 * Returns true if the string is external
2422 */
2423 bool IsExternal() const;
2424
2425 /**
2426 * Returns true if the string is both external and one-byte.
2427 */
2428 bool IsExternalOneByte() const;
2429
2430 class V8_EXPORT ExternalStringResourceBase { // NOLINT
2431 public:
~ExternalStringResourceBase()2432 virtual ~ExternalStringResourceBase() {}
2433
IsCompressible()2434 virtual bool IsCompressible() const { return false; }
2435
2436 protected:
ExternalStringResourceBase()2437 ExternalStringResourceBase() {}
2438
2439 /**
2440 * Internally V8 will call this Dispose method when the external string
2441 * resource is no longer needed. The default implementation will use the
2442 * delete operator. This method can be overridden in subclasses to
2443 * control how allocated external string resources are disposed.
2444 */
Dispose()2445 virtual void Dispose() { delete this; }
2446
2447 // Disallow copying and assigning.
2448 ExternalStringResourceBase(const ExternalStringResourceBase&) = delete;
2449 void operator=(const ExternalStringResourceBase&) = delete;
2450
2451 private:
2452 friend class internal::Heap;
2453 friend class v8::String;
2454 };
2455
2456 /**
2457 * An ExternalStringResource is a wrapper around a two-byte string
2458 * buffer that resides outside V8's heap. Implement an
2459 * ExternalStringResource to manage the life cycle of the underlying
2460 * buffer. Note that the string data must be immutable.
2461 */
2462 class V8_EXPORT ExternalStringResource
2463 : public ExternalStringResourceBase {
2464 public:
2465 /**
2466 * Override the destructor to manage the life cycle of the underlying
2467 * buffer.
2468 */
~ExternalStringResource()2469 virtual ~ExternalStringResource() {}
2470
2471 /**
2472 * The string data from the underlying buffer.
2473 */
2474 virtual const uint16_t* data() const = 0;
2475
2476 /**
2477 * The length of the string. That is, the number of two-byte characters.
2478 */
2479 virtual size_t length() const = 0;
2480
2481 protected:
ExternalStringResource()2482 ExternalStringResource() {}
2483 };
2484
2485 /**
2486 * An ExternalOneByteStringResource is a wrapper around an one-byte
2487 * string buffer that resides outside V8's heap. Implement an
2488 * ExternalOneByteStringResource to manage the life cycle of the
2489 * underlying buffer. Note that the string data must be immutable
2490 * and that the data must be Latin-1 and not UTF-8, which would require
2491 * special treatment internally in the engine and do not allow efficient
2492 * indexing. Use String::New or convert to 16 bit data for non-Latin1.
2493 */
2494
2495 class V8_EXPORT ExternalOneByteStringResource
2496 : public ExternalStringResourceBase {
2497 public:
2498 /**
2499 * Override the destructor to manage the life cycle of the underlying
2500 * buffer.
2501 */
~ExternalOneByteStringResource()2502 virtual ~ExternalOneByteStringResource() {}
2503 /** The string data from the underlying buffer.*/
2504 virtual const char* data() const = 0;
2505 /** The number of Latin-1 characters in the string.*/
2506 virtual size_t length() const = 0;
2507 protected:
ExternalOneByteStringResource()2508 ExternalOneByteStringResource() {}
2509 };
2510
2511 /**
2512 * If the string is an external string, return the ExternalStringResourceBase
2513 * regardless of the encoding, otherwise return NULL. The encoding of the
2514 * string is returned in encoding_out.
2515 */
2516 V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
2517 Encoding* encoding_out) const;
2518
2519 /**
2520 * Get the ExternalStringResource for an external string. Returns
2521 * NULL if IsExternal() doesn't return true.
2522 */
2523 V8_INLINE ExternalStringResource* GetExternalStringResource() const;
2524
2525 /**
2526 * Get the ExternalOneByteStringResource for an external one-byte string.
2527 * Returns NULL if IsExternalOneByte() doesn't return true.
2528 */
2529 const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
2530
2531 V8_INLINE static String* Cast(v8::Value* obj);
2532
2533 // TODO(dcarney): remove with deprecation of New functions.
2534 enum NewStringType {
2535 kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2536 kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
2537 };
2538
2539 /** Allocates a new string from UTF-8 data.*/
2540 static V8_DEPRECATE_SOON(
2541 "Use maybe version",
2542 Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2543 NewStringType type = kNormalString,
2544 int length = -1));
2545
2546 /** Allocates a new string from UTF-8 data. Only returns an empty value when
2547 * length > kMaxLength. **/
2548 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2549 Isolate* isolate, const char* data, v8::NewStringType type,
2550 int length = -1);
2551
2552 /** Allocates a new string from Latin-1 data.*/
2553 static V8_DEPRECATED(
2554 "Use maybe version",
2555 Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2556 NewStringType type = kNormalString,
2557 int length = -1));
2558
2559 /** Allocates a new string from Latin-1 data. Only returns an empty value
2560 * when length > kMaxLength. **/
2561 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2562 Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2563 int length = -1);
2564
2565 /** Allocates a new string from UTF-16 data.*/
2566 static V8_DEPRECATE_SOON(
2567 "Use maybe version",
2568 Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2569 NewStringType type = kNormalString,
2570 int length = -1));
2571
2572 /** Allocates a new string from UTF-16 data. Only returns an empty value when
2573 * length > kMaxLength. **/
2574 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2575 Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2576 int length = -1);
2577
2578 /**
2579 * Creates a new string by concatenating the left and the right strings
2580 * passed in as parameters.
2581 */
2582 static Local<String> Concat(Local<String> left, Local<String> right);
2583
2584 /**
2585 * Creates a new external string using the data defined in the given
2586 * resource. When the external string is no longer live on V8's heap the
2587 * resource will be disposed by calling its Dispose method. The caller of
2588 * this function should not otherwise delete or modify the resource. Neither
2589 * should the underlying buffer be deallocated or modified except through the
2590 * destructor of the external string resource.
2591 */
2592 static V8_DEPRECATED("Use maybe version",
2593 Local<String> NewExternal(
2594 Isolate* isolate, ExternalStringResource* resource));
2595 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2596 Isolate* isolate, ExternalStringResource* resource);
2597
2598 /**
2599 * Associate an external string resource with this string by transforming it
2600 * in place so that existing references to this string in the JavaScript heap
2601 * will use the external string resource. The external string resource's
2602 * character contents need to be equivalent to this string.
2603 * Returns true if the string has been changed to be an external string.
2604 * The string is not modified if the operation fails. See NewExternal for
2605 * information on the lifetime of the resource.
2606 */
2607 bool MakeExternal(ExternalStringResource* resource);
2608
2609 /**
2610 * Creates a new external string using the one-byte data defined in the given
2611 * resource. When the external string is no longer live on V8's heap the
2612 * resource will be disposed by calling its Dispose method. The caller of
2613 * this function should not otherwise delete or modify the resource. Neither
2614 * should the underlying buffer be deallocated or modified except through the
2615 * destructor of the external string resource.
2616 */
2617 static V8_DEPRECATE_SOON(
2618 "Use maybe version",
2619 Local<String> NewExternal(Isolate* isolate,
2620 ExternalOneByteStringResource* resource));
2621 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2622 Isolate* isolate, ExternalOneByteStringResource* resource);
2623
2624 /**
2625 * Associate an external string resource with this string by transforming it
2626 * in place so that existing references to this string in the JavaScript heap
2627 * will use the external string resource. The external string resource's
2628 * character contents need to be equivalent to this string.
2629 * Returns true if the string has been changed to be an external string.
2630 * The string is not modified if the operation fails. See NewExternal for
2631 * information on the lifetime of the resource.
2632 */
2633 bool MakeExternal(ExternalOneByteStringResource* resource);
2634
2635 /**
2636 * Returns true if this string can be made external.
2637 */
2638 bool CanMakeExternal();
2639
2640 /**
2641 * Converts an object to a UTF-8-encoded character array. Useful if
2642 * you want to print the object. If conversion to a string fails
2643 * (e.g. due to an exception in the toString() method of the object)
2644 * then the length() method returns 0 and the * operator returns
2645 * NULL.
2646 */
2647 class V8_EXPORT Utf8Value {
2648 public:
2649 explicit Utf8Value(Local<v8::Value> obj);
2650 ~Utf8Value();
2651 char* operator*() { return str_; }
2652 const char* operator*() const { return str_; }
length()2653 int length() const { return length_; }
2654
2655 // Disallow copying and assigning.
2656 Utf8Value(const Utf8Value&) = delete;
2657 void operator=(const Utf8Value&) = delete;
2658
2659 private:
2660 char* str_;
2661 int length_;
2662 };
2663
2664 /**
2665 * Converts an object to a two-byte string.
2666 * If conversion to a string fails (eg. due to an exception in the toString()
2667 * method of the object) then the length() method returns 0 and the * operator
2668 * returns NULL.
2669 */
2670 class V8_EXPORT Value {
2671 public:
2672 explicit Value(Local<v8::Value> obj);
2673 ~Value();
2674 uint16_t* operator*() { return str_; }
2675 const uint16_t* operator*() const { return str_; }
length()2676 int length() const { return length_; }
2677
2678 // Disallow copying and assigning.
2679 Value(const Value&) = delete;
2680 void operator=(const Value&) = delete;
2681
2682 private:
2683 uint16_t* str_;
2684 int length_;
2685 };
2686
2687 private:
2688 void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2689 Encoding encoding) const;
2690 void VerifyExternalStringResource(ExternalStringResource* val) const;
2691 static void CheckCast(v8::Value* obj);
2692 };
2693
2694
2695 /**
2696 * A JavaScript symbol (ECMA-262 edition 6)
2697 */
2698 class V8_EXPORT Symbol : public Name {
2699 public:
2700 // Returns the print name string of the symbol, or undefined if none.
2701 Local<Value> Name() const;
2702
2703 // Create a symbol. If name is not empty, it will be used as the description.
2704 static Local<Symbol> New(Isolate* isolate,
2705 Local<String> name = Local<String>());
2706
2707 // Access global symbol registry.
2708 // Note that symbols created this way are never collected, so
2709 // they should only be used for statically fixed properties.
2710 // Also, there is only one global name space for the names used as keys.
2711 // To minimize the potential for clashes, use qualified names as keys.
2712 static Local<Symbol> For(Isolate *isolate, Local<String> name);
2713
2714 // Retrieve a global symbol. Similar to |For|, but using a separate
2715 // registry that is not accessible by (and cannot clash with) JavaScript code.
2716 static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2717
2718 // Well-known symbols
2719 static Local<Symbol> GetIterator(Isolate* isolate);
2720 static Local<Symbol> GetUnscopables(Isolate* isolate);
2721 static Local<Symbol> GetToPrimitive(Isolate* isolate);
2722 static Local<Symbol> GetToStringTag(Isolate* isolate);
2723 static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
2724
2725 V8_INLINE static Symbol* Cast(Value* obj);
2726
2727 private:
2728 Symbol();
2729 static void CheckCast(Value* obj);
2730 };
2731
2732
2733 /**
2734 * A private symbol
2735 *
2736 * This is an experimental feature. Use at your own risk.
2737 */
2738 class V8_EXPORT Private : public Data {
2739 public:
2740 // Returns the print name string of the private symbol, or undefined if none.
2741 Local<Value> Name() const;
2742
2743 // Create a private symbol. If name is not empty, it will be the description.
2744 static Local<Private> New(Isolate* isolate,
2745 Local<String> name = Local<String>());
2746
2747 // Retrieve a global private symbol. If a symbol with this name has not
2748 // been retrieved in the same isolate before, it is created.
2749 // Note that private symbols created this way are never collected, so
2750 // they should only be used for statically fixed properties.
2751 // Also, there is only one global name space for the names used as keys.
2752 // To minimize the potential for clashes, use qualified names as keys,
2753 // e.g., "Class#property".
2754 static Local<Private> ForApi(Isolate* isolate, Local<String> name);
2755
2756 private:
2757 Private();
2758 };
2759
2760
2761 /**
2762 * A JavaScript number value (ECMA-262, 4.3.20)
2763 */
2764 class V8_EXPORT Number : public Primitive {
2765 public:
2766 double Value() const;
2767 static Local<Number> New(Isolate* isolate, double value);
2768 V8_INLINE static Number* Cast(v8::Value* obj);
2769 private:
2770 Number();
2771 static void CheckCast(v8::Value* obj);
2772 };
2773
2774
2775 /**
2776 * A JavaScript value representing a signed integer.
2777 */
2778 class V8_EXPORT Integer : public Number {
2779 public:
2780 static Local<Integer> New(Isolate* isolate, int32_t value);
2781 static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2782 int64_t Value() const;
2783 V8_INLINE static Integer* Cast(v8::Value* obj);
2784 private:
2785 Integer();
2786 static void CheckCast(v8::Value* obj);
2787 };
2788
2789
2790 /**
2791 * A JavaScript value representing a 32-bit signed integer.
2792 */
2793 class V8_EXPORT Int32 : public Integer {
2794 public:
2795 int32_t Value() const;
2796 V8_INLINE static Int32* Cast(v8::Value* obj);
2797
2798 private:
2799 Int32();
2800 static void CheckCast(v8::Value* obj);
2801 };
2802
2803
2804 /**
2805 * A JavaScript value representing a 32-bit unsigned integer.
2806 */
2807 class V8_EXPORT Uint32 : public Integer {
2808 public:
2809 uint32_t Value() const;
2810 V8_INLINE static Uint32* Cast(v8::Value* obj);
2811
2812 private:
2813 Uint32();
2814 static void CheckCast(v8::Value* obj);
2815 };
2816
2817 /**
2818 * PropertyAttribute.
2819 */
2820 enum PropertyAttribute {
2821 /** None. **/
2822 None = 0,
2823 /** ReadOnly, i.e., not writable. **/
2824 ReadOnly = 1 << 0,
2825 /** DontEnum, i.e., not enumerable. **/
2826 DontEnum = 1 << 1,
2827 /** DontDelete, i.e., not configurable. **/
2828 DontDelete = 1 << 2
2829 };
2830
2831 /**
2832 * Accessor[Getter|Setter] are used as callback functions when
2833 * setting|getting a particular property. See Object and ObjectTemplate's
2834 * method SetAccessor.
2835 */
2836 typedef void (*AccessorGetterCallback)(
2837 Local<String> property,
2838 const PropertyCallbackInfo<Value>& info);
2839 typedef void (*AccessorNameGetterCallback)(
2840 Local<Name> property,
2841 const PropertyCallbackInfo<Value>& info);
2842
2843
2844 typedef void (*AccessorSetterCallback)(
2845 Local<String> property,
2846 Local<Value> value,
2847 const PropertyCallbackInfo<void>& info);
2848 typedef void (*AccessorNameSetterCallback)(
2849 Local<Name> property,
2850 Local<Value> value,
2851 const PropertyCallbackInfo<void>& info);
2852
2853
2854 /**
2855 * Access control specifications.
2856 *
2857 * Some accessors should be accessible across contexts. These
2858 * accessors have an explicit access control parameter which specifies
2859 * the kind of cross-context access that should be allowed.
2860 *
2861 * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2862 */
2863 enum AccessControl {
2864 DEFAULT = 0,
2865 ALL_CAN_READ = 1,
2866 ALL_CAN_WRITE = 1 << 1,
2867 PROHIBITS_OVERWRITING = 1 << 2
2868 };
2869
2870 /**
2871 * Property filter bits. They can be or'ed to build a composite filter.
2872 */
2873 enum PropertyFilter {
2874 ALL_PROPERTIES = 0,
2875 ONLY_WRITABLE = 1,
2876 ONLY_ENUMERABLE = 2,
2877 ONLY_CONFIGURABLE = 4,
2878 SKIP_STRINGS = 8,
2879 SKIP_SYMBOLS = 16
2880 };
2881
2882 /**
2883 * Keys/Properties filter enums:
2884 *
2885 * KeyCollectionMode limits the range of collected properties. kOwnOnly limits
2886 * the collected properties to the given Object only. kIncludesPrototypes will
2887 * include all keys of the objects's prototype chain as well.
2888 */
2889 enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes };
2890
2891 /**
2892 * kIncludesIndices allows for integer indices to be collected, while
2893 * kSkipIndices will exclude integer indicies from being collected.
2894 */
2895 enum class IndexFilter { kIncludeIndices, kSkipIndices };
2896
2897 /**
2898 * Integrity level for objects.
2899 */
2900 enum class IntegrityLevel { kFrozen, kSealed };
2901
2902 /**
2903 * A JavaScript object (ECMA-262, 4.3.3)
2904 */
2905 class V8_EXPORT Object : public Value {
2906 public:
2907 V8_DEPRECATE_SOON("Use maybe version",
2908 bool Set(Local<Value> key, Local<Value> value));
2909 V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2910 Local<Value> key, Local<Value> value);
2911
2912 V8_DEPRECATE_SOON("Use maybe version",
2913 bool Set(uint32_t index, Local<Value> value));
2914 V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2915 Local<Value> value);
2916
2917 // Implements CreateDataProperty (ECMA-262, 7.3.4).
2918 //
2919 // Defines a configurable, writable, enumerable property with the given value
2920 // on the object unless the property already exists and is not configurable
2921 // or the object is not extensible.
2922 //
2923 // Returns true on success.
2924 V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2925 Local<Name> key,
2926 Local<Value> value);
2927 V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2928 uint32_t index,
2929 Local<Value> value);
2930
2931 // Implements DefineOwnProperty.
2932 //
2933 // In general, CreateDataProperty will be faster, however, does not allow
2934 // for specifying attributes.
2935 //
2936 // Returns true on success.
2937 V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
2938 Local<Context> context, Local<Name> key, Local<Value> value,
2939 PropertyAttribute attributes = None);
2940
2941 // Implements Object.DefineProperty(O, P, Attributes), see Ecma-262 19.1.2.4.
2942 //
2943 // The defineProperty function is used to add an own property or
2944 // update the attributes of an existing own property of an object.
2945 //
2946 // Both data and accessor descriptors can be used.
2947 //
2948 // In general, CreateDataProperty is faster, however, does not allow
2949 // for specifying attributes or an accessor descriptor.
2950 //
2951 // The PropertyDescriptor can change when redefining a property.
2952 //
2953 // Returns true on success.
2954 V8_WARN_UNUSED_RESULT Maybe<bool> DefineProperty(
2955 Local<Context> context, Local<Name> key, PropertyDescriptor& descriptor);
2956
2957 // Sets an own property on this object bypassing interceptors and
2958 // overriding accessors or read-only properties.
2959 //
2960 // Note that if the object has an interceptor the property will be set
2961 // locally, but since the interceptor takes precedence the local property
2962 // will only be returned if the interceptor doesn't return a value.
2963 //
2964 // Note also that this only works for named properties.
2965 V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2966 bool ForceSet(Local<Value> key, Local<Value> value,
2967 PropertyAttribute attribs = None));
2968 V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty",
2969 Maybe<bool> ForceSet(Local<Context> context,
2970 Local<Value> key, Local<Value> value,
2971 PropertyAttribute attribs = None));
2972
2973 V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2974 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2975 Local<Value> key);
2976
2977 V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2978 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2979 uint32_t index);
2980
2981 /**
2982 * Gets the property attributes of a property which can be None or
2983 * any combination of ReadOnly, DontEnum and DontDelete. Returns
2984 * None when the property doesn't exist.
2985 */
2986 V8_DEPRECATED("Use maybe version",
2987 PropertyAttribute GetPropertyAttributes(Local<Value> key));
2988 V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
2989 Local<Context> context, Local<Value> key);
2990
2991 /**
2992 * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2993 */
2994 V8_DEPRECATED("Use maybe version",
2995 Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2996 V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
2997 Local<Context> context, Local<String> key);
2998
2999 V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
3000 /**
3001 * Object::Has() calls the abstract operation HasProperty(O, P) described
3002 * in ECMA-262, 7.3.10. Has() returns
3003 * true, if the object has the property, either own or on the prototype chain.
3004 * Interceptors, i.e., PropertyQueryCallbacks, are called if present.
3005 *
3006 * Has() has the same side effects as JavaScript's `variable in object`.
3007 * For example, calling Has() on a revoked proxy will throw an exception.
3008 *
3009 * \note Has() converts the key to a name, which possibly calls back into
3010 * JavaScript.
3011 *
3012 * See also v8::Object::HasOwnProperty() and
3013 * v8::Object::HasRealNamedProperty().
3014 */
3015 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3016 Local<Value> key);
3017
3018 V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
3019 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3020 Maybe<bool> Delete(Local<Context> context, Local<Value> key);
3021
3022 V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
3023 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
3024
3025 V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
3026 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3027 Maybe<bool> Delete(Local<Context> context, uint32_t index);
3028
3029 V8_DEPRECATED("Use maybe version",
3030 bool SetAccessor(Local<String> name,
3031 AccessorGetterCallback getter,
3032 AccessorSetterCallback setter = 0,
3033 Local<Value> data = Local<Value>(),
3034 AccessControl settings = DEFAULT,
3035 PropertyAttribute attribute = None));
3036 V8_DEPRECATED("Use maybe version",
3037 bool SetAccessor(Local<Name> name,
3038 AccessorNameGetterCallback getter,
3039 AccessorNameSetterCallback setter = 0,
3040 Local<Value> data = Local<Value>(),
3041 AccessControl settings = DEFAULT,
3042 PropertyAttribute attribute = None));
3043 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3044 Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
3045 AccessorNameGetterCallback getter,
3046 AccessorNameSetterCallback setter = 0,
3047 MaybeLocal<Value> data = MaybeLocal<Value>(),
3048 AccessControl settings = DEFAULT,
3049 PropertyAttribute attribute = None);
3050
3051 void SetAccessorProperty(Local<Name> name, Local<Function> getter,
3052 Local<Function> setter = Local<Function>(),
3053 PropertyAttribute attribute = None,
3054 AccessControl settings = DEFAULT);
3055
3056 /**
3057 * Functionality for private properties.
3058 * This is an experimental feature, use at your own risk.
3059 * Note: Private properties are not inherited. Do not rely on this, since it
3060 * may change.
3061 */
3062 Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
3063 Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
3064 Local<Value> value);
3065 Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
3066 MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
3067
3068 /**
3069 * Returns an array containing the names of the enumerable properties
3070 * of this object, including properties from prototype objects. The
3071 * array returned by this method contains the same values as would
3072 * be enumerated by a for-in statement over this object.
3073 */
3074 V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
3075 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3076 Local<Context> context);
3077 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3078 Local<Context> context, KeyCollectionMode mode,
3079 PropertyFilter property_filter, IndexFilter index_filter);
3080
3081 /**
3082 * This function has the same functionality as GetPropertyNames but
3083 * the returned array doesn't contain the names of properties from
3084 * prototype objects.
3085 */
3086 V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
3087 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3088 Local<Context> context);
3089
3090 /**
3091 * Returns an array containing the names of the filtered properties
3092 * of this object, including properties from prototype objects. The
3093 * array returned by this method contains the same values as would
3094 * be enumerated by a for-in statement over this object.
3095 */
3096 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3097 Local<Context> context, PropertyFilter filter);
3098
3099 /**
3100 * Get the prototype object. This does not skip objects marked to
3101 * be skipped by __proto__ and it does not consult the security
3102 * handler.
3103 */
3104 Local<Value> GetPrototype();
3105
3106 /**
3107 * Set the prototype object. This does not skip objects marked to
3108 * be skipped by __proto__ and it does not consult the security
3109 * handler.
3110 */
3111 V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype));
3112 V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
3113 Local<Value> prototype);
3114
3115 /**
3116 * Finds an instance of the given function template in the prototype
3117 * chain.
3118 */
3119 Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
3120
3121 /**
3122 * Call builtin Object.prototype.toString on this object.
3123 * This is different from Value::ToString() that may call
3124 * user-defined toString function. This one does not.
3125 */
3126 V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString());
3127 V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
3128 Local<Context> context);
3129
3130 /**
3131 * Returns the name of the function invoked as a constructor for this object.
3132 */
3133 Local<String> GetConstructorName();
3134
3135 /**
3136 * Sets the integrity level of the object.
3137 */
3138 Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level);
3139
3140 /** Gets the number of internal fields for this Object. */
3141 int InternalFieldCount();
3142
3143 /** Same as above, but works for Persistents */
InternalFieldCount(const PersistentBase<Object> & object)3144 V8_INLINE static int InternalFieldCount(
3145 const PersistentBase<Object>& object) {
3146 return object.val_->InternalFieldCount();
3147 }
3148
3149 /** Gets the value from an internal field. */
3150 V8_INLINE Local<Value> GetInternalField(int index);
3151
3152 /** Sets the value in an internal field. */
3153 void SetInternalField(int index, Local<Value> value);
3154
3155 /**
3156 * Gets a 2-byte-aligned native pointer from an internal field. This field
3157 * must have been set by SetAlignedPointerInInternalField, everything else
3158 * leads to undefined behavior.
3159 */
3160 V8_INLINE void* GetAlignedPointerFromInternalField(int index);
3161
3162 /** Same as above, but works for Persistents */
GetAlignedPointerFromInternalField(const PersistentBase<Object> & object,int index)3163 V8_INLINE static void* GetAlignedPointerFromInternalField(
3164 const PersistentBase<Object>& object, int index) {
3165 return object.val_->GetAlignedPointerFromInternalField(index);
3166 }
3167
3168 /**
3169 * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
3170 * a field, GetAlignedPointerFromInternalField must be used, everything else
3171 * leads to undefined behavior.
3172 */
3173 void SetAlignedPointerInInternalField(int index, void* value);
3174 void SetAlignedPointerInInternalFields(int argc, int indices[],
3175 void* values[]);
3176
3177 // Testers for local properties.
3178 V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
3179
3180 /**
3181 * HasOwnProperty() is like JavaScript's Object.prototype.hasOwnProperty().
3182 *
3183 * See also v8::Object::Has() and v8::Object::HasRealNamedProperty().
3184 */
3185 V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3186 Local<Name> key);
3187 V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3188 uint32_t index);
3189 V8_DEPRECATE_SOON("Use maybe version",
3190 bool HasRealNamedProperty(Local<String> key));
3191 /**
3192 * Use HasRealNamedProperty() if you want to check if an object has an own
3193 * property without causing side effects, i.e., without calling interceptors.
3194 *
3195 * This function is similar to v8::Object::HasOwnProperty(), but it does not
3196 * call interceptors.
3197 *
3198 * \note Consider using non-masking interceptors, i.e., the interceptors are
3199 * not called if the receiver has the real named property. See
3200 * `v8::PropertyHandlerFlags::kNonMasking`.
3201 *
3202 * See also v8::Object::Has().
3203 */
3204 V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
3205 Local<Name> key);
3206 V8_DEPRECATE_SOON("Use maybe version",
3207 bool HasRealIndexedProperty(uint32_t index));
3208 V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
3209 Local<Context> context, uint32_t index);
3210 V8_DEPRECATE_SOON("Use maybe version",
3211 bool HasRealNamedCallbackProperty(Local<String> key));
3212 V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
3213 Local<Context> context, Local<Name> key);
3214
3215 /**
3216 * If result.IsEmpty() no real property was located in the prototype chain.
3217 * This means interceptors in the prototype chain are not called.
3218 */
3219 V8_DEPRECATED(
3220 "Use maybe version",
3221 Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
3222 V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
3223 Local<Context> context, Local<Name> key);
3224
3225 /**
3226 * Gets the property attributes of a real property in the prototype chain,
3227 * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
3228 * Interceptors in the prototype chain are not called.
3229 */
3230 V8_DEPRECATED(
3231 "Use maybe version",
3232 Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
3233 Local<String> key));
3234 V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
3235 GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
3236 Local<Name> key);
3237
3238 /**
3239 * If result.IsEmpty() no real property was located on the object or
3240 * in the prototype chain.
3241 * This means interceptors in the prototype chain are not called.
3242 */
3243 V8_DEPRECATED("Use maybe version",
3244 Local<Value> GetRealNamedProperty(Local<String> key));
3245 V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
3246 Local<Context> context, Local<Name> key);
3247
3248 /**
3249 * Gets the property attributes of a real property which can be
3250 * None or any combination of ReadOnly, DontEnum and DontDelete.
3251 * Interceptors in the prototype chain are not called.
3252 */
3253 V8_DEPRECATED("Use maybe version",
3254 Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3255 Local<String> key));
3256 V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3257 Local<Context> context, Local<Name> key);
3258
3259 /** Tests for a named lookup interceptor.*/
3260 bool HasNamedLookupInterceptor();
3261
3262 /** Tests for an index lookup interceptor.*/
3263 bool HasIndexedLookupInterceptor();
3264
3265 /**
3266 * Returns the identity hash for this object. The current implementation
3267 * uses a hidden property on the object to store the identity hash.
3268 *
3269 * The return value will never be 0. Also, it is not guaranteed to be
3270 * unique.
3271 */
3272 int GetIdentityHash();
3273
3274 /**
3275 * Clone this object with a fast but shallow copy. Values will point
3276 * to the same values as the original object.
3277 */
3278 // TODO(dcarney): take an isolate and optionally bail out?
3279 Local<Object> Clone();
3280
3281 /**
3282 * Returns the context in which the object was created.
3283 */
3284 Local<Context> CreationContext();
3285
3286 /** Same as above, but works for Persistents */
CreationContext(const PersistentBase<Object> & object)3287 V8_INLINE static Local<Context> CreationContext(
3288 const PersistentBase<Object>& object) {
3289 return object.val_->CreationContext();
3290 }
3291
3292 /**
3293 * Checks whether a callback is set by the
3294 * ObjectTemplate::SetCallAsFunctionHandler method.
3295 * When an Object is callable this method returns true.
3296 */
3297 bool IsCallable();
3298
3299 /**
3300 * True if this object is a constructor.
3301 */
3302 bool IsConstructor();
3303
3304 /**
3305 * Call an Object as a function if a callback is set by the
3306 * ObjectTemplate::SetCallAsFunctionHandler method.
3307 */
3308 V8_DEPRECATED("Use maybe version",
3309 Local<Value> CallAsFunction(Local<Value> recv, int argc,
3310 Local<Value> argv[]));
3311 V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
3312 Local<Value> recv,
3313 int argc,
3314 Local<Value> argv[]);
3315
3316 /**
3317 * Call an Object as a constructor if a callback is set by the
3318 * ObjectTemplate::SetCallAsFunctionHandler method.
3319 * Note: This method behaves like the Function::NewInstance method.
3320 */
3321 V8_DEPRECATED("Use maybe version",
3322 Local<Value> CallAsConstructor(int argc, Local<Value> argv[]));
3323 V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
3324 Local<Context> context, int argc, Local<Value> argv[]);
3325
3326 /**
3327 * Return the isolate to which the Object belongs to.
3328 */
3329 V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
3330
3331 static Local<Object> New(Isolate* isolate);
3332
3333 V8_INLINE static Object* Cast(Value* obj);
3334
3335 private:
3336 Object();
3337 static void CheckCast(Value* obj);
3338 Local<Value> SlowGetInternalField(int index);
3339 void* SlowGetAlignedPointerFromInternalField(int index);
3340 };
3341
3342
3343 /**
3344 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
3345 */
3346 class V8_EXPORT Array : public Object {
3347 public:
3348 uint32_t Length() const;
3349
3350 /**
3351 * Clones an element at index |index|. Returns an empty
3352 * handle if cloning fails (for any reason).
3353 */
3354 V8_DEPRECATED("Cloning is not supported.",
3355 Local<Object> CloneElementAt(uint32_t index));
3356 V8_DEPRECATED("Cloning is not supported.",
3357 MaybeLocal<Object> CloneElementAt(Local<Context> context,
3358 uint32_t index));
3359
3360 /**
3361 * Creates a JavaScript array with the given length. If the length
3362 * is negative the returned array will have length 0.
