• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //
9 //===----------------------------------------------------------------------===//
10 
11 #define DEBUG_TYPE "hexagon-pei"
12 
13 #include "HexagonBlockRanges.h"
14 #include "HexagonFrameLowering.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachinePostDominators.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegisterScavenging.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetOptions.h"
39 
40 // Hexagon stack frame layout as defined by the ABI:
41 //
42 //                                                       Incoming arguments
43 //                                                       passed via stack
44 //                                                                      |
45 //                                                                      |
46 //        SP during function's                 FP during function's     |
47 //    +-- runtime (top of stack)               runtime (bottom) --+     |
48 //    |                                                           |     |
49 // --++---------------------+------------------+-----------------++-+-------
50 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
51 //   |   called functions   |  local objects   |  local objects  |FP|
52 // --+----------------------+------------------+-----------------+--+-------
53 //    <-    size known    -> <- size unknown -> <- size known  ->
54 //
55 // Low address                                                 High address
56 //
57 // <--- stack growth
58 //
59 //
60 // - In any circumstances, the outgoing function arguments are always accessi-
61 //   ble using the SP, and the incoming arguments are accessible using the FP.
62 // - If the local objects are not aligned, they can always be accessed using
63 //   the FP.
64 // - If there are no variable-sized objects, the local objects can always be
65 //   accessed using the SP, regardless whether they are aligned or not. (The
66 //   alignment padding will be at the bottom of the stack (highest address),
67 //   and so the offset with respect to the SP will be known at the compile-
68 //   -time.)
69 //
70 // The only complication occurs if there are both, local aligned objects, and
71 // dynamically allocated (variable-sized) objects. The alignment pad will be
72 // placed between the FP and the local objects, thus preventing the use of the
73 // FP to access the local objects. At the same time, the variable-sized objects
74 // will be between the SP and the local objects, thus introducing an unknown
75 // distance from the SP to the locals.
76 //
77 // To avoid this problem, a new register is created that holds the aligned
78 // address of the bottom of the stack, referred in the sources as AP (aligned
79 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
80 // that aligns AP to the required boundary (a maximum of the alignments of
81 // all stack objects, fixed- and variable-sized). All local objects[1] will
82 // then use AP as the base pointer.
83 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
84 // their name from being allocated at fixed locations on the stack, relative
85 // to the FP. In the presence of dynamic allocation and local alignment, such
86 // objects can only be accessed through the FP.
87 //
88 // Illustration of the AP:
89 //                                                                FP --+
90 //                                                                     |
91 // ---------------+---------------------+-----+-----------------------++-+--
92 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
93 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
94 // ---------------+---------------------+-----+-----------------+-----+--+--
95 //                                      |<-- Multiple of the -->|
96 //                                           stack alignment    +-- AP
97 //
98 // The AP is set up at the beginning of the function. Since it is not a dedi-
99 // cated (reserved) register, it needs to be kept live throughout the function
100 // to be available as the base register for local object accesses.
101 // Normally, an address of a stack objects is obtained by a pseudo-instruction
102 // TFR_FI. To access local objects with the AP register present, a different
103 // pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
104 // argument compared to TFR_FI: the first input register is the AP register.
105 // This keeps the register live between its definition and its uses.
106 
107 // The AP register is originally set up using pseudo-instruction ALIGNA:
108 //   AP = ALIGNA A
109 // where
110 //   A  - required stack alignment
111 // The alignment value must be the maximum of all alignments required by
112 // any stack object.
113 
114 // The dynamic allocation uses a pseudo-instruction ALLOCA:
115 //   Rd = ALLOCA Rs, A
116 // where
117 //   Rd - address of the allocated space
118 //   Rs - minimum size (the actual allocated can be larger to accommodate
119 //        alignment)
120 //   A  - required alignment
121 
122 
123 using namespace llvm;
124 
125 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
126     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
127 
128 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
129     cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
130     cl::ZeroOrMore);
131 
132 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
133     cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
134     cl::init(6), cl::ZeroOrMore);
135 
136 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
137     cl::Hidden, cl::desc("Specify Os spill func threshold"),
138     cl::init(1), cl::ZeroOrMore);
139 
140 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
141     cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
142     cl::init(false), cl::ZeroOrMore);
143 
144 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
145     cl::init(true), cl::Hidden, cl::ZeroOrMore,
146     cl::desc("Enable stack frame shrink wrapping"));
147 
148 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
149     cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
150     "shrink-wraps"));
151 
152 static cl::opt<bool> UseAllocframe("use-allocframe", cl::init(true),
153     cl::Hidden, cl::desc("Use allocframe more conservatively"));
154 
155 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
156     cl::init(true), cl::desc("Optimize spill slots"));
157 
158 
159 namespace llvm {
160   void initializeHexagonCallFrameInformationPass(PassRegistry&);
161   FunctionPass *createHexagonCallFrameInformation();
162 }
163 
164 namespace {
165   class HexagonCallFrameInformation : public MachineFunctionPass {
166   public:
167     static char ID;
HexagonCallFrameInformation()168     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
169       PassRegistry &PR = *PassRegistry::getPassRegistry();
170       initializeHexagonCallFrameInformationPass(PR);
171     }
172     bool runOnMachineFunction(MachineFunction &MF) override;
getRequiredProperties() const173     MachineFunctionProperties getRequiredProperties() const override {
174       return MachineFunctionProperties().set(
175           MachineFunctionProperties::Property::AllVRegsAllocated);
176     }
177   };
178 
179   char HexagonCallFrameInformation::ID = 0;
180 }
181 
runOnMachineFunction(MachineFunction & MF)182 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
183   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
184   bool NeedCFI = MF.getMMI().hasDebugInfo() ||
185                  MF.getFunction()->needsUnwindTableEntry();
186 
187   if (!NeedCFI)
188     return false;
189   HFI.insertCFIInstructions(MF);
190   return true;
191 }
192 
193 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
194                 "Hexagon call frame information", false, false)
195 
createHexagonCallFrameInformation()196 FunctionPass *llvm::createHexagonCallFrameInformation() {
197   return new HexagonCallFrameInformation();
198 }
199 
200 
201 namespace {
202   /// Map a register pair Reg to the subregister that has the greater "number",
203   /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
getMax32BitSubRegister(unsigned Reg,const TargetRegisterInfo & TRI,bool hireg=true)204   unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
205                                   bool hireg = true) {
206     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
207       return Reg;
208 
209     unsigned RegNo = 0;
210     for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
211       if (hireg) {
212         if (*SubRegs > RegNo)
213           RegNo = *SubRegs;
214       } else {
215         if (!RegNo || *SubRegs < RegNo)
216           RegNo = *SubRegs;
217       }
218     }
219     return RegNo;
220   }
221 
222   /// Returns the callee saved register with the largest id in the vector.
getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo & TRI)223   unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
224                                 const TargetRegisterInfo &TRI) {
225     static_assert(Hexagon::R1 > 0,
226                   "Assume physical registers are encoded as positive integers");
227     if (CSI.empty())
228       return 0;
229 
230     unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
231     for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
232       unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
233       if (Reg > Max)
234         Max = Reg;
235     }
236     return Max;
237   }
238 
239   /// Checks if the basic block contains any instruction that needs a stack
240   /// frame to be already in place.
needsStackFrame(const MachineBasicBlock & MBB,const BitVector & CSR,const HexagonRegisterInfo & HRI)241   bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
242         const HexagonRegisterInfo &HRI) {
243     for (auto &I : MBB) {
244       const MachineInstr *MI = &I;
245       if (MI->isCall())
246         return true;
247       unsigned Opc = MI->getOpcode();
248       switch (Opc) {
249         case Hexagon::ALLOCA:
250         case Hexagon::ALIGNA:
251           return true;
252         default:
253           break;
254       }
255       // Check individual operands.
256       for (const MachineOperand &MO : MI->operands()) {
257         // While the presence of a frame index does not prove that a stack
258         // frame will be required, all frame indexes should be within alloc-
259         // frame/deallocframe. Otherwise, the code that translates a frame
260         // index into an offset would have to be aware of the placement of
261         // the frame creation/destruction instructions.