3363 */
3364 static Local<Array> New(Isolate* isolate, int length = 0);
3365
3366 V8_INLINE static Array* Cast(Value* obj);
3367 private:
3368 Array();
3369 static void CheckCast(Value* obj);
3370 };
3371
3372
3373 /**
3374 * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
3375 */
3376 class V8_EXPORT Map : public Object {
3377 public:
3378 size_t Size() const;
3379 void Clear();
3380 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
3381 Local<Value> key);
3382 V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
3383 Local<Value> key,
3384 Local<Value> value);
3385 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3386 Local<Value> key);
3387 V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3388 Local<Value> key);
3389
3390 /**
3391 * Returns an array of length Size() * 2, where index N is the Nth key and
3392 * index N + 1 is the Nth value.
3393 */
3394 Local<Array> AsArray() const;
3395
3396 /**
3397 * Creates a new empty Map.
3398 */
3399 static Local<Map> New(Isolate* isolate);
3400
3401 V8_INLINE static Map* Cast(Value* obj);
3402
3403 private:
3404 Map();
3405 static void CheckCast(Value* obj);
3406 };
3407
3408
3409 /**
3410 * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3411 */
3412 class V8_EXPORT Set : public Object {
3413 public:
3414 size_t Size() const;
3415 void Clear();
3416 V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3417 Local<Value> key);
3418 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3419 Local<Value> key);
3420 V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3421 Local<Value> key);
3422
3423 /**
3424 * Returns an array of the keys in this Set.
3425 */
3426 Local<Array> AsArray() const;
3427
3428 /**
3429 * Creates a new empty Set.
3430 */
3431 static Local<Set> New(Isolate* isolate);
3432
3433 V8_INLINE static Set* Cast(Value* obj);
3434
3435 private:
3436 Set();
3437 static void CheckCast(Value* obj);
3438 };
3439
3440
3441 template<typename T>
3442 class ReturnValue {
3443 public:
ReturnValue(const ReturnValue<S> & that)3444 template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3445 : value_(that.value_) {
3446 TYPE_CHECK(T, S);
3447 }
3448 // Local setters
3449 template <typename S>
3450 V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3451 void Set(const Persistent<S>& handle));
3452 template <typename S>
3453 V8_INLINE void Set(const Global<S>& handle);
3454 template <typename S>
3455 V8_INLINE void Set(const Local<S> handle);
3456 // Fast primitive setters
3457 V8_INLINE void Set(bool value);
3458 V8_INLINE void Set(double i);
3459 V8_INLINE void Set(int32_t i);
3460 V8_INLINE void Set(uint32_t i);
3461 // Fast JS primitive setters
3462 V8_INLINE void SetNull();
3463 V8_INLINE void SetUndefined();
3464 V8_INLINE void SetEmptyString();
3465 // Convenience getter for Isolate
3466 V8_INLINE Isolate* GetIsolate() const;
3467
3468 // Pointer setter: Uncompilable to prevent inadvertent misuse.
3469 template <typename S>
3470 V8_INLINE void Set(S* whatever);
3471
3472 // Getter. Creates a new Local<> so it comes with a certain performance
3473 // hit. If the ReturnValue was not yet set, this will return the undefined
3474 // value.
3475 V8_INLINE Local<Value> Get() const;
3476
3477 private:
3478 template<class F> friend class ReturnValue;
3479 template<class F> friend class FunctionCallbackInfo;
3480 template<class F> friend class PropertyCallbackInfo;
3481 template <class F, class G, class H>
3482 friend class PersistentValueMapBase;
SetInternal(internal::Object * value)3483 V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3484 V8_INLINE internal::Object* GetDefaultValue();
3485 V8_INLINE explicit ReturnValue(internal::Object** slot);
3486 internal::Object** value_;
3487 };
3488
3489
3490 /**
3491 * The argument information given to function call callbacks. This
3492 * class provides access to information about the context of the call,
3493 * including the receiver, the number and values of arguments, and
3494 * the holder of the function.
3495 */
3496 template<typename T>
3497 class FunctionCallbackInfo {
3498 public:
3499 V8_INLINE int Length() const;
3500 V8_INLINE Local<Value> operator[](int i) const;
3501 V8_INLINE V8_DEPRECATED("Use Data() to explicitly pass Callee instead",
3502 Local<Function> Callee() const);
3503 V8_INLINE Local<Object> This() const;
3504 V8_INLINE Local<Object> Holder() const;
3505 V8_INLINE Local<Value> NewTarget() const;
3506 V8_INLINE bool IsConstructCall() const;
3507 V8_INLINE Local<Value> Data() const;
3508 V8_INLINE Isolate* GetIsolate() const;
3509 V8_INLINE ReturnValue<T> GetReturnValue() const;
3510 // This shouldn't be public, but the arm compiler needs it.
3511 static const int kArgsLength = 8;
3512
3513 protected:
3514 friend class internal::FunctionCallbackArguments;
3515 friend class internal::CustomArguments<FunctionCallbackInfo>;
3516 static const int kHolderIndex = 0;
3517 static const int kIsolateIndex = 1;
3518 static const int kReturnValueDefaultValueIndex = 2;
3519 static const int kReturnValueIndex = 3;
3520 static const int kDataIndex = 4;
3521 static const int kCalleeIndex = 5;
3522 static const int kContextSaveIndex = 6;
3523 static const int kNewTargetIndex = 7;
3524
3525 V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3526 internal::Object** values, int length);
3527 internal::Object** implicit_args_;
3528 internal::Object** values_;
3529 int length_;
3530 };
3531
3532
3533 /**
3534 * The information passed to a property callback about the context
3535 * of the property access.
3536 */
3537 template<typename T>
3538 class PropertyCallbackInfo {
3539 public:
3540 /**
3541 * \return The isolate of the property access.
3542 */
3543 V8_INLINE Isolate* GetIsolate() const;
3544
3545 /**
3546 * \return The data set in the configuration, i.e., in
3547 * `NamedPropertyHandlerConfiguration` or
3548 * `IndexedPropertyHandlerConfiguration.`
3549 */
3550 V8_INLINE Local<Value> Data() const;
3551
3552 /**
3553 * \return The receiver. In many cases, this is the object on which the
3554 * property access was intercepted. When using
3555 * `Reflect.get`, `Function.prototype.call`, or similar functions, it is the
3556 * object passed in as receiver or thisArg.
3557 *
3558 * \code
3559 * void GetterCallback(Local<Name> name,
3560 * const v8::PropertyCallbackInfo<v8::Value>& info) {
3561 * auto context = info.GetIsolate()->GetCurrentContext();
3562 *
3563 * v8::Local<v8::Value> a_this =
3564 * info.This()
3565 * ->GetRealNamedProperty(context, v8_str("a"))
3566 * .ToLocalChecked();
3567 * v8::Local<v8::Value> a_holder =
3568 * info.Holder()
3569 * ->GetRealNamedProperty(context, v8_str("a"))
3570 * .ToLocalChecked();
3571 *
3572 * CHECK(v8_str("r")->Equals(context, a_this).FromJust());
3573 * CHECK(v8_str("obj")->Equals(context, a_holder).FromJust());
3574 *
3575 * info.GetReturnValue().Set(name);
3576 * }
3577 *
3578 * v8::Local<v8::FunctionTemplate> templ =
3579 * v8::FunctionTemplate::New(isolate);
3580 * templ->InstanceTemplate()->SetHandler(
3581 * v8::NamedPropertyHandlerConfiguration(GetterCallback));
3582 * LocalContext env;
3583 * env->Global()
3584 * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
3585 * .ToLocalChecked()
3586 * ->NewInstance(env.local())
3587 * .ToLocalChecked())
3588 * .FromJust();
3589 *
3590 * CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)");
3591 * \endcode
3592 */
3593 V8_INLINE Local<Object> This() const;
3594
3595 /**
3596 * \return The object in the prototype chain of the receiver that has the
3597 * interceptor. Suppose you have `x` and its prototype is `y`, and `y`
3598 * has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`.
3599 * The Holder() could be a hidden object (the global object, rather
3600 * than the global proxy).
3601 *
3602 * \note For security reasons, do not pass the object back into the runtime.
3603 */
3604 V8_INLINE Local<Object> Holder() const;
3605
3606 /**
3607 * \return The return value of the callback.
3608 * Can be changed by calling Set().
3609 * \code
3610 * info.GetReturnValue().Set(...)
3611 * \endcode
3612 *
3613 */
3614 V8_INLINE ReturnValue<T> GetReturnValue() const;
3615
3616 /**
3617 * \return True if the intercepted function should throw if an error occurs.
3618 * Usually, `true` corresponds to `'use strict'`.
3619 *
3620 * \note Always `false` when intercepting `Reflect.set()`
3621 * independent of the language mode.
3622 */
3623 V8_INLINE bool ShouldThrowOnError() const;
3624
3625 // This shouldn't be public, but the arm compiler needs it.
3626 static const int kArgsLength = 7;
3627
3628 protected:
3629 friend class MacroAssembler;
3630 friend class internal::PropertyCallbackArguments;
3631 friend class internal::CustomArguments<PropertyCallbackInfo>;
3632 static const int kShouldThrowOnErrorIndex = 0;
3633 static const int kHolderIndex = 1;
3634 static const int kIsolateIndex = 2;
3635 static const int kReturnValueDefaultValueIndex = 3;
3636 static const int kReturnValueIndex = 4;
3637 static const int kDataIndex = 5;
3638 static const int kThisIndex = 6;
3639
PropertyCallbackInfo(internal::Object ** args)3640 V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3641 internal::Object** args_;
3642 };
3643
3644
3645 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3646
3647 enum class ConstructorBehavior { kThrow, kAllow };
3648
3649 /**
3650 * A JavaScript function object (ECMA-262, 15.3).
3651 */
3652 class V8_EXPORT Function : public Object {
3653 public:
3654 /**
3655 * Create a function in the current execution context
3656 * for a given FunctionCallback.
3657 */
3658 static MaybeLocal<Function> New(
3659 Local<Context> context, FunctionCallback callback,
3660 Local<Value> data = Local<Value>(), int length = 0,
3661 ConstructorBehavior behavior = ConstructorBehavior::kAllow);
3662 static V8_DEPRECATE_SOON(
3663 "Use maybe version",
3664 Local<Function> New(Isolate* isolate, FunctionCallback callback,
3665 Local<Value> data = Local<Value>(), int length = 0));
3666
3667 V8_DEPRECATED("Use maybe version",
3668 Local<Object> NewInstance(int argc, Local<Value> argv[]) const);
3669 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3670 Local<Context> context, int argc, Local<Value> argv[]) const;
3671
3672 V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const);
NewInstance(Local<Context> context)3673 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3674 Local<Context> context) const {
3675 return NewInstance(context, 0, nullptr);
3676 }
3677
3678 V8_DEPRECATE_SOON("Use maybe version",
3679 Local<Value> Call(Local<Value> recv, int argc,
3680 Local<Value> argv[]));
3681 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3682 Local<Value> recv, int argc,
3683 Local<Value> argv[]);
3684
3685 void SetName(Local<String> name);
3686 Local<Value> GetName() const;
3687
3688 /**
3689 * Name inferred from variable or property assignment of this function.
3690 * Used to facilitate debugging and profiling of JavaScript code written
3691 * in an OO style, where many functions are anonymous but are assigned
3692 * to object properties.
3693 */
3694 Local<Value> GetInferredName() const;
3695
3696 /**
3697 * displayName if it is set, otherwise name if it is configured, otherwise
3698 * function name, otherwise inferred name.
3699 */
3700 Local<Value> GetDebugName() const;
3701
3702 /**
3703 * User-defined name assigned to the "displayName" property of this function.
3704 * Used to facilitate debugging and profiling of JavaScript code.
3705 */
3706 Local<Value> GetDisplayName() const;
3707
3708 /**
3709 * Returns zero based line number of function body and
3710 * kLineOffsetNotFound if no information available.
3711 */
3712 int GetScriptLineNumber() const;
3713 /**
3714 * Returns zero based column number of function body and
3715 * kLineOffsetNotFound if no information available.
3716 */
3717 int GetScriptColumnNumber() const;
3718
3719 /**
3720 * Tells whether this function is builtin.
3721 */
3722 V8_DEPRECATED("this should no longer be used.", bool IsBuiltin() const);
3723
3724 /**
3725 * Returns scriptId.
3726 */
3727 int ScriptId() const;
3728
3729 /**
3730 * Returns the original function if this function is bound, else returns
3731 * v8::Undefined.
3732 */
3733 Local<Value> GetBoundFunction() const;
3734
3735 ScriptOrigin GetScriptOrigin() const;
3736 V8_INLINE static Function* Cast(Value* obj);
3737 static const int kLineOffsetNotFound;
3738
3739 private:
3740 Function();
3741 static void CheckCast(Value* obj);
3742 };
3743
3744
3745 /**
3746 * An instance of the built-in Promise constructor (ES6 draft).
3747 */
3748 class V8_EXPORT Promise : public Object {
3749 public:
3750 /**
3751 * State of the promise. Each value corresponds to one of the possible values
3752 * of the [[PromiseState]] field.
3753 */
3754 enum PromiseState { kPending, kFulfilled, kRejected };
3755
3756 class V8_EXPORT Resolver : public Object {
3757 public:
3758 /**
3759 * Create a new resolver, along with an associated promise in pending state.
3760 */
3761 static V8_DEPRECATE_SOON("Use maybe version",
3762 Local<Resolver> New(Isolate* isolate));
3763 static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3764 Local<Context> context);
3765
3766 /**
3767 * Extract the associated promise.
3768 */
3769 Local<Promise> GetPromise();
3770
3771 /**
3772 * Resolve/reject the associated promise with a given value.
3773 * Ignored if the promise is no longer pending.
3774 */
3775 V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3776 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3777 Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3778
3779 V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3780 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3781 Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3782
3783 V8_INLINE static Resolver* Cast(Value* obj);
3784
3785 private:
3786 Resolver();
3787 static void CheckCast(Value* obj);
3788 };
3789
3790 /**
3791 * Register a resolution/rejection handler with a promise.
3792 * The handler is given the respective resolution/rejection value as
3793 * an argument. If the promise is already resolved/rejected, the handler is
3794 * invoked at the end of turn.
3795 */
3796 V8_DEPRECATED("Use maybe version",
3797 Local<Promise> Catch(Local<Function> handler));
3798 V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3799 Local<Function> handler);
3800
3801 V8_DEPRECATED("Use maybe version",
3802 Local<Promise> Then(Local<Function> handler));
3803 V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3804 Local<Function> handler);
3805
3806 /**
3807 * Returns true if the promise has at least one derived promise, and
3808 * therefore resolve/reject handlers (including default handler).
3809 */
3810 bool HasHandler();
3811
3812 /**
3813 * Returns the content of the [[PromiseResult]] field. The Promise must not
3814 * be pending.
3815 */
3816 Local<Value> Result();
3817
3818 /**
3819 * Returns the value of the [[PromiseState]] field.
3820 */
3821 PromiseState State();
3822
3823 V8_INLINE static Promise* Cast(Value* obj);
3824
3825 private:
3826 Promise();
3827 static void CheckCast(Value* obj);
3828 };
3829
3830 /**
3831 * An instance of a Property Descriptor, see Ecma-262 6.2.4.
3832 *
3833 * Properties in a descriptor are present or absent. If you do not set
3834 * `enumerable`, `configurable`, and `writable`, they are absent. If `value`,
3835 * `get`, or `set` are absent, but you must specify them in the constructor, use
3836 * empty handles.
3837 *
3838 * Accessors `get` and `set` must be callable or undefined if they are present.
3839 *
3840 * \note Only query properties if they are present, i.e., call `x()` only if
3841 * `has_x()` returns true.
3842 *
3843 * \code
3844 * // var desc = {writable: false}
3845 * v8::PropertyDescriptor d(Local<Value>()), false);
3846 * d.value(); // error, value not set
3847 * if (d.has_writable()) {
3848 * d.writable(); // false
3849 * }
3850 *
3851 * // var desc = {value: undefined}
3852 * v8::PropertyDescriptor d(v8::Undefined(isolate));
3853 *
3854 * // var desc = {get: undefined}
3855 * v8::PropertyDescriptor d(v8::Undefined(isolate), Local<Value>()));
3856 * \endcode
3857 */
3858 class V8_EXPORT PropertyDescriptor {
3859 public:
3860 // GenericDescriptor
3861 PropertyDescriptor();
3862
3863 // DataDescriptor
3864 PropertyDescriptor(Local<Value> value);
3865
3866 // DataDescriptor with writable property
3867 PropertyDescriptor(Local<Value> value, bool writable);
3868
3869 // AccessorDescriptor
3870 PropertyDescriptor(Local<Value> get, Local<Value> set);
3871
3872 ~PropertyDescriptor();
3873
3874 Local<Value> value() const;
3875 bool has_value() const;
3876
3877 Local<Value> get() const;
3878 bool has_get() const;
3879 Local<Value> set() const;
3880 bool has_set() const;
3881
3882 void set_enumerable(bool enumerable);
3883 bool enumerable() const;
3884 bool has_enumerable() const;
3885
3886 void set_configurable(bool configurable);
3887 bool configurable() const;
3888 bool has_configurable() const;
3889
3890 bool writable() const;
3891 bool has_writable() const;
3892
3893 struct PrivateData;
get_private()3894 PrivateData* get_private() const { return private_; }
3895
3896 PropertyDescriptor(const PropertyDescriptor&) = delete;
3897 void operator=(const PropertyDescriptor&) = delete;
3898
3899 private:
3900 PrivateData* private_;
3901 };
3902
3903 /**
3904 * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
3905 * 26.2.1).
3906 */
3907 class V8_EXPORT Proxy : public Object {
3908 public:
3909 Local<Object> GetTarget();
3910 Local<Value> GetHandler();
3911 bool IsRevoked();
3912 void Revoke();
3913
3914 /**
3915 * Creates a new Proxy for the target object.
3916 */
3917 static MaybeLocal<Proxy> New(Local<Context> context,
3918 Local<Object> local_target,
3919 Local<Object> local_handler);
3920
3921 V8_INLINE static Proxy* Cast(Value* obj);
3922
3923 private:
3924 Proxy();
3925 static void CheckCast(Value* obj);
3926 };
3927
3928 class V8_EXPORT WasmCompiledModule : public Object {
3929 public:
3930 typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> SerializedModule;
3931 // A buffer that is owned by the caller.
3932 typedef std::pair<const uint8_t*, size_t> CallerOwnedBuffer;
3933 // Get the wasm-encoded bytes that were used to compile this module.
3934 Local<String> GetWasmWireBytes();
3935
3936 // Serialize the compiled module. The serialized data does not include the
3937 // uncompiled bytes.
3938 SerializedModule Serialize();
3939
3940 // If possible, deserialize the module, otherwise compile it from the provided
3941 // uncompiled bytes.
3942 static MaybeLocal<WasmCompiledModule> DeserializeOrCompile(
3943 Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3944 const CallerOwnedBuffer& wire_bytes);
3945 V8_INLINE static WasmCompiledModule* Cast(Value* obj);
3946
3947 private:
3948 static MaybeLocal<WasmCompiledModule> Deserialize(
3949 Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3950 const CallerOwnedBuffer& wire_bytes);
3951 static MaybeLocal<WasmCompiledModule> Compile(Isolate* isolate,
3952 const uint8_t* start,
3953 size_t length);
3954 WasmCompiledModule();
3955 static void CheckCast(Value* obj);
3956 };
3957
3958 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3959 // The number of required internal fields can be defined by embedder.
3960 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3961 #endif
3962
3963
3964 enum class ArrayBufferCreationMode { kInternalized, kExternalized };
3965
3966
3967 /**
3968 * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3969 */
3970 class V8_EXPORT ArrayBuffer : public Object {
3971 public:
3972 /**
3973 * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3974 * The allocator is a global V8 setting. It has to be set via
3975 * Isolate::CreateParams.
3976 *
3977 * Memory allocated through this allocator by V8 is accounted for as external
3978 * memory by V8. Note that V8 keeps track of the memory for all internalized
3979 * |ArrayBuffer|s. Responsibility for tracking external memory (using
3980 * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
3981 * embedder upon externalization and taken over upon internalization (creating
3982 * an internalized buffer from an existing buffer).
3983 *
3984 * Note that it is unsafe to call back into V8 from any of the allocator
3985 * functions.
3986 */
3987 class V8_EXPORT Allocator { // NOLINT
3988 public:
~Allocator()3989 virtual ~Allocator() {}
3990
3991 /**
3992 * Allocate |length| bytes. Return NULL if allocation is not successful.
3993 * Memory should be initialized to zeroes.
3994 */
3995 virtual void* Allocate(size_t length) = 0;
3996
3997 /**
3998 * Allocate |length| bytes. Return NULL if allocation is not successful.
3999 * Memory does not have to be initialized.
4000 */
4001 virtual void* AllocateUninitialized(size_t length) = 0;
4002
4003 /**
4004 * Free the memory block of size |length|, pointed to by |data|.
4005 * That memory is guaranteed to be previously allocated by |Allocate|.
4006 */
4007 virtual void Free(void* data, size_t length) = 0;
4008
4009 /**
4010 * malloc/free based convenience allocator.
4011 *
4012 * Caller takes ownership.
4013 */
4014 static Allocator* NewDefaultAllocator();
4015 };
4016
4017 /**
4018 * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
4019 * returns an instance of this class, populated, with a pointer to data
4020 * and byte length.
4021 *
4022 * The Data pointer of ArrayBuffer::Contents is always allocated with
4023 * Allocator::Allocate that is set via Isolate::CreateParams.
4024 */
4025 class V8_EXPORT Contents { // NOLINT
4026 public:
Contents()4027 Contents() : data_(NULL), byte_length_(0) {}
4028
Data()4029 void* Data() const { return data_; }
ByteLength()4030 size_t ByteLength() const { return byte_length_; }
4031
4032 private:
4033 void* data_;
4034 size_t byte_length_;
4035
4036 friend class ArrayBuffer;
4037 };
4038
4039
4040 /**
4041 * Data length in bytes.
4042 */
4043 size_t ByteLength() const;
4044
4045 /**
4046 * Create a new ArrayBuffer. Allocate |byte_length| bytes.
4047 * Allocated memory will be owned by a created ArrayBuffer and
4048 * will be deallocated when it is garbage-collected,
4049 * unless the object is externalized.
4050 */
4051 static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
4052
4053 /**
4054 * Create a new ArrayBuffer over an existing memory block.
4055 * The created array buffer is by default immediately in externalized state.
4056 * The memory block will not be reclaimed when a created ArrayBuffer
4057 * is garbage-collected.
4058 */
4059 static Local<ArrayBuffer> New(
4060 Isolate* isolate, void* data, size_t byte_length,
4061 ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4062
4063 /**
4064 * Returns true if ArrayBuffer is externalized, that is, does not
4065 * own its memory block.
4066 */
4067 bool IsExternal() const;
4068
4069 /**
4070 * Returns true if this ArrayBuffer may be neutered.
4071 */
4072 bool IsNeuterable() const;
4073
4074 /**
4075 * Neuters this ArrayBuffer and all its views (typed arrays).
4076 * Neutering sets the byte length of the buffer and all typed arrays to zero,
4077 * preventing JavaScript from ever accessing underlying backing store.
4078 * ArrayBuffer should have been externalized and must be neuterable.
4079 */
4080 void Neuter();
4081
4082 /**
4083 * Make this ArrayBuffer external. The pointer to underlying memory block
4084 * and byte length are returned as |Contents| structure. After ArrayBuffer
4085 * had been externalized, it does no longer own the memory block. The caller
4086 * should take steps to free memory when it is no longer needed.
4087 *
4088 * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4089 * that has been set via Isolate::CreateParams.
4090 */
4091 Contents Externalize();
4092
4093 /**
4094 * Get a pointer to the ArrayBuffer's underlying memory block without
4095 * externalizing it. If the ArrayBuffer is not externalized, this pointer
4096 * will become invalid as soon as the ArrayBuffer gets garbage collected.
4097 *
4098 * The embedder should make sure to hold a strong reference to the
4099 * ArrayBuffer while accessing this pointer.
4100 *
4101 * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
4102 */
4103 Contents GetContents();
4104
4105 V8_INLINE static ArrayBuffer* Cast(Value* obj);
4106
4107 static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4108
4109 private:
4110 ArrayBuffer();
4111 static void CheckCast(Value* obj);
4112 };
4113
4114
4115 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
4116 // The number of required internal fields can be defined by embedder.
4117 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
4118 #endif
4119
4120
4121 /**
4122 * A base class for an instance of one of "views" over ArrayBuffer,
4123 * including TypedArrays and DataView (ES6 draft 15.13).
4124 */
4125 class V8_EXPORT ArrayBufferView : public Object {
4126 public:
4127 /**
4128 * Returns underlying ArrayBuffer.
4129 */
4130 Local<ArrayBuffer> Buffer();
4131 /**
4132 * Byte offset in |Buffer|.
4133 */
4134 size_t ByteOffset();
4135 /**
4136 * Size of a view in bytes.
4137 */
4138 size_t ByteLength();
4139
4140 /**
4141 * Copy the contents of the ArrayBufferView's buffer to an embedder defined
4142 * memory without additional overhead that calling ArrayBufferView::Buffer
4143 * might incur.
4144 *
4145 * Will write at most min(|byte_length|, ByteLength) bytes starting at
4146 * ByteOffset of the underlying buffer to the memory starting at |dest|.
4147 * Returns the number of bytes actually written.
4148 */
4149 size_t CopyContents(void* dest, size_t byte_length);
4150
4151 /**
4152 * Returns true if ArrayBufferView's backing ArrayBuffer has already been
4153 * allocated.
4154 */
4155 bool HasBuffer() const;
4156
4157 V8_INLINE static ArrayBufferView* Cast(Value* obj);
4158
4159 static const int kInternalFieldCount =
4160 V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
4161
4162 private:
4163 ArrayBufferView();
4164 static void CheckCast(Value* obj);
4165 };
4166
4167
4168 /**
4169 * A base class for an instance of TypedArray series of constructors
4170 * (ES6 draft 15.13.6).
4171 */
4172 class V8_EXPORT TypedArray : public ArrayBufferView {
4173 public:
4174 /**
4175 * Number of elements in this typed array
4176 * (e.g. for Int16Array, |ByteLength|/2).
4177 */
4178 size_t Length();
4179
4180 V8_INLINE static TypedArray* Cast(Value* obj);
4181
4182 private:
4183 TypedArray();
4184 static void CheckCast(Value* obj);
4185 };
4186
4187
4188 /**
4189 * An instance of Uint8Array constructor (ES6 draft 15.13.6).
4190 */
4191 class V8_EXPORT Uint8Array : public TypedArray {
4192 public:
4193 static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
4194 size_t byte_offset, size_t length);
4195 static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4196 size_t byte_offset, size_t length);
4197 V8_INLINE static Uint8Array* Cast(Value* obj);
4198
4199 private:
4200 Uint8Array();
4201 static void CheckCast(Value* obj);
4202 };
4203
4204
4205 /**
4206 * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
4207 */
4208 class V8_EXPORT Uint8ClampedArray : public TypedArray {
4209 public:
4210 static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
4211 size_t byte_offset, size_t length);
4212 static Local<Uint8ClampedArray> New(
4213 Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
4214 size_t length);
4215 V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
4216
4217 private:
4218 Uint8ClampedArray();
4219 static void CheckCast(Value* obj);
4220 };
4221
4222 /**
4223 * An instance of Int8Array constructor (ES6 draft 15.13.6).
4224 */
4225 class V8_EXPORT Int8Array : public TypedArray {
4226 public:
4227 static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
4228 size_t byte_offset, size_t length);
4229 static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4230 size_t byte_offset, size_t length);
4231 V8_INLINE static Int8Array* Cast(Value* obj);
4232
4233 private:
4234 Int8Array();
4235 static void CheckCast(Value* obj);
4236 };
4237
4238
4239 /**
4240 * An instance of Uint16Array constructor (ES6 draft 15.13.6).
4241 */
4242 class V8_EXPORT Uint16Array : public TypedArray {
4243 public:
4244 static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
4245 size_t byte_offset, size_t length);
4246 static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4247 size_t byte_offset, size_t length);
4248 V8_INLINE static Uint16Array* Cast(Value* obj);
4249
4250 private:
4251 Uint16Array();
4252 static void CheckCast(Value* obj);
4253 };
4254
4255
4256 /**
4257 * An instance of Int16Array constructor (ES6 draft 15.13.6).
4258 */
4259 class V8_EXPORT Int16Array : public TypedArray {
4260 public:
4261 static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
4262 size_t byte_offset, size_t length);
4263 static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4264 size_t byte_offset, size_t length);
4265 V8_INLINE static Int16Array* Cast(Value* obj);
4266
4267 private:
4268 Int16Array();
4269 static void CheckCast(Value* obj);
4270 };
4271
4272
4273 /**
4274 * An instance of Uint32Array constructor (ES6 draft 15.13.6).
4275 */
4276 class V8_EXPORT Uint32Array : public TypedArray {
4277 public:
4278 static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
4279 size_t byte_offset, size_t length);
4280 static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4281 size_t byte_offset, size_t length);
4282 V8_INLINE static Uint32Array* Cast(Value* obj);
4283
4284 private:
4285 Uint32Array();
4286 static void CheckCast(Value* obj);
4287 };
4288
4289
4290 /**
4291 * An instance of Int32Array constructor (ES6 draft 15.13.6).
4292 */
4293 class V8_EXPORT Int32Array : public TypedArray {
4294 public:
4295 static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
4296 size_t byte_offset, size_t length);
4297 static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4298 size_t byte_offset, size_t length);
4299 V8_INLINE static Int32Array* Cast(Value* obj);
4300
4301 private:
4302 Int32Array();
4303 static void CheckCast(Value* obj);
4304 };
4305
4306
4307 /**
4308 * An instance of Float32Array constructor (ES6 draft 15.13.6).
4309 */
4310 class V8_EXPORT Float32Array : public TypedArray {
4311 public:
4312 static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
4313 size_t byte_offset, size_t length);
4314 static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4315 size_t byte_offset, size_t length);
4316 V8_INLINE static Float32Array* Cast(Value* obj);
4317
4318 private:
4319 Float32Array();
4320 static void CheckCast(Value* obj);
4321 };
4322
4323
4324 /**
4325 * An instance of Float64Array constructor (ES6 draft 15.13.6).
4326 */
4327 class V8_EXPORT Float64Array : public TypedArray {
4328 public:
4329 static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
4330 size_t byte_offset, size_t length);
4331 static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4332 size_t byte_offset, size_t length);
4333 V8_INLINE static Float64Array* Cast(Value* obj);
4334
4335 private:
4336 Float64Array();
4337 static void CheckCast(Value* obj);
4338 };
4339
4340
4341 /**
4342 * An instance of DataView constructor (ES6 draft 15.13.7).
4343 */
4344 class V8_EXPORT DataView : public ArrayBufferView {
4345 public:
4346 static Local<DataView> New(Local<ArrayBuffer> array_buffer,
4347 size_t byte_offset, size_t length);
4348 static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
4349 size_t byte_offset, size_t length);
4350 V8_INLINE static DataView* Cast(Value* obj);
4351
4352 private:
4353 DataView();
4354 static void CheckCast(Value* obj);
4355 };
4356
4357
4358 /**
4359 * An instance of the built-in SharedArrayBuffer constructor.
4360 * This API is experimental and may change significantly.
4361 */
4362 class V8_EXPORT SharedArrayBuffer : public Object {
4363 public:
4364 /**
4365 * The contents of an |SharedArrayBuffer|. Externalization of
4366 * |SharedArrayBuffer| returns an instance of this class, populated, with a
4367 * pointer to data and byte length.
4368 *
4369 * The Data pointer of SharedArrayBuffer::Contents is always allocated with
4370 * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
4371 * v8::Isolate::CreateParams::array_buffer_allocator.