262         if (MO.isFI())
263           return true;
264         if (!MO.isReg())
265           continue;
266         unsigned R = MO.getReg();
267         // Virtual registers will need scavenging, which then may require
268         // a stack slot.
269         if (TargetRegisterInfo::isVirtualRegister(R))
270           return true;
271         for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
272           if (CSR[*S])
273             return true;
274       }
275     }
276     return false;
277   }
278 
279   /// Returns true if MBB has a machine instructions that indicates a tail call
280   /// in the block.
hasTailCall(const MachineBasicBlock & MBB)281   bool hasTailCall(const MachineBasicBlock &MBB) {
282     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
283     unsigned RetOpc = I->getOpcode();
284     return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
285   }
286 
287   /// Returns true if MBB contains an instruction that returns.
hasReturn(const MachineBasicBlock & MBB)288   bool hasReturn(const MachineBasicBlock &MBB) {
289     for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
290       if (I->isReturn())
291         return true;
292     return false;
293   }
294 
295   /// Returns the "return" instruction from this block, or nullptr if there
296   /// isn't any.
getReturn(MachineBasicBlock & MBB)297   MachineInstr *getReturn(MachineBasicBlock &MBB) {
298     for (auto &I : MBB)
299       if (I.isReturn())
300         return &I;
301     return nullptr;
302   }
303 
isRestoreCall(unsigned Opc)304   bool isRestoreCall(unsigned Opc) {
305     switch (Opc) {
306       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
307       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
308       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
309       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
310         return true;
311     }
312     return false;
313   }
314 
isOptNone(const MachineFunction & MF)315   inline bool isOptNone(const MachineFunction &MF) {
316     return MF.getFunction()->hasFnAttribute(Attribute::OptimizeNone) ||
317            MF.getTarget().getOptLevel() == CodeGenOpt::None;
318   }
319 
isOptSize(const MachineFunction & MF)320   inline bool isOptSize(const MachineFunction &MF) {
321     const Function &F = *MF.getFunction();
322     return F.optForSize() && !F.optForMinSize();
323   }
324 
isMinSize(const MachineFunction & MF)325   inline bool isMinSize(const MachineFunction &MF) {
326     return MF.getFunction()->optForMinSize();
327   }
328 }
329 
330 
331 /// Implements shrink-wrapping of the stack frame. By default, stack frame
332 /// is created in the function entry block, and is cleaned up in every block
333 /// that returns. This function finds alternate blocks: one for the frame
334 /// setup (prolog) and one for the cleanup (epilog).
findShrunkPrologEpilog(MachineFunction & MF,MachineBasicBlock * & PrologB,MachineBasicBlock * & EpilogB) const335 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
336       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
337   static unsigned ShrinkCounter = 0;
338 
339   if (ShrinkLimit.getPosition()) {
340     if (ShrinkCounter >= ShrinkLimit)
341       return;
342     ShrinkCounter++;
343   }
344 
345   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
346   auto &HRI = *HST.getRegisterInfo();
347 
348   MachineDominatorTree MDT;
349   MDT.runOnMachineFunction(MF);
350   MachinePostDominatorTree MPT;
351   MPT.runOnMachineFunction(MF);
352 
353   typedef DenseMap<unsigned,unsigned> UnsignedMap;
354   UnsignedMap RPO;
355   typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
356   RPOTType RPOT(&MF);
357   unsigned RPON = 0;
358   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
359     RPO[(*I)->getNumber()] = RPON++;
360 
361   // Don't process functions that have loops, at least for now. Placement
362   // of prolog and epilog must take loop structure into account. For simpli-
363   // city don't do it right now.
364   for (auto &I : MF) {
365     unsigned BN = RPO[I.getNumber()];
366     for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
367       // If found a back-edge, return.
368       if (RPO[(*SI)->getNumber()] <= BN)
369         return;
370     }
371   }
372 
373   // Collect the set of blocks that need a stack frame to execute. Scan
374   // each block for uses/defs of callee-saved registers, calls, etc.
375   SmallVector<MachineBasicBlock*,16> SFBlocks;
376   BitVector CSR(Hexagon::NUM_TARGET_REGS);
377   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
378     for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
379       CSR[*S] = true;
380 
381   for (auto &I : MF)
382     if (needsStackFrame(I, CSR, HRI))
383       SFBlocks.push_back(&I);
384 
385   DEBUG({
386     dbgs() << "Blocks needing SF: {";
387     for (auto &B : SFBlocks)
388       dbgs() << " BB#" << B->getNumber();
389     dbgs() << " }\n";
390   });
391   // No frame needed?
392   if (SFBlocks.empty())
393     return;
394 
395   // Pick a common dominator and a common post-dominator.
396   MachineBasicBlock *DomB = SFBlocks[0];
397   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
398     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
399     if (!DomB)
400       break;
401   }
402   MachineBasicBlock *PDomB = SFBlocks[0];
403   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
404     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
405     if (!PDomB)
406       break;
407   }
408   DEBUG({
409     dbgs() << "Computed dom block: BB#";
410     if (DomB) dbgs() << DomB->getNumber();
411     else      dbgs() << "<null>";
412     dbgs() << ", computed pdom block: BB#";
413     if (PDomB) dbgs() << PDomB->getNumber();
414     else       dbgs() << "<null>";
415     dbgs() << "\n";
416   });
417   if (!DomB || !PDomB)
418     return;
419 
420   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
421   if (!MDT.dominates(DomB, PDomB)) {
422     DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
423     return;
424   }
425   if (!MPT.dominates(PDomB, DomB)) {
426     DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
427     return;
428   }
429 
430   // Finally, everything seems right.
431   PrologB = DomB;
432   EpilogB = PDomB;
433 }
434 
435 
436 /// Perform most of the PEI work here:
437 /// - saving/restoring of the callee-saved registers,
438 /// - stack frame creation and destruction.
439 /// Normally, this work is distributed among various functions, but doing it
440 /// in one place allows shrink-wrapping of the stack frame.
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const441 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
442                                         MachineBasicBlock &MBB) const {
443   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
444   auto &HRI = *HST.getRegisterInfo();
445 
446   MachineFrameInfo *MFI = MF.getFrameInfo();
447   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
448 
449   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
450   if (EnableShrinkWrapping)
451     findShrunkPrologEpilog(MF, PrologB, EpilogB);
452 
453   bool PrologueStubs = false;
454   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
455   insertPrologueInBlock(*PrologB, PrologueStubs);
456 
457   if (EpilogB) {
458     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
459     insertEpilogueInBlock(*EpilogB);
460   } else {
461     for (auto &B : MF)
462       if (B.isReturnBlock())
463         insertCSRRestoresInBlock(B, CSI, HRI);
464 
465     for (auto &B : MF)
466       if (B.isReturnBlock())
467         insertEpilogueInBlock(B);
468 
469     for (auto &B : MF) {
470       if (B.empty())
471         continue;
472       MachineInstr *RetI = getReturn(B);
473       if (!RetI || isRestoreCall(RetI->getOpcode()))
474         continue;
475       for (auto &R : CSI)
476         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
477     }
478   }
479 
480   if (EpilogB) {
481     // If there is an epilog block, it may not have a return instruction.
482     // In such case, we need to add the callee-saved registers as live-ins
483     // in all blocks on all paths from the epilog to any return block.
484     unsigned MaxBN = 0;
485     for (auto &B : MF)
486       if (B.getNumber() >= 0)
487         MaxBN = std::max(MaxBN, unsigned(B.getNumber()));
488     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
489     updateExitPaths(*EpilogB, EpilogB, DoneT, DoneF, Path);
490   }
491 }
492 
493 
insertPrologueInBlock(MachineBasicBlock & MBB,bool PrologueStubs) const494 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
495       bool PrologueStubs) const {
496   MachineFunction &MF = *MBB.getParent();
497   MachineFrameInfo *MFI = MF.getFrameInfo();
498   auto &HST = MF.getSubtarget<HexagonSubtarget>();
499   auto &HII = *HST.getInstrInfo();
500   auto &HRI = *HST.getRegisterInfo();
501   DebugLoc dl;
502 
503   unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
504 
505   // Calculate the total stack frame size.
506   // Get the number of bytes to allocate from the FrameInfo.
507   unsigned FrameSize = MFI->getStackSize();
508   // Round up the max call frame size to the max alignment on the stack.
509   unsigned MaxCFA = alignTo(MFI->getMaxCallFrameSize(), MaxAlign);
510   MFI->setMaxCallFrameSize(MaxCFA);
511 
512   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
513   MFI->setStackSize(FrameSize);
514 
515   bool AlignStack = (MaxAlign > getStackAlignment());
516 
517   // Get the number of bytes to allocate from the FrameInfo.
518   unsigned NumBytes = MFI->getStackSize();
519   unsigned SP = HRI.getStackRegister();
520   unsigned MaxCF = MFI->getMaxCallFrameSize();
521   MachineBasicBlock::iterator InsertPt = MBB.begin();
522 
523   auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
524   auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
525 
526   for (auto MI : AdjustRegs) {
527     assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
528     expandAlloca(MI, HII, SP, MaxCF);
529     MI->eraseFromParent();
530   }
531 
532   if (!hasFP(MF))
533     return;
534 
535   // Check for overflow.
536   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
537   const unsigned int ALLOCFRAME_MAX = 16384;
538 
539   // Create a dummy memory operand to avoid allocframe from being treated as
540   // a volatile memory reference.
541   MachineMemOperand *MMO =
542     MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
543                             4, 4);
544 
545   if (NumBytes >= ALLOCFRAME_MAX) {
546     // Emit allocframe(#0).
547     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
548       .addImm(0)
549       .addMemOperand(MMO);
550 
551     // Subtract offset from frame pointer.
552     // We use a caller-saved non-parameter register for that.
553     unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
554     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
555             CallerSavedReg).addImm(NumBytes);
556     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
557       .addReg(SP)
558       .addReg(CallerSavedReg);
559   } else {
560     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
561       .addImm(NumBytes)
562       .addMemOperand(MMO);
563   }
564 
565   if (AlignStack) {
566     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
567         .addReg(SP)
568         .addImm(-int64_t(MaxAlign));
569   }
570 
571   // If the stack-checking is enabled, and we spilled the callee-saved
572   // registers inline (i.e. did not use a spill function), then call
573   // the stack checker directly.
574   if (EnableStackOVFSanitizer && !PrologueStubs)
575     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CALLstk))
576            .addExternalSymbol("__runtime_stack_check");
577 }
578 
insertEpilogueInBlock(MachineBasicBlock & MBB) const579 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
580   MachineFunction &MF = *MBB.getParent();
581   if (!hasFP(MF))
582     return;
583 
584   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
585   auto &HII = *HST.getInstrInfo();
586   auto &HRI = *HST.getRegisterInfo();
587   unsigned SP = HRI.getStackRegister();
588 
589   MachineInstr *RetI = getReturn(MBB);
590   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
591 
592   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
593   DebugLoc DL;
594   if (InsertPt != MBB.end())
595     DL = InsertPt->getDebugLoc();
596   else if (!MBB.empty())
597     DL = std::prev(MBB.end())->getDebugLoc();
598 
599   // Handle EH_RETURN.
600   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
601     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
602     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
603         .addReg(SP)
604         .addReg(Hexagon::R28);
605     return;
606   }
607 
608   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
609   // frame instruction if we encounter it.
610   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
611       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC) {
612     MachineBasicBlock::iterator It = RetI;
613     ++It;
614     // Delete all instructions after the RESTORE (except labels).
615     while (It != MBB.end()) {
616       if (!It->isLabel())
617         It = MBB.erase(It);
618       else
619         ++It;
620     }
621     return;
622   }
623 
624   // It is possible that the restoring code is a call to a library function.
625   // All of the restore* functions include "deallocframe", so we need to make
626   // sure that we don't add an extra one.
627   bool NeedsDeallocframe = true;
628   if (!MBB.empty() && InsertPt != MBB.begin()) {
629     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
630     unsigned COpc = PrevIt->getOpcode();
631     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
632         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)
633       NeedsDeallocframe = false;
634   }
635 
636   if (!NeedsDeallocframe)
637     return;
638   // If the returning instruction is JMPret, replace it with dealloc_return,
639   // otherwise just add deallocframe. The function could be returning via a
640   // tail call.
641   if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
642     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
643     return;
644   }
645   unsigned NewOpc = Hexagon::L4_return;
646   MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
647   // Transfer the function live-out registers.
648   NewI->copyImplicitOps(MF, *RetI);
649   MBB.erase(RetI);
650 }
651 
652 
updateExitPaths(MachineBasicBlock & MBB,MachineBasicBlock * RestoreB,BitVector & DoneT,BitVector & DoneF,BitVector & Path) const653 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
654       MachineBasicBlock *RestoreB, BitVector &DoneT, BitVector &DoneF,
655       BitVector &Path) const {
656   assert(MBB.getNumber() >= 0);
657   unsigned BN = MBB.getNumber();
658   if (Path[BN] || DoneF[BN])
659     return false;
660   if (DoneT[BN])
661     return true;
662 
663   auto &CSI = MBB.getParent()->getFrameInfo()->getCalleeSavedInfo();
664 
665   Path[BN] = true;
666   bool ReachedExit = false;
667   for (auto &SB : MBB.successors())
668     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
669 
670   if (!MBB.empty() && MBB.back().isReturn()) {
671     // Add implicit uses of all callee-saved registers to the reached
672     // return instructions. This is to prevent the anti-dependency breaker
673     // from renaming these registers.
674     MachineInstr &RetI = MBB.back();
675     if (!isRestoreCall(RetI.getOpcode()))
676       for (auto &R : CSI)
677         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
678     ReachedExit = true;
679   }
680 
681   // We don't want to add unnecessary live-ins to the restore block: since
682   // the callee-saved registers are being defined in it, the entry of the
683   // restore block cannot be on the path from the definitions to any exit.
684   if (ReachedExit && &MBB != RestoreB) {
685     for (auto &R : CSI)
686       if (!MBB.isLiveIn(R.getReg()))
687         MBB.addLiveIn(R.getReg());
688     DoneT[BN] = true;
689   }
690   if (!ReachedExit)
691     DoneF[BN] = true;
692 
693   Path[BN] = false;
694   return ReachedExit;
695 }
696 
697 
698 namespace {
IsAllocFrame(MachineBasicBlock::const_iterator It)699   bool IsAllocFrame(MachineBasicBlock::const_iterator It) {
700     if (!It->isBundle())
701       return It->getOpcode() == Hexagon::S2_allocframe;
702     auto End = It->getParent()->instr_end();
703     MachineBasicBlock::const_instr_iterator I = It.getInstrIterator();
704     while (++I != End && I->isBundled())
705       if (I->getOpcode() == Hexagon::S2_allocframe)
706         return true;
707     return false;
708   }
709 
FindAllocFrame(MachineBasicBlock & B)710   MachineBasicBlock::iterator FindAllocFrame(MachineBasicBlock &B) {
711     for (auto &I : B)
712       if (IsAllocFrame(I))
713         return I;
714     return B.end();
715   }
716 }
717 
718 
insertCFIInstructions(MachineFunction & MF) const719 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
720   for (auto &B : MF) {
721     auto AF = FindAllocFrame(B);
722     if (AF == B.end())
723       continue;
724     insertCFIInstructionsAt(B, ++AF);
725   }
726 }
727 
728 
insertCFIInstructionsAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator At) const729 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
730       MachineBasicBlock::iterator At) const {
731   MachineFunction &MF = *MBB.getParent();
732   MachineFrameInfo &MFI = *MF.getFrameInfo();
733   MachineModuleInfo &MMI = MF.getMMI();
734   auto &HST = MF.getSubtarget<HexagonSubtarget>();
735   auto &HII = *HST.getInstrInfo();
736   auto &HRI = *HST.getRegisterInfo();
737 
738   // If CFI instructions have debug information attached, something goes
739   // wrong with the final assembly generation: the prolog_end is placed
740   // in a wrong location.
741   DebugLoc DL;
742   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
743 
744   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
745   bool HasFP = hasFP(MF);
746 
747   if (HasFP) {
748     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
749     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
750 
751     // Define CFA via an offset from the value of FP.