4372 *
4373 * This API is experimental and may change significantly.
4374 */
4375 class V8_EXPORT Contents { // NOLINT
4376 public:
Contents()4377 Contents() : data_(NULL), byte_length_(0) {}
4378
Data()4379 void* Data() const { return data_; }
ByteLength()4380 size_t ByteLength() const { return byte_length_; }
4381
4382 private:
4383 void* data_;
4384 size_t byte_length_;
4385
4386 friend class SharedArrayBuffer;
4387 };
4388
4389
4390 /**
4391 * Data length in bytes.
4392 */
4393 size_t ByteLength() const;
4394
4395 /**
4396 * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
4397 * Allocated memory will be owned by a created SharedArrayBuffer and
4398 * will be deallocated when it is garbage-collected,
4399 * unless the object is externalized.
4400 */
4401 static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
4402
4403 /**
4404 * Create a new SharedArrayBuffer over an existing memory block. The created
4405 * array buffer is immediately in externalized state unless otherwise
4406 * specified. The memory block will not be reclaimed when a created
4407 * SharedArrayBuffer is garbage-collected.
4408 */
4409 static Local<SharedArrayBuffer> New(
4410 Isolate* isolate, void* data, size_t byte_length,
4411 ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4412
4413 /**
4414 * Returns true if SharedArrayBuffer is externalized, that is, does not
4415 * own its memory block.
4416 */
4417 bool IsExternal() const;
4418
4419 /**
4420 * Make this SharedArrayBuffer external. The pointer to underlying memory
4421 * block and byte length are returned as |Contents| structure. After
4422 * SharedArrayBuffer had been externalized, it does no longer own the memory
4423 * block. The caller should take steps to free memory when it is no longer
4424 * needed.
4425 *
4426 * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4427 * by the allocator specified in
4428 * v8::Isolate::CreateParams::array_buffer_allocator.
4429 *
4430 */
4431 Contents Externalize();
4432
4433 /**
4434 * Get a pointer to the ArrayBuffer's underlying memory block without
4435 * externalizing it. If the ArrayBuffer is not externalized, this pointer
4436 * will become invalid as soon as the ArrayBuffer became garbage collected.
4437 *
4438 * The embedder should make sure to hold a strong reference to the
4439 * ArrayBuffer while accessing this pointer.
4440 *
4441 * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4442 * by the allocator specified in
4443 * v8::Isolate::CreateParams::array_buffer_allocator.
4444 */
4445 Contents GetContents();
4446
4447 V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
4448
4449 static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4450
4451 private:
4452 SharedArrayBuffer();
4453 static void CheckCast(Value* obj);
4454 };
4455
4456
4457 /**
4458 * An instance of the built-in Date constructor (ECMA-262, 15.9).
4459 */
4460 class V8_EXPORT Date : public Object {
4461 public:
4462 static V8_DEPRECATE_SOON("Use maybe version.",
4463 Local<Value> New(Isolate* isolate, double time));
4464 static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
4465 double time);
4466
4467 /**
4468 * A specialization of Value::NumberValue that is more efficient
4469 * because we know the structure of this object.
4470 */
4471 double ValueOf() const;
4472
4473 V8_INLINE static Date* Cast(Value* obj);
4474
4475 /**
4476 * Notification that the embedder has changed the time zone,
4477 * daylight savings time, or other date / time configuration
4478 * parameters. V8 keeps a cache of various values used for
4479 * date / time computation. This notification will reset
4480 * those cached values for the current context so that date /
4481 * time configuration changes would be reflected in the Date
4482 * object.
4483 *
4484 * This API should not be called more than needed as it will
4485 * negatively impact the performance of date operations.
4486 */
4487 static void DateTimeConfigurationChangeNotification(Isolate* isolate);
4488
4489 private:
4490 static void CheckCast(Value* obj);
4491 };
4492
4493
4494 /**
4495 * A Number object (ECMA-262, 4.3.21).
4496 */
4497 class V8_EXPORT NumberObject : public Object {
4498 public:
4499 static Local<Value> New(Isolate* isolate, double value);
4500
4501 double ValueOf() const;
4502
4503 V8_INLINE static NumberObject* Cast(Value* obj);
4504
4505 private:
4506 static void CheckCast(Value* obj);
4507 };
4508
4509
4510 /**
4511 * A Boolean object (ECMA-262, 4.3.15).
4512 */
4513 class V8_EXPORT BooleanObject : public Object {
4514 public:
4515 static Local<Value> New(Isolate* isolate, bool value);
4516 V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value));
4517
4518 bool ValueOf() const;
4519
4520 V8_INLINE static BooleanObject* Cast(Value* obj);
4521
4522 private:
4523 static void CheckCast(Value* obj);
4524 };
4525
4526
4527 /**
4528 * A String object (ECMA-262, 4.3.18).
4529 */
4530 class V8_EXPORT StringObject : public Object {
4531 public:
4532 static Local<Value> New(Local<String> value);
4533
4534 Local<String> ValueOf() const;
4535
4536 V8_INLINE static StringObject* Cast(Value* obj);
4537
4538 private:
4539 static void CheckCast(Value* obj);
4540 };
4541
4542
4543 /**
4544 * A Symbol object (ECMA-262 edition 6).
4545 */
4546 class V8_EXPORT SymbolObject : public Object {
4547 public:
4548 static Local<Value> New(Isolate* isolate, Local<Symbol> value);
4549
4550 Local<Symbol> ValueOf() const;
4551
4552 V8_INLINE static SymbolObject* Cast(Value* obj);
4553
4554 private:
4555 static void CheckCast(Value* obj);
4556 };
4557
4558
4559 /**
4560 * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
4561 */
4562 class V8_EXPORT RegExp : public Object {
4563 public:
4564 /**
4565 * Regular expression flag bits. They can be or'ed to enable a set
4566 * of flags.
4567 */
4568 enum Flags {
4569 kNone = 0,
4570 kGlobal = 1,
4571 kIgnoreCase = 2,
4572 kMultiline = 4,
4573 kSticky = 8,
4574 kUnicode = 16
4575 };
4576
4577 /**
4578 * Creates a regular expression from the given pattern string and
4579 * the flags bit field. May throw a JavaScript exception as
4580 * described in ECMA-262, 15.10.4.1.
4581 *
4582 * For example,
4583 * RegExp::New(v8::String::New("foo"),
4584 * static_cast<RegExp::Flags>(kGlobal | kMultiline))
4585 * is equivalent to evaluating "/foo/gm".
4586 */
4587 static V8_DEPRECATE_SOON("Use maybe version",
4588 Local<RegExp> New(Local<String> pattern,
4589 Flags flags));
4590 static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
4591 Local<String> pattern,
4592 Flags flags);
4593
4594 /**
4595 * Returns the value of the source property: a string representing
4596 * the regular expression.
4597 */
4598 Local<String> GetSource() const;
4599
4600 /**
4601 * Returns the flags bit field.
4602 */
4603 Flags GetFlags() const;
4604
4605 V8_INLINE static RegExp* Cast(Value* obj);
4606
4607 private:
4608 static void CheckCast(Value* obj);
4609 };
4610
4611
4612 /**
4613 * A JavaScript value that wraps a C++ void*. This type of value is mainly used
4614 * to associate C++ data structures with JavaScript objects.
4615 */
4616 class V8_EXPORT External : public Value {
4617 public:
4618 static Local<External> New(Isolate* isolate, void* value);
4619 V8_INLINE static External* Cast(Value* obj);
4620 void* Value() const;
4621 private:
4622 static void CheckCast(v8::Value* obj);
4623 };
4624
4625 #define V8_INTRINSICS_LIST(F) \
4626 F(ArrayProto_entries, array_entries_iterator) \
4627 F(ArrayProto_forEach, array_for_each_iterator) \
4628 F(ArrayProto_keys, array_keys_iterator) \
4629 F(ArrayProto_values, array_values_iterator)
4630
4631 enum Intrinsic {
4632 #define V8_DECL_INTRINSIC(name, iname) k##name,
4633 V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
4634 #undef V8_DECL_INTRINSIC
4635 };
4636
4637
4638 // --- Templates ---
4639
4640
4641 /**
4642 * The superclass of object and function templates.
4643 */
4644 class V8_EXPORT Template : public Data {
4645 public:
4646 /**
4647 * Adds a property to each instance created by this template.
4648 *
4649 * The property must be defined either as a primitive value, or a template.
4650 */
4651 void Set(Local<Name> name, Local<Data> value,
4652 PropertyAttribute attributes = None);
4653 void SetPrivate(Local<Private> name, Local<Data> value,
4654 PropertyAttribute attributes = None);
4655 V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4656
4657 void SetAccessorProperty(
4658 Local<Name> name,
4659 Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4660 Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4661 PropertyAttribute attribute = None,
4662 AccessControl settings = DEFAULT);
4663
4664 /**
4665 * Whenever the property with the given name is accessed on objects
4666 * created from this Template the getter and setter callbacks
4667 * are called instead of getting and setting the property directly
4668 * on the JavaScript object.
4669 *
4670 * \param name The name of the property for which an accessor is added.
4671 * \param getter The callback to invoke when getting the property.
4672 * \param setter The callback to invoke when setting the property.
4673 * \param data A piece of data that will be passed to the getter and setter
4674 * callbacks whenever they are invoked.
4675 * \param settings Access control settings for the accessor. This is a bit
4676 * field consisting of one of more of
4677 * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4678 * The default is to not allow cross-context access.
4679 * ALL_CAN_READ means that all cross-context reads are allowed.
4680 * ALL_CAN_WRITE means that all cross-context writes are allowed.
4681 * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4682 * cross-context access.
4683 * \param attribute The attributes of the property for which an accessor
4684 * is added.
4685 * \param signature The signature describes valid receivers for the accessor
4686 * and is used to perform implicit instance checks against them. If the
4687 * receiver is incompatible (i.e. is not an instance of the constructor as
4688 * defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4689 * thrown and no callback is invoked.
4690 */
4691 void SetNativeDataProperty(
4692 Local<String> name, AccessorGetterCallback getter,
4693 AccessorSetterCallback setter = 0,
4694 // TODO(dcarney): gcc can't handle Local below
4695 Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4696 Local<AccessorSignature> signature = Local<AccessorSignature>(),
4697 AccessControl settings = DEFAULT);
4698 void SetNativeDataProperty(
4699 Local<Name> name, AccessorNameGetterCallback getter,
4700 AccessorNameSetterCallback setter = 0,
4701 // TODO(dcarney): gcc can't handle Local below
4702 Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4703 Local<AccessorSignature> signature = Local<AccessorSignature>(),
4704 AccessControl settings = DEFAULT);
4705
4706 /**
4707 * Like SetNativeDataProperty, but V8 will replace the native data property
4708 * with a real data property on first access.
4709 */
4710 void SetLazyDataProperty(Local<Name> name, AccessorNameGetterCallback getter,
4711 Local<Value> data = Local<Value>(),
4712 PropertyAttribute attribute = None);
4713
4714 /**
4715 * During template instantiation, sets the value with the intrinsic property
4716 * from the correct context.
4717 */
4718 void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
4719 PropertyAttribute attribute = None);
4720
4721 private:
4722 Template();
4723
4724 friend class ObjectTemplate;
4725 friend class FunctionTemplate;
4726 };
4727
4728
4729 /**
4730 * NamedProperty[Getter|Setter] are used as interceptors on object.
4731 * See ObjectTemplate::SetNamedPropertyHandler.
4732 */
4733 typedef void (*NamedPropertyGetterCallback)(
4734 Local<String> property,
4735 const PropertyCallbackInfo<Value>& info);
4736
4737
4738 /**
4739 * Returns the value if the setter intercepts the request.
4740 * Otherwise, returns an empty handle.
4741 */
4742 typedef void (*NamedPropertySetterCallback)(
4743 Local<String> property,
4744 Local<Value> value,
4745 const PropertyCallbackInfo<Value>& info);
4746
4747
4748 /**
4749 * Returns a non-empty handle if the interceptor intercepts the request.
4750 * The result is an integer encoding property attributes (like v8::None,
4751 * v8::DontEnum, etc.)
4752 */
4753 typedef void (*NamedPropertyQueryCallback)(
4754 Local<String> property,
4755 const PropertyCallbackInfo<Integer>& info);
4756
4757
4758 /**
4759 * Returns a non-empty handle if the deleter intercepts the request.
4760 * The return value is true if the property could be deleted and false
4761 * otherwise.
4762 */
4763 typedef void (*NamedPropertyDeleterCallback)(
4764 Local<String> property,
4765 const PropertyCallbackInfo<Boolean>& info);
4766
4767
4768 /**
4769 * Returns an array containing the names of the properties the named
4770 * property getter intercepts.
4771 */
4772 typedef void (*NamedPropertyEnumeratorCallback)(
4773 const PropertyCallbackInfo<Array>& info);
4774
4775
4776 // TODO(dcarney): Deprecate and remove previous typedefs, and replace
4777 // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4778
4779 /**
4780 * Interceptor for get requests on an object.
4781 *
4782 * Use `info.GetReturnValue().Set()` to set the return value of the
4783 * intercepted get request.
4784 *
4785 * \param property The name of the property for which the request was
4786 * intercepted.
4787 * \param info Information about the intercepted request, such as
4788 * isolate, receiver, return value, or whether running in `'use strict`' mode.
4789 * See `PropertyCallbackInfo`.
4790 *
4791 * \code
4792 * void GetterCallback(
4793 * Local<Name> name,
4794 * const v8::PropertyCallbackInfo<v8::Value>& info) {
4795 * info.GetReturnValue().Set(v8_num(42));
4796 * }
4797 *
4798 * v8::Local<v8::FunctionTemplate> templ =
4799 * v8::FunctionTemplate::New(isolate);
4800 * templ->InstanceTemplate()->SetHandler(
4801 * v8::NamedPropertyHandlerConfiguration(GetterCallback));
4802 * LocalContext env;
4803 * env->Global()
4804 * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
4805 * .ToLocalChecked()
4806 * ->NewInstance(env.local())
4807 * .ToLocalChecked())
4808 * .FromJust();
4809 * v8::Local<v8::Value> result = CompileRun("obj.a = 17; obj.a");
4810 * CHECK(v8_num(42)->Equals(env.local(), result).FromJust());
4811 * \endcode
4812 *
4813 * See also `ObjectTemplate::SetHandler`.
4814 */
4815 typedef void (*GenericNamedPropertyGetterCallback)(
4816 Local<Name> property, const PropertyCallbackInfo<Value>& info);
4817
4818 /**
4819 * Interceptor for set requests on an object.
4820 *
4821 * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4822 * or not. If the setter successfully intercepts the request, i.e., if the
4823 * request should not be further executed, call
4824 * `info.GetReturnValue().Set(value)`. If the setter
4825 * did not intercept the request, i.e., if the request should be handled as
4826 * if no interceptor is present, do not not call `Set()`.
4827 *
4828 * \param property The name of the property for which the request was
4829 * intercepted.
4830 * \param value The value which the property will have if the request
4831 * is not intercepted.
4832 * \param info Information about the intercepted request, such as
4833 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4834 * See `PropertyCallbackInfo`.
4835 *
4836 * See also
4837 * `ObjectTemplate::SetHandler.`
4838 */
4839 typedef void (*GenericNamedPropertySetterCallback)(
4840 Local<Name> property, Local<Value> value,
4841 const PropertyCallbackInfo<Value>& info);
4842
4843 /**
4844 * Intercepts all requests that query the attributes of the
4845 * property, e.g., getOwnPropertyDescriptor(), propertyIsEnumerable(), and
4846 * defineProperty().
4847 *
4848 * Use `info.GetReturnValue().Set(value)` to set the property attributes. The
4849 * value is an interger encoding a `v8::PropertyAttribute`.
4850 *
4851 * \param property The name of the property for which the request was
4852 * intercepted.
4853 * \param info Information about the intercepted request, such as
4854 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4855 * See `PropertyCallbackInfo`.
4856 *
4857 * \note Some functions query the property attributes internally, even though
4858 * they do not return the attributes. For example, `hasOwnProperty()` can
4859 * trigger this interceptor depending on the state of the object.
4860 *
4861 * See also
4862 * `ObjectTemplate::SetHandler.`
4863 */
4864 typedef void (*GenericNamedPropertyQueryCallback)(
4865 Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4866
4867 /**
4868 * Interceptor for delete requests on an object.
4869 *
4870 * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4871 * or not. If the deleter successfully intercepts the request, i.e., if the
4872 * request should not be further executed, call
4873 * `info.GetReturnValue().Set(value)` with a boolean `value`. The `value` is
4874 * used as the return value of `delete`.
4875 *
4876 * \param property The name of the property for which the request was
4877 * intercepted.
4878 * \param info Information about the intercepted request, such as
4879 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4880 * See `PropertyCallbackInfo`.
4881 *
4882 * \note If you need to mimic the behavior of `delete`, i.e., throw in strict
4883 * mode instead of returning false, use `info.ShouldThrowOnError()` to determine
4884 * if you are in strict mode.
4885 *
4886 * See also `ObjectTemplate::SetHandler.`
4887 */
4888 typedef void (*GenericNamedPropertyDeleterCallback)(
4889 Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4890
4891
4892 /**
4893 * Returns an array containing the names of the properties the named
4894 * property getter intercepts.
4895 */
4896 typedef void (*GenericNamedPropertyEnumeratorCallback)(
4897 const PropertyCallbackInfo<Array>& info);
4898
4899 /**
4900 * Interceptor for defineProperty requests on an object.
4901 *
4902 * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4903 * or not. If the definer successfully intercepts the request, i.e., if the
4904 * request should not be further executed, call
4905 * `info.GetReturnValue().Set(value)`. If the definer
4906 * did not intercept the request, i.e., if the request should be handled as
4907 * if no interceptor is present, do not not call `Set()`.
4908 *
4909 * \param property The name of the property for which the request was
4910 * intercepted.
4911 * \param desc The property descriptor which is used to define the
4912 * property if the request is not intercepted.
4913 * \param info Information about the intercepted request, such as
4914 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4915 * See `PropertyCallbackInfo`.
4916 *
4917 * See also `ObjectTemplate::SetHandler`.
4918 */
4919 typedef void (*GenericNamedPropertyDefinerCallback)(
4920 Local<Name> property, const PropertyDescriptor& desc,
4921 const PropertyCallbackInfo<Value>& info);
4922
4923 /**
4924 * Interceptor for getOwnPropertyDescriptor requests on an object.
4925 *
4926 * Use `info.GetReturnValue().Set()` to set the return value of the
4927 * intercepted request. The return value must be an object that
4928 * can be converted to a PropertyDescriptor, e.g., a `v8::value` returned from
4929 * `v8::Object::getOwnPropertyDescriptor`.
4930 *
4931 * \param property The name of the property for which the request was
4932 * intercepted.
4933 * \info Information about the intercepted request, such as
4934 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4935 * See `PropertyCallbackInfo`.
4936 *
4937 * \note If GetOwnPropertyDescriptor is intercepted, it will
4938 * always return true, i.e., indicate that the property was found.
4939 *
4940 * See also `ObjectTemplate::SetHandler`.
4941 */
4942 typedef void (*GenericNamedPropertyDescriptorCallback)(
4943 Local<Name> property, const PropertyCallbackInfo<Value>& info);
4944
4945 /**
4946 * See `v8::GenericNamedPropertyGetterCallback`.
4947 */
4948 typedef void (*IndexedPropertyGetterCallback)(
4949 uint32_t index,
4950 const PropertyCallbackInfo<Value>& info);
4951
4952 /**
4953 * See `v8::GenericNamedPropertySetterCallback`.
4954 */
4955 typedef void (*IndexedPropertySetterCallback)(
4956 uint32_t index,
4957 Local<Value> value,
4958 const PropertyCallbackInfo<Value>& info);
4959
4960 /**
4961 * See `v8::GenericNamedPropertyQueryCallback`.
4962 */
4963 typedef void (*IndexedPropertyQueryCallback)(
4964 uint32_t index,
4965 const PropertyCallbackInfo<Integer>& info);
4966
4967 /**
4968 * See `v8::GenericNamedPropertyDeleterCallback`.
4969 */
4970 typedef void (*IndexedPropertyDeleterCallback)(
4971 uint32_t index,
4972 const PropertyCallbackInfo<Boolean>& info);
4973
4974 /**
4975 * See `v8::GenericNamedPropertyEnumeratorCallback`.
4976 */
4977 typedef void (*IndexedPropertyEnumeratorCallback)(
4978 const PropertyCallbackInfo<Array>& info);
4979
4980 /**
4981 * See `v8::GenericNamedPropertyDefinerCallback`.
4982 */
4983 typedef void (*IndexedPropertyDefinerCallback)(
4984 uint32_t index, const PropertyDescriptor& desc,
4985 const PropertyCallbackInfo<Value>& info);
4986
4987 /**
4988 * See `v8::GenericNamedPropertyDescriptorCallback`.
4989 */
4990 typedef void (*IndexedPropertyDescriptorCallback)(
4991 uint32_t index, const PropertyCallbackInfo<Value>& info);
4992
4993 /**
4994 * Access type specification.
4995 */
4996 enum AccessType {
4997 ACCESS_GET,
4998 ACCESS_SET,
4999 ACCESS_HAS,
5000 ACCESS_DELETE,
5001 ACCESS_KEYS
5002 };
5003
5004
5005 /**
5006 * Returns true if the given context should be allowed to access the given
5007 * object.
5008 */
5009 typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
5010 Local<Object> accessed_object,
5011 Local<Value> data);
5012
5013 /**
5014 * A FunctionTemplate is used to create functions at runtime. There
5015 * can only be one function created from a FunctionTemplate in a
5016 * context. The lifetime of the created function is equal to the
5017 * lifetime of the context. So in case the embedder needs to create
5018 * temporary functions that can be collected using Scripts is
5019 * preferred.
5020 *
5021 * Any modification of a FunctionTemplate after first instantiation will trigger
5022 * a crash.
5023 *
5024 * A FunctionTemplate can have properties, these properties are added to the
5025 * function object when it is created.
5026 *
5027 * A FunctionTemplate has a corresponding instance template which is
5028 * used to create object instances when the function is used as a
5029 * constructor. Properties added to the instance template are added to
5030 * each object instance.
5031 *
5032 * A FunctionTemplate can have a prototype template. The prototype template
5033 * is used to create the prototype object of the function.
5034 *
5035 * The following example shows how to use a FunctionTemplate:
5036 *
5037 * \code
5038 * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(isolate);
5039 * t->Set(isolate, "func_property", v8::Number::New(isolate, 1));
5040 *
5041 * v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
5042 * proto_t->Set(isolate,
5043 * "proto_method",
5044 * v8::FunctionTemplate::New(isolate, InvokeCallback));
5045 * proto_t->Set(isolate, "proto_const", v8::Number::New(isolate, 2));
5046 *
5047 * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
5048 * instance_t->SetAccessor(String::NewFromUtf8(isolate, "instance_accessor"),
5049 * InstanceAccessorCallback);
5050 * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback);
5051 * instance_t->Set(String::NewFromUtf8(isolate, "instance_property"),
5052 * Number::New(isolate, 3));
5053 *
5054 * v8::Local<v8::Function> function = t->GetFunction();
5055 * v8::Local<v8::Object> instance = function->NewInstance();
5056 * \endcode
5057 *
5058 * Let's use "function" as the JS variable name of the function object
5059 * and "instance" for the instance object created above. The function
5060 * and the instance will have the following properties:
5061 *
5062 * \code
5063 * func_property in function == true;
5064 * function.func_property == 1;
5065 *
5066 * function.prototype.proto_method() invokes 'InvokeCallback'
5067 * function.prototype.proto_const == 2;
5068 *
5069 * instance instanceof function == true;
5070 * instance.instance_accessor calls 'InstanceAccessorCallback'
5071 * instance.instance_property == 3;
5072 * \endcode
5073 *
5074 * A FunctionTemplate can inherit from another one by calling the
5075 * FunctionTemplate::Inherit method. The following graph illustrates
5076 * the semantics of inheritance:
5077 *
5078 * \code
5079 * FunctionTemplate Parent -> Parent() . prototype -> { }
5080 * ^ ^
5081 * | Inherit(Parent) | .__proto__
5082 * | |
5083 * FunctionTemplate Child -> Child() . prototype -> { }
5084 * \endcode
5085 *
5086 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
5087 * object of the Child() function has __proto__ pointing to the
5088 * Parent() function's prototype object. An instance of the Child
5089 * function has all properties on Parent's instance templates.
5090 *
5091 * Let Parent be the FunctionTemplate initialized in the previous
5092 * section and create a Child FunctionTemplate by:
5093 *
5094 * \code
5095 * Local<FunctionTemplate> parent = t;
5096 * Local<FunctionTemplate> child = FunctionTemplate::New();
5097 * child->Inherit(parent);
5098 *
5099 * Local<Function> child_function = child->GetFunction();
5100 * Local<Object> child_instance = child_function->NewInstance();
5101 * \endcode
5102 *
5103 * The Child function and Child instance will have the following
5104 * properties:
5105 *
5106 * \code
5107 * child_func.prototype.__proto__ == function.prototype;
5108 * child_instance.instance_accessor calls 'InstanceAccessorCallback'
5109 * child_instance.instance_property == 3;
5110 * \endcode
5111 */
5112 class V8_EXPORT FunctionTemplate : public Template {
5113 public:
5114 /** Creates a function template.*/
5115 static Local<FunctionTemplate> New(
5116 Isolate* isolate, FunctionCallback callback = 0,
5117 Local<Value> data = Local<Value>(),
5118 Local<Signature> signature = Local<Signature>(), int length = 0,
5119 ConstructorBehavior behavior = ConstructorBehavior::kAllow);
5120
5121 /** Get a template included in the snapshot by index. */
5122 static MaybeLocal<FunctionTemplate> FromSnapshot(Isolate* isolate,
5123 size_t index);
5124
5125 /**
5126 * Creates a function template with a fast handler. If a fast handler is set,
5127 * the callback cannot be null.
5128 */
5129 static Local<FunctionTemplate> NewWithFastHandler(
5130 Isolate* isolate, FunctionCallback callback,
5131 experimental::FastAccessorBuilder* fast_handler = nullptr,
5132 Local<Value> data = Local<Value>(),
5133 Local<Signature> signature = Local<Signature>(), int length = 0);
5134
5135 /**
5136 * Creates a function template backed/cached by a private property.
5137 */
5138 static Local<FunctionTemplate> NewWithCache(
5139 Isolate* isolate, FunctionCallback callback,
5140 Local<Private> cache_property, Local<Value> data = Local<Value>(),
5141 Local<Signature> signature = Local<Signature>(), int length = 0);
5142
5143 /** Returns the unique function instance in the current execution context.*/
5144 V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
5145 V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
5146 Local<Context> context);
5147
5148 /**
5149 * Similar to Context::NewRemoteContext, this creates an instance that
5150 * isn't backed by an actual object.
5151 *
5152 * The InstanceTemplate of this FunctionTemplate must have access checks with
5153 * handlers installed.
5154 */
5155 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewRemoteInstance();
5156
5157 /**
5158 * Set the call-handler callback for a FunctionTemplate. This
5159 * callback is called whenever the function created from this
5160 * FunctionTemplate is called.
5161 */
5162 void SetCallHandler(
5163 FunctionCallback callback, Local<Value> data = Local<Value>(),
5164 experimental::FastAccessorBuilder* fast_handler = nullptr);
5165
5166 /** Set the predefined length property for the FunctionTemplate. */
5167 void SetLength(int length);
5168
5169 /** Get the InstanceTemplate. */
5170 Local<ObjectTemplate> InstanceTemplate();
5171
5172 /**
5173 * Causes the function template to inherit from a parent function template.
5174 * This means the the function's prototype.__proto__ is set to the parent
5175 * function's prototype.
5176 **/
5177 void Inherit(Local<FunctionTemplate> parent);
5178
5179 /**
5180 * A PrototypeTemplate is the template used to create the prototype object
5181 * of the function created by this template.
5182 */
5183 Local<ObjectTemplate> PrototypeTemplate();
5184
5185 /**
5186 * A PrototypeProviderTemplate is another function template whose prototype
5187 * property is used for this template. This is mutually exclusive with setting
5188 * a prototype template indirectly by calling PrototypeTemplate() or using
5189 * Inherit().
5190 **/
5191 void SetPrototypeProviderTemplate(Local<FunctionTemplate> prototype_provider);
5192
5193 /**
5194 * Set the class name of the FunctionTemplate. This is used for
5195 * printing objects created with the function created from the
5196 * FunctionTemplate as its constructor.
5197 */
5198 void SetClassName(Local<String> name);
5199
5200
5201 /**
5202 * When set to true, no access check will be performed on the receiver of a
5203 * function call. Currently defaults to true, but this is subject to change.
5204 */
5205 void SetAcceptAnyReceiver(bool value);
5206
5207 /**
5208 * Determines whether the __proto__ accessor ignores instances of
5209 * the function template. If instances of the function template are
5210 * ignored, __proto__ skips all instances and instead returns the
5211 * next object in the prototype chain.
5212 *
5213 * Call with a value of true to make the __proto__ accessor ignore
5214 * instances of the function template. Call with a value of false
5215 * to make the __proto__ accessor not ignore instances of the
5216 * function template. By default, instances of a function template
5217 * are not ignored.
5218 */
5219 void SetHiddenPrototype(bool value);
5220
5221 /**
5222 * Sets the ReadOnly flag in the attributes of the 'prototype' property
5223 * of functions created from this FunctionTemplate to true.
5224 */
5225 void ReadOnlyPrototype();
5226
5227 /**
5228 * Removes the prototype property from functions created from this
5229 * FunctionTemplate.
5230 */
5231 void RemovePrototype();
5232
5233 /**
5234 * Returns true if the given object is an instance of this function
5235 * template.
5236 */
5237 bool HasInstance(Local<Value> object);
5238
5239 private:
5240 FunctionTemplate();
5241 friend class Context;
5242 friend class ObjectTemplate;
5243 };
5244
5245 /**
5246 * Configuration flags for v8::NamedPropertyHandlerConfiguration or
5247 * v8::IndexedPropertyHandlerConfiguration.
5248 */
5249 enum class PropertyHandlerFlags {
5250 /**
5251 * None.
5252 */
5253 kNone = 0,
5254
5255 /**
5256 * See ALL_CAN_READ above.
5257 */
5258 kAllCanRead = 1,
5259
5260 /** Will not call into interceptor for properties on the receiver or prototype
5261 * chain, i.e., only call into interceptor for properties that do not exist.
5262 * Currently only valid for named interceptors.
5263 */
5264 kNonMasking = 1 << 1,
5265
5266 /**
5267 * Will not call into interceptor for symbol lookup. Only meaningful for
5268 * named interceptors.
5269 */
5270 kOnlyInterceptStrings = 1 << 2,
5271 };
5272
5273 struct NamedPropertyHandlerConfiguration {
5274 NamedPropertyHandlerConfiguration(
5275 /** Note: getter is required */
5276 GenericNamedPropertyGetterCallback getter = 0,
5277 GenericNamedPropertySetterCallback setter = 0,
5278 GenericNamedPropertyQueryCallback query = 0,
5279 GenericNamedPropertyDeleterCallback deleter = 0,
5280 GenericNamedPropertyEnumeratorCallback enumerator = 0,
5281 Local<Value> data = Local<Value>(),
5282 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5283 : getter(getter),
5284 setter(setter),
5285 query(query),
5286 deleter(deleter),
5287 enumerator(enumerator),
5288 definer(0),
5289 descriptor(0),
5290 data(data),
5291 flags(flags) {}
5292
5293 NamedPropertyHandlerConfiguration(
5294 GenericNamedPropertyGetterCallback getter,
5295 GenericNamedPropertySetterCallback setter,
5296 GenericNamedPropertyDescriptorCallback descriptor,
5297 GenericNamedPropertyDeleterCallback deleter,
5298 GenericNamedPropertyEnumeratorCallback enumerator,
5299 GenericNamedPropertyDefinerCallback definer,
5300 Local<Value> data = Local<Value>(),
5301 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5302 : getter(getter),
5303 setter(setter),
5304 query(0),
5305 deleter(deleter),
5306 enumerator(enumerator),
5307 definer(definer),
5308 descriptor(descriptor),
5309 data(data),
5310 flags(flags) {}
5311
5312 GenericNamedPropertyGetterCallback getter;
5313 GenericNamedPropertySetterCallback setter;
5314 GenericNamedPropertyQueryCallback query;
5315 GenericNamedPropertyDeleterCallback deleter;
5316 GenericNamedPropertyEnumeratorCallback enumerator;
5317 GenericNamedPropertyDefinerCallback definer;
5318 GenericNamedPropertyDescriptorCallback descriptor;
5319 Local<Value> data;
5320 PropertyHandlerFlags flags;
5321 };
5322
5323
5324 struct IndexedPropertyHandlerConfiguration {
5325 IndexedPropertyHandlerConfiguration(
5326 /** Note: getter is required */
5327 IndexedPropertyGetterCallback getter = 0,
5328 IndexedPropertySetterCallback setter = 0,
5329 IndexedPropertyQueryCallback query = 0,
5330 IndexedPropertyDeleterCallback deleter = 0,
5331 IndexedPropertyEnumeratorCallback enumerator = 0,
5332 Local<Value> data = Local<Value>(),
5333 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5334 : getter(getter),
5335 setter(setter),
5336 query(query),
5337 deleter(deleter),
5338 enumerator(enumerator),
5339 definer(0),
5340 descriptor(0),
5341 data(data),
5342 flags(flags) {}
5343
5344 IndexedPropertyHandlerConfiguration(
5345 IndexedPropertyGetterCallback getter,
5346 IndexedPropertySetterCallback setter,
5347 IndexedPropertyDescriptorCallback descriptor,
5348 IndexedPropertyDeleterCallback deleter,
5349 IndexedPropertyEnumeratorCallback enumerator,
5350 IndexedPropertyDefinerCallback definer,
5351 Local<Value> data = Local<Value>(),
5352 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5353 : getter(getter),
5354 setter(setter),
5355 query(0),
5356 deleter(deleter),
5357 enumerator(enumerator),
5358 definer(definer),
5359 descriptor(descriptor),
5360 data(data),
5361 flags(flags) {}
5362
5363 IndexedPropertyGetterCallback getter;
5364 IndexedPropertySetterCallback setter;
5365 IndexedPropertyQueryCallback query;
5366 IndexedPropertyDeleterCallback deleter;
5367 IndexedPropertyEnumeratorCallback enumerator;
5368 IndexedPropertyDefinerCallback definer;
5369 IndexedPropertyDescriptorCallback descriptor;
5370 Local<Value> data;
5371 PropertyHandlerFlags flags;
5372 };
5373
5374
5375 /**
5376 * An ObjectTemplate is used to create objects at runtime.
5377 *
5378 * Properties added to an ObjectTemplate are added to each object
5379 * created from the ObjectTemplate.
5380 */
5381 class V8_EXPORT ObjectTemplate : public Template {
5382 public:
5383 /** Creates an ObjectTemplate. */
5384 static Local<ObjectTemplate> New(
5385 Isolate* isolate,
5386 Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
5387 static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New());
5388
5389 /** Get a template included in the snapshot by index. */
5390 static MaybeLocal<ObjectTemplate> FromSnapshot(Isolate* isolate,
5391 size_t index);
5392
5393 /** Creates a new instance of this template.*/
5394 V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
5395 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
5396
5397 /**
5398 * Sets an accessor on the object template.
5399 *
5400 * Whenever the property with the given name is accessed on objects
5401 * created from this ObjectTemplate the getter and setter callbacks
5402 * are called instead of getting and setting the property directly
5403 * on the JavaScript object.
5404 *
5405 * \param name The name of the property for which an accessor is added.
5406 * \param getter The callback to invoke when getting the property.
5407 * \param setter The callback to invoke when setting the property.
5408 * \param data A piece of data that will be passed to the getter and setter
5409 * callbacks whenever they are invoked.
5410 * \param settings Access control settings for the accessor. This is a bit
5411 * field consisting of one of more of
5412 * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
5413 * The default is to not allow cross-context access.
5414 * ALL_CAN_READ means that all cross-context reads are allowed.
5415 * ALL_CAN_WRITE means that all cross-context writes are allowed.
5416 * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
5417 * cross-context access.
5418 * \param attribute The attributes of the property for which an accessor
5419 * is added.
5420 * \param signature The signature describes valid receivers for the accessor
5421 * and is used to perform implicit instance checks against them. If the
5422 * receiver is incompatible (i.e. is not an instance of the constructor as
5423 * defined by FunctionTemplate::HasInstance()), an implicit TypeError is
5424 * thrown and no callback is invoked.
5425 */
5426 void SetAccessor(
5427 Local<String> name, AccessorGetterCallback getter,
5428 AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5429 AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5430 Local<AccessorSignature> signature = Local<AccessorSignature>());
5431 void SetAccessor(
5432 Local<Name> name, AccessorNameGetterCallback getter,
5433 AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5434 AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5435 Local<AccessorSignature> signature = Local<AccessorSignature>());
5436
5437 /**
5438 * Sets a named property handler on the object template.
5439 *
5440 * Whenever a property whose name is a string is accessed on objects created
5441 * from this object template, the provided callback is invoked instead of
5442 * accessing the property directly on the JavaScript object.
5443 *
5444 * SetNamedPropertyHandler() is different from SetHandler(), in
5445 * that the latter can intercept symbol-named properties as well as
5446 * string-named properties when called with a
5447 * NamedPropertyHandlerConfiguration. New code should use SetHandler().
5448 *
5449 * \param getter The callback to invoke when getting a property.
5450 * \param setter The callback to invoke when setting a property.
5451 * \param query The callback to invoke to check if a property is present,
5452 * and if present, get its attributes.
5453 * \param deleter The callback to invoke when deleting a property.
5454 * \param enumerator The callback to invoke to enumerate all the named
5455 * properties of an object.
5456 * \param data A piece of data that will be passed to the callbacks
5457 * whenever they are invoked.
5458 */
5459 // TODO(dcarney): deprecate
5460 void SetNamedPropertyHandler(NamedPropertyGetterCallback getter,
5461 NamedPropertySetterCallback setter = 0,
5462 NamedPropertyQueryCallback query = 0,
5463 NamedPropertyDeleterCallback deleter = 0,
5464 NamedPropertyEnumeratorCallback enumerator = 0,
5465 Local<Value> data = Local<Value>());
5466
5467 /**
5468 * Sets a named property handler on the object template.
5469 *
5470 * Whenever a property whose name is a string or a symbol is accessed on
5471 * objects created from this object template, the provided callback is
5472 * invoked instead of accessing the property directly on the JavaScript
5473 * object.
5474 *
5475 * @param configuration The NamedPropertyHandlerConfiguration that defines the
5476 * callbacks to invoke when accessing a property.
5477 */
5478 void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
5479
5480 /**
5481 * Sets an indexed property handler on the object template.
5482 *
5483 * Whenever an indexed property is accessed on objects created from
5484 * this object template, the provided callback is invoked instead of
5485 * accessing the property directly on the JavaScript object.
5486 *
5487 * \param getter The callback to invoke when getting a property.
5488 * \param setter The callback to invoke when setting a property.
5489 * \param query The callback to invoke to check if an object has a property.
5490 * \param deleter The callback to invoke when deleting a property.
5491 * \param enumerator The callback to invoke to enumerate all the indexed
5492 * properties of an object.
5493 * \param data A piece of data that will be passed to the callbacks
5494 * whenever they are invoked.
5495 */
5496 // TODO(dcarney): deprecate
5497 void SetIndexedPropertyHandler(
5498 IndexedPropertyGetterCallback getter,
5499 IndexedPropertySetterCallback setter = 0,
5500 IndexedPropertyQueryCallback query = 0,
5501 IndexedPropertyDeleterCallback deleter = 0,
5502 IndexedPropertyEnumeratorCallback enumerator = 0,
5503 Local<Value> data = Local<Value>()) {
5504 SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
5505 deleter, enumerator, data));
5506 }
5507
5508 /**
5509 * Sets an indexed property handler on the object template.
5510 *
5511 * Whenever an indexed property is accessed on objects created from
5512 * this object template, the provided callback is invoked instead of
5513 * accessing the property directly on the JavaScript object.
5514 *
5515 * @param configuration The IndexedPropertyHandlerConfiguration that defines
5516 * the callbacks to invoke when accessing a property.
5517 */
5518 void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
5519
5520 /**
5521 * Sets the callback to be used when calling instances created from
5522 * this template as a function. If no callback is set, instances
5523 * behave like normal JavaScript objects that cannot be called as a
5524 * function.
5525 */
5526 void SetCallAsFunctionHandler(FunctionCallback callback,
5527 Local<Value> data = Local<Value>());
5528
5529 /**
5530 * Mark object instances of the template as undetectable.
5531 *
5532 * In many ways, undetectable objects behave as though they are not
5533 * there. They behave like 'undefined' in conditionals and when
5534 * printed. However, properties can be accessed and called as on
5535 * normal objects.
5536 */
5537 void MarkAsUndetectable();
5538
5539 /**
5540 * Sets access check callback on the object template and enables access
5541 * checks.
5542 *
5543 * When accessing properties on instances of this object template,
5544 * the access check callback will be called to determine whether or
5545 * not to allow cross-context access to the properties.
5546 */
5547 void SetAccessCheckCallback(AccessCheckCallback callback,
5548 Local<Value> data = Local<Value>());
5549
5550 /**
5551 * Like SetAccessCheckCallback but invokes an interceptor on failed access
5552 * checks instead of looking up all-can-read properties. You can only use
5553 * either this method or SetAccessCheckCallback, but not both at the same
5554 * time.
5555 */
5556 void SetAccessCheckCallbackAndHandler(
5557 AccessCheckCallback callback,
5558 const NamedPropertyHandlerConfiguration& named_handler,
5559 const IndexedPropertyHandlerConfiguration& indexed_handler,
5560 Local<Value> data = Local<Value>());
5561
5562 /**
5563 * Gets the number of internal fields for objects generated from
5564 * this template.
5565 */
5566 int InternalFieldCount();
5567
5568 /**
5569 * Sets the number of internal fields for objects generated from
5570 * this template.
5571 */
5572 void SetInternalFieldCount(int value);
5573
5574 /**
5575 * Returns true if the object will be an immutable prototype exotic object.
5576 */
5577 bool IsImmutableProto();
5578
5579 /**
5580 * Makes the ObjectTempate for an immutable prototype exotic object, with an
5581 * immutable __proto__.
5582 */
5583 void SetImmutableProto();
5584
5585 private:
5586 ObjectTemplate();
5587 static Local<ObjectTemplate> New(internal::Isolate* isolate,
5588 Local<FunctionTemplate> constructor);
5589 friend class FunctionTemplate;
5590 };
5591
5592
5593 /**
5594 * A Signature specifies which receiver is valid for a function.
5595 */
5596 class V8_EXPORT Signature : public Data {
5597 public:
5598 static Local<Signature> New(
5599 Isolate* isolate,
5600 Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5601
5602 private:
5603 Signature();
5604 };
5605
5606
5607 /**
5608 * An AccessorSignature specifies which receivers are valid parameters
5609 * to an accessor callback.
5610 */
5611 class V8_EXPORT AccessorSignature : public Data {
5612 public:
5613 static Local<AccessorSignature> New(
5614 Isolate* isolate,
5615 Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5616
5617 private:
5618 AccessorSignature();
5619 };
5620
5621
5622 // --- Extensions ---
5623
5624 class V8_EXPORT ExternalOneByteStringResourceImpl
5625 : public String::ExternalOneByteStringResource {
5626 public:
ExternalOneByteStringResourceImpl()5627 ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
ExternalOneByteStringResourceImpl(const char * data,size_t length)5628 ExternalOneByteStringResourceImpl(const char* data, size_t length)
5629 : data_(data), length_(length) {}
data()5630 const char* data() const { return data_; }
length()5631 size_t length() const { return length_; }
5632
5633 private:
5634 const char* data_;
5635 size_t length_;
5636 };
5637
5638 /**
5639 * Ignore
5640 */
5641 class V8_EXPORT Extension { // NOLINT
5642 public:
5643 // Note that the strings passed into this constructor must live as long
5644 // as the Extension itself.
5645 Extension(const char* name,
5646 const char* source = 0,
5647 int dep_count = 0,
5648 const char** deps = 0,
5649 int source_length = -1);
~Extension()5650 virtual ~Extension() { }
GetNativeFunctionTemplate(Isolate * isolate,Local<String> name)5651 virtual Local<FunctionTemplate> GetNativeFunctionTemplate(
5652 Isolate* isolate, Local<String> name) {
5653 return Local<FunctionTemplate>();
5654 }
5655
name()5656 const char* name() const { return name_; }
source_length()5657 size_t source_length() const { return source_length_; }
source()5658 const String::ExternalOneByteStringResource* source() const {
5659 return &source_; }
dependency_count()5660 int dependency_count() { return dep_count_; }
dependencies()5661 const char** dependencies() { return deps_; }
set_auto_enable(bool value)5662 void set_auto_enable(bool value) { auto_enable_ = value; }
auto_enable()5663 bool auto_enable() { return auto_enable_; }
5664
5665 // Disallow copying and assigning.
5666 Extension(const Extension&) = delete;
5667 void operator=(const Extension&) = delete;
5668
5669 private:
5670 const char* name_;
5671 size_t source_length_; // expected to initialize before source_
5672 ExternalOneByteStringResourceImpl source_;
5673 int dep_count_;
5674 const char** deps_;
5675 bool auto_enable_;
5676 };
5677
5678
5679 void V8_EXPORT RegisterExtension(Extension* extension);
5680
5681
5682 // --- Statics ---
5683
5684 V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
5685 V8_INLINE Local<Primitive> Null(Isolate* isolate);
5686 V8_INLINE Local<Boolean> True(Isolate* isolate);
5687 V8_INLINE Local<Boolean> False(Isolate* isolate);
5688
5689 /**
5690 * A set of constraints that specifies the limits of the runtime's memory use.
5691 * You must set the heap size before initializing the VM - the size cannot be
5692 * adjusted after the VM is initialized.
5693 *
5694 * If you are using threads then you should hold the V8::Locker lock while
5695 * setting the stack limit and you must set a non-default stack limit separately
5696 * for each thread.
5697 *
5698 * The arguments for set_max_semi_space_size, set_max_old_space_size,
5699 * set_max_executable_size, set_code_range_size specify limits in MB.
5700 */
5701 class V8_EXPORT ResourceConstraints {
5702 public:
5703 ResourceConstraints();
5704
5705 /**
5706 * Configures the constraints with reasonable default values based on the
5707 * capabilities of the current device the VM is running on.
5708 *
5709 * \param physical_memory The total amount of physical memory on the current
5710 * device, in bytes.
5711 * \param virtual_memory_limit The amount of virtual memory on the current
5712 * device, in bytes, or zero, if there is no limit.
5713 */
5714 void ConfigureDefaults(uint64_t physical_memory,
5715 uint64_t virtual_memory_limit);
5716
max_semi_space_size()5717 int max_semi_space_size() const { return max_semi_space_size_; }
set_max_semi_space_size(int limit_in_mb)5718 void set_max_semi_space_size(int limit_in_mb) {
5719 max_semi_space_size_ = limit_in_mb;
5720 }
max_old_space_size()5721 int max_old_space_size() const { return max_old_space_size_; }
set_max_old_space_size(int limit_in_mb)5722 void set_max_old_space_size(int limit_in_mb) {
5723 max_old_space_size_ = limit_in_mb;
5724 }
max_executable_size()5725 int max_executable_size() const { return max_executable_size_; }
set_max_executable_size(int limit_in_mb)5726 void set_max_executable_size(int limit_in_mb) {
5727 max_executable_size_ = limit_in_mb;
5728 }
stack_limit()5729 uint32_t* stack_limit() const { return stack_limit_; }
5730 // Sets an address beyond which the VM's stack may not grow.
set_stack_limit(uint32_t * value)5731 void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
code_range_size()5732 size_t code_range_size() const { return code_range_size_; }
set_code_range_size(size_t limit_in_mb)5733 void set_code_range_size(size_t limit_in_mb) {
5734 code_range_size_ = limit_in_mb;
5735 }
max_zone_pool_size()5736 size_t max_zone_pool_size() const { return max_zone_pool_size_; }
set_max_zone_pool_size(const size_t bytes)5737 void set_max_zone_pool_size(const size_t bytes) {
5738 max_zone_pool_size_ = bytes;
5739 }
5740
5741 private:
5742 int max_semi_space_size_;
5743 int max_old_space_size_;
5744 int max_executable_size_;
5745 uint32_t* stack_limit_;
5746 size_t code_range_size_;
5747 size_t max_zone_pool_size_;
5748 };
5749
5750
5751 // --- Exceptions ---
5752
5753
5754 typedef void (*FatalErrorCallback)(const char* location, const char* message);
5755
5756 typedef void (*OOMErrorCallback)(const char* location, bool is_heap_oom);
5757
5758 typedef void (*MessageCallback)(Local<Message> message, Local<Value> data);
5759
5760 // --- Tracing ---
5761
5762 typedef void (*LogEventCallback)(const char* name, int event);
5763
5764 /**
5765 * Create new error objects by calling the corresponding error object
5766 * constructor with the message.
5767 */
5768 class V8_EXPORT Exception {
5769 public:
5770 static Local<Value> RangeError(Local<String> message);
5771 static Local<Value> ReferenceError(Local<String> message);
5772 static Local<Value> SyntaxError(Local<String> message);
5773 static Local<Value> TypeError(Local<String> message);
5774 static Local<Value> Error(Local<String> message);
5775
5776 /**
5777 * Creates an error message for the given exception.
5778 * Will try to reconstruct the original stack trace from the exception value,
5779 * or capture the current stack trace if not available.
5780 */
5781 static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
5782 V8_DEPRECATED("Use version with an Isolate*",
5783 static Local<Message> CreateMessage(Local<Value> exception));
5784
5785 /**
5786 * Returns the original stack trace that was captured at the creation time
5787 * of a given exception, or an empty handle if not available.
5788 */
5789 static Local<StackTrace> GetStackTrace(Local<Value> exception);
5790 };
5791
5792
5793 // --- Counters Callbacks ---
5794
5795 typedef int* (*CounterLookupCallback)(const char* name);
5796
5797 typedef void* (*CreateHistogramCallback)(const char* name,
5798 int min,
5799 int max,
5800 size_t buckets);
5801
5802 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
5803
5804 // --- Memory Allocation Callback ---
5805 enum ObjectSpace {
5806 kObjectSpaceNewSpace = 1 << 0,
5807 kObjectSpaceOldSpace = 1 << 1,
5808 kObjectSpaceCodeSpace = 1 << 2,
5809 kObjectSpaceMapSpace = 1 << 3,
5810 kObjectSpaceLoSpace = 1 << 4,
5811 kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
5812 kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
5813 kObjectSpaceLoSpace
5814 };
5815
5816 enum AllocationAction {
5817 kAllocationActionAllocate = 1 << 0,
5818 kAllocationActionFree = 1 << 1,
5819 kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
5820 };
5821
5822 // --- Enter/Leave Script Callback ---
5823 typedef void (*BeforeCallEnteredCallback)(Isolate*);
5824 typedef void (*CallCompletedCallback)(Isolate*);
5825 typedef void (*DeprecatedCallCompletedCallback)();
5826
5827 /**
5828 * PromiseHook with type kInit is called when a new promise is
5829 * created. When a new promise is created as part of the chain in the
5830 * case of Promise.then or in the intermediate promises created by
5831 * Promise.{race, all}/AsyncFunctionAwait, we pass the parent promise
5832 * otherwise we pass undefined.
5833 *
5834 * PromiseHook with type kResolve is called at the beginning of
5835 * resolve or reject function defined by CreateResolvingFunctions.
5836 *
5837 * PromiseHook with type kBefore is called at the beginning of the
5838 * PromiseReactionJob.
5839 *
5840 * PromiseHook with type kAfter is called right at the end of the
5841 * PromiseReactionJob.
5842 */
5843 enum class PromiseHookType { kInit, kResolve, kBefore, kAfter };
5844
5845 typedef void (*PromiseHook)(PromiseHookType type, Local<Promise> promise,
5846 Local<Value> parent);
5847
5848 // --- Promise Reject Callback ---
5849 enum PromiseRejectEvent {
5850 kPromiseRejectWithNoHandler = 0,
5851 kPromiseHandlerAddedAfterReject = 1
5852 };
5853
5854 class PromiseRejectMessage {
5855 public:
PromiseRejectMessage(Local<Promise> promise,PromiseRejectEvent event,Local<Value> value,Local<StackTrace> stack_trace)5856 PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
5857 Local<Value> value, Local<StackTrace> stack_trace)
5858 : promise_(promise),
5859 event_(event),
5860 value_(value),
5861 stack_trace_(stack_trace) {}
5862
GetPromise()5863 V8_INLINE Local<Promise> GetPromise() const { return promise_; }
GetEvent()5864 V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
GetValue()5865 V8_INLINE Local<Value> GetValue() const { return value_; }
5866
5867 V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()",
5868 V8_INLINE Local<StackTrace> GetStackTrace() const) {
5869 return stack_trace_;
5870 }
5871
5872 private:
5873 Local<Promise> promise_;
5874 PromiseRejectEvent event_;
5875 Local<Value> value_;
5876 Local<StackTrace> stack_trace_;
5877 };
5878
5879 typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
5880
5881 // --- Microtasks Callbacks ---
5882 typedef void (*MicrotasksCompletedCallback)(Isolate*);
5883 typedef void (*MicrotaskCallback)(void* data);
5884
5885
5886 /**
5887 * Policy for running microtasks:
5888 * - explicit: microtasks are invoked with Isolate::RunMicrotasks() method;
5889 * - scoped: microtasks invocation is controlled by MicrotasksScope objects;
5890 * - auto: microtasks are invoked when the script call depth decrements
5891 * to zero.
5892 */
5893 enum class MicrotasksPolicy { kExplicit, kScoped, kAuto };
5894
5895
5896 /**
5897 * This scope is used to control microtasks when kScopeMicrotasksInvocation
5898 * is used on Isolate. In this mode every non-primitive call to V8 should be
5899 * done inside some MicrotasksScope.
5900 * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks
5901 * exits.
5902 * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger
5903 * microtasks.
5904 */
5905 class V8_EXPORT MicrotasksScope {
5906 public:
5907 enum Type { kRunMicrotasks, kDoNotRunMicrotasks };
5908
5909 MicrotasksScope(Isolate* isolate, Type type);
5910 ~MicrotasksScope();
5911
5912 /**
5913 * Runs microtasks if no kRunMicrotasks scope is currently active.
5914 */
5915 static void PerformCheckpoint(Isolate* isolate);
5916
5917 /**
5918 * Returns current depth of nested kRunMicrotasks scopes.
5919 */
5920 static int GetCurrentDepth(Isolate* isolate);
5921
5922 /**
5923 * Returns true while microtasks are being executed.
5924 */
5925 static bool IsRunningMicrotasks(Isolate* isolate);
5926
5927 // Prevent copying.
5928 MicrotasksScope(const MicrotasksScope&) = delete;
5929 MicrotasksScope& operator=(const MicrotasksScope&) = delete;
5930
5931 private:
5932 internal::Isolate* const isolate_;
5933 bool run_;
5934 };
5935
5936
5937 // --- Failed Access Check Callback ---
5938 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
5939 AccessType type,
5940 Local<Value> data);
5941
5942 // --- AllowCodeGenerationFromStrings callbacks ---
5943
5944 /**
5945 * Callback to check if code generation from strings is allowed. See
5946 * Context::AllowCodeGenerationFromStrings.
5947 */
5948 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
5949
5950 // --- WASM compilation callbacks ---
5951
5952 /**
5953 * Callback to check if a buffer source may be compiled to WASM, given
5954 * the compilation is attempted as a promise or not.
5955 */
5956
5957 typedef bool (*AllowWasmCompileCallback)(Isolate* isolate, Local<Value> source,
5958 bool as_promise);
5959
5960 typedef bool (*AllowWasmInstantiateCallback)(Isolate* isolate,
5961 Local<Value> module_or_bytes,
5962 MaybeLocal<Value> ffi,
5963 bool as_promise);
5964
5965 // --- Garbage Collection Callbacks ---
5966
5967 /**
5968 * Applications can register callback functions which will be called before and
5969 * after certain garbage collection operations. Allocations are not allowed in
5970 * the callback functions, you therefore cannot manipulate objects (set or
5971 * delete properties for example) since it is possible such operations will
5972 * result in the allocation of objects.
5973 */
5974 enum GCType {
5975 kGCTypeScavenge = 1 << 0,
5976 kGCTypeMarkSweepCompact = 1 << 1,
5977 kGCTypeIncrementalMarking = 1 << 2,
5978 kGCTypeProcessWeakCallbacks = 1 << 3,
5979 kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
5980 kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
5981 };
5982
5983 /**
5984 * GCCallbackFlags is used to notify additional information about the GC
5985 * callback.
5986 * - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for
5987 * constructing retained object infos.
5988 * - kGCCallbackFlagForced: The GC callback is for a forced GC for testing.
5989 * - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback
5990 * is called synchronously without getting posted to an idle task.
5991 * - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called
5992 * in a phase where V8 is trying to collect all available garbage
5993 * (e.g., handling a low memory notification).
5994 */
5995 enum GCCallbackFlags {
5996 kNoGCCallbackFlags = 0,
5997 kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
5998 kGCCallbackFlagForced = 1 << 2,
5999 kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3,
6000 kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4,
6001 kGCCallbackFlagCollectAllExternalMemory = 1 << 5,
6002 };
6003
6004 typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
6005
6006 typedef void (*InterruptCallback)(Isolate* isolate, void* data);
6007
6008
6009 /**
6010 * Collection of V8 heap information.
6011 *
6012 * Instances of this class can be passed to v8::V8::HeapStatistics to
6013 * get heap statistics from V8.
6014 */
6015 class V8_EXPORT HeapStatistics {
6016 public:
6017 HeapStatistics();
total_heap_size()6018 size_t total_heap_size() { return total_heap_size_; }
total_heap_size_executable()6019 size_t total_heap_size_executable() { return total_heap_size_executable_; }
total_physical_size()6020 size_t total_physical_size() { return total_physical_size_; }
total_available_size()6021 size_t total_available_size() { return total_available_size_; }
used_heap_size()6022 size_t used_heap_size() { return used_heap_size_; }
heap_size_limit()6023 size_t heap_size_limit() { return heap_size_limit_; }
malloced_memory()6024 size_t malloced_memory() { return malloced_memory_; }
peak_malloced_memory()6025 size_t peak_malloced_memory() { return peak_malloced_memory_; }
does_zap_garbage()6026 size_t does_zap_garbage() { return does_zap_garbage_; }
6027
6028 private:
6029 size_t total_heap_size_;
6030 size_t total_heap_size_executable_;
6031 size_t total_physical_size_;
6032 size_t total_available_size_;
6033 size_t used_heap_size_;
6034 size_t heap_size_limit_;
6035 size_t malloced_memory_;
6036 size_t peak_malloced_memory_;
6037 bool does_zap_garbage_;
6038
6039 friend class V8;
6040 friend class Isolate;
6041 };
6042
6043
6044 class V8_EXPORT HeapSpaceStatistics {
6045 public:
6046 HeapSpaceStatistics();
space_name()6047 const char* space_name() { return space_name_; }
space_size()6048 size_t space_size() { return space_size_; }
space_used_size()6049 size_t space_used_size() { return space_used_size_; }
space_available_size()6050 size_t space_available_size() { return space_available_size_; }
physical_space_size()6051 size_t physical_space_size() { return physical_space_size_; }
6052
6053 private:
6054 const char* space_name_;
6055 size_t space_size_;
6056 size_t space_used_size_;
6057 size_t space_available_size_;
6058 size_t physical_space_size_;
6059
6060 friend class Isolate;
6061 };
6062
6063
6064 class V8_EXPORT HeapObjectStatistics {
6065 public:
6066 HeapObjectStatistics();
object_type()6067 const char* object_type() { return object_type_; }
object_sub_type()6068 const char* object_sub_type() { return object_sub_type_; }
object_count()6069 size_t object_count() { return object_count_; }
object_size()6070 size_t object_size() { return object_size_; }
6071
6072 private:
6073 const char* object_type_;
6074 const char* object_sub_type_;
6075 size_t object_count_;
6076 size_t object_size_;
6077
6078 friend class Isolate;
6079 };
6080
6081 class V8_EXPORT HeapCodeStatistics {
6082 public:
6083 HeapCodeStatistics();
code_and_metadata_size()6084 size_t code_and_metadata_size() { return code_and_metadata_size_; }
bytecode_and_metadata_size()6085 size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; }
6086
6087 private:
6088 size_t code_and_metadata_size_;
6089 size_t bytecode_and_metadata_size_;
6090
6091 friend class Isolate;
6092 };
6093
6094 class RetainedObjectInfo;
6095
6096
6097 /**
6098 * FunctionEntryHook is the type of the profile entry hook called at entry to
6099 * any generated function when function-level profiling is enabled.
6100 *
6101 * \param function the address of the function that's being entered.
6102 * \param return_addr_location points to a location on stack where the machine
6103 * return address resides. This can be used to identify the caller of
6104 * \p function, and/or modified to divert execution when \p function exits.
6105 *
6106 * \note the entry hook must not cause garbage collection.
6107 */
6108 typedef void (*FunctionEntryHook)(uintptr_t function,
6109 uintptr_t return_addr_location);
6110
6111 /**
6112 * A JIT code event is issued each time code is added, moved or removed.
6113 *
6114 * \note removal events are not currently issued.
6115 */
6116 struct JitCodeEvent {
6117 enum EventType {
6118 CODE_ADDED,
6119 CODE_MOVED,
6120 CODE_REMOVED,
6121 CODE_ADD_LINE_POS_INFO,
6122 CODE_START_LINE_INFO_RECORDING,
6123 CODE_END_LINE_INFO_RECORDING
6124 };
6125 // Definition of the code position type. The "POSITION" type means the place
6126 // in the source code which are of interest when making stack traces to
6127 // pin-point the source location of a stack frame as close as possible.
6128 // The "STATEMENT_POSITION" means the place at the beginning of each
6129 // statement, and is used to indicate possible break locations.
6130 enum PositionType { POSITION, STATEMENT_POSITION };
6131
6132 // Type of event.
6133 EventType type;
6134 // Start of the instructions.
6135 void* code_start;
6136 // Size of the instructions.
6137 size_t code_len;
6138 // Script info for CODE_ADDED event.
6139 Local<UnboundScript> script;
6140 // User-defined data for *_LINE_INFO_* event. It's used to hold the source
6141 // code line information which is returned from the
6142 // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
6143 // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
6144 void* user_data;
6145
6146 struct name_t {
6147 // Name of the object associated with the code, note that the string is not
6148 // zero-terminated.
6149 const char* str;
6150 // Number of chars in str.
6151 size_t len;
6152 };
6153
6154 struct line_info_t {
6155 // PC offset
6156 size_t offset;
6157 // Code postion
6158 size_t pos;
6159 // The position type.
6160 PositionType position_type;
6161 };
6162
6163 union {
6164 // Only valid for CODE_ADDED.
6165 struct name_t name;
6166
6167 // Only valid for CODE_ADD_LINE_POS_INFO
6168 struct line_info_t line_info;
6169
6170 // New location of instructions. Only valid for CODE_MOVED.