752     //
753     //  -8   -4    0 (SP)
754     // --+----+----+---------------------
755     //   | FP | LR |          increasing addresses -->
756     // --+----+----+---------------------
757     //   |         +-- Old SP (before allocframe)
758     //   +-- New FP (after allocframe)
759     //
760     // MCCFIInstruction::createDefCfa subtracts the offset from the register.
761     // MCCFIInstruction::createOffset takes the offset without sign change.
762     auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
763     BuildMI(MBB, At, DL, CFID)
764         .addCFIIndex(MMI.addFrameInst(DefCfa));
765     // R31 (return addr) = CFA - 4
766     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
767     BuildMI(MBB, At, DL, CFID)
768         .addCFIIndex(MMI.addFrameInst(OffR31));
769     // R30 (frame ptr) = CFA - 8
770     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
771     BuildMI(MBB, At, DL, CFID)
772         .addCFIIndex(MMI.addFrameInst(OffR30));
773   }
774 
775   static unsigned int RegsToMove[] = {
776     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
777     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
778     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
779     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
780     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
781     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
782     Hexagon::NoRegister
783   };
784 
785   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
786 
787   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
788     unsigned Reg = RegsToMove[i];
789     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
790       return C.getReg() == Reg;
791     };
792     auto F = std::find_if(CSI.begin(), CSI.end(), IfR);
793     if (F == CSI.end())
794       continue;
795 
796     int64_t Offset;
797     if (HasFP) {
798       // If the function has a frame pointer (i.e. has an allocframe),
799       // then the CFA has been defined in terms of FP. Any offsets in
800       // the following CFI instructions have to be defined relative
801       // to FP, which points to the bottom of the stack frame.
802       // The function getFrameIndexReference can still choose to use SP
803       // for the offset calculation, so we cannot simply call it here.
804       // Instead, get the offset (relative to the FP) directly.
805       Offset = MFI.getObjectOffset(F->getFrameIdx());
806     } else {
807       unsigned FrameReg;
808       Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg);
809     }
810     // Subtract 8 to make room for R30 and R31, which are added above.
811     Offset -= 8;
812 
813     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
814       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
815       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
816                                                    Offset);
817       BuildMI(MBB, At, DL, CFID)
818           .addCFIIndex(MMI.addFrameInst(OffReg));
819     } else {
820       // Split the double regs into subregs, and generate appropriate
821       // cfi_offsets.
822       // The only reason, we are split double regs is, llvm-mc does not
823       // understand paired registers for cfi_offset.
824       // Eg .cfi_offset r1:0, -64
825 
826       unsigned HiReg = HRI.getSubReg(Reg, Hexagon::subreg_hireg);
827       unsigned LoReg = HRI.getSubReg(Reg, Hexagon::subreg_loreg);
828       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
829       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
830       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
831                                                   Offset+4);
832       BuildMI(MBB, At, DL, CFID)
833           .addCFIIndex(MMI.addFrameInst(OffHi));
834       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
835                                                   Offset);
836       BuildMI(MBB, At, DL, CFID)
837           .addCFIIndex(MMI.addFrameInst(OffLo));
838     }
839   }
840 }
841 
842 
hasFP(const MachineFunction & MF) const843 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
844   auto &MFI = *MF.getFrameInfo();
845   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
846 
847   bool HasFixed = MFI.getNumFixedObjects();
848   bool HasPrealloc = const_cast<MachineFrameInfo&>(MFI)
849                         .getLocalFrameObjectCount();
850   bool HasExtraAlign = HRI.needsStackRealignment(MF);
851   bool HasAlloca = MFI.hasVarSizedObjects();
852 
853   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
854   // that this shouldn't be required, but doing so now because gcc does and
855   // gdb can't break at the start of the function without it.  Will remove if
856   // this turns out to be a gdb bug.
857   //
858   if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
859     return true;
860 
861   // By default we want to use SP (since it's always there). FP requires
862   // some setup (i.e. ALLOCFRAME).
863   // Fixed and preallocated objects need FP if the distance from them to
864   // the SP is unknown (as is with alloca or aligna).
865   if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign))
866     return true;
867 
868   if (MFI.getStackSize() > 0) {
869     if (EnableStackOVFSanitizer || UseAllocframe)
870       return true;
871   }
872 
873   if (MFI.hasCalls() ||
874       MF.getInfo<HexagonMachineFunctionInfo>()->hasClobberLR())
875     return true;
876 
877   return false;
878 }
879 
880 
881 enum SpillKind {
882   SK_ToMem,
883   SK_FromMem,
884   SK_FromMemTailcall
885 };
886 
getSpillFunctionFor(unsigned MaxReg,SpillKind SpillType,bool Stkchk=false)887 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
888       bool Stkchk = false) {
889   const char * V4SpillToMemoryFunctions[] = {
890     "__save_r16_through_r17",
891     "__save_r16_through_r19",
892     "__save_r16_through_r21",
893     "__save_r16_through_r23",
894     "__save_r16_through_r25",
895     "__save_r16_through_r27" };
896 
897   const char * V4SpillToMemoryStkchkFunctions[] = {
898     "__save_r16_through_r17_stkchk",
899     "__save_r16_through_r19_stkchk",
900     "__save_r16_through_r21_stkchk",
901     "__save_r16_through_r23_stkchk",
902     "__save_r16_through_r25_stkchk",
903     "__save_r16_through_r27_stkchk" };
904 
905   const char * V4SpillFromMemoryFunctions[] = {
906     "__restore_r16_through_r17_and_deallocframe",
907     "__restore_r16_through_r19_and_deallocframe",
908     "__restore_r16_through_r21_and_deallocframe",
909     "__restore_r16_through_r23_and_deallocframe",
910     "__restore_r16_through_r25_and_deallocframe",
911     "__restore_r16_through_r27_and_deallocframe" };
912 
913   const char * V4SpillFromMemoryTailcallFunctions[] = {
914     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
915     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
916     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
917     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
918     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
919     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
920   };
921 
922   const char **SpillFunc = nullptr;
923 
924   switch(SpillType) {
925   case SK_ToMem:
926     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
927                        : V4SpillToMemoryFunctions;
928     break;
929   case SK_FromMem:
930     SpillFunc = V4SpillFromMemoryFunctions;
931     break;
932   case SK_FromMemTailcall:
933     SpillFunc = V4SpillFromMemoryTailcallFunctions;
934     break;
935   }
936   assert(SpillFunc && "Unknown spill kind");
937 
938   // Spill all callee-saved registers up to the highest register used.
939   switch (MaxReg) {
940   case Hexagon::R17:
941     return SpillFunc[0];
942   case Hexagon::R19:
943     return SpillFunc[1];
944   case Hexagon::R21:
945     return SpillFunc[2];
946   case Hexagon::R23:
947     return SpillFunc[3];
948   case Hexagon::R25:
949     return SpillFunc[4];
950   case Hexagon::R27:
951     return SpillFunc[5];
952   default:
953     llvm_unreachable("Unhandled maximum callee save register");
954   }
955   return 0;
956 }
957 
958 
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const959 int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
960       int FI, unsigned &FrameReg) const {
961   auto &MFI = *MF.getFrameInfo();
962   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
963 
964   int Offset = MFI.getObjectOffset(FI);
965   bool HasAlloca = MFI.hasVarSizedObjects();
966   bool HasExtraAlign = HRI.needsStackRealignment(MF);
967   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
968 
969   unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister();
970   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
971   unsigned AP = HMFI.getStackAlignBasePhysReg();
972   unsigned FrameSize = MFI.getStackSize();
973 
974   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
975   // Use FP at -O0, except when there are objects with extra alignment.
976   // That additional alignment requirement may cause a pad to be inserted,
977   // which will make it impossible to use FP to access objects located
978   // past the pad.
979   if (NoOpt && !HasExtraAlign)
980     UseFP = true;
981   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
982     // Fixed and preallocated objects will be located before any padding
983     // so FP must be used to access them.