6171 void* new_code_start;
6172 };
6173 };
6174
6175 /**
6176 * Option flags passed to the SetRAILMode function.
6177 * See documentation https://developers.google.com/web/tools/chrome-devtools/
6178 * profile/evaluate-performance/rail
6179 */
6180 enum RAILMode {
6181 // Response performance mode: In this mode very low virtual machine latency
6182 // is provided. V8 will try to avoid JavaScript execution interruptions.
6183 // Throughput may be throttled.
6184 PERFORMANCE_RESPONSE,
6185 // Animation performance mode: In this mode low virtual machine latency is
6186 // provided. V8 will try to avoid as many JavaScript execution interruptions
6187 // as possible. Throughput may be throttled. This is the default mode.
6188 PERFORMANCE_ANIMATION,
6189 // Idle performance mode: The embedder is idle. V8 can complete deferred work
6190 // in this mode.
6191 PERFORMANCE_IDLE,
6192 // Load performance mode: In this mode high throughput is provided. V8 may
6193 // turn off latency optimizations.
6194 PERFORMANCE_LOAD
6195 };
6196
6197 /**
6198 * Option flags passed to the SetJitCodeEventHandler function.
6199 */
6200 enum JitCodeEventOptions {
6201 kJitCodeEventDefault = 0,
6202 // Generate callbacks for already existent code.
6203 kJitCodeEventEnumExisting = 1
6204 };
6205
6206
6207 /**
6208 * Callback function passed to SetJitCodeEventHandler.
6209 *
6210 * \param event code add, move or removal event.
6211 */
6212 typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
6213
6214
6215 /**
6216 * Interface for iterating through all external resources in the heap.
6217 */
6218 class V8_EXPORT ExternalResourceVisitor { // NOLINT
6219 public:
~ExternalResourceVisitor()6220 virtual ~ExternalResourceVisitor() {}
VisitExternalString(Local<String> string)6221 virtual void VisitExternalString(Local<String> string) {}
6222 };
6223
6224
6225 /**
6226 * Interface for iterating through all the persistent handles in the heap.
6227 */
6228 class V8_EXPORT PersistentHandleVisitor { // NOLINT
6229 public:
~PersistentHandleVisitor()6230 virtual ~PersistentHandleVisitor() {}
VisitPersistentHandle(Persistent<Value> * value,uint16_t class_id)6231 virtual void VisitPersistentHandle(Persistent<Value>* value,
6232 uint16_t class_id) {}
6233 };
6234
6235 /**
6236 * Memory pressure level for the MemoryPressureNotification.
6237 * kNone hints V8 that there is no memory pressure.
6238 * kModerate hints V8 to speed up incremental garbage collection at the cost of
6239 * of higher latency due to garbage collection pauses.
6240 * kCritical hints V8 to free memory as soon as possible. Garbage collection
6241 * pauses at this level will be large.
6242 */
6243 enum class MemoryPressureLevel { kNone, kModerate, kCritical };
6244
6245 /**
6246 * Interface for tracing through the embedder heap. During a v8 garbage
6247 * collection, v8 collects hidden fields of all potential wrappers, and at the
6248 * end of its marking phase iterates the collection and asks the embedder to
6249 * trace through its heap and use reporter to report each JavaScript object
6250 * reachable from any of the given wrappers.
6251 *
6252 * Before the first call to the TraceWrappersFrom function TracePrologue will be
6253 * called. When the garbage collection cycle is finished, TraceEpilogue will be
6254 * called.
6255 */
6256 class V8_EXPORT EmbedderHeapTracer {
6257 public:
6258 enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION };
6259
6260 struct AdvanceTracingActions {
AdvanceTracingActionsAdvanceTracingActions6261 explicit AdvanceTracingActions(ForceCompletionAction force_completion_)
6262 : force_completion(force_completion_) {}
6263
6264 ForceCompletionAction force_completion;
6265 };
6266
6267 /**
6268 * Called by v8 to register internal fields of found wrappers.
6269 *
6270 * The embedder is expected to store them somewhere and trace reachable
6271 * wrappers from them when called through |AdvanceTracing|.
6272 */
6273 virtual void RegisterV8References(
6274 const std::vector<std::pair<void*, void*> >& internal_fields) = 0;
6275
6276 /**
6277 * Called at the beginning of a GC cycle.
6278 */
6279 virtual void TracePrologue() = 0;
6280
6281 /**
6282 * Called to to make a tracing step in the embedder.
6283 *
6284 * The embedder is expected to trace its heap starting from wrappers reported
6285 * by RegisterV8References method, and report back all reachable wrappers.
6286 * Furthermore, the embedder is expected to stop tracing by the given
6287 * deadline.
6288 *
6289 * Returns true if there is still work to do.
6290 */
6291 virtual bool AdvanceTracing(double deadline_in_ms,
6292 AdvanceTracingActions actions) = 0;
6293
6294 /**
6295 * Called at the end of a GC cycle.
6296 *
6297 * Note that allocation is *not* allowed within |TraceEpilogue|.
6298 */
6299 virtual void TraceEpilogue() = 0;
6300
6301 /**
6302 * Called upon entering the final marking pause. No more incremental marking
6303 * steps will follow this call.
6304 */
6305 virtual void EnterFinalPause() = 0;
6306
6307 /**
6308 * Called when tracing is aborted.
6309 *
6310 * The embedder is expected to throw away all intermediate data and reset to
6311 * the initial state.
6312 */
6313 virtual void AbortTracing() = 0;
6314
6315 /**
6316 * Returns the number of wrappers that are still to be traced by the embedder.
6317 */
NumberOfWrappersToTrace()6318 virtual size_t NumberOfWrappersToTrace() { return 0; }
6319
6320 protected:
6321 virtual ~EmbedderHeapTracer() = default;
6322 };
6323
6324 /**
6325 * Callback and supporting data used in SnapshotCreator to implement embedder
6326 * logic to serialize internal fields.
6327 */
6328 struct SerializeInternalFieldsCallback {
6329 typedef StartupData (*CallbackFunction)(Local<Object> holder, int index,
6330 void* data);
6331 SerializeInternalFieldsCallback(CallbackFunction function = nullptr,
6332 void* data_arg = nullptr)
callbackSerializeInternalFieldsCallback6333 : callback(function), data(data_arg) {}
6334 CallbackFunction callback;
6335 void* data;
6336 };
6337
6338 /**
6339 * Callback and supporting data used to implement embedder logic to deserialize
6340 * internal fields.
6341 */
6342 struct DeserializeInternalFieldsCallback {
6343 typedef void (*CallbackFunction)(Local<Object> holder, int index,
6344 StartupData payload, void* data);
6345 DeserializeInternalFieldsCallback(CallbackFunction function = nullptr,
6346 void* data_arg = nullptr)
callbackDeserializeInternalFieldsCallback6347 : callback(function), data(data_arg) {}
6348 void (*callback)(Local<Object> holder, int index, StartupData payload,
6349 void* data);
6350 void* data;
6351 };
6352
6353 /**
6354 * Isolate represents an isolated instance of the V8 engine. V8 isolates have
6355 * completely separate states. Objects from one isolate must not be used in
6356 * other isolates. The embedder can create multiple isolates and use them in
6357 * parallel in multiple threads. An isolate can be entered by at most one
6358 * thread at any given time. The Locker/Unlocker API must be used to
6359 * synchronize.
6360 */
6361 class V8_EXPORT Isolate {
6362 public:
6363 /**
6364 * Initial configuration parameters for a new Isolate.
6365 */
6366 struct CreateParams {
CreateParamsCreateParams6367 CreateParams()
6368 : entry_hook(nullptr),
6369 code_event_handler(nullptr),
6370 snapshot_blob(nullptr),
6371 counter_lookup_callback(nullptr),
6372 create_histogram_callback(nullptr),
6373 add_histogram_sample_callback(nullptr),
6374 array_buffer_allocator(nullptr),
6375 external_references(nullptr),
6376 allow_atomics_wait(true) {}
6377
6378 /**
6379 * The optional entry_hook allows the host application to provide the
6380 * address of a function that's invoked on entry to every V8-generated
6381 * function. Note that entry_hook is invoked at the very start of each
6382 * generated function. Furthermore, if an entry_hook is given, V8 will
6383 * not use a snapshot, including custom snapshots.
6384 */
6385 FunctionEntryHook entry_hook;
6386
6387 /**
6388 * Allows the host application to provide the address of a function that is
6389 * notified each time code is added, moved or removed.
6390 */
6391 JitCodeEventHandler code_event_handler;
6392
6393 /**
6394 * ResourceConstraints to use for the new Isolate.
6395 */
6396 ResourceConstraints constraints;
6397
6398 /**
6399 * Explicitly specify a startup snapshot blob. The embedder owns the blob.
6400 */
6401 StartupData* snapshot_blob;
6402
6403
6404 /**
6405 * Enables the host application to provide a mechanism for recording
6406 * statistics counters.
6407 */
6408 CounterLookupCallback counter_lookup_callback;
6409
6410 /**
6411 * Enables the host application to provide a mechanism for recording
6412 * histograms. The CreateHistogram function returns a
6413 * histogram which will later be passed to the AddHistogramSample
6414 * function.
6415 */
6416 CreateHistogramCallback create_histogram_callback;
6417 AddHistogramSampleCallback add_histogram_sample_callback;
6418
6419 /**
6420 * The ArrayBuffer::Allocator to use for allocating and freeing the backing
6421 * store of ArrayBuffers.
6422 */
6423 ArrayBuffer::Allocator* array_buffer_allocator;
6424
6425 /**
6426 * Specifies an optional nullptr-terminated array of raw addresses in the
6427 * embedder that V8 can match against during serialization and use for
6428 * deserialization. This array and its content must stay valid for the
6429 * entire lifetime of the isolate.
6430 */
6431 intptr_t* external_references;
6432
6433 /**
6434 * Whether calling Atomics.wait (a function that may block) is allowed in
6435 * this isolate.
6436 */
6437 bool allow_atomics_wait;
6438 };
6439
6440
6441 /**
6442 * Stack-allocated class which sets the isolate for all operations
6443 * executed within a local scope.
6444 */
6445 class V8_EXPORT Scope {
6446 public:
Scope(Isolate * isolate)6447 explicit Scope(Isolate* isolate) : isolate_(isolate) {
6448 isolate->Enter();
6449 }
6450
~Scope()6451 ~Scope() { isolate_->Exit(); }
6452
6453 // Prevent copying of Scope objects.
6454 Scope(const Scope&) = delete;
6455 Scope& operator=(const Scope&) = delete;
6456
6457 private:
6458 Isolate* const isolate_;
6459 };
6460
6461
6462 /**
6463 * Assert that no Javascript code is invoked.
6464 */
6465 class V8_EXPORT DisallowJavascriptExecutionScope {
6466 public:
6467 enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
6468
6469 DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
6470 ~DisallowJavascriptExecutionScope();
6471
6472 // Prevent copying of Scope objects.
6473 DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&) =
6474 delete;
6475 DisallowJavascriptExecutionScope& operator=(
6476 const DisallowJavascriptExecutionScope&) = delete;
6477
6478 private:
6479 bool on_failure_;
6480 void* internal_;
6481 };
6482
6483
6484 /**
6485 * Introduce exception to DisallowJavascriptExecutionScope.
6486 */
6487 class V8_EXPORT AllowJavascriptExecutionScope {
6488 public:
6489 explicit AllowJavascriptExecutionScope(Isolate* isolate);
6490 ~AllowJavascriptExecutionScope();
6491
6492 // Prevent copying of Scope objects.
6493 AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&) =
6494 delete;
6495 AllowJavascriptExecutionScope& operator=(
6496 const AllowJavascriptExecutionScope&) = delete;
6497
6498 private:
6499 void* internal_throws_;
6500 void* internal_assert_;
6501 };
6502
6503 /**
6504 * Do not run microtasks while this scope is active, even if microtasks are
6505 * automatically executed otherwise.
6506 */
6507 class V8_EXPORT SuppressMicrotaskExecutionScope {
6508 public:
6509 explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
6510 ~SuppressMicrotaskExecutionScope();
6511
6512 // Prevent copying of Scope objects.
6513 SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&) =
6514 delete;
6515 SuppressMicrotaskExecutionScope& operator=(
6516 const SuppressMicrotaskExecutionScope&) = delete;
6517
6518 private:
6519 internal::Isolate* const isolate_;
6520 };
6521
6522 /**
6523 * Types of garbage collections that can be requested via
6524 * RequestGarbageCollectionForTesting.
6525 */
6526 enum GarbageCollectionType {
6527 kFullGarbageCollection,
6528 kMinorGarbageCollection
6529 };
6530
6531 /**
6532 * Features reported via the SetUseCounterCallback callback. Do not change
6533 * assigned numbers of existing items; add new features to the end of this
6534 * list.
6535 */
6536 enum UseCounterFeature {
6537 kUseAsm = 0,
6538 kBreakIterator = 1,
6539 kLegacyConst = 2,
6540 kMarkDequeOverflow = 3,
6541 kStoreBufferOverflow = 4,
6542 kSlotsBufferOverflow = 5,
6543 kObjectObserve = 6,
6544 kForcedGC = 7,
6545 kSloppyMode = 8,
6546 kStrictMode = 9,
6547 kStrongMode = 10,
6548 kRegExpPrototypeStickyGetter = 11,
6549 kRegExpPrototypeToString = 12,
6550 kRegExpPrototypeUnicodeGetter = 13,
6551 kIntlV8Parse = 14,
6552 kIntlPattern = 15,
6553 kIntlResolved = 16,
6554 kPromiseChain = 17,
6555 kPromiseAccept = 18,
6556 kPromiseDefer = 19,
6557 kHtmlCommentInExternalScript = 20,
6558 kHtmlComment = 21,
6559 kSloppyModeBlockScopedFunctionRedefinition = 22,
6560 kForInInitializer = 23,
6561 kArrayProtectorDirtied = 24,
6562 kArraySpeciesModified = 25,
6563 kArrayPrototypeConstructorModified = 26,
6564 kArrayInstanceProtoModified = 27,
6565 kArrayInstanceConstructorModified = 28,
6566 kLegacyFunctionDeclaration = 29,
6567 kRegExpPrototypeSourceGetter = 30,
6568 kRegExpPrototypeOldFlagGetter = 31,
6569 kDecimalWithLeadingZeroInStrictMode = 32,
6570 kLegacyDateParser = 33,
6571 kDefineGetterOrSetterWouldThrow = 34,
6572 kFunctionConstructorReturnedUndefined = 35,
6573 kAssigmentExpressionLHSIsCallInSloppy = 36,
6574 kAssigmentExpressionLHSIsCallInStrict = 37,
6575 kPromiseConstructorReturnedUndefined = 38,
6576
6577 // If you add new values here, you'll also need to update Chromium's:
6578 // UseCounter.h, V8PerIsolateData.cpp, histograms.xml
6579 kUseCounterFeatureCount // This enum value must be last.
6580 };
6581
6582 enum MessageErrorLevel {
6583 kMessageLog = (1 << 0),
6584 kMessageDebug = (1 << 1),
6585 kMessageInfo = (1 << 2),
6586 kMessageError = (1 << 3),
6587 kMessageWarning = (1 << 4),
6588 kMessageAll = kMessageLog | kMessageDebug | kMessageInfo | kMessageError |
6589 kMessageWarning,
6590 };
6591
6592 typedef void (*UseCounterCallback)(Isolate* isolate,
6593 UseCounterFeature feature);
6594
6595
6596 /**
6597 * Creates a new isolate. Does not change the currently entered
6598 * isolate.
6599 *
6600 * When an isolate is no longer used its resources should be freed
6601 * by calling Dispose(). Using the delete operator is not allowed.
6602 *
6603 * V8::Initialize() must have run prior to this.
6604 */
6605 static Isolate* New(const CreateParams& params);
6606
6607 /**
6608 * Returns the entered isolate for the current thread or NULL in
6609 * case there is no current isolate.
6610 *
6611 * This method must not be invoked before V8::Initialize() was invoked.
6612 */
6613 static Isolate* GetCurrent();
6614
6615 /**
6616 * Custom callback used by embedders to help V8 determine if it should abort
6617 * when it throws and no internal handler is predicted to catch the
6618 * exception. If --abort-on-uncaught-exception is used on the command line,
6619 * then V8 will abort if either:
6620 * - no custom callback is set.
6621 * - the custom callback set returns true.
6622 * Otherwise, the custom callback will not be called and V8 will not abort.
6623 */
6624 typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
6625 void SetAbortOnUncaughtExceptionCallback(
6626 AbortOnUncaughtExceptionCallback callback);
6627
6628 /**
6629 * Optional notification that the system is running low on memory.
6630 * V8 uses these notifications to guide heuristics.
6631 * It is allowed to call this function from another thread while
6632 * the isolate is executing long running JavaScript code.
6633 */
6634 void MemoryPressureNotification(MemoryPressureLevel level);
6635
6636 /**
6637 * Methods below this point require holding a lock (using Locker) in
6638 * a multi-threaded environment.
6639 */
6640
6641 /**
6642 * Sets this isolate as the entered one for the current thread.
6643 * Saves the previously entered one (if any), so that it can be
6644 * restored when exiting. Re-entering an isolate is allowed.
6645 */
6646 void Enter();
6647
6648 /**
6649 * Exits this isolate by restoring the previously entered one in the
6650 * current thread. The isolate may still stay the same, if it was
6651 * entered more than once.
6652 *
6653 * Requires: this == Isolate::GetCurrent().
6654 */
6655 void Exit();
6656
6657 /**
6658 * Disposes the isolate. The isolate must not be entered by any
6659 * thread to be disposable.
6660 */
6661 void Dispose();
6662
6663 /**
6664 * Discards all V8 thread-specific data for the Isolate. Should be used
6665 * if a thread is terminating and it has used an Isolate that will outlive
6666 * the thread -- all thread-specific data for an Isolate is discarded when
6667 * an Isolate is disposed so this call is pointless if an Isolate is about
6668 * to be Disposed.
6669 */
6670 void DiscardThreadSpecificMetadata();
6671
6672 /**
6673 * Associate embedder-specific data with the isolate. |slot| has to be
6674 * between 0 and GetNumberOfDataSlots() - 1.
6675 */
6676 V8_INLINE void SetData(uint32_t slot, void* data);
6677
6678 /**
6679 * Retrieve embedder-specific data from the isolate.
6680 * Returns NULL if SetData has never been called for the given |slot|.
6681 */
6682 V8_INLINE void* GetData(uint32_t slot);
6683
6684 /**
6685 * Returns the maximum number of available embedder data slots. Valid slots
6686 * are in the range of 0 - GetNumberOfDataSlots() - 1.
6687 */
6688 V8_INLINE static uint32_t GetNumberOfDataSlots();
6689
6690 /**
6691 * Get statistics about the heap memory usage.
6692 */
6693 void GetHeapStatistics(HeapStatistics* heap_statistics);
6694
6695 /**
6696 * Returns the number of spaces in the heap.
6697 */
6698 size_t NumberOfHeapSpaces();
6699
6700 /**
6701 * Get the memory usage of a space in the heap.
6702 *
6703 * \param space_statistics The HeapSpaceStatistics object to fill in
6704 * statistics.
6705 * \param index The index of the space to get statistics from, which ranges
6706 * from 0 to NumberOfHeapSpaces() - 1.
6707 * \returns true on success.
6708 */
6709 bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
6710 size_t index);
6711
6712 /**
6713 * Returns the number of types of objects tracked in the heap at GC.
6714 */
6715 size_t NumberOfTrackedHeapObjectTypes();
6716
6717 /**
6718 * Get statistics about objects in the heap.
6719 *
6720 * \param object_statistics The HeapObjectStatistics object to fill in
6721 * statistics of objects of given type, which were live in the previous GC.
6722 * \param type_index The index of the type of object to fill details about,
6723 * which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
6724 * \returns true on success.
6725 */
6726 bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
6727 size_t type_index);
6728
6729 /**
6730 * Get statistics about code and its metadata in the heap.
6731 *
6732 * \param object_statistics The HeapCodeStatistics object to fill in
6733 * statistics of code, bytecode and their metadata.
6734 * \returns true on success.
6735 */
6736 bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics);
6737
6738 /**
6739 * Get a call stack sample from the isolate.
6740 * \param state Execution state.
6741 * \param frames Caller allocated buffer to store stack frames.
6742 * \param frames_limit Maximum number of frames to capture. The buffer must
6743 * be large enough to hold the number of frames.
6744 * \param sample_info The sample info is filled up by the function
6745 * provides number of actual captured stack frames and
6746 * the current VM state.
6747 * \note GetStackSample should only be called when the JS thread is paused or
6748 * interrupted. Otherwise the behavior is undefined.
6749 */
6750 void GetStackSample(const RegisterState& state, void** frames,
6751 size_t frames_limit, SampleInfo* sample_info);
6752
6753 /**
6754 * Adjusts the amount of registered external memory. Used to give V8 an
6755 * indication of the amount of externally allocated memory that is kept alive
6756 * by JavaScript objects. V8 uses this to decide when to perform global
6757 * garbage collections. Registering externally allocated memory will trigger
6758 * global garbage collections more often than it would otherwise in an attempt
6759 * to garbage collect the JavaScript objects that keep the externally
6760 * allocated memory alive.
6761 *
6762 * \param change_in_bytes the change in externally allocated memory that is
6763 * kept alive by JavaScript objects.
6764 * \returns the adjusted value.
6765 */
6766 V8_INLINE int64_t
6767 AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
6768
6769 /**
6770 * Returns the number of phantom handles without callbacks that were reset
6771 * by the garbage collector since the last call to this function.
6772 */
6773 size_t NumberOfPhantomHandleResetsSinceLastCall();
6774
6775 /**
6776 * Returns heap profiler for this isolate. Will return NULL until the isolate
6777 * is initialized.
6778 */
6779 HeapProfiler* GetHeapProfiler();
6780
6781 /**
6782 * Returns CPU profiler for this isolate. Will return NULL unless the isolate
6783 * is initialized. It is the embedder's responsibility to stop all CPU
6784 * profiling activities if it has started any.
6785 */
6786 V8_DEPRECATE_SOON("CpuProfiler should be created with CpuProfiler::New call.",
6787 CpuProfiler* GetCpuProfiler());
6788
6789 /** Returns true if this isolate has a current context. */
6790 bool InContext();
6791
6792 /**
6793 * Returns the context of the currently running JavaScript, or the context
6794 * on the top of the stack if no JavaScript is running.
6795 */
6796 Local<Context> GetCurrentContext();
6797
6798 /**
6799 * Returns the context of the calling JavaScript code. That is the
6800 * context of the top-most JavaScript frame. If there are no
6801 * JavaScript frames an empty handle is returned.
6802 */
6803 V8_DEPRECATE_SOON(
6804 "Calling context concept is not compatible with tail calls, and will be "
6805 "removed.",
6806 Local<Context> GetCallingContext());
6807
6808 /** Returns the last context entered through V8's C++ API. */
6809 Local<Context> GetEnteredContext();
6810
6811 /**
6812 * Returns either the last context entered through V8's C++ API, or the
6813 * context of the currently running microtask while processing microtasks.
6814 * If a context is entered while executing a microtask, that context is
6815 * returned.
6816 */
6817 Local<Context> GetEnteredOrMicrotaskContext();
6818
6819 /**
6820 * Schedules an exception to be thrown when returning to JavaScript. When an
6821 * exception has been scheduled it is illegal to invoke any JavaScript
6822 * operation; the caller must return immediately and only after the exception
6823 * has been handled does it become legal to invoke JavaScript operations.
6824 */
6825 Local<Value> ThrowException(Local<Value> exception);
6826
6827 /**
6828 * Allows the host application to group objects together. If one
6829 * object in the group is alive, all objects in the group are alive.
6830 * After each garbage collection, object groups are removed. It is
6831 * intended to be used in the before-garbage-collection callback
6832 * function, for instance to simulate DOM tree connections among JS
6833 * wrapper objects. Object groups for all dependent handles need to
6834 * be provided for kGCTypeMarkSweepCompact collections, for all other
6835 * garbage collection types it is sufficient to provide object groups
6836 * for partially dependent handles only.
6837 */
6838 template <typename T>
6839 V8_DEPRECATED("Use EmbedderHeapTracer",
6840 void SetObjectGroupId(const Persistent<T>& object,
6841 UniqueId id));
6842
6843 /**
6844 * Allows the host application to declare implicit references from an object
6845 * group to an object. If the objects of the object group are alive, the child
6846 * object is alive too. After each garbage collection, all implicit references
6847 * are removed. It is intended to be used in the before-garbage-collection
6848 * callback function.
6849 */
6850 template <typename T>
6851 V8_DEPRECATED("Use EmbedderHeapTracer",
6852 void SetReferenceFromGroup(UniqueId id,
6853 const Persistent<T>& child));
6854
6855 /**
6856 * Allows the host application to declare implicit references from an object
6857 * to another object. If the parent object is alive, the child object is alive
6858 * too. After each garbage collection, all implicit references are removed. It
6859 * is intended to be used in the before-garbage-collection callback function.
6860 */
6861 template <typename T, typename S>
6862 V8_DEPRECATED("Use EmbedderHeapTracer",
6863 void SetReference(const Persistent<T>& parent,
6864 const Persistent<S>& child));
6865
6866 typedef void (*GCCallback)(Isolate* isolate, GCType type,
6867 GCCallbackFlags flags);
6868
6869 /**
6870 * Enables the host application to receive a notification before a
6871 * garbage collection. Allocations are allowed in the callback function,
6872 * but the callback is not re-entrant: if the allocation inside it will
6873 * trigger the garbage collection, the callback won't be called again.
6874 * It is possible to specify the GCType filter for your callback. But it is
6875 * not possible to register the same callback function two times with
6876 * different GCType filters.
6877 */
6878 void AddGCPrologueCallback(GCCallback callback,
6879 GCType gc_type_filter = kGCTypeAll);
6880
6881 /**
6882 * This function removes callback which was installed by
6883 * AddGCPrologueCallback function.
6884 */
6885 void RemoveGCPrologueCallback(GCCallback callback);
6886
6887 /**
6888 * Sets the embedder heap tracer for the isolate.
6889 */
6890 void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
6891
6892 /**
6893 * Enables the host application to receive a notification after a
6894 * garbage collection. Allocations are allowed in the callback function,
6895 * but the callback is not re-entrant: if the allocation inside it will
6896 * trigger the garbage collection, the callback won't be called again.
6897 * It is possible to specify the GCType filter for your callback. But it is
6898 * not possible to register the same callback function two times with
6899 * different GCType filters.
6900 */
6901 void AddGCEpilogueCallback(GCCallback callback,
6902 GCType gc_type_filter = kGCTypeAll);
6903
6904 /**
6905 * This function removes callback which was installed by
6906 * AddGCEpilogueCallback function.
6907 */
6908 void RemoveGCEpilogueCallback(GCCallback callback);
6909
6910 /**
6911 * Forcefully terminate the current thread of JavaScript execution
6912 * in the given isolate.
6913 *
6914 * This method can be used by any thread even if that thread has not
6915 * acquired the V8 lock with a Locker object.
6916 */
6917 void TerminateExecution();
6918
6919 /**
6920 * Is V8 terminating JavaScript execution.
6921 *
6922 * Returns true if JavaScript execution is currently terminating
6923 * because of a call to TerminateExecution. In that case there are
6924 * still JavaScript frames on the stack and the termination
6925 * exception is still active.
6926 */
6927 bool IsExecutionTerminating();
6928
6929 /**
6930 * Resume execution capability in the given isolate, whose execution
6931 * was previously forcefully terminated using TerminateExecution().
6932 *
6933 * When execution is forcefully terminated using TerminateExecution(),
6934 * the isolate can not resume execution until all JavaScript frames
6935 * have propagated the uncatchable exception which is generated. This
6936 * method allows the program embedding the engine to handle the
6937 * termination event and resume execution capability, even if
6938 * JavaScript frames remain on the stack.
6939 *
6940 * This method can be used by any thread even if that thread has not
6941 * acquired the V8 lock with a Locker object.
6942 */
6943 void CancelTerminateExecution();
6944
6945 /**
6946 * Request V8 to interrupt long running JavaScript code and invoke
6947 * the given |callback| passing the given |data| to it. After |callback|
6948 * returns control will be returned to the JavaScript code.
6949 * There may be a number of interrupt requests in flight.
6950 * Can be called from another thread without acquiring a |Locker|.
6951 * Registered |callback| must not reenter interrupted Isolate.
6952 */
6953 void RequestInterrupt(InterruptCallback callback, void* data);
6954
6955 /**
6956 * Request garbage collection in this Isolate. It is only valid to call this
6957 * function if --expose_gc was specified.
6958 *
6959 * This should only be used for testing purposes and not to enforce a garbage
6960 * collection schedule. It has strong negative impact on the garbage
6961 * collection performance. Use IdleNotificationDeadline() or
6962 * LowMemoryNotification() instead to influence the garbage collection
6963 * schedule.
6964 */
6965 void RequestGarbageCollectionForTesting(GarbageCollectionType type);
6966
6967 /**
6968 * Set the callback to invoke for logging event.
6969 */
6970 void SetEventLogger(LogEventCallback that);
6971
6972 /**
6973 * Adds a callback to notify the host application right before a script
6974 * is about to run. If a script re-enters the runtime during executing, the
6975 * BeforeCallEnteredCallback is invoked for each re-entrance.
6976 * Executing scripts inside the callback will re-trigger the callback.
6977 */
6978 void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6979
6980 /**
6981 * Removes callback that was installed by AddBeforeCallEnteredCallback.
6982 */
6983 void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6984
6985 /**
6986 * Adds a callback to notify the host application when a script finished
6987 * running. If a script re-enters the runtime during executing, the
6988 * CallCompletedCallback is only invoked when the outer-most script
6989 * execution ends. Executing scripts inside the callback do not trigger
6990 * further callbacks.
6991 */
6992 void AddCallCompletedCallback(CallCompletedCallback callback);
6993 V8_DEPRECATE_SOON(
6994 "Use callback with parameter",
6995 void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback));
6996
6997 /**
6998 * Removes callback that was installed by AddCallCompletedCallback.
6999 */
7000 void RemoveCallCompletedCallback(CallCompletedCallback callback);
7001 V8_DEPRECATE_SOON(
7002 "Use callback with parameter",
7003 void RemoveCallCompletedCallback(
7004 DeprecatedCallCompletedCallback callback));
7005
7006 /**
7007 * Experimental: Set the PromiseHook callback for various promise
7008 * lifecycle events.
7009 */
7010 void SetPromiseHook(PromiseHook hook);
7011
7012 /**
7013 * Set callback to notify about promise reject with no handler, or
7014 * revocation of such a previous notification once the handler is added.
7015 */
7016 void SetPromiseRejectCallback(PromiseRejectCallback callback);
7017
7018 /**
7019 * Experimental: Runs the Microtask Work Queue until empty
7020 * Any exceptions thrown by microtask callbacks are swallowed.
7021 */
7022 void RunMicrotasks();
7023
7024 /**
7025 * Experimental: Enqueues the callback to the Microtask Work Queue
7026 */
7027 void EnqueueMicrotask(Local<Function> microtask);
7028
7029 /**
7030 * Experimental: Enqueues the callback to the Microtask Work Queue
7031 */
7032 void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
7033
7034 /**
7035 * Experimental: Controls how Microtasks are invoked. See MicrotasksPolicy
7036 * for details.
7037 */
7038 void SetMicrotasksPolicy(MicrotasksPolicy policy);
7039 V8_DEPRECATE_SOON("Use SetMicrotasksPolicy",
7040 void SetAutorunMicrotasks(bool autorun));
7041
7042 /**
7043 * Experimental: Returns the policy controlling how Microtasks are invoked.
7044 */
7045 MicrotasksPolicy GetMicrotasksPolicy() const;
7046 V8_DEPRECATE_SOON("Use GetMicrotasksPolicy",
7047 bool WillAutorunMicrotasks() const);
7048
7049 /**
7050 * Experimental: adds a callback to notify the host application after
7051 * microtasks were run. The callback is triggered by explicit RunMicrotasks
7052 * call or automatic microtasks execution (see SetAutorunMicrotasks).
7053 *
7054 * Callback will trigger even if microtasks were attempted to run,
7055 * but the microtasks queue was empty and no single microtask was actually
7056 * executed.
7057 *
7058 * Executing scriptsinside the callback will not re-trigger microtasks and
7059 * the callback.
7060 */
7061 void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
7062
7063 /**
7064 * Removes callback that was installed by AddMicrotasksCompletedCallback.
7065 */
7066 void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
7067
7068 /**
7069 * Sets a callback for counting the number of times a feature of V8 is used.
7070 */
7071 void SetUseCounterCallback(UseCounterCallback callback);
7072
7073 /**
7074 * Enables the host application to provide a mechanism for recording
7075 * statistics counters.
7076 */
7077 void SetCounterFunction(CounterLookupCallback);
7078
7079 /**
7080 * Enables the host application to provide a mechanism for recording
7081 * histograms. The CreateHistogram function returns a
7082 * histogram which will later be passed to the AddHistogramSample
7083 * function.
7084 */
7085 void SetCreateHistogramFunction(CreateHistogramCallback);
7086 void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
7087
7088 /**
7089 * Optional notification that the embedder is idle.
7090 * V8 uses the notification to perform garbage collection.
7091 * This call can be used repeatedly if the embedder remains idle.
7092 * Returns true if the embedder should stop calling IdleNotificationDeadline
7093 * until real work has been done. This indicates that V8 has done
7094 * as much cleanup as it will be able to do.
7095 *
7096 * The deadline_in_seconds argument specifies the deadline V8 has to finish
7097 * garbage collection work. deadline_in_seconds is compared with
7098 * MonotonicallyIncreasingTime() and should be based on the same timebase as
7099 * that function. There is no guarantee that the actual work will be done
7100 * within the time limit.
7101 */
7102 bool IdleNotificationDeadline(double deadline_in_seconds);
7103
7104 V8_DEPRECATED("use IdleNotificationDeadline()",
7105 bool IdleNotification(int idle_time_in_ms));
7106
7107 /**
7108 * Optional notification that the system is running low on memory.
7109 * V8 uses these notifications to attempt to free memory.
7110 */
7111 void LowMemoryNotification();
7112
7113 /**
7114 * Optional notification that a context has been disposed. V8 uses
7115 * these notifications to guide the GC heuristic. Returns the number
7116 * of context disposals - including this one - since the last time
7117 * V8 had a chance to clean up.
7118 *
7119 * The optional parameter |dependant_context| specifies whether the disposed
7120 * context was depending on state from other contexts or not.
7121 */
7122 int ContextDisposedNotification(bool dependant_context = true);
7123
7124 /**
7125 * Optional notification that the isolate switched to the foreground.
7126 * V8 uses these notifications to guide heuristics.
7127 */
7128 void IsolateInForegroundNotification();
7129
7130 /**
7131 * Optional notification that the isolate switched to the background.
7132 * V8 uses these notifications to guide heuristics.
7133 */
7134 void IsolateInBackgroundNotification();
7135
7136 /**
7137 * Optional notification to tell V8 the current performance requirements
7138 * of the embedder based on RAIL.
7139 * V8 uses these notifications to guide heuristics.
7140 * This is an unfinished experimental feature. Semantics and implementation
7141 * may change frequently.
7142 */
7143 void SetRAILMode(RAILMode rail_mode);
7144
7145 /**
7146 * Optional notification to tell V8 the current isolate is used for debugging
7147 * and requires higher heap limit.
7148 */
7149 void IncreaseHeapLimitForDebugging();
7150
7151 /**
7152 * Restores the original heap limit after IncreaseHeapLimitForDebugging().
7153 */
7154 void RestoreOriginalHeapLimit();
7155
7156 /**
7157 * Returns true if the heap limit was increased for debugging and the
7158 * original heap limit was not restored yet.
7159 */
7160 bool IsHeapLimitIncreasedForDebugging();
7161
7162 /**
7163 * Allows the host application to provide the address of a function that is
7164 * notified each time code is added, moved or removed.
7165 *
7166 * \param options options for the JIT code event handler.
7167 * \param event_handler the JIT code event handler, which will be invoked
7168 * each time code is added, moved or removed.
7169 * \note \p event_handler won't get notified of existent code.
7170 * \note since code removal notifications are not currently issued, the
7171 * \p event_handler may get notifications of code that overlaps earlier
7172 * code notifications. This happens when code areas are reused, and the
7173 * earlier overlapping code areas should therefore be discarded.
7174 * \note the events passed to \p event_handler and the strings they point to
7175 * are not guaranteed to live past each call. The \p event_handler must
7176 * copy strings and other parameters it needs to keep around.
7177 * \note the set of events declared in JitCodeEvent::EventType is expected to
7178 * grow over time, and the JitCodeEvent structure is expected to accrue
7179 * new members. The \p event_handler function must ignore event codes
7180 * it does not recognize to maintain future compatibility.
7181 * \note Use Isolate::CreateParams to get events for code executed during
7182 * Isolate setup.
7183 */
7184 void SetJitCodeEventHandler(JitCodeEventOptions options,
7185 JitCodeEventHandler event_handler);
7186
7187 /**
7188 * Modifies the stack limit for this Isolate.
7189 *
7190 * \param stack_limit An address beyond which the Vm's stack may not grow.
7191 *
7192 * \note If you are using threads then you should hold the V8::Locker lock
7193 * while setting the stack limit and you must set a non-default stack
7194 * limit separately for each thread.
7195 */
7196 void SetStackLimit(uintptr_t stack_limit);
7197
7198 /**
7199 * Returns a memory range that can potentially contain jitted code.
7200 *
7201 * On Win64, embedders are advised to install function table callbacks for
7202 * these ranges, as default SEH won't be able to unwind through jitted code.
7203 *
7204 * The first page of the code range is reserved for the embedder and is
7205 * committed, writable, and executable.
7206 *
7207 * Might be empty on other platforms.
7208 *
7209 * https://code.google.com/p/v8/issues/detail?id=3598
7210 */
7211 void GetCodeRange(void** start, size_t* length_in_bytes);
7212
7213 /** Set the callback to invoke in case of fatal errors. */
7214 void SetFatalErrorHandler(FatalErrorCallback that);
7215
7216 /** Set the callback to invoke in case of OOM errors. */
7217 void SetOOMErrorHandler(OOMErrorCallback that);
7218
7219 /**
7220 * Set the callback to invoke to check if code generation from
7221 * strings should be allowed.
7222 */
7223 void SetAllowCodeGenerationFromStringsCallback(
7224 AllowCodeGenerationFromStringsCallback callback);
7225
7226 /**
7227 * Set the callback to invoke to check if wasm compilation from
7228 * the specified object is allowed. By default, wasm compilation
7229 * is allowed.
7230 *
7231 * Similar for instantiate.
7232 */
7233 void SetAllowWasmCompileCallback(AllowWasmCompileCallback callback);
7234 void SetAllowWasmInstantiateCallback(AllowWasmInstantiateCallback callback);
7235
7236 /**
7237 * Check if V8 is dead and therefore unusable. This is the case after
7238 * fatal errors such as out-of-memory situations.
7239 */
7240 bool IsDead();
7241
7242 /**
7243 * Adds a message listener (errors only).
7244 *
7245 * The same message listener can be added more than once and in that
7246 * case it will be called more than once for each message.
7247 *
7248 * If data is specified, it will be passed to the callback when it is called.
7249 * Otherwise, the exception object will be passed to the callback instead.
7250 */
7251 bool AddMessageListener(MessageCallback that,
7252 Local<Value> data = Local<Value>());
7253
7254 /**
7255 * Adds a message listener.
7256 *
7257 * The same message listener can be added more than once and in that
7258 * case it will be called more than once for each message.
7259 *
7260 * If data is specified, it will be passed to the callback when it is called.
7261 * Otherwise, the exception object will be passed to the callback instead.
7262 *
7263 * A listener can listen for particular error levels by providing a mask.
7264 */
7265 bool AddMessageListenerWithErrorLevel(MessageCallback that,
7266 int message_levels,
7267 Local<Value> data = Local<Value>());
7268
7269 /**
7270 * Remove all message listeners from the specified callback function.
7271 */
7272 void RemoveMessageListeners(MessageCallback that);
7273
7274 /** Callback function for reporting failed access checks.*/
7275 void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
7276
7277 /**
7278 * Tells V8 to capture current stack trace when uncaught exception occurs
7279 * and report it to the message listeners. The option is off by default.
7280 */
7281 void SetCaptureStackTraceForUncaughtExceptions(
7282 bool capture, int frame_limit = 10,
7283 StackTrace::StackTraceOptions options = StackTrace::kOverview);
7284
7285 /**
7286 * Iterates through all external resources referenced from current isolate
7287 * heap. GC is not invoked prior to iterating, therefore there is no
7288 * guarantee that visited objects are still alive.
7289 */
7290 void VisitExternalResources(ExternalResourceVisitor* visitor);
7291
7292 /**
7293 * Iterates through all the persistent handles in the current isolate's heap
7294 * that have class_ids.
7295 */
7296 void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
7297
7298 /**
7299 * Iterates through all the persistent handles in the current isolate's heap
7300 * that have class_ids and are candidates to be marked as partially dependent
7301 * handles. This will visit handles to young objects created since the last
7302 * garbage collection but is free to visit an arbitrary superset of these
7303 * objects.
7304 */
7305 void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
7306
7307 /**
7308 * Iterates through all the persistent handles in the current isolate's heap
7309 * that have class_ids and are weak to be marked as inactive if there is no
7310 * pending activity for the handle.
7311 */
7312 void VisitWeakHandles(PersistentHandleVisitor* visitor);
7313
7314 /**
7315 * Check if this isolate is in use.
7316 * True if at least one thread Enter'ed this isolate.
7317 */
7318 bool IsInUse();
7319
7320 Isolate() = delete;
7321 ~Isolate() = delete;
7322 Isolate(const Isolate&) = delete;
7323 Isolate& operator=(const Isolate&) = delete;
7324 void* operator new(size_t size) = delete;
7325 void operator delete(void*, size_t) = delete;
7326
7327 private:
7328 template <class K, class V, class Traits>
7329 friend class PersistentValueMapBase;
7330
7331 void SetObjectGroupId(internal::Object** object, UniqueId id);
7332 void SetReferenceFromGroup(UniqueId id, internal::Object** object);
7333 void SetReference(internal::Object** parent, internal::Object** child);
7334 void ReportExternalAllocationLimitReached();
7335 };
7336
7337 class V8_EXPORT StartupData {
7338 public:
7339 const char* data;
7340 int raw_size;
7341 };
7342
7343
7344 /**
7345 * EntropySource is used as a callback function when v8 needs a source
7346 * of entropy.
7347 */
7348 typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
7349
7350 /**
7351 * ReturnAddressLocationResolver is used as a callback function when v8 is
7352 * resolving the location of a return address on the stack. Profilers that
7353 * change the return address on the stack can use this to resolve the stack
7354 * location to whereever the profiler stashed the original return address.
7355 *
7356 * \param return_addr_location A location on stack where a machine
7357 * return address resides.
7358 * \returns Either return_addr_location, or else a pointer to the profiler's
7359 * copy of the original return address.
7360 *
7361 * \note The resolver function must not cause garbage collection.
7362 */
7363 typedef uintptr_t (*ReturnAddressLocationResolver)(
7364 uintptr_t return_addr_location);
7365
7366
7367 /**
7368 * Container class for static utility functions.
7369 */
7370 class V8_EXPORT V8 {
7371 public:
7372 /** Set the callback to invoke in case of fatal errors. */
7373 V8_INLINE static V8_DEPRECATED(
7374 "Use isolate version",
7375 void SetFatalErrorHandler(FatalErrorCallback that));
7376
7377 /**
7378 * Set the callback to invoke to check if code generation from
7379 * strings should be allowed.
7380 */
7381 V8_INLINE static V8_DEPRECATED(
7382 "Use isolate version", void SetAllowCodeGenerationFromStringsCallback(
7383 AllowCodeGenerationFromStringsCallback that));
7384
7385 /**
7386 * Check if V8 is dead and therefore unusable. This is the case after
7387 * fatal errors such as out-of-memory situations.
7388 */
7389 V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead());
7390
7391 /**
7392 * Hand startup data to V8, in case the embedder has chosen to build
7393 * V8 with external startup data.
7394 *
7395 * Note:
7396 * - By default the startup data is linked into the V8 library, in which
7397 * case this function is not meaningful.
7398 * - If this needs to be called, it needs to be called before V8
7399 * tries to make use of its built-ins.
7400 * - To avoid unnecessary copies of data, V8 will point directly into the
7401 * given data blob, so pretty please keep it around until V8 exit.
7402 * - Compression of the startup blob might be useful, but needs to
7403 * handled entirely on the embedders' side.
7404 * - The call will abort if the data is invalid.
7405 */
7406 static void SetNativesDataBlob(StartupData* startup_blob);
7407 static void SetSnapshotDataBlob(StartupData* startup_blob);
7408
7409 /**
7410 * Bootstrap an isolate and a context from scratch to create a startup
7411 * snapshot. Include the side-effects of running the optional script.
7412 * Returns { NULL, 0 } on failure.
7413 * The caller acquires ownership of the data array in the return value.
7414 */
7415 static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL);
7416
7417 /**
7418 * Bootstrap an isolate and a context from the cold startup blob, run the
7419 * warm-up script to trigger code compilation. The side effects are then
7420 * discarded. The resulting startup snapshot will include compiled code.
7421 * Returns { NULL, 0 } on failure.
7422 * The caller acquires ownership of the data array in the return value.
7423 * The argument startup blob is untouched.
7424 */
7425 static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob,
7426 const char* warmup_source);
7427
7428 /**
7429 * Adds a message listener.
7430 *
7431 * The same message listener can be added more than once and in that
7432 * case it will be called more than once for each message.
7433 *
7434 * If data is specified, it will be passed to the callback when it is called.
7435 * Otherwise, the exception object will be passed to the callback instead.
7436 */
7437 V8_INLINE static V8_DEPRECATED(
7438 "Use isolate version",
7439 bool AddMessageListener(MessageCallback that,
7440 Local<Value> data = Local<Value>()));
7441
7442 /**
7443 * Remove all message listeners from the specified callback function.
7444 */
7445 V8_INLINE static V8_DEPRECATED(
7446 "Use isolate version", void RemoveMessageListeners(MessageCallback that));
7447
7448 /**
7449 * Tells V8 to capture current stack trace when uncaught exception occurs
7450 * and report it to the message listeners. The option is off by default.
7451 */
7452 V8_INLINE static V8_DEPRECATED(
7453 "Use isolate version",
7454 void SetCaptureStackTraceForUncaughtExceptions(
7455 bool capture, int frame_limit = 10,
7456 StackTrace::StackTraceOptions options = StackTrace::kOverview));
7457
7458 /**
7459 * Sets V8 flags from a string.
7460 */
7461 static void SetFlagsFromString(const char* str, int length);
7462
7463 /**
7464 * Sets V8 flags from the command line.
7465 */
7466 static void SetFlagsFromCommandLine(int* argc,
7467 char** argv,
7468 bool remove_flags);
7469
7470 /** Get the version string. */
7471 static const char* GetVersion();
7472
7473 /** Callback function for reporting failed access checks.*/
7474 V8_INLINE static V8_DEPRECATED(
7475 "Use isolate version",
7476 void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback));
7477
7478 /**
7479 * Enables the host application to receive a notification before a
7480 * garbage collection. Allocations are not allowed in the
7481 * callback function, you therefore cannot manipulate objects (set
7482 * or delete properties for example) since it is possible such
7483 * operations will result in the allocation of objects. It is possible
7484 * to specify the GCType filter for your callback. But it is not possible to
7485 * register the same callback function two times with different
7486 * GCType filters.
7487 */
7488 static V8_DEPRECATED(
7489 "Use isolate version",
7490 void AddGCPrologueCallback(GCCallback callback,
7491 GCType gc_type_filter = kGCTypeAll));
7492
7493 /**
7494 * This function removes callback which was installed by
7495 * AddGCPrologueCallback function.
7496 */
7497 V8_INLINE static V8_DEPRECATED(
7498 "Use isolate version",
7499 void RemoveGCPrologueCallback(GCCallback callback));
7500
7501 /**
7502 * Enables the host application to receive a notification after a
7503 * garbage collection. Allocations are not allowed in the
7504 * callback function, you therefore cannot manipulate objects (set
7505 * or delete properties for example) since it is possible such
7506 * operations will result in the allocation of objects. It is possible
7507 * to specify the GCType filter for your callback. But it is not possible to
7508 * register the same callback function two times with different
7509 * GCType filters.
7510 */
7511 static V8_DEPRECATED(
7512 "Use isolate version",
7513 void AddGCEpilogueCallback(GCCallback callback,
7514 GCType gc_type_filter = kGCTypeAll));
7515
7516 /**
7517 * This function removes callback which was installed by
7518 * AddGCEpilogueCallback function.
7519 */
7520 V8_INLINE static V8_DEPRECATED(
7521 "Use isolate version",
7522 void RemoveGCEpilogueCallback(GCCallback callback));
7523
7524 /**
7525 * Initializes V8. This function needs to be called before the first Isolate
7526 * is created. It always returns true.
7527 */
7528 static bool Initialize();
7529
7530 /**
7531 * Allows the host application to provide a callback which can be used
7532 * as a source of entropy for random number generators.
7533 */
7534 static void SetEntropySource(EntropySource source);
7535
7536 /**
7537 * Allows the host application to provide a callback that allows v8 to
7538 * cooperate with a profiler that rewrites return addresses on stack.
7539 */
7540 static void SetReturnAddressLocationResolver(
7541 ReturnAddressLocationResolver return_address_resolver);
7542
7543 /**
7544 * Forcefully terminate the current thread of JavaScript execution
7545 * in the given isolate.
7546 *
7547 * This method can be used by any thread even if that thread has not
7548 * acquired the V8 lock with a Locker object.
7549 *
7550 * \param isolate The isolate in which to terminate the current JS execution.
7551 */
7552 V8_INLINE static V8_DEPRECATED("Use isolate version",
7553 void TerminateExecution(Isolate* isolate));
7554
7555 /**
7556 * Is V8 terminating JavaScript execution.
7557 *
7558 * Returns true if JavaScript execution is currently terminating
7559 * because of a call to TerminateExecution. In that case there are
7560 * still JavaScript frames on the stack and the termination
7561 * exception is still active.
7562 *
7563 * \param isolate The isolate in which to check.
7564 */
7565 V8_INLINE static V8_DEPRECATED(
7566 "Use isolate version",
7567 bool IsExecutionTerminating(Isolate* isolate = NULL));
7568
7569 /**
7570 * Resume execution capability in the given isolate, whose execution
7571 * was previously forcefully terminated using TerminateExecution().
7572 *
7573 * When execution is forcefully terminated using TerminateExecution(),
7574 * the isolate can not resume execution until all JavaScript frames
7575 * have propagated the uncatchable exception which is generated. This
7576 * method allows the program embedding the engine to handle the
7577 * termination event and resume execution capability, even if
7578 * JavaScript frames remain on the stack.
7579 *
7580 * This method can be used by any thread even if that thread has not
7581 * acquired the V8 lock with a Locker object.
7582 *
7583 * \param isolate The isolate in which to resume execution capability.
7584 */
7585 V8_INLINE static V8_DEPRECATED(
7586 "Use isolate version", void CancelTerminateExecution(Isolate* isolate));
7587
7588 /**
7589 * Releases any resources used by v8 and stops any utility threads
7590 * that may be running. Note that disposing v8 is permanent, it
7591 * cannot be reinitialized.
7592 *
7593 * It should generally not be necessary to dispose v8 before exiting
7594 * a process, this should happen automatically. It is only necessary
7595 * to use if the process needs the resources taken up by v8.
7596 */
7597 static bool Dispose();
7598
7599 /**
7600 * Iterates through all external resources referenced from current isolate
7601 * heap. GC is not invoked prior to iterating, therefore there is no
7602 * guarantee that visited objects are still alive.
7603 */
7604 V8_INLINE static V8_DEPRECATED(
7605 "Use isolate version",
7606 void VisitExternalResources(ExternalResourceVisitor* visitor));
7607
7608 /**
7609 * Iterates through all the persistent handles in the current isolate's heap
7610 * that have class_ids.
7611 */
7612 V8_INLINE static V8_DEPRECATED(
7613 "Use isolate version",
7614 void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor));
7615
7616 /**
7617 * Iterates through all the persistent handles in isolate's heap that have
7618 * class_ids.
7619 */
7620 V8_INLINE static V8_DEPRECATED(
7621 "Use isolate version",
7622 void VisitHandlesWithClassIds(Isolate* isolate,
7623 PersistentHandleVisitor* visitor));
7624
7625 /**
7626 * Iterates through all the persistent handles in the current isolate's heap
7627 * that have class_ids and are candidates to be marked as partially dependent
7628 * handles. This will visit handles to young objects created since the last
7629 * garbage collection but is free to visit an arbitrary superset of these
7630 * objects.
7631 */
7632 V8_INLINE static V8_DEPRECATED(
7633 "Use isolate version",
7634 void VisitHandlesForPartialDependence(Isolate* isolate,
7635 PersistentHandleVisitor* visitor));
7636
7637 /**
7638 * Initialize the ICU library bundled with V8. The embedder should only
7639 * invoke this method when using the bundled ICU. Returns true on success.
7640 *
7641 * If V8 was compiled with the ICU data in an external file, the location
7642 * of the data file has to be provided.
7643 */
7644 V8_DEPRECATE_SOON(
7645 "Use version with default location.",
7646 static bool InitializeICU(const char* icu_data_file = nullptr));
7647
7648 /**
7649 * Initialize the ICU library bundled with V8. The embedder should only
7650 * invoke this method when using the bundled ICU. If V8 was compiled with
7651 * the ICU data in an external file and when the default location of that
7652 * file should be used, a path to the executable must be provided.
7653 * Returns true on success.
7654 *
7655 * The default is a file called icudtl.dat side-by-side with the executable.
7656 *
7657 * Optionally, the location of the data file can be provided to override the
7658 * default.
7659 */
7660 static bool InitializeICUDefaultLocation(const char* exec_path,
7661 const char* icu_data_file = nullptr);
7662
7663 /**
7664 * Initialize the external startup data. The embedder only needs to
7665 * invoke this method when external startup data was enabled in a build.
7666 *
7667 * If V8 was compiled with the startup data in an external file, then
7668 * V8 needs to be given those external files during startup. There are
7669 * three ways to do this:
7670 * - InitializeExternalStartupData(const char*)
7671 * This will look in the given directory for files "natives_blob.bin"
7672 * and "snapshot_blob.bin" - which is what the default build calls them.
7673 * - InitializeExternalStartupData(const char*, const char*)
7674 * As above, but will directly use the two given file names.
7675 * - Call SetNativesDataBlob, SetNativesDataBlob.
7676 * This will read the blobs from the given data structures and will
7677 * not perform any file IO.
7678 */
7679 static void InitializeExternalStartupData(const char* directory_path);
7680 static void InitializeExternalStartupData(const char* natives_blob,
7681 const char* snapshot_blob);
7682 /**
7683 * Sets the v8::Platform to use. This should be invoked before V8 is
7684 * initialized.
7685 */
7686 static void InitializePlatform(Platform* platform);
7687
7688 /**
7689 * Clears all references to the v8::Platform. This should be invoked after
7690 * V8 was disposed.
7691 */
7692 static void ShutdownPlatform();
7693
7694 private:
7695 V8();
7696
7697 static internal::Object** GlobalizeReference(internal::Isolate* isolate,
7698 internal::Object** handle);
7699 static internal::Object** CopyPersistent(internal::Object** handle);
7700 static void DisposeGlobal(internal::Object** global_handle);
7701 static void MakeWeak(internal::Object** location, void* data,
7702 WeakCallbackInfo<void>::Callback weak_callback,
7703 WeakCallbackType type);
7704 static void MakeWeak(internal::Object** location, void* data,
7705 // Must be 0 or -1.
7706 int internal_field_index1,
7707 // Must be 1 or -1.
7708 int internal_field_index2,
7709 WeakCallbackInfo<void>::Callback weak_callback);
7710 static void MakeWeak(internal::Object*** location_addr);
7711 static void* ClearWeak(internal::Object** location);
7712 static void Eternalize(Isolate* isolate,
7713 Value* handle,
7714 int* index);
7715 static Local<Value> GetEternal(Isolate* isolate, int index);
7716
7717 static void RegisterExternallyReferencedObject(internal::Object** object,
7718 internal::Isolate* isolate);
7719
7720 template <class K, class V, class T>
7721 friend class PersistentValueMapBase;
7722
7723 static void FromJustIsNothing();
7724 static void ToLocalEmpty();
7725 static void InternalFieldOutOfBounds(int index);
7726 template <class T> friend class Local;
7727 template <class T>
7728 friend class MaybeLocal;
7729 template <class T>
7730 friend class Maybe;
7731 template <class T>
7732 friend class WeakCallbackInfo;
7733 template <class T> friend class Eternal;
7734 template <class T> friend class PersistentBase;
7735 template <class T, class M> friend class Persistent;
7736 friend class Context;
7737 };
7738
7739 /**
7740 * Helper class to create a snapshot data blob.
7741 */
7742 class V8_EXPORT SnapshotCreator {
7743 public:
7744 enum class FunctionCodeHandling { kClear, kKeep };
7745
7746 /**
7747 * Create and enter an isolate, and set it up for serialization.
7748 * The isolate is either created from scratch or from an existing snapshot.
7749 * The caller keeps ownership of the argument snapshot.
7750 * \param existing_blob existing snapshot from which to create this one.
7751 * \param external_references a null-terminated array of external references
7752 * that must be equivalent to CreateParams::external_references.
7753 */
7754 SnapshotCreator(intptr_t* external_references = nullptr,
7755 StartupData* existing_blob = nullptr);
7756
7757 ~SnapshotCreator();
7758
7759 /**
7760 * \returns the isolate prepared by the snapshot creator.
7761 */
7762 Isolate* GetIsolate();
7763
7764 /**
7765 * Set the default context to be included in the snapshot blob.
7766 * The snapshot will not contain the global proxy, and we expect one or a
7767 * global object template to create one, to be provided upon deserialization.
7768 */
7769 void SetDefaultContext(Local<Context> context);
7770
7771 /**
7772 * Add additional context to be included in the snapshot blob.
7773 * The snapshot will include the global proxy.
7774 *
7775 * \param callback optional callback to serialize internal fields.
7776 *
7777 * \returns the index of the context in the snapshot blob.
7778 */
7779 size_t AddContext(Local<Context> context,
7780 SerializeInternalFieldsCallback callback =
7781 SerializeInternalFieldsCallback());
7782
7783 /**
7784 * Add a template to be included in the snapshot blob.
7785 * \returns the index of the template in the snapshot blob.
7786 */
7787 size_t AddTemplate(Local<Template> template_obj);
7788
7789 /**
7790 * Created a snapshot data blob.
7791 * This must not be called from within a handle scope.
7792 * \param function_code_handling whether to include compiled function code
7793 * in the snapshot.
7794 * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The
7795 * caller acquires ownership of the data array in the return value.
7796 */
7797 StartupData CreateBlob(FunctionCodeHandling function_code_handling);
7798
7799 // Disallow copying and assigning.
7800 SnapshotCreator(const SnapshotCreator&) = delete;
7801 void operator=(const SnapshotCreator&) = delete;
7802
7803 private:
7804 void* data_;
7805 };
7806
7807 /**
7808 * A simple Maybe type, representing an object which may or may not have a
7809 * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
7810 *
7811 * If an API method returns a Maybe<>, the API method can potentially fail
7812 * either because an exception is thrown, or because an exception is pending,
7813 * e.g. because a previous API call threw an exception that hasn't been caught
7814 * yet, or because a TerminateExecution exception was thrown. In that case, a
7815 * "Nothing" value is returned.
7816 */
7817 template <class T>
7818 class Maybe {
7819 public:
IsNothing()7820 V8_INLINE bool IsNothing() const { return !has_value_; }
IsJust()7821 V8_INLINE bool IsJust() const { return has_value_; }
7822
7823 // Will crash if the Maybe<> is nothing.
ToChecked()7824 V8_INLINE T ToChecked() const { return FromJust(); }
7825
To(T * out)7826 V8_WARN_UNUSED_RESULT V8_INLINE bool To(T* out) const {
7827 if (V8_LIKELY(IsJust())) *out = value_;
7828 return IsJust();
7829 }
7830
7831 // Will crash if the Maybe<> is nothing.
FromJust()7832 V8_INLINE T FromJust() const {
7833 if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
7834 return value_;
7835 }
7836
FromMaybe(const T & default_value)7837 V8_INLINE T FromMaybe(const T& default_value) const {
7838 return has_value_ ? value_ : default_value;
7839 }
7840
7841 V8_INLINE bool operator==(const Maybe& other) const {
7842 return (IsJust() == other.IsJust()) &&
7843 (!IsJust() || FromJust() == other.FromJust());
7844 }
7845
7846 V8_INLINE bool operator!=(const Maybe& other) const {
7847 return !operator==(other);
7848 }
7849
7850 private:
Maybe()7851 Maybe() : has_value_(false) {}
Maybe(const T & t)7852 explicit Maybe(const T& t) : has_value_(true), value_(t) {}
7853
7854 bool has_value_;
7855 T value_;
7856
7857 template <class U>
7858 friend Maybe<U> Nothing();
7859 template <class U>
7860 friend Maybe<U> Just(const U& u);
7861 };
7862
7863
7864 template <class T>
Nothing()7865 inline Maybe<T> Nothing() {
7866 return Maybe<T>();
7867 }
7868
7869
7870 template <class T>
Just(const T & t)7871 inline Maybe<T> Just(const T& t) {
7872 return Maybe<T>(t);
7873 }
7874
7875
7876 /**
7877 * An external exception handler.
7878 */
7879 class V8_EXPORT TryCatch {
7880 public:
7881 /**
7882 * Creates a new try/catch block and registers it with v8. Note that
7883 * all TryCatch blocks should be stack allocated because the memory
7884 * location itself is compared against JavaScript try/catch blocks.
7885 */
7886 V8_DEPRECATED("Use isolate version", TryCatch());
7887
7888 /**
7889 * Creates a new try/catch block and registers it with v8. Note that
7890 * all TryCatch blocks should be stack allocated because the memory
7891 * location itself is compared against JavaScript try/catch blocks.
7892 */
7893 TryCatch(Isolate* isolate);
7894
7895 /**
7896 * Unregisters and deletes this try/catch block.
7897 */
7898 ~TryCatch();
7899
7900 /**
7901 * Returns true if an exception has been caught by this try/catch block.
7902 */
7903 bool HasCaught() const;
7904
7905 /**
7906 * For certain types of exceptions, it makes no sense to continue execution.
7907 *
7908 * If CanContinue returns false, the correct action is to perform any C++
7909 * cleanup needed and then return. If CanContinue returns false and
7910 * HasTerminated returns true, it is possible to call
7911 * CancelTerminateExecution in order to continue calling into the engine.
7912 */
7913 bool CanContinue() const;
7914
7915 /**
7916 * Returns true if an exception has been caught due to script execution
7917 * being terminated.
7918 *
7919 * There is no JavaScript representation of an execution termination
7920 * exception. Such exceptions are thrown when the TerminateExecution
7921 * methods are called to terminate a long-running script.