984     UseFP |= (HasAlloca || HasExtraAlign);
985   } else {
986     if (HasAlloca) {
987       if (HasExtraAlign)
988         UseAP = true;
989       else
990         UseFP = true;
991     }
992   }
993 
994   // If FP was picked, then there had better be FP.
995   bool HasFP = hasFP(MF);
996   assert((HasFP || !UseFP) && "This function must have frame pointer");
997 
998   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
999   // FP/LR. If the base register is used to access an object across these
1000   // 8 bytes, then the offset will need to be adjusted by 8.
1001   //
1002   // After allocframe:
1003   //                    HexagonISelLowering adds 8 to ---+
1004   //                    the offsets of all stack-based   |
1005   //                    arguments (*)                    |
1006   //                                                     |
1007   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
1008   // ------------------------+-----+------------------------> increasing
1009   //     <local objects>     |FP/LR|    <input arguments>     addresses
1010   // -----------------+------+-----+------------------------>
1011   //                  |      |
1012   //    SP/AP point --+      +-- FP points here (**)
1013   //    somewhere on
1014   //    this side of FP/LR
1015   //
1016   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1017   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1018 
1019   // The lowering assumes that FP/LR is present, and so the offsets of
1020   // the formal arguments start at 8. If FP/LR is not there we need to
1021   // reduce the offset by 8.
1022   if (Offset > 0 && !HasFP)
1023     Offset -= 8;
1024 
1025   if (UseFP)
1026     FrameReg = FP;
1027   else if (UseAP)
1028     FrameReg = AP;
1029   else
1030     FrameReg = SP;
1031 
1032   // Calculate the actual offset in the instruction. If there is no FP
1033   // (in other words, no allocframe), then SP will not be adjusted (i.e.
1034   // there will be no SP -= FrameSize), so the frame size should not be
1035   // added to the calculated offset.
1036   int RealOffset = Offset;
1037   if (!UseFP && !UseAP && HasFP)
1038     RealOffset = FrameSize+Offset;
1039   return RealOffset;
1040 }
1041 
1042 
insertCSRSpillsInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI,bool & PrologueStubs) const1043 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1044       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1045       bool &PrologueStubs) const {
1046   if (CSI.empty())
1047     return true;
1048 
1049   MachineBasicBlock::iterator MI = MBB.begin();
1050   PrologueStubs = false;
1051   MachineFunction &MF = *MBB.getParent();
1052   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1053 
1054   if (useSpillFunction(MF, CSI)) {
1055     PrologueStubs = true;
1056     unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1057     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1058     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1059                                                StkOvrFlowEnabled);
1060     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1061     bool IsPIC = HTM.isPositionIndependent();
1062 
1063     // Call spill function.
1064     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1065     unsigned SpillOpc;
1066     if (StkOvrFlowEnabled)
1067       SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1068                        : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1069     else
1070       SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1071                        : Hexagon::SAVE_REGISTERS_CALL_V4;
1072 
1073     MachineInstr *SaveRegsCall =
1074         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1075           .addExternalSymbol(SpillFun);
1076     // Add callee-saved registers as use.
1077     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1078     // Add live in registers.
1079     for (unsigned I = 0; I < CSI.size(); ++I)
1080       MBB.addLiveIn(CSI[I].getReg());
1081     return true;
1082   }
1083 
1084   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1085     unsigned Reg = CSI[i].getReg();
1086     // Add live in registers. We treat eh_return callee saved register r0 - r3
1087     // specially. They are not really callee saved registers as they are not
1088     // supposed to be killed.
1089     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1090     int FI = CSI[i].getFrameIdx();
1091     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1092     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1093     if (IsKill)
1094       MBB.addLiveIn(Reg);
1095   }
1096   return true;
1097 }
1098 
1099 
insertCSRRestoresInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI) const1100 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1101       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1102   if (CSI.empty())
1103     return false;
1104 
1105   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1106   MachineFunction &MF = *MBB.getParent();
1107   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1108 
1109   if (useRestoreFunction(MF, CSI)) {
1110     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1111     unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1112     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1113     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1114     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1115     bool IsPIC = HTM.isPositionIndependent();
1116 
1117     // Call spill function.
1118     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1119                                   : MBB.getLastNonDebugInstr()->getDebugLoc();
1120     MachineInstr *DeallocCall = nullptr;
1121 
1122     if (HasTC) {
1123       unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1124                             : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1125       DeallocCall = BuildMI(MBB, MI, DL, HII.get(ROpc))
1126           .addExternalSymbol(RestoreFn);
1127     } else {
1128       // The block has a return.
1129       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1130       assert(It->isReturn() && std::next(It) == MBB.end());
1131       unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1132                             : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1133       DeallocCall = BuildMI(MBB, It, DL, HII.get(ROpc))
1134           .addExternalSymbol(RestoreFn);
1135       // Transfer the function live-out registers.
1136       DeallocCall->copyImplicitOps(MF, *It);
1137     }
1138     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1139     return true;
1140   }
1141 
1142   for (unsigned i = 0; i < CSI.size(); ++i) {
1143     unsigned Reg = CSI[i].getReg();
1144     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1145     int FI = CSI[i].getFrameIdx();
1146     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1147   }
1148 
1149   return true;
1150 }
1151 
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const1152 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1153     MachineFunction &MF, MachineBasicBlock &MBB,
1154     MachineBasicBlock::iterator I) const {
1155   MachineInstr &MI = *I;
1156   unsigned Opc = MI.getOpcode();
1157   (void)Opc; // Silence compiler warning.
1158   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1159          "Cannot handle this call frame pseudo instruction");
1160   return MBB.erase(I);
1161 }
1162 
1163 
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const1164 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1165     MachineFunction &MF, RegScavenger *RS) const {
1166   // If this function has uses aligned stack and also has variable sized stack
1167   // objects, then we need to map all spill slots to fixed positions, so that
1168   // they can be accessed through FP. Otherwise they would have to be accessed
1169   // via AP, which may not be available at the particular place in the program.
1170   MachineFrameInfo *MFI = MF.getFrameInfo();
1171   bool HasAlloca = MFI->hasVarSizedObjects();
1172   bool NeedsAlign = (MFI->getMaxAlignment() > getStackAlignment());
1173 
1174   if (!HasAlloca || !NeedsAlign)
1175     return;
1176 
1177   unsigned LFS = MFI->getLocalFrameSize();
1178   for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
1179     if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
1180       continue;
1181     unsigned S = MFI->getObjectSize(i);
1182     // Reduce the alignment to at most 8. This will require unaligned vector
1183     // stores if they happen here.
1184     unsigned A = std::max(MFI->getObjectAlignment(i), 8U);
1185     MFI->setObjectAlignment(i, 8);
1186     LFS = alignTo(LFS+S, A);
1187     MFI->mapLocalFrameObject(i, -LFS);
1188   }
1189 
1190   MFI->setLocalFrameSize(LFS);
1191   unsigned A = MFI->getLocalFrameMaxAlign();
1192   assert(A <= 8 && "Unexpected local frame alignment");
1193   if (A == 0)
1194     MFI->setLocalFrameMaxAlign(8);
1195   MFI->setUseLocalStackAllocationBlock(true);
1196 
1197   // Set the physical aligned-stack base address register.
1198   unsigned AP = 0;
1199   if (const MachineInstr *AI = getAlignaInstr(MF))
1200     AP = AI->getOperand(0).getReg();
1201   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1202   HMFI.setStackAlignBasePhysReg(AP);
1203 }
1204 
1205 /// Returns true if there are no caller-saved registers available in class RC.
needToReserveScavengingSpillSlots(MachineFunction & MF,const HexagonRegisterInfo & HRI,const TargetRegisterClass * RC)1206 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1207       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1208   MachineRegisterInfo &MRI = MF.getRegInfo();
1209 
1210   auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1211     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1212       if (MRI.isPhysRegUsed(*AI))
1213         return true;
1214     return false;
1215   };
1216 
1217   // Check for an unused caller-saved register. Callee-saved registers
1218   // have become pristine by now.
1219   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1220     if (!IsUsed(*P))
1221       return false;
1222 
1223   // All caller-saved registers are used.
1224   return true;
1225 }
1226 
1227 
1228 #ifndef NDEBUG
dump_registers(BitVector & Regs,const TargetRegisterInfo & TRI)1229 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1230   dbgs() << '{';
1231   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1232     unsigned R = x;
1233     dbgs() << ' ' << PrintReg(R, &TRI);
1234   }
1235   dbgs() << " }";
1236 }
1237 #endif
1238 
1239 
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1240 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1241       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1242   DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
1243                << MF.getFunction()->getName() << '\n');
1244   MachineFrameInfo *MFI = MF.getFrameInfo();
1245   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1246 
1247   // Generate a set of unique, callee-saved registers (SRegs), where each
1248   // register in the set is maximal in terms of sub-/super-register relation,
1249   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1250 
1251   // (1) For each callee-saved register, add that register and all of its
1252   // sub-registers to SRegs.
1253   DEBUG(dbgs() << "Initial CS registers: {");
1254   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1255     unsigned R = CSI[i].getReg();
1256     DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
1257     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1258       SRegs[*SR] = true;
1259   }
1260   DEBUG(dbgs() << " }\n");
1261   DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1262 
1263   // (2) For each reserved register, remove that register and all of its
1264   // sub- and super-registers from SRegs.
1265   BitVector Reserved = TRI->getReservedRegs(MF);
1266   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1267     unsigned R = x;
1268     for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1269       SRegs[*SR] = false;
1270   }
1271   DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI); dbgs() << "\n");
1272   DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1273 
1274   // (3) Collect all registers that have at least one sub-register in SRegs,
1275   // and also have no sub-registers that are reserved. These will be the can-
1276   // didates for saving as a whole instead of their individual sub-registers.
1277   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1278   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1279   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1280     unsigned R = x;
1281     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1282       TmpSup[*SR] = true;
1283   }
1284   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1285     unsigned R = x;
1286     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1287       if (!Reserved[*SR])
1288         continue;
1289       TmpSup[R] = false;
1290       break;
1291     }
1292   }
1293   DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
1294 
1295   // (4) Include all super-registers found in (3) into SRegs.
1296   SRegs |= TmpSup;
1297   DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1298 
1299   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1300   // remove R from SRegs.
1301   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1302     unsigned R = x;
1303     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1304       if (!SRegs[*SR])
1305         continue;
1306       SRegs[R] = false;
1307       break;
1308     }
1309   }
1310   DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1311 
1312   // Now, for each register that has a fixed stack slot, create the stack
1313   // object for it.
1314   CSI.clear();
1315 
1316   typedef TargetFrameLowering::SpillSlot SpillSlot;
1317   unsigned NumFixed;
1318   int MinOffset = 0;  // CS offsets are negative.
1319   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1320   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1321     if (!SRegs[S->Reg])
1322       continue;
1323     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1324     int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
1325     MinOffset = std::min(MinOffset, S->Offset);
1326     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1327     SRegs[S->Reg] = false;
1328   }
1329 
1330   // There can be some registers that don't have fixed slots. For example,
1331   // we need to store R0-R3 in functions with exception handling. For each
1332   // such register, create a non-fixed stack object.
1333   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1334     unsigned R = x;
1335     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1336     int Off = MinOffset - RC->getSize();
1337     unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
1338     assert(isPowerOf2_32(Align));
1339     Off &= -Align;
1340     int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
1341     MinOffset = std::min(MinOffset, Off);
1342     CSI.push_back(CalleeSavedInfo(R, FI));
1343     SRegs[R] = false;
1344   }
1345 
1346   DEBUG({
1347     dbgs() << "CS information: {";
1348     for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1349       int FI = CSI[i].getFrameIdx();
1350       int Off = MFI->getObjectOffset(FI);
1351       dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
1352       if (Off >= 0)
1353         dbgs() << '+';
1354       dbgs() << Off;
1355     }
1356     dbgs() << " }\n";
1357   });
1358 
1359 #ifndef NDEBUG
1360   // Verify that all registers were handled.
1361   bool MissedReg = false;
1362   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1363     unsigned R = x;
1364     dbgs() << PrintReg(R, TRI) << ' ';
1365     MissedReg = true;
1366   }
1367   if (MissedReg)
1368     llvm_unreachable("...there are unhandled callee-saved registers!");
1369 #endif
1370 
1371   return true;
1372 }
1373 
1374 
expandCopy(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1375 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1376       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1377       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1378   MachineInstr *MI = &*It;
1379   DebugLoc DL = MI->getDebugLoc();
1380   unsigned DstR = MI->getOperand(0).getReg();
1381   unsigned SrcR = MI->getOperand(1).getReg();
1382   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1383       !Hexagon::ModRegsRegClass.contains(SrcR))
1384     return false;
1385 
1386   unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1387   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR)
1388     .addOperand(MI->getOperand(1));
1389   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1390     .addReg(TmpR, RegState::Kill);
1391 
1392   NewRegs.push_back(TmpR);
1393   B.erase(It);
1394   return true;
1395 }
1396 
expandStoreInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1397 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1398       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1399       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1400   MachineInstr *MI = &*It;
1401   DebugLoc DL = MI->getDebugLoc();
1402   unsigned Opc = MI->getOpcode();
1403   unsigned SrcR = MI->getOperand(2).getReg();
1404   bool IsKill = MI->getOperand(2).isKill();
1405 
1406   assert(MI->getOperand(0).isFI() && "Expect a frame index");
1407   int FI = MI->getOperand(0).getIndex();
1408 
1409   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
1410   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
1411   unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1412   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1413                                                  : Hexagon::A2_tfrcrr;
1414   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1415     .addReg(SrcR, getKillRegState(IsKill));
1416 
1417   // S2_storeri_io FI, 0, TmpR
1418   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1419     .addFrameIndex(FI)
1420     .addImm(0)
1421     .addReg(TmpR, RegState::Kill)
1422     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1423 
1424   NewRegs.push_back(TmpR);
1425   B.erase(It);
1426   return true;
1427 }
1428 
expandLoadInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1429 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1430       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1431       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1432   MachineInstr *MI = &*It;
1433   DebugLoc DL = MI->getDebugLoc();
1434   unsigned Opc = MI->getOpcode();
1435   unsigned DstR = MI->getOperand(0).getReg();
1436 
1437   assert(MI->getOperand(1).isFI() && "Expect a frame index");
1438   int FI = MI->getOperand(1).getIndex();
1439 
1440   // TmpR = L2_loadri_io FI, 0
1441   unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1442   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1443     .addFrameIndex(FI)
1444     .addImm(0)
1445     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1446 
1447   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
1448   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
1449   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1450                                                  : Hexagon::A2_tfrrcr;
1451   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1452     .addReg(TmpR, RegState::Kill);
1453 
1454   NewRegs.push_back(TmpR);
1455   B.erase(It);
1456   return true;
1457 }
1458 
1459 
expandStoreVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1460 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1461       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1462       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1463   auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
1464   MachineInstr *MI = &*It;
1465   DebugLoc DL = MI->getDebugLoc();
1466   unsigned SrcR = MI->getOperand(2).getReg();
1467   bool IsKill = MI->getOperand(2).isKill();
1468 
1469   assert(MI->getOperand(0).isFI() && "Expect a frame index");
1470   int FI = MI->getOperand(0).getIndex();
1471 
1472   bool Is128B = HST.useHVXDblOps();
1473   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1474                      : &Hexagon::VectorRegs128BRegClass;
1475 
1476   // Insert transfer to general vector register.