7922 *
7923 * If such an exception has been thrown, HasTerminated will return true,
7924 * indicating that it is possible to call CancelTerminateExecution in order
7925 * to continue calling into the engine.
7926 */
7927 bool HasTerminated() const;
7928
7929 /**
7930 * Throws the exception caught by this TryCatch in a way that avoids
7931 * it being caught again by this same TryCatch. As with ThrowException
7932 * it is illegal to execute any JavaScript operations after calling
7933 * ReThrow; the caller must return immediately to where the exception
7934 * is caught.
7935 */
7936 Local<Value> ReThrow();
7937
7938 /**
7939 * Returns the exception caught by this try/catch block. If no exception has
7940 * been caught an empty handle is returned.
7941 *
7942 * The returned handle is valid until this TryCatch block has been destroyed.
7943 */
7944 Local<Value> Exception() const;
7945
7946 /**
7947 * Returns the .stack property of the thrown object. If no .stack
7948 * property is present an empty handle is returned.
7949 */
7950 V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const);
7951 V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
7952 Local<Context> context) const;
7953
7954 /**
7955 * Returns the message associated with this exception. If there is
7956 * no message associated an empty handle is returned.
7957 *
7958 * The returned handle is valid until this TryCatch block has been
7959 * destroyed.
7960 */
7961 Local<v8::Message> Message() const;
7962
7963 /**
7964 * Clears any exceptions that may have been caught by this try/catch block.
7965 * After this method has been called, HasCaught() will return false. Cancels
7966 * the scheduled exception if it is caught and ReThrow() is not called before.
7967 *
7968 * It is not necessary to clear a try/catch block before using it again; if
7969 * another exception is thrown the previously caught exception will just be
7970 * overwritten. However, it is often a good idea since it makes it easier
7971 * to determine which operation threw a given exception.
7972 */
7973 void Reset();
7974
7975 /**
7976 * Set verbosity of the external exception handler.
7977 *
7978 * By default, exceptions that are caught by an external exception
7979 * handler are not reported. Call SetVerbose with true on an
7980 * external exception handler to have exceptions caught by the
7981 * handler reported as if they were not caught.
7982 */
7983 void SetVerbose(bool value);
7984
7985 /**
7986 * Set whether or not this TryCatch should capture a Message object
7987 * which holds source information about where the exception
7988 * occurred. True by default.
7989 */
7990 void SetCaptureMessage(bool value);
7991
7992 /**
7993 * There are cases when the raw address of C++ TryCatch object cannot be
7994 * used for comparisons with addresses into the JS stack. The cases are:
7995 * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
7996 * 2) Address sanitizer allocates local C++ object in the heap when
7997 * UseAfterReturn mode is enabled.
7998 * This method returns address that can be used for comparisons with
7999 * addresses into the JS stack. When neither simulator nor ASAN's
8000 * UseAfterReturn is enabled, then the address returned will be the address
8001 * of the C++ try catch handler itself.
8002 */
JSStackComparableAddress(TryCatch * handler)8003 static void* JSStackComparableAddress(TryCatch* handler) {
8004 if (handler == NULL) return NULL;
8005 return handler->js_stack_comparable_address_;
8006 }
8007
8008 TryCatch(const TryCatch&) = delete;
8009 void operator=(const TryCatch&) = delete;
8010 void* operator new(size_t size);
8011 void operator delete(void*, size_t);
8012
8013 private:
8014 void ResetInternal();
8015
8016 internal::Isolate* isolate_;
8017 TryCatch* next_;
8018 void* exception_;
8019 void* message_obj_;
8020 void* js_stack_comparable_address_;
8021 bool is_verbose_ : 1;
8022 bool can_continue_ : 1;
8023 bool capture_message_ : 1;
8024 bool rethrow_ : 1;
8025 bool has_terminated_ : 1;
8026
8027 friend class internal::Isolate;
8028 };
8029
8030
8031 // --- Context ---
8032
8033
8034 /**
8035 * A container for extension names.
8036 */
8037 class V8_EXPORT ExtensionConfiguration {
8038 public:
ExtensionConfiguration()8039 ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count,const char * names[])8040 ExtensionConfiguration(int name_count, const char* names[])
8041 : name_count_(name_count), names_(names) { }
8042
begin()8043 const char** begin() const { return &names_[0]; }
end()8044 const char** end() const { return &names_[name_count_]; }
8045
8046 private:
8047 const int name_count_;
8048 const char** names_;
8049 };
8050
8051 /**
8052 * A sandboxed execution context with its own set of built-in objects
8053 * and functions.
8054 */
8055 class V8_EXPORT Context {
8056 public:
8057 /**
8058 * Returns the global proxy object.
8059 *
8060 * Global proxy object is a thin wrapper whose prototype points to actual
8061 * context's global object with the properties like Object, etc. This is done
8062 * that way for security reasons (for more details see
8063 * https://wiki.mozilla.org/Gecko:SplitWindow).
8064 *
8065 * Please note that changes to global proxy object prototype most probably
8066 * would break VM---v8 expects only global object as a prototype of global
8067 * proxy object.
8068 */
8069 Local<Object> Global();
8070
8071 /**
8072 * Detaches the global object from its context before
8073 * the global object can be reused to create a new context.
8074 */
8075 void DetachGlobal();
8076
8077 /**
8078 * Creates a new context and returns a handle to the newly allocated
8079 * context.
8080 *
8081 * \param isolate The isolate in which to create the context.
8082 *
8083 * \param extensions An optional extension configuration containing
8084 * the extensions to be installed in the newly created context.
8085 *
8086 * \param global_template An optional object template from which the
8087 * global object for the newly created context will be created.
8088 *
8089 * \param global_object An optional global object to be reused for
8090 * the newly created context. This global object must have been
8091 * created by a previous call to Context::New with the same global
8092 * template. The state of the global object will be completely reset
8093 * and only object identify will remain.
8094 */
8095 static Local<Context> New(
8096 Isolate* isolate, ExtensionConfiguration* extensions = NULL,
8097 MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
8098 MaybeLocal<Value> global_object = MaybeLocal<Value>());
8099
8100 /**
8101 * Create a new context from a (non-default) context snapshot. There
8102 * is no way to provide a global object template since we do not create
8103 * a new global object from template, but we can reuse a global object.
8104 *
8105 * \param isolate See v8::Context::New.
8106 *
8107 * \param context_snapshot_index The index of the context snapshot to
8108 * deserialize from. Use v8::Context::New for the default snapshot.
8109 *
8110 * \param internal_fields_deserializer Optional callback to deserialize
8111 * internal fields. It should match the SerializeInternalFieldCallback used
8112 * to serialize.
8113 *
8114 * \param extensions See v8::Context::New.
8115 *
8116 * \param global_object See v8::Context::New.
8117 */
8118
8119 static MaybeLocal<Context> FromSnapshot(
8120 Isolate* isolate, size_t context_snapshot_index,
8121 DeserializeInternalFieldsCallback internal_fields_deserializer =
8122 DeserializeInternalFieldsCallback(),
8123 ExtensionConfiguration* extensions = nullptr,
8124 MaybeLocal<Value> global_object = MaybeLocal<Value>());
8125
8126 /**
8127 * Returns an global object that isn't backed by an actual context.
8128 *
8129 * The global template needs to have access checks with handlers installed.
8130 * If an existing global object is passed in, the global object is detached
8131 * from its context.
8132 *
8133 * Note that this is different from a detached context where all accesses to
8134 * the global proxy will fail. Instead, the access check handlers are invoked.
8135 *
8136 * It is also not possible to detach an object returned by this method.
8137 * Instead, the access check handlers need to return nothing to achieve the
8138 * same effect.
8139 *
8140 * It is possible, however, to create a new context from the global object
8141 * returned by this method.
8142 */
8143 static MaybeLocal<Object> NewRemoteContext(
8144 Isolate* isolate, Local<ObjectTemplate> global_template,
8145 MaybeLocal<Value> global_object = MaybeLocal<Value>());
8146
8147 /**
8148 * Sets the security token for the context. To access an object in
8149 * another context, the security tokens must match.
8150 */
8151 void SetSecurityToken(Local<Value> token);
8152
8153 /** Restores the security token to the default value. */
8154 void UseDefaultSecurityToken();
8155
8156 /** Returns the security token of this context.*/
8157 Local<Value> GetSecurityToken();
8158
8159 /**
8160 * Enter this context. After entering a context, all code compiled
8161 * and run is compiled and run in this context. If another context
8162 * is already entered, this old context is saved so it can be
8163 * restored when the new context is exited.
8164 */
8165 void Enter();
8166
8167 /**
8168 * Exit this context. Exiting the current context restores the
8169 * context that was in place when entering the current context.
8170 */
8171 void Exit();
8172
8173 /** Returns an isolate associated with a current context. */
8174 Isolate* GetIsolate();
8175
8176 /**
8177 * The field at kDebugIdIndex is reserved for V8 debugger implementation.
8178 * The value is propagated to the scripts compiled in given Context and
8179 * can be used for filtering scripts.
8180 */
8181 enum EmbedderDataFields { kDebugIdIndex = 0 };
8182
8183 /**
8184 * Gets the embedder data with the given index, which must have been set by a
8185 * previous call to SetEmbedderData with the same index. Note that index 0
8186 * currently has a special meaning for Chrome's debugger.
8187 */
8188 V8_INLINE Local<Value> GetEmbedderData(int index);
8189
8190 /**
8191 * Gets the binding object used by V8 extras. Extra natives get a reference
8192 * to this object and can use it to "export" functionality by adding
8193 * properties. Extra natives can also "import" functionality by accessing
8194 * properties added by the embedder using the V8 API.
8195 */
8196 Local<Object> GetExtrasBindingObject();
8197
8198 /**
8199 * Sets the embedder data with the given index, growing the data as
8200 * needed. Note that index 0 currently has a special meaning for Chrome's
8201 * debugger.
8202 */
8203 void SetEmbedderData(int index, Local<Value> value);
8204
8205 /**
8206 * Gets a 2-byte-aligned native pointer from the embedder data with the given
8207 * index, which must have been set by a previous call to
8208 * SetAlignedPointerInEmbedderData with the same index. Note that index 0
8209 * currently has a special meaning for Chrome's debugger.
8210 */
8211 V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
8212
8213 /**
8214 * Sets a 2-byte-aligned native pointer in the embedder data with the given
8215 * index, growing the data as needed. Note that index 0 currently has a
8216 * special meaning for Chrome's debugger.
8217 */
8218 void SetAlignedPointerInEmbedderData(int index, void* value);
8219
8220 /**
8221 * Control whether code generation from strings is allowed. Calling
8222 * this method with false will disable 'eval' and the 'Function'
8223 * constructor for code running in this context. If 'eval' or the
8224 * 'Function' constructor are used an exception will be thrown.
8225 *
8226 * If code generation from strings is not allowed the
8227 * V8::AllowCodeGenerationFromStrings callback will be invoked if
8228 * set before blocking the call to 'eval' or the 'Function'
8229 * constructor. If that callback returns true, the call will be
8230 * allowed, otherwise an exception will be thrown. If no callback is
8231 * set an exception will be thrown.
8232 */
8233 void AllowCodeGenerationFromStrings(bool allow);
8234
8235 /**
8236 * Returns true if code generation from strings is allowed for the context.
8237 * For more details see AllowCodeGenerationFromStrings(bool) documentation.
8238 */
8239 bool IsCodeGenerationFromStringsAllowed();
8240
8241 /**
8242 * Sets the error description for the exception that is thrown when
8243 * code generation from strings is not allowed and 'eval' or the 'Function'
8244 * constructor are called.
8245 */
8246 void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
8247
8248 /**
8249 * Estimate the memory in bytes retained by this context.
8250 */
8251 size_t EstimatedSize();
8252
8253 /**
8254 * Stack-allocated class which sets the execution context for all
8255 * operations executed within a local scope.
8256 */
8257 class Scope {
8258 public:
Scope(Local<Context> context)8259 explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
8260 context_->Enter();
8261 }
~Scope()8262 V8_INLINE ~Scope() { context_->Exit(); }
8263
8264 private:
8265 Local<Context> context_;
8266 };
8267
8268 private:
8269 friend class Value;
8270 friend class Script;
8271 friend class Object;
8272 friend class Function;
8273
8274 Local<Value> SlowGetEmbedderData(int index);
8275 void* SlowGetAlignedPointerFromEmbedderData(int index);
8276 };
8277
8278
8279 /**
8280 * Multiple threads in V8 are allowed, but only one thread at a time is allowed
8281 * to use any given V8 isolate, see the comments in the Isolate class. The
8282 * definition of 'using a V8 isolate' includes accessing handles or holding onto
8283 * object pointers obtained from V8 handles while in the particular V8 isolate.
8284 * It is up to the user of V8 to ensure, perhaps with locking, that this
8285 * constraint is not violated. In addition to any other synchronization
8286 * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
8287 * used to signal thread switches to V8.
8288 *
8289 * v8::Locker is a scoped lock object. While it's active, i.e. between its
8290 * construction and destruction, the current thread is allowed to use the locked
8291 * isolate. V8 guarantees that an isolate can be locked by at most one thread at
8292 * any time. In other words, the scope of a v8::Locker is a critical section.
8293 *
8294 * Sample usage:
8295 * \code
8296 * ...
8297 * {
8298 * v8::Locker locker(isolate);
8299 * v8::Isolate::Scope isolate_scope(isolate);
8300 * ...
8301 * // Code using V8 and isolate goes here.
8302 * ...
8303 * } // Destructor called here
8304 * \endcode
8305 *
8306 * If you wish to stop using V8 in a thread A you can do this either by
8307 * destroying the v8::Locker object as above or by constructing a v8::Unlocker
8308 * object:
8309 *
8310 * \code
8311 * {
8312 * isolate->Exit();
8313 * v8::Unlocker unlocker(isolate);
8314 * ...
8315 * // Code not using V8 goes here while V8 can run in another thread.
8316 * ...
8317 * } // Destructor called here.
8318 * isolate->Enter();
8319 * \endcode
8320 *
8321 * The Unlocker object is intended for use in a long-running callback from V8,
8322 * where you want to release the V8 lock for other threads to use.
8323 *
8324 * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
8325 * given thread. This can be useful if you have code that can be called either
8326 * from code that holds the lock or from code that does not. The Unlocker is
8327 * not recursive so you can not have several Unlockers on the stack at once, and
8328 * you can not use an Unlocker in a thread that is not inside a Locker's scope.
8329 *
8330 * An unlocker will unlock several lockers if it has to and reinstate the
8331 * correct depth of locking on its destruction, e.g.:
8332 *
8333 * \code
8334 * // V8 not locked.
8335 * {
8336 * v8::Locker locker(isolate);
8337 * Isolate::Scope isolate_scope(isolate);
8338 * // V8 locked.
8339 * {
8340 * v8::Locker another_locker(isolate);
8341 * // V8 still locked (2 levels).
8342 * {
8343 * isolate->Exit();
8344 * v8::Unlocker unlocker(isolate);
8345 * // V8 not locked.
8346 * }
8347 * isolate->Enter();
8348 * // V8 locked again (2 levels).
8349 * }
8350 * // V8 still locked (1 level).
8351 * }
8352 * // V8 Now no longer locked.
8353 * \endcode
8354 */
8355 class V8_EXPORT Unlocker {
8356 public:
8357 /**
8358 * Initialize Unlocker for a given Isolate.
8359 */
Unlocker(Isolate * isolate)8360 V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
8361
8362 ~Unlocker();
8363 private:
8364 void Initialize(Isolate* isolate);
8365
8366 internal::Isolate* isolate_;
8367 };
8368
8369
8370 class V8_EXPORT Locker {
8371 public:
8372 /**
8373 * Initialize Locker for a given Isolate.
8374 */
Locker(Isolate * isolate)8375 V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
8376
8377 ~Locker();
8378
8379 /**
8380 * Returns whether or not the locker for a given isolate, is locked by the
8381 * current thread.
8382 */
8383 static bool IsLocked(Isolate* isolate);
8384
8385 /**
8386 * Returns whether v8::Locker is being used by this V8 instance.
8387 */
8388 static bool IsActive();
8389
8390 // Disallow copying and assigning.
8391 Locker(const Locker&) = delete;
8392 void operator=(const Locker&) = delete;
8393
8394 private:
8395 void Initialize(Isolate* isolate);
8396
8397 bool has_lock_;
8398 bool top_level_;
8399 internal::Isolate* isolate_;
8400 };
8401
8402
8403 // --- Implementation ---
8404
8405
8406 namespace internal {
8407
8408 const int kApiPointerSize = sizeof(void*); // NOLINT
8409 const int kApiIntSize = sizeof(int); // NOLINT
8410 const int kApiInt64Size = sizeof(int64_t); // NOLINT
8411
8412 // Tag information for HeapObject.
8413 const int kHeapObjectTag = 1;
8414 const int kHeapObjectTagSize = 2;
8415 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
8416
8417 // Tag information for Smi.
8418 const int kSmiTag = 0;
8419 const int kSmiTagSize = 1;
8420 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
8421
8422 template <size_t ptr_size> struct SmiTagging;
8423
8424 template<int kSmiShiftSize>
IntToSmi(int value)8425 V8_INLINE internal::Object* IntToSmi(int value) {
8426 int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
8427 uintptr_t tagged_value =
8428 (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
8429 return reinterpret_cast<internal::Object*>(tagged_value);
8430 }
8431
8432 // Smi constants for 32-bit systems.
8433 template <> struct SmiTagging<4> {
8434 enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
8435 static int SmiShiftSize() { return kSmiShiftSize; }
8436 static int SmiValueSize() { return kSmiValueSize; }
8437 V8_INLINE static int SmiToInt(const internal::Object* value) {
8438 int shift_bits = kSmiTagSize + kSmiShiftSize;
8439 // Throw away top 32 bits and shift down (requires >> to be sign extending).
8440 return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
8441 }
8442 V8_INLINE static internal::Object* IntToSmi(int value) {
8443 return internal::IntToSmi<kSmiShiftSize>(value);
8444 }
8445 V8_INLINE static bool IsValidSmi(intptr_t value) {
8446 // To be representable as an tagged small integer, the two
8447 // most-significant bits of 'value' must be either 00 or 11 due to
8448 // sign-extension. To check this we add 01 to the two
8449 // most-significant bits, and check if the most-significant bit is 0
8450 //
8451 // CAUTION: The original code below:
8452 // bool result = ((value + 0x40000000) & 0x80000000) == 0;
8453 // may lead to incorrect results according to the C language spec, and
8454 // in fact doesn't work correctly with gcc4.1.1 in some cases: The
8455 // compiler may produce undefined results in case of signed integer
8456 // overflow. The computation must be done w/ unsigned ints.
8457 return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
8458 }
8459 };
8460
8461 // Smi constants for 64-bit systems.
8462 template <> struct SmiTagging<8> {
8463 enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
8464 static int SmiShiftSize() { return kSmiShiftSize; }
8465 static int SmiValueSize() { return kSmiValueSize; }
8466 V8_INLINE static int SmiToInt(const internal::Object* value) {
8467 int shift_bits = kSmiTagSize + kSmiShiftSize;
8468 // Shift down and throw away top 32 bits.
8469 return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
8470 }
8471 V8_INLINE static internal::Object* IntToSmi(int value) {
8472 return internal::IntToSmi<kSmiShiftSize>(value);
8473 }
8474 V8_INLINE static bool IsValidSmi(intptr_t value) {
8475 // To be representable as a long smi, the value must be a 32-bit integer.
8476 return (value == static_cast<int32_t>(value));
8477 }
8478 };
8479
8480 typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
8481 const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
8482 const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
8483 V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
8484 V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
8485
8486 /**
8487 * This class exports constants and functionality from within v8 that
8488 * is necessary to implement inline functions in the v8 api. Don't
8489 * depend on functions and constants defined here.
8490 */
8491 class Internals {
8492 public:
8493 // These values match non-compiler-dependent values defined within
8494 // the implementation of v8.
8495 static const int kHeapObjectMapOffset = 0;
8496 static const int kMapInstanceTypeAndBitFieldOffset =
8497 1 * kApiPointerSize + kApiIntSize;
8498 static const int kStringResourceOffset = 3 * kApiPointerSize;
8499
8500 static const int kOddballKindOffset = 4 * kApiPointerSize + sizeof(double);
8501 static const int kForeignAddressOffset = kApiPointerSize;
8502 static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
8503 static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
8504 static const int kContextHeaderSize = 2 * kApiPointerSize;
8505 static const int kContextEmbedderDataIndex = 5;
8506 static const int kFullStringRepresentationMask = 0x0f;
8507 static const int kStringEncodingMask = 0x8;
8508 static const int kExternalTwoByteRepresentationTag = 0x02;
8509 static const int kExternalOneByteRepresentationTag = 0x0a;
8510
8511 static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
8512 static const int kExternalMemoryOffset = 4 * kApiPointerSize;
8513 static const int kExternalMemoryLimitOffset =
8514 kExternalMemoryOffset + kApiInt64Size;
8515 static const int kIsolateRootsOffset = kExternalMemoryLimitOffset +
8516 kApiInt64Size + kApiInt64Size +
8517 kApiPointerSize + kApiPointerSize;
8518 static const int kUndefinedValueRootIndex = 4;
8519 static const int kTheHoleValueRootIndex = 5;
8520 static const int kNullValueRootIndex = 6;
8521 static const int kTrueValueRootIndex = 7;
8522 static const int kFalseValueRootIndex = 8;
8523 static const int kEmptyStringRootIndex = 9;
8524
8525 static const int kNodeClassIdOffset = 1 * kApiPointerSize;
8526 static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
8527 static const int kNodeStateMask = 0x7;
8528 static const int kNodeStateIsWeakValue = 2;
8529 static const int kNodeStateIsPendingValue = 3;
8530 static const int kNodeStateIsNearDeathValue = 4;
8531 static const int kNodeIsIndependentShift = 3;
8532 static const int kNodeIsActiveShift = 4;
8533
8534 static const int kJSApiObjectType = 0xb9;
8535 static const int kJSObjectType = 0xba;
8536 static const int kFirstNonstringType = 0x80;
8537 static const int kOddballType = 0x82;
8538 static const int kForeignType = 0x86;
8539
8540 static const int kUndefinedOddballKind = 5;
8541 static const int kNullOddballKind = 3;
8542
8543 static const uint32_t kNumIsolateDataSlots = 4;
8544
8545 V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
8546 V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
8547 #ifdef V8_ENABLE_CHECKS
8548 CheckInitializedImpl(isolate);
8549 #endif
8550 }
8551
8552 V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
8553 return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
8554 kHeapObjectTag);
8555 }
8556
8557 V8_INLINE static int SmiValue(const internal::Object* value) {
8558 return PlatformSmiTagging::SmiToInt(value);
8559 }
8560
8561 V8_INLINE static internal::Object* IntToSmi(int value) {
8562 return PlatformSmiTagging::IntToSmi(value);
8563 }
8564
8565 V8_INLINE static bool IsValidSmi(intptr_t value) {
8566 return PlatformSmiTagging::IsValidSmi(value);
8567 }
8568
8569 V8_INLINE static int GetInstanceType(const internal::Object* obj) {
8570 typedef internal::Object O;
8571 O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
8572 // Map::InstanceType is defined so that it will always be loaded into
8573 // the LS 8 bits of one 16-bit word, regardless of endianess.
8574 return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
8575 }
8576
8577 V8_INLINE static int GetOddballKind(const internal::Object* obj) {
8578 typedef internal::Object O;
8579 return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
8580 }
8581
8582 V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
8583 int representation = (instance_type & kFullStringRepresentationMask);
8584 return representation == kExternalTwoByteRepresentationTag;
8585 }
8586
8587 V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
8588 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8589 return *addr & static_cast<uint8_t>(1U << shift);
8590 }
8591
8592 V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
8593 bool value, int shift) {
8594 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8595 uint8_t mask = static_cast<uint8_t>(1U << shift);
8596 *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
8597 }
8598
8599 V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
8600 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8601 return *addr & kNodeStateMask;
8602 }
8603
8604 V8_INLINE static void UpdateNodeState(internal::Object** obj,
8605 uint8_t value) {
8606 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8607 *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
8608 }
8609
8610 V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
8611 uint32_t slot,
8612 void* data) {
8613 uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
8614 kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8615 *reinterpret_cast<void**>(addr) = data;
8616 }
8617
8618 V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
8619 uint32_t slot) {
8620 const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
8621 kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8622 return *reinterpret_cast<void* const*>(addr);
8623 }
8624
8625 V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
8626 int index) {
8627 uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
8628 return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
8629 }
8630
8631 template <typename T>
8632 V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
8633 const uint8_t* addr =
8634 reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
8635 return *reinterpret_cast<const T*>(addr);
8636 }
8637
8638 template <typename T>
8639 V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
8640 typedef internal::Object O;
8641 typedef internal::Internals I;
8642 O* ctx = *reinterpret_cast<O* const*>(context);
8643 int embedder_data_offset = I::kContextHeaderSize +
8644 (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
8645 O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
8646 int value_offset =
8647 I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
8648 return I::ReadField<T>(embedder_data, value_offset);
8649 }
8650 };
8651
8652 } // namespace internal
8653
8654
8655 template <class T>
8656 Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
8657 return New(isolate, that.val_);
8658 }
8659
8660 template <class T>
8661 Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
8662 return New(isolate, that.val_);
8663 }
8664
8665
8666 template <class T>
8667 Local<T> Local<T>::New(Isolate* isolate, T* that) {
8668 if (that == NULL) return Local<T>();
8669 T* that_ptr = that;
8670 internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
8671 return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
8672 reinterpret_cast<internal::Isolate*>(isolate), *p)));
8673 }
8674
8675
8676 template<class T>
8677 template<class S>
8678 void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
8679 TYPE_CHECK(T, S);
8680 V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
8681 }
8682
8683
8684 template<class T>
8685 Local<T> Eternal<T>::Get(Isolate* isolate) {
8686 return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
8687 }
8688
8689
8690 template <class T>
8691 Local<T> MaybeLocal<T>::ToLocalChecked() {
8692 if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
8693 return Local<T>(val_);
8694 }
8695
8696
8697 template <class T>
8698 void* WeakCallbackInfo<T>::GetInternalField(int index) const {
8699 #ifdef V8_ENABLE_CHECKS
8700 if (index < 0 || index >= kInternalFieldsInWeakCallback) {
8701 V8::InternalFieldOutOfBounds(index);
8702 }
8703 #endif
8704 return internal_fields_[index];
8705 }
8706
8707
8708 template <class T>
8709 T* PersistentBase<T>::New(Isolate* isolate, T* that) {
8710 if (that == NULL) return NULL;
8711 internal::Object** p = reinterpret_cast<internal::Object**>(that);
8712 return reinterpret_cast<T*>(
8713 V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
8714 p));
8715 }
8716
8717
8718 template <class T, class M>
8719 template <class S, class M2>
8720 void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
8721 TYPE_CHECK(T, S);
8722 this->Reset();
8723 if (that.IsEmpty()) return;
8724 internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
8725 this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
8726 M::Copy(that, this);
8727 }
8728
8729
8730 template <class T>
8731 bool PersistentBase<T>::IsIndependent() const {
8732 typedef internal::Internals I;
8733 if (this->IsEmpty()) return false;
8734 return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8735 I::kNodeIsIndependentShift);
8736 }
8737
8738
8739 template <class T>
8740 bool PersistentBase<T>::IsNearDeath() const {
8741 typedef internal::Internals I;
8742 if (this->IsEmpty()) return false;
8743 uint8_t node_state =
8744 I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
8745 return node_state == I::kNodeStateIsNearDeathValue ||
8746 node_state == I::kNodeStateIsPendingValue;
8747 }
8748
8749
8750 template <class T>
8751 bool PersistentBase<T>::IsWeak() const {
8752 typedef internal::Internals I;
8753 if (this->IsEmpty()) return false;
8754 return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
8755 I::kNodeStateIsWeakValue;
8756 }
8757
8758
8759 template <class T>
8760 void PersistentBase<T>::Reset() {
8761 if (this->IsEmpty()) return;
8762 V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
8763 val_ = 0;
8764 }
8765
8766
8767 template <class T>
8768 template <class S>
8769 void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
8770 TYPE_CHECK(T, S);
8771 Reset();
8772 if (other.IsEmpty()) return;
8773 this->val_ = New(isolate, other.val_);
8774 }
8775
8776
8777 template <class T>
8778 template <class S>
8779 void PersistentBase<T>::Reset(Isolate* isolate,
8780 const PersistentBase<S>& other) {
8781 TYPE_CHECK(T, S);
8782 Reset();
8783 if (other.IsEmpty()) return;
8784 this->val_ = New(isolate, other.val_);
8785 }
8786
8787
8788 template <class T>
8789 template <typename P>
8790 V8_INLINE void PersistentBase<T>::SetWeak(
8791 P* parameter, typename WeakCallbackInfo<P>::Callback callback,
8792 WeakCallbackType type) {
8793 typedef typename WeakCallbackInfo<void>::Callback Callback;
8794 V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
8795 reinterpret_cast<Callback>(callback), type);
8796 }
8797
8798 template <class T>
8799 void PersistentBase<T>::SetWeak() {
8800 V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_));
8801 }
8802
8803 template <class T>
8804 template <typename P>
8805 P* PersistentBase<T>::ClearWeak() {
8806 return reinterpret_cast<P*>(
8807 V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
8808 }
8809
8810 template <class T>
8811 void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const {
8812 if (IsEmpty()) return;
8813 V8::RegisterExternallyReferencedObject(
8814 reinterpret_cast<internal::Object**>(this->val_),
8815 reinterpret_cast<internal::Isolate*>(isolate));
8816 }
8817
8818 template <class T>
8819 void PersistentBase<T>::MarkIndependent() {
8820 typedef internal::Internals I;
8821 if (this->IsEmpty()) return;
8822 I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8823 true,
8824 I::kNodeIsIndependentShift);
8825 }
8826
8827 template <class T>
8828 void PersistentBase<T>::MarkActive() {
8829 typedef internal::Internals I;
8830 if (this->IsEmpty()) return;
8831 I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
8832 I::kNodeIsActiveShift);
8833 }
8834
8835
8836 template <class T>
8837 void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
8838 typedef internal::Internals I;
8839 if (this->IsEmpty()) return;
8840 internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8841 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8842 *reinterpret_cast<uint16_t*>(addr) = class_id;
8843 }
8844
8845
8846 template <class T>
8847 uint16_t PersistentBase<T>::WrapperClassId() const {
8848 typedef internal::Internals I;
8849 if (this->IsEmpty()) return 0;
8850 internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8851 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8852 return *reinterpret_cast<uint16_t*>(addr);
8853 }
8854
8855
8856 template<typename T>
8857 ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
8858
8859 template<typename T>
8860 template<typename S>
8861 void ReturnValue<T>::Set(const Persistent<S>& handle) {
8862 TYPE_CHECK(T, S);
8863 if (V8_UNLIKELY(handle.IsEmpty())) {
8864 *value_ = GetDefaultValue();
8865 } else {
8866 *value_ = *reinterpret_cast<internal::Object**>(*handle);
8867 }
8868 }
8869
8870 template <typename T>
8871 template <typename S>
8872 void ReturnValue<T>::Set(const Global<S>& handle) {
8873 TYPE_CHECK(T, S);
8874 if (V8_UNLIKELY(handle.IsEmpty())) {
8875 *value_ = GetDefaultValue();
8876 } else {
8877 *value_ = *reinterpret_cast<internal::Object**>(*handle);
8878 }
8879 }
8880
8881 template <typename T>
8882 template <typename S>
8883 void ReturnValue<T>::Set(const Local<S> handle) {
8884 TYPE_CHECK(T, S);
8885 if (V8_UNLIKELY(handle.IsEmpty())) {
8886 *value_ = GetDefaultValue();
8887 } else {
8888 *value_ = *reinterpret_cast<internal::Object**>(*handle);
8889 }
8890 }
8891
8892 template<typename T>
8893 void ReturnValue<T>::Set(double i) {
8894 TYPE_CHECK(T, Number);
8895 Set(Number::New(GetIsolate(), i));
8896 }
8897
8898 template<typename T>
8899 void ReturnValue<T>::Set(int32_t i) {
8900 TYPE_CHECK(T, Integer);
8901 typedef internal::Internals I;
8902 if (V8_LIKELY(I::IsValidSmi(i))) {
8903 *value_ = I::IntToSmi(i);
8904 return;
8905 }
8906 Set(Integer::New(GetIsolate(), i));
8907 }
8908
8909 template<typename T>
8910 void ReturnValue<T>::Set(uint32_t i) {
8911 TYPE_CHECK(T, Integer);
8912 // Can't simply use INT32_MAX here for whatever reason.