1477   //   TmpR0 = A2_tfrsi 0x01010101
1478   //   TmpR1 = V6_vandqrt Qx, TmpR0
1479   //   store FI, 0, TmpR1
1480   unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1481   unsigned TmpR1 = MRI.createVirtualRegister(RC);
1482 
1483   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1484     .addImm(0x01010101);
1485 
1486   unsigned VandOpc = !Is128B ? Hexagon::V6_vandqrt : Hexagon::V6_vandqrt_128B;
1487   BuildMI(B, It, DL, HII.get(VandOpc), TmpR1)
1488     .addReg(SrcR, getKillRegState(IsKill))
1489     .addReg(TmpR0, RegState::Kill);
1490 
1491   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1492   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1493   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1494 
1495   NewRegs.push_back(TmpR0);
1496   NewRegs.push_back(TmpR1);
1497   B.erase(It);
1498   return true;
1499 }
1500 
expandLoadVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1501 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1502       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1503       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1504   auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
1505   MachineInstr *MI = &*It;
1506   DebugLoc DL = MI->getDebugLoc();
1507   unsigned DstR = MI->getOperand(0).getReg();
1508 
1509   assert(MI->getOperand(1).isFI() && "Expect a frame index");
1510   int FI = MI->getOperand(1).getIndex();
1511 
1512   bool Is128B = HST.useHVXDblOps();
1513   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1514                      : &Hexagon::VectorRegs128BRegClass;
1515 
1516   // TmpR0 = A2_tfrsi 0x01010101
1517   // TmpR1 = load FI, 0
1518   // DstR = V6_vandvrt TmpR1, TmpR0
1519   unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1520   unsigned TmpR1 = MRI.createVirtualRegister(RC);
1521 
1522   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1523     .addImm(0x01010101);
1524   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1525   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1526   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1527 
1528   unsigned VandOpc = !Is128B ? Hexagon::V6_vandvrt : Hexagon::V6_vandvrt_128B;
1529   BuildMI(B, It, DL, HII.get(VandOpc), DstR)
1530     .addReg(TmpR1, RegState::Kill)
1531     .addReg(TmpR0, RegState::Kill);
1532 
1533   NewRegs.push_back(TmpR0);
1534   NewRegs.push_back(TmpR1);
1535   B.erase(It);
1536   return true;
1537 }
1538 
expandStoreVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1539 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1540       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1541       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1542   MachineFunction &MF = *B.getParent();
1543   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1544   auto &MFI = *MF.getFrameInfo();
1545   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1546   MachineInstr *MI = &*It;
1547   DebugLoc DL = MI->getDebugLoc();
1548 
1549   unsigned SrcR = MI->getOperand(2).getReg();
1550   unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::subreg_loreg);
1551   unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::subreg_hireg);
1552   bool IsKill = MI->getOperand(2).isKill();
1553 
1554   assert(MI->getOperand(0).isFI() && "Expect a frame index");
1555   int FI = MI->getOperand(0).getIndex();
1556 
1557   bool Is128B = HST.useHVXDblOps();
1558   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1559                      : &Hexagon::VectorRegs128BRegClass;
1560   unsigned Size = RC->getSize();
1561   unsigned NeedAlign = RC->getAlignment();
1562   unsigned HasAlign = MFI.getObjectAlignment(FI);
1563   unsigned StoreOpc;
1564 
1565   // Store low part.
1566   if (NeedAlign <= HasAlign)
1567     StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai  : Hexagon::V6_vS32b_ai_128B;
1568   else
1569     StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
1570 
1571   BuildMI(B, It, DL, HII.get(StoreOpc))
1572     .addFrameIndex(FI)
1573     .addImm(0)
1574     .addReg(SrcLo, getKillRegState(IsKill))
1575     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1576 
1577   // Load high part.
1578   if (NeedAlign <= MinAlign(HasAlign, Size))
1579     StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai  : Hexagon::V6_vS32b_ai_128B;
1580   else
1581     StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
1582 
1583   BuildMI(B, It, DL, HII.get(StoreOpc))
1584     .addFrameIndex(FI)
1585     .addImm(Size)
1586     .addReg(SrcHi, getKillRegState(IsKill))
1587     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1588 
1589   B.erase(It);
1590   return true;
1591 }
1592 
expandLoadVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1593 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1594       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1595       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1596   MachineFunction &MF = *B.getParent();
1597   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1598   auto &MFI = *MF.getFrameInfo();
1599   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1600   MachineInstr *MI = &*It;
1601   DebugLoc DL = MI->getDebugLoc();
1602 
1603   unsigned DstR = MI->getOperand(0).getReg();
1604   unsigned DstHi = HRI.getSubReg(DstR, Hexagon::subreg_hireg);
1605   unsigned DstLo = HRI.getSubReg(DstR, Hexagon::subreg_loreg);
1606 
1607   assert(MI->getOperand(1).isFI() && "Expect a frame index");
1608   int FI = MI->getOperand(1).getIndex();
1609 
1610   bool Is128B = HST.useHVXDblOps();
1611   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1612                      : &Hexagon::VectorRegs128BRegClass;
1613   unsigned Size = RC->getSize();
1614   unsigned NeedAlign = RC->getAlignment();
1615   unsigned HasAlign = MFI.getObjectAlignment(FI);
1616   unsigned LoadOpc;
1617 
1618   // Load low part.
1619   if (NeedAlign <= HasAlign)
1620     LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai  : Hexagon::V6_vL32b_ai_128B;
1621   else
1622     LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
1623 
1624   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
1625     .addFrameIndex(FI)
1626     .addImm(0)
1627     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1628 
1629   // Load high part.
1630   if (NeedAlign <= MinAlign(HasAlign, Size))
1631     LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai  : Hexagon::V6_vL32b_ai_128B;
1632   else
1633     LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
1634 
1635   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
1636     .addFrameIndex(FI)
1637     .addImm(Size)
1638     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1639 
1640   B.erase(It);
1641   return true;
1642 }
1643 
expandStoreVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1644 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
1645       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1646       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1647   MachineFunction &MF = *B.getParent();
1648   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1649   auto &MFI = *MF.getFrameInfo();
1650   MachineInstr *MI = &*It;
1651   DebugLoc DL = MI->getDebugLoc();
1652 
1653   unsigned SrcR = MI->getOperand(2).getReg();
1654   bool IsKill = MI->getOperand(2).isKill();
1655 
1656   assert(MI->getOperand(0).isFI() && "Expect a frame index");
1657   int FI = MI->getOperand(0).getIndex();
1658 
1659   bool Is128B = HST.useHVXDblOps();
1660   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1661                      : &Hexagon::VectorRegs128BRegClass;
1662 
1663   unsigned NeedAlign = RC->getAlignment();
1664   unsigned HasAlign = MFI.getObjectAlignment(FI);
1665   unsigned StoreOpc;
1666 
1667   if (NeedAlign <= HasAlign)
1668     StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
1669   else
1670     StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
1671 
1672   BuildMI(B, It, DL, HII.get(StoreOpc))
1673     .addFrameIndex(FI)
1674     .addImm(0)
1675     .addReg(SrcR, getKillRegState(IsKill))
1676     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1677 
1678   B.erase(It);
1679   return true;
1680 }
1681 
expandLoadVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1682 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
1683       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1684       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1685   MachineFunction &MF = *B.getParent();
1686   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1687   auto &MFI = *MF.getFrameInfo();
1688   MachineInstr *MI = &*It;
1689   DebugLoc DL = MI->getDebugLoc();
1690 
1691   unsigned DstR = MI->getOperand(0).getReg();
1692 
1693   assert(MI->getOperand(1).isFI() && "Expect a frame index");
1694   int FI = MI->getOperand(1).getIndex();
1695 
1696   bool Is128B = HST.useHVXDblOps();
1697   auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1698                      : &Hexagon::VectorRegs128BRegClass;
1699 
1700   unsigned NeedAlign = RC->getAlignment();
1701   unsigned HasAlign = MFI.getObjectAlignment(FI);
1702   unsigned LoadOpc;
1703 
1704   if (NeedAlign <= HasAlign)
1705     LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
1706   else
1707     LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
1708 
1709   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
1710     .addFrameIndex(FI)
1711     .addImm(0)
1712     .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1713 
1714   B.erase(It);
1715   return true;
1716 }
1717 
1718 
expandSpillMacros(MachineFunction & MF,SmallVectorImpl<unsigned> & NewRegs) const1719 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
1720       SmallVectorImpl<unsigned> &NewRegs) const {
1721   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1722   auto &HII = *HST.getInstrInfo();
1723   MachineRegisterInfo &MRI = MF.getRegInfo();
1724   bool Changed = false;
1725 
1726   for (auto &B : MF) {
1727     // Traverse the basic block.