8913 bool fits_into_int32_t = (i & (1U << 31)) == 0;
8914 if (V8_LIKELY(fits_into_int32_t)) {
8915 Set(static_cast<int32_t>(i));
8916 return;
8917 }
8918 Set(Integer::NewFromUnsigned(GetIsolate(), i));
8919 }
8920
8921 template<typename T>
8922 void ReturnValue<T>::Set(bool value) {
8923 TYPE_CHECK(T, Boolean);
8924 typedef internal::Internals I;
8925 int root_index;
8926 if (value) {
8927 root_index = I::kTrueValueRootIndex;
8928 } else {
8929 root_index = I::kFalseValueRootIndex;
8930 }
8931 *value_ = *I::GetRoot(GetIsolate(), root_index);
8932 }
8933
8934 template<typename T>
8935 void ReturnValue<T>::SetNull() {
8936 TYPE_CHECK(T, Primitive);
8937 typedef internal::Internals I;
8938 *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
8939 }
8940
8941 template<typename T>
8942 void ReturnValue<T>::SetUndefined() {
8943 TYPE_CHECK(T, Primitive);
8944 typedef internal::Internals I;
8945 *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
8946 }
8947
8948 template<typename T>
8949 void ReturnValue<T>::SetEmptyString() {
8950 TYPE_CHECK(T, String);
8951 typedef internal::Internals I;
8952 *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
8953 }
8954
8955 template <typename T>
8956 Isolate* ReturnValue<T>::GetIsolate() const {
8957 // Isolate is always the pointer below the default value on the stack.
8958 return *reinterpret_cast<Isolate**>(&value_[-2]);
8959 }
8960
8961 template <typename T>
8962 Local<Value> ReturnValue<T>::Get() const {
8963 typedef internal::Internals I;
8964 if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex))
8965 return Local<Value>(*Undefined(GetIsolate()));
8966 return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_));
8967 }
8968
8969 template <typename T>
8970 template <typename S>
8971 void ReturnValue<T>::Set(S* whatever) {
8972 // Uncompilable to prevent inadvertent misuse.
8973 TYPE_CHECK(S*, Primitive);
8974 }
8975
8976 template<typename T>
8977 internal::Object* ReturnValue<T>::GetDefaultValue() {
8978 // Default value is always the pointer below value_ on the stack.
8979 return value_[-1];
8980 }
8981
8982 template <typename T>
8983 FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
8984 internal::Object** values,
8985 int length)
8986 : implicit_args_(implicit_args), values_(values), length_(length) {}
8987
8988 template<typename T>
8989 Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
8990 if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
8991 return Local<Value>(reinterpret_cast<Value*>(values_ - i));
8992 }
8993
8994
8995 template<typename T>
8996 Local<Function> FunctionCallbackInfo<T>::Callee() const {
8997 return Local<Function>(reinterpret_cast<Function*>(
8998 &implicit_args_[kCalleeIndex]));
8999 }
9000
9001
9002 template<typename T>
9003 Local<Object> FunctionCallbackInfo<T>::This() const {
9004 return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
9005 }
9006
9007
9008 template<typename T>
9009 Local<Object> FunctionCallbackInfo<T>::Holder() const {
9010 return Local<Object>(reinterpret_cast<Object*>(
9011 &implicit_args_[kHolderIndex]));
9012 }
9013
9014 template <typename T>
9015 Local<Value> FunctionCallbackInfo<T>::NewTarget() const {
9016 return Local<Value>(
9017 reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex]));
9018 }
9019
9020 template <typename T>
9021 Local<Value> FunctionCallbackInfo<T>::Data() const {
9022 return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
9023 }
9024
9025
9026 template<typename T>
9027 Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
9028 return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
9029 }
9030
9031
9032 template<typename T>
9033 ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
9034 return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
9035 }
9036
9037
9038 template<typename T>
9039 bool FunctionCallbackInfo<T>::IsConstructCall() const {
9040 return !NewTarget()->IsUndefined();
9041 }
9042
9043
9044 template<typename T>
9045 int FunctionCallbackInfo<T>::Length() const {
9046 return length_;
9047 }
9048
9049 ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
9050 Local<Integer> resource_line_offset,
9051 Local<Integer> resource_column_offset,
9052 Local<Boolean> resource_is_shared_cross_origin,
9053 Local<Integer> script_id,
9054 Local<Value> source_map_url,
9055 Local<Boolean> resource_is_opaque,
9056 Local<Boolean> is_wasm, Local<Boolean> is_module)
9057 : resource_name_(resource_name),
9058 resource_line_offset_(resource_line_offset),
9059 resource_column_offset_(resource_column_offset),
9060 options_(!resource_is_shared_cross_origin.IsEmpty() &&
9061 resource_is_shared_cross_origin->IsTrue(),
9062 !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue(),
9063 !is_wasm.IsEmpty() && is_wasm->IsTrue(),
9064 !is_module.IsEmpty() && is_module->IsTrue()),
9065 script_id_(script_id),
9066 source_map_url_(source_map_url) {}
9067
9068 Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
9069
9070
9071 Local<Integer> ScriptOrigin::ResourceLineOffset() const {
9072 return resource_line_offset_;
9073 }
9074
9075
9076 Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
9077 return resource_column_offset_;
9078 }
9079
9080
9081 Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
9082
9083
9084 Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
9085
9086
9087 ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
9088 CachedData* data)
9089 : source_string(string),
9090 resource_name(origin.ResourceName()),
9091 resource_line_offset(origin.ResourceLineOffset()),
9092 resource_column_offset(origin.ResourceColumnOffset()),
9093 resource_options(origin.Options()),
9094 source_map_url(origin.SourceMapUrl()),
9095 cached_data(data) {}
9096
9097
9098 ScriptCompiler::Source::Source(Local<String> string,
9099 CachedData* data)
9100 : source_string(string), cached_data(data) {}
9101
9102
9103 ScriptCompiler::Source::~Source() {
9104 delete cached_data;
9105 }
9106
9107
9108 const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
9109 const {
9110 return cached_data;
9111 }
9112
9113 const ScriptOriginOptions& ScriptCompiler::Source::GetResourceOptions() const {
9114 return resource_options;
9115 }
9116
9117 Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
9118 return value ? True(isolate) : False(isolate);
9119 }
9120
9121 void Template::Set(Isolate* isolate, const char* name, Local<Data> value) {
9122 Set(String::NewFromUtf8(isolate, name, NewStringType::kInternalized)
9123 .ToLocalChecked(),
9124 value);
9125 }
9126
9127
9128 Local<Value> Object::GetInternalField(int index) {
9129 #ifndef V8_ENABLE_CHECKS
9130 typedef internal::Object O;
9131 typedef internal::HeapObject HO;
9132 typedef internal::Internals I;
9133 O* obj = *reinterpret_cast<O**>(this);
9134 // Fast path: If the object is a plain JSObject, which is the common case, we
9135 // know where to find the internal fields and can return the value directly.
9136 auto instance_type = I::GetInstanceType(obj);
9137 if (instance_type == I::kJSObjectType ||
9138 instance_type == I::kJSApiObjectType) {
9139 int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
9140 O* value = I::ReadField<O*>(obj, offset);
9141 O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
9142 return Local<Value>(reinterpret_cast<Value*>(result));
9143 }
9144 #endif
9145 return SlowGetInternalField(index);
9146 }
9147
9148
9149 void* Object::GetAlignedPointerFromInternalField(int index) {
9150 #ifndef V8_ENABLE_CHECKS
9151 typedef internal::Object O;
9152 typedef internal::Internals I;
9153 O* obj = *reinterpret_cast<O**>(this);
9154 // Fast path: If the object is a plain JSObject, which is the common case, we
9155 // know where to find the internal fields and can return the value directly.
9156 auto instance_type = I::GetInstanceType(obj);
9157 if (V8_LIKELY(instance_type == I::kJSObjectType ||
9158 instance_type == I::kJSApiObjectType)) {
9159 int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
9160 return I::ReadField<void*>(obj, offset);
9161 }
9162 #endif
9163 return SlowGetAlignedPointerFromInternalField(index);
9164 }
9165
9166 String* String::Cast(v8::Value* value) {
9167 #ifdef V8_ENABLE_CHECKS
9168 CheckCast(value);
9169 #endif
9170 return static_cast<String*>(value);
9171 }
9172
9173
9174 Local<String> String::Empty(Isolate* isolate) {
9175 typedef internal::Object* S;
9176 typedef internal::Internals I;
9177 I::CheckInitialized(isolate);
9178 S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
9179 return Local<String>(reinterpret_cast<String*>(slot));
9180 }
9181
9182
9183 String::ExternalStringResource* String::GetExternalStringResource() const {
9184 typedef internal::Object O;
9185 typedef internal::Internals I;
9186 O* obj = *reinterpret_cast<O* const*>(this);
9187 String::ExternalStringResource* result;
9188 if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
9189 void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
9190 result = reinterpret_cast<String::ExternalStringResource*>(value);
9191 } else {
9192 result = NULL;
9193 }
9194 #ifdef V8_ENABLE_CHECKS
9195 VerifyExternalStringResource(result);
9196 #endif
9197 return result;
9198 }
9199
9200
9201 String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
9202 String::Encoding* encoding_out) const {
9203 typedef internal::Object O;
9204 typedef internal::Internals I;
9205 O* obj = *reinterpret_cast<O* const*>(this);
9206 int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
9207 *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
9208 ExternalStringResourceBase* resource = NULL;
9209 if (type == I::kExternalOneByteRepresentationTag ||
9210 type == I::kExternalTwoByteRepresentationTag) {
9211 void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
9212 resource = static_cast<ExternalStringResourceBase*>(value);
9213 }
9214 #ifdef V8_ENABLE_CHECKS
9215 VerifyExternalStringResourceBase(resource, *encoding_out);
9216 #endif
9217 return resource;
9218 }
9219
9220
9221 bool Value::IsUndefined() const {
9222 #ifdef V8_ENABLE_CHECKS
9223 return FullIsUndefined();
9224 #else
9225 return QuickIsUndefined();
9226 #endif
9227 }
9228
9229 bool Value::QuickIsUndefined() const {
9230 typedef internal::Object O;
9231 typedef internal::Internals I;
9232 O* obj = *reinterpret_cast<O* const*>(this);
9233 if (!I::HasHeapObjectTag(obj)) return false;
9234 if (I::GetInstanceType(obj) != I::kOddballType) return false;
9235 return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
9236 }
9237
9238
9239 bool Value::IsNull() const {
9240 #ifdef V8_ENABLE_CHECKS
9241 return FullIsNull();
9242 #else
9243 return QuickIsNull();
9244 #endif
9245 }
9246
9247 bool Value::QuickIsNull() const {
9248 typedef internal::Object O;
9249 typedef internal::Internals I;
9250 O* obj = *reinterpret_cast<O* const*>(this);
9251 if (!I::HasHeapObjectTag(obj)) return false;
9252 if (I::GetInstanceType(obj) != I::kOddballType) return false;
9253 return (I::GetOddballKind(obj) == I::kNullOddballKind);
9254 }
9255
9256 bool Value::IsNullOrUndefined() const {
9257 #ifdef V8_ENABLE_CHECKS
9258 return FullIsNull() || FullIsUndefined();
9259 #else
9260 return QuickIsNullOrUndefined();
9261 #endif
9262 }
9263
9264 bool Value::QuickIsNullOrUndefined() const {
9265 typedef internal::Object O;
9266 typedef internal::Internals I;
9267 O* obj = *reinterpret_cast<O* const*>(this);
9268 if (!I::HasHeapObjectTag(obj)) return false;
9269 if (I::GetInstanceType(obj) != I::kOddballType) return false;
9270 int kind = I::GetOddballKind(obj);
9271 return kind == I::kNullOddballKind || kind == I::kUndefinedOddballKind;
9272 }
9273
9274 bool Value::IsString() const {
9275 #ifdef V8_ENABLE_CHECKS
9276 return FullIsString();
9277 #else
9278 return QuickIsString();
9279 #endif
9280 }
9281
9282 bool Value::QuickIsString() const {
9283 typedef internal::Object O;
9284 typedef internal::Internals I;
9285 O* obj = *reinterpret_cast<O* const*>(this);
9286 if (!I::HasHeapObjectTag(obj)) return false;
9287 return (I::GetInstanceType(obj) < I::kFirstNonstringType);
9288 }
9289
9290
9291 template <class T> Value* Value::Cast(T* value) {
9292 return static_cast<Value*>(value);
9293 }
9294
9295
9296 Local<Boolean> Value::ToBoolean() const {
9297 return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
9298 .FromMaybe(Local<Boolean>());
9299 }
9300
9301
9302 Local<Number> Value::ToNumber() const {
9303 return ToNumber(Isolate::GetCurrent()->GetCurrentContext())
9304 .FromMaybe(Local<Number>());
9305 }
9306
9307
9308 Local<String> Value::ToString() const {
9309 return ToString(Isolate::GetCurrent()->GetCurrentContext())
9310 .FromMaybe(Local<String>());
9311 }
9312
9313
9314 Local<String> Value::ToDetailString() const {
9315 return ToDetailString(Isolate::GetCurrent()->GetCurrentContext())
9316 .FromMaybe(Local<String>());
9317 }
9318
9319
9320 Local<Object> Value::ToObject() const {
9321 return ToObject(Isolate::GetCurrent()->GetCurrentContext())
9322 .FromMaybe(Local<Object>());
9323 }
9324
9325
9326 Local<Integer> Value::ToInteger() const {
9327 return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
9328 .FromMaybe(Local<Integer>());
9329 }
9330
9331
9332 Local<Uint32> Value::ToUint32() const {
9333 return ToUint32(Isolate::GetCurrent()->GetCurrentContext())
9334 .FromMaybe(Local<Uint32>());
9335 }
9336
9337
9338 Local<Int32> Value::ToInt32() const {
9339 return ToInt32(Isolate::GetCurrent()->GetCurrentContext())
9340 .FromMaybe(Local<Int32>());
9341 }
9342
9343
9344 Boolean* Boolean::Cast(v8::Value* value) {
9345 #ifdef V8_ENABLE_CHECKS
9346 CheckCast(value);
9347 #endif
9348 return static_cast<Boolean*>(value);
9349 }
9350
9351
9352 Name* Name::Cast(v8::Value* value) {
9353 #ifdef V8_ENABLE_CHECKS
9354 CheckCast(value);
9355 #endif
9356 return static_cast<Name*>(value);
9357 }
9358
9359
9360 Symbol* Symbol::Cast(v8::Value* value) {
9361 #ifdef V8_ENABLE_CHECKS
9362 CheckCast(value);
9363 #endif
9364 return static_cast<Symbol*>(value);
9365 }
9366
9367
9368 Number* Number::Cast(v8::Value* value) {
9369 #ifdef V8_ENABLE_CHECKS
9370 CheckCast(value);
9371 #endif
9372 return static_cast<Number*>(value);
9373 }
9374
9375
9376 Integer* Integer::Cast(v8::Value* value) {
9377 #ifdef V8_ENABLE_CHECKS
9378 CheckCast(value);
9379 #endif
9380 return static_cast<Integer*>(value);
9381 }
9382
9383
9384 Int32* Int32::Cast(v8::Value* value) {
9385 #ifdef V8_ENABLE_CHECKS
9386 CheckCast(value);
9387 #endif
9388 return static_cast<Int32*>(value);
9389 }
9390
9391
9392 Uint32* Uint32::Cast(v8::Value* value) {
9393 #ifdef V8_ENABLE_CHECKS
9394 CheckCast(value);
9395 #endif
9396 return static_cast<Uint32*>(value);
9397 }
9398
9399
9400 Date* Date::Cast(v8::Value* value) {
9401 #ifdef V8_ENABLE_CHECKS
9402 CheckCast(value);
9403 #endif
9404 return static_cast<Date*>(value);
9405 }
9406
9407
9408 StringObject* StringObject::Cast(v8::Value* value) {
9409 #ifdef V8_ENABLE_CHECKS
9410 CheckCast(value);
9411 #endif
9412 return static_cast<StringObject*>(value);
9413 }
9414
9415
9416 SymbolObject* SymbolObject::Cast(v8::Value* value) {
9417 #ifdef V8_ENABLE_CHECKS
9418 CheckCast(value);
9419 #endif
9420 return static_cast<SymbolObject*>(value);
9421 }
9422
9423
9424 NumberObject* NumberObject::Cast(v8::Value* value) {
9425 #ifdef V8_ENABLE_CHECKS
9426 CheckCast(value);
9427 #endif
9428 return static_cast<NumberObject*>(value);
9429 }
9430
9431
9432 BooleanObject* BooleanObject::Cast(v8::Value* value) {
9433 #ifdef V8_ENABLE_CHECKS
9434 CheckCast(value);
9435 #endif
9436 return static_cast<BooleanObject*>(value);
9437 }
9438
9439
9440 RegExp* RegExp::Cast(v8::Value* value) {
9441 #ifdef V8_ENABLE_CHECKS
9442 CheckCast(value);
9443 #endif
9444 return static_cast<RegExp*>(value);
9445 }
9446
9447
9448 Object* Object::Cast(v8::Value* value) {
9449 #ifdef V8_ENABLE_CHECKS
9450 CheckCast(value);
9451 #endif
9452 return static_cast<Object*>(value);
9453 }
9454
9455
9456 Array* Array::Cast(v8::Value* value) {
9457 #ifdef V8_ENABLE_CHECKS
9458 CheckCast(value);
9459 #endif
9460 return static_cast<Array*>(value);
9461 }
9462
9463
9464 Map* Map::Cast(v8::Value* value) {
9465 #ifdef V8_ENABLE_CHECKS
9466 CheckCast(value);
9467 #endif
9468 return static_cast<Map*>(value);
9469 }
9470
9471
9472 Set* Set::Cast(v8::Value* value) {
9473 #ifdef V8_ENABLE_CHECKS
9474 CheckCast(value);
9475 #endif
9476 return static_cast<Set*>(value);
9477 }
9478
9479
9480 Promise* Promise::Cast(v8::Value* value) {
9481 #ifdef V8_ENABLE_CHECKS
9482 CheckCast(value);
9483 #endif
9484 return static_cast<Promise*>(value);
9485 }
9486
9487
9488 Proxy* Proxy::Cast(v8::Value* value) {
9489 #ifdef V8_ENABLE_CHECKS
9490 CheckCast(value);
9491 #endif
9492 return static_cast<Proxy*>(value);
9493 }
9494
9495 WasmCompiledModule* WasmCompiledModule::Cast(v8::Value* value) {
9496 #ifdef V8_ENABLE_CHECKS
9497 CheckCast(value);
9498 #endif
9499 return static_cast<WasmCompiledModule*>(value);
9500 }
9501
9502 Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
9503 #ifdef V8_ENABLE_CHECKS
9504 CheckCast(value);
9505 #endif
9506 return static_cast<Promise::Resolver*>(value);
9507 }
9508
9509
9510 ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
9511 #ifdef V8_ENABLE_CHECKS
9512 CheckCast(value);
9513 #endif
9514 return static_cast<ArrayBuffer*>(value);
9515 }
9516
9517
9518 ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
9519 #ifdef V8_ENABLE_CHECKS
9520 CheckCast(value);
9521 #endif
9522 return static_cast<ArrayBufferView*>(value);
9523 }
9524
9525
9526 TypedArray* TypedArray::Cast(v8::Value* value) {
9527 #ifdef V8_ENABLE_CHECKS
9528 CheckCast(value);
9529 #endif
9530 return static_cast<TypedArray*>(value);
9531 }
9532
9533
9534 Uint8Array* Uint8Array::Cast(v8::Value* value) {
9535 #ifdef V8_ENABLE_CHECKS
9536 CheckCast(value);
9537 #endif
9538 return static_cast<Uint8Array*>(value);
9539 }
9540
9541
9542 Int8Array* Int8Array::Cast(v8::Value* value) {
9543 #ifdef V8_ENABLE_CHECKS
9544 CheckCast(value);
9545 #endif
9546 return static_cast<Int8Array*>(value);
9547 }
9548
9549
9550 Uint16Array* Uint16Array::Cast(v8::Value* value) {
9551 #ifdef V8_ENABLE_CHECKS
9552 CheckCast(value);
9553 #endif
9554 return static_cast<Uint16Array*>(value);
9555 }
9556
9557
9558 Int16Array* Int16Array::Cast(v8::Value* value) {
9559 #ifdef V8_ENABLE_CHECKS
9560 CheckCast(value);
9561 #endif
9562 return static_cast<Int16Array*>(value);
9563 }
9564
9565
9566 Uint32Array* Uint32Array::Cast(v8::Value* value) {
9567 #ifdef V8_ENABLE_CHECKS
9568 CheckCast(value);
9569 #endif
9570 return static_cast<Uint32Array*>(value);
9571 }
9572
9573
9574 Int32Array* Int32Array::Cast(v8::Value* value) {
9575 #ifdef V8_ENABLE_CHECKS
9576 CheckCast(value);
9577 #endif
9578 return static_cast<Int32Array*>(value);
9579 }
9580
9581
9582 Float32Array* Float32Array::Cast(v8::Value* value) {
9583 #ifdef V8_ENABLE_CHECKS
9584 CheckCast(value);
9585 #endif
9586 return static_cast<Float32Array*>(value);
9587 }
9588
9589
9590 Float64Array* Float64Array::Cast(v8::Value* value) {
9591 #ifdef V8_ENABLE_CHECKS
9592 CheckCast(value);
9593 #endif
9594 return static_cast<Float64Array*>(value);
9595 }
9596
9597
9598 Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
9599 #ifdef V8_ENABLE_CHECKS
9600 CheckCast(value);
9601 #endif
9602 return static_cast<Uint8ClampedArray*>(value);
9603 }
9604
9605
9606 DataView* DataView::Cast(v8::Value* value) {
9607 #ifdef V8_ENABLE_CHECKS
9608 CheckCast(value);
9609 #endif
9610 return static_cast<DataView*>(value);
9611 }
9612
9613
9614 SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
9615 #ifdef V8_ENABLE_CHECKS
9616 CheckCast(value);
9617 #endif
9618 return static_cast<SharedArrayBuffer*>(value);
9619 }
9620
9621
9622 Function* Function::Cast(v8::Value* value) {
9623 #ifdef V8_ENABLE_CHECKS
9624 CheckCast(value);
9625 #endif
9626 return static_cast<Function*>(value);
9627 }
9628
9629
9630 External* External::Cast(v8::Value* value) {
9631 #ifdef V8_ENABLE_CHECKS
9632 CheckCast(value);
9633 #endif
9634 return static_cast<External*>(value);
9635 }
9636
9637
9638 template<typename T>
9639 Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
9640 return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
9641 }
9642
9643
9644 template<typename T>
9645 Local<Value> PropertyCallbackInfo<T>::Data() const {
9646 return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
9647 }
9648
9649
9650 template<typename T>
9651 Local<Object> PropertyCallbackInfo<T>::This() const {
9652 return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
9653 }
9654
9655
9656 template<typename T>
9657 Local<Object> PropertyCallbackInfo<T>::Holder() const {
9658 return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
9659 }
9660
9661
9662 template<typename T>
9663 ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
9664 return ReturnValue<T>(&args_[kReturnValueIndex]);
9665 }
9666
9667 template <typename T>
9668 bool PropertyCallbackInfo<T>::ShouldThrowOnError() const {
9669 typedef internal::Internals I;
9670 return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0);
9671 }
9672
9673
9674 Local<Primitive> Undefined(Isolate* isolate) {
9675 typedef internal::Object* S;
9676 typedef internal::Internals I;
9677 I::CheckInitialized(isolate);
9678 S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
9679 return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9680 }
9681
9682
9683 Local<Primitive> Null(Isolate* isolate) {
9684 typedef internal::Object* S;
9685 typedef internal::Internals I;
9686 I::CheckInitialized(isolate);
9687 S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
9688 return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9689 }
9690
9691
9692 Local<Boolean> True(Isolate* isolate) {
9693 typedef internal::Object* S;
9694 typedef internal::Internals I;
9695 I::CheckInitialized(isolate);
9696 S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
9697 return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9698 }
9699
9700
9701 Local<Boolean> False(Isolate* isolate) {
9702 typedef internal::Object* S;
9703 typedef internal::Internals I;
9704 I::CheckInitialized(isolate);
9705 S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
9706 return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9707 }
9708
9709
9710 void Isolate::SetData(uint32_t slot, void* data) {
9711 typedef internal::Internals I;
9712 I::SetEmbedderData(this, slot, data);
9713 }
9714
9715
9716 void* Isolate::GetData(uint32_t slot) {
9717 typedef internal::Internals I;
9718 return I::GetEmbedderData(this, slot);
9719 }
9720
9721
9722 uint32_t Isolate::GetNumberOfDataSlots() {
9723 typedef internal::Internals I;
9724 return I::kNumIsolateDataSlots;
9725 }
9726
9727
9728 int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
9729 int64_t change_in_bytes) {
9730 typedef internal::Internals I;
9731 int64_t* external_memory = reinterpret_cast<int64_t*>(
9732 reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset);
9733 const int64_t external_memory_limit = *reinterpret_cast<int64_t*>(
9734 reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset);
9735 const int64_t amount = *external_memory + change_in_bytes;
9736 *external_memory = amount;
9737 if (change_in_bytes > 0 && amount > external_memory_limit) {
9738 ReportExternalAllocationLimitReached();
9739 }
9740 return *external_memory;
9741 }
9742
9743
9744 template<typename T>
9745 void Isolate::SetObjectGroupId(const Persistent<T>& object,
9746 UniqueId id) {
9747 TYPE_CHECK(Value, T);
9748 SetObjectGroupId(reinterpret_cast<internal::Object**>(object.val_), id);
9749 }
9750
9751
9752 template<typename T>
9753 void Isolate::SetReferenceFromGroup(UniqueId id,
9754 const Persistent<T>& object) {
9755 TYPE_CHECK(Value, T);
9756 SetReferenceFromGroup(id, reinterpret_cast<internal::Object**>(object.val_));
9757 }
9758
9759
9760 template<typename T, typename S>
9761 void Isolate::SetReference(const Persistent<T>& parent,
9762 const Persistent<S>& child) {
9763 TYPE_CHECK(Object, T);
9764 TYPE_CHECK(Value, S);
9765 SetReference(reinterpret_cast<internal::Object**>(parent.val_),
9766 reinterpret_cast<internal::Object**>(child.val_));
9767 }
9768
9769
9770 Local<Value> Context::GetEmbedderData(int index) {
9771 #ifndef V8_ENABLE_CHECKS
9772 typedef internal::Object O;
9773 typedef internal::HeapObject HO;
9774 typedef internal::Internals I;
9775 HO* context = *reinterpret_cast<HO**>(this);
9776 O** result =
9777 HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
9778 return Local<Value>(reinterpret_cast<Value*>(result));
9779 #else
9780 return SlowGetEmbedderData(index);
9781 #endif
9782 }
9783
9784
9785 void* Context::GetAlignedPointerFromEmbedderData(int index) {
9786 #ifndef V8_ENABLE_CHECKS
9787 typedef internal::Internals I;
9788 return I::ReadEmbedderData<void*>(this, index);
9789 #else
9790 return SlowGetAlignedPointerFromEmbedderData(index);
9791 #endif
9792 }
9793
9794
9795 void V8::SetAllowCodeGenerationFromStringsCallback(
9796 AllowCodeGenerationFromStringsCallback callback) {
9797 Isolate* isolate = Isolate::GetCurrent();
9798 isolate->SetAllowCodeGenerationFromStringsCallback(callback);
9799 }
9800
9801
9802 bool V8::IsDead() {
9803 Isolate* isolate = Isolate::GetCurrent();
9804 return isolate->IsDead();
9805 }
9806
9807
9808 bool V8::AddMessageListener(MessageCallback that, Local<Value> data) {
9809 Isolate* isolate = Isolate::GetCurrent();
9810 return isolate->AddMessageListener(that, data);
9811 }
9812
9813
9814 void V8::RemoveMessageListeners(MessageCallback that) {
9815 Isolate* isolate = Isolate::GetCurrent();
9816 isolate->RemoveMessageListeners(that);
9817 }
9818
9819
9820 void V8::SetFailedAccessCheckCallbackFunction(
9821 FailedAccessCheckCallback callback) {
9822 Isolate* isolate = Isolate::GetCurrent();
9823 isolate->SetFailedAccessCheckCallbackFunction(callback);
9824 }
9825
9826
9827 void V8::SetCaptureStackTraceForUncaughtExceptions(
9828 bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
9829 Isolate* isolate = Isolate::GetCurrent();
9830 isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
9831 options);
9832 }
9833
9834
9835 void V8::SetFatalErrorHandler(FatalErrorCallback callback) {
9836 Isolate* isolate = Isolate::GetCurrent();
9837 isolate->SetFatalErrorHandler(callback);
9838 }
9839
9840 void V8::RemoveGCPrologueCallback(GCCallback callback) {
9841 Isolate* isolate = Isolate::GetCurrent();
9842 isolate->RemoveGCPrologueCallback(
9843 reinterpret_cast<Isolate::GCCallback>(callback));
9844 }
9845
9846
9847 void V8::RemoveGCEpilogueCallback(GCCallback callback) {
9848 Isolate* isolate = Isolate::GetCurrent();
9849 isolate->RemoveGCEpilogueCallback(
9850 reinterpret_cast<Isolate::GCCallback>(callback));
9851 }
9852
9853 void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); }
9854
9855
9856 bool V8::IsExecutionTerminating(Isolate* isolate) {
9857 if (isolate == NULL) {
9858 isolate = Isolate::GetCurrent();
9859 }
9860 return isolate->IsExecutionTerminating();
9861 }
9862
9863
9864 void V8::CancelTerminateExecution(Isolate* isolate) {
9865 isolate->CancelTerminateExecution();
9866 }
9867
9868
9869 void V8::VisitExternalResources(ExternalResourceVisitor* visitor) {
9870 Isolate* isolate = Isolate::GetCurrent();
9871 isolate->VisitExternalResources(visitor);
9872 }
9873
9874
9875 void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
9876 Isolate* isolate = Isolate::GetCurrent();
9877 isolate->VisitHandlesWithClassIds(visitor);
9878 }
9879
9880
9881 void V8::VisitHandlesWithClassIds(Isolate* isolate,
9882 PersistentHandleVisitor* visitor) {
9883 isolate->VisitHandlesWithClassIds(visitor);
9884 }
9885
9886
9887 void V8::VisitHandlesForPartialDependence(Isolate* isolate,
9888 PersistentHandleVisitor* visitor) {
9889 isolate->VisitHandlesForPartialDependence(visitor);
9890 }
9891
9892 /**
9893 * \example shell.cc
9894 * A simple shell that takes a list of expressions on the
9895 * command-line and executes them.
9896 */
9897
9898
9899 /**
9900 * \example process.cc
9901 */
9902
9903
9904 } // namespace v8
9905
9906
9907 #undef TYPE_CHECK
9908
9909
9910 #endif // INCLUDE_V8_H_
9911