1728     MachineBasicBlock::iterator NextI;
1729     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
1730       MachineInstr *MI = &*I;
1731       NextI = std::next(I);
1732       unsigned Opc = MI->getOpcode();
1733 
1734       switch (Opc) {
1735         case TargetOpcode::COPY:
1736           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
1737           break;
1738         case Hexagon::STriw_pred:
1739         case Hexagon::STriw_mod:
1740           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
1741           break;
1742         case Hexagon::LDriw_pred:
1743         case Hexagon::LDriw_mod:
1744           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
1745           break;
1746         case Hexagon::STriq_pred_V6:
1747         case Hexagon::STriq_pred_V6_128B:
1748           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
1749           break;
1750         case Hexagon::LDriq_pred_V6:
1751         case Hexagon::LDriq_pred_V6_128B:
1752           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
1753           break;
1754         case Hexagon::LDrivv_pseudo_V6:
1755         case Hexagon::LDrivv_pseudo_V6_128B:
1756           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
1757           break;
1758         case Hexagon::STrivv_pseudo_V6:
1759         case Hexagon::STrivv_pseudo_V6_128B:
1760           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
1761           break;
1762         case Hexagon::STriv_pseudo_V6:
1763         case Hexagon::STriv_pseudo_V6_128B:
1764           Changed |= expandStoreVec(B, I, MRI, HII, NewRegs);
1765           break;
1766         case Hexagon::LDriv_pseudo_V6:
1767         case Hexagon::LDriv_pseudo_V6_128B:
1768           Changed |= expandLoadVec(B, I, MRI, HII, NewRegs);
1769           break;
1770       }
1771     }
1772   }
1773 
1774   return Changed;
1775 }
1776 
1777 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const1778 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
1779                                                 BitVector &SavedRegs,
1780                                                 RegScavenger *RS) const {
1781   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1782   auto &HRI = *HST.getRegisterInfo();
1783 
1784   SavedRegs.resize(HRI.getNumRegs());
1785 
1786   // If we have a function containing __builtin_eh_return we want to spill and
1787   // restore all callee saved registers. Pretend that they are used.
1788   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
1789     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
1790       SavedRegs.set(*R);
1791 
1792   // Replace predicate register pseudo spill code.
1793   SmallVector<unsigned,8> NewRegs;
1794   expandSpillMacros(MF, NewRegs);
1795   if (OptimizeSpillSlots && !isOptNone(MF))
1796     optimizeSpillSlots(MF, NewRegs);
1797 
1798   // We need to reserve a a spill slot if scavenging could potentially require
1799   // spilling a scavenged register.
1800   if (!NewRegs.empty()) {
1801     MachineFrameInfo &MFI = *MF.getFrameInfo();
1802     MachineRegisterInfo &MRI = MF.getRegInfo();
1803     SetVector<const TargetRegisterClass*> SpillRCs;
1804     // Reserve an int register in any case, because it could be used to hold
1805     // the stack offset in case it does not fit into a spill instruction.
1806     SpillRCs.insert(&Hexagon::IntRegsRegClass);
1807 
1808     for (unsigned VR : NewRegs)
1809       SpillRCs.insert(MRI.getRegClass(VR));
1810 
1811     for (auto *RC : SpillRCs) {
1812       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
1813         continue;
1814       unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1;
1815       unsigned S = RC->getSize(), A = RC->getAlignment();
1816       for (unsigned i = 0; i < Num; i++) {
1817         int NewFI = MFI.CreateSpillStackObject(S, A);
1818         RS->addScavengingFrameIndex(NewFI);
1819       }
1820     }
1821   }
1822 
1823   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1824 }
1825 
1826 
findPhysReg(MachineFunction & MF,HexagonBlockRanges::IndexRange & FIR,HexagonBlockRanges::InstrIndexMap & IndexMap,HexagonBlockRanges::RegToRangeMap & DeadMap,const TargetRegisterClass * RC) const1827 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
1828       HexagonBlockRanges::IndexRange &FIR,
1829       HexagonBlockRanges::InstrIndexMap &IndexMap,
1830       HexagonBlockRanges::RegToRangeMap &DeadMap,
1831       const TargetRegisterClass *RC) const {
1832   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1833   auto &MRI = MF.getRegInfo();
1834 
1835   auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
1836     auto F = DeadMap.find({Reg,0});
1837     if (F == DeadMap.end())
1838       return false;
1839     for (auto &DR : F->second)
1840       if (DR.contains(FIR))
1841         return true;
1842     return false;
1843   };
1844 
1845   for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
1846     bool Dead = true;
1847     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
1848       if (isDead(R.Reg))
1849         continue;
1850       Dead = false;
1851       break;
1852     }
1853     if (Dead)
1854       return Reg;
1855   }
1856   return 0;
1857 }
1858 
optimizeSpillSlots(MachineFunction & MF,SmallVectorImpl<unsigned> & VRegs) const1859 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
1860       SmallVectorImpl<unsigned> &VRegs) const {
1861   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1862   auto &HII = *HST.getInstrInfo();
1863   auto &HRI = *HST.getRegisterInfo();
1864   auto &MRI = MF.getRegInfo();
1865   HexagonBlockRanges HBR(MF);
1866 
1867   typedef std::map<MachineBasicBlock*,HexagonBlockRanges::InstrIndexMap>
1868       BlockIndexMap;
1869   typedef std::map<MachineBasicBlock*,HexagonBlockRanges::RangeList>
1870       BlockRangeMap;
1871   typedef HexagonBlockRanges::IndexType IndexType;
1872 
1873   struct SlotInfo {
1874     BlockRangeMap Map;
1875     unsigned Size;
1876     const TargetRegisterClass *RC;
1877 
1878     SlotInfo() : Map(), Size(0), RC(nullptr) {}
1879   };
1880 
1881   BlockIndexMap BlockIndexes;
1882   SmallSet<int,4> BadFIs;
1883   std::map<int,SlotInfo> FIRangeMap;
1884 
1885   auto getRegClass = [&MRI,&HRI] (HexagonBlockRanges::RegisterRef R)
1886         -> const TargetRegisterClass* {
1887     if (TargetRegisterInfo::isPhysicalRegister(R.Reg))
1888       assert(R.Sub == 0);
1889     if (TargetRegisterInfo::isVirtualRegister(R.Reg)) {
1890       auto *RCR = MRI.getRegClass(R.Reg);
1891       if (R.Sub == 0)
1892         return RCR;
1893       unsigned PR = *RCR->begin();
1894       R.Reg = HRI.getSubReg(PR, R.Sub);
1895     }
1896     return HRI.getMinimalPhysRegClass(R.Reg);
1897   };
1898   // Accumulate register classes: get a common class for a pre-existing
1899   // class HaveRC and a new class NewRC. Return nullptr if a common class
1900   // cannot be found, otherwise return the resulting class. If HaveRC is
1901   // nullptr, assume that it is still unset.
1902   auto getCommonRC = [&HRI] (const TargetRegisterClass *HaveRC,
1903                              const TargetRegisterClass *NewRC)
1904         -> const TargetRegisterClass* {
1905     if (HaveRC == nullptr || HaveRC == NewRC)
1906       return NewRC;
1907     // Different classes, both non-null. Pick the more general one.
1908     if (HaveRC->hasSubClassEq(NewRC))
1909       return HaveRC;
1910     if (NewRC->hasSubClassEq(HaveRC))
1911       return NewRC;
1912     return nullptr;
1913   };
1914 
1915   // Scan all blocks in the function. Check all occurrences of frame indexes,
1916   // and collect relevant information.
1917   for (auto &B : MF) {
1918     std::map<int,IndexType> LastStore, LastLoad;
1919     // Emplace appears not to be supported in gcc 4.7.2-4.
1920     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
1921     auto P = BlockIndexes.insert(
1922                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
1923     auto &IndexMap = P.first->second;
1924     DEBUG(dbgs() << "Index map for BB#" << B.getNumber() << "\n"
1925                  << IndexMap << '\n');
1926 
1927     for (auto &In : B) {
1928       int LFI, SFI;
1929       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
1930       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
1931       if (Load && Store) {
1932         // If it's both a load and a store, then we won't handle it.
1933         BadFIs.insert(LFI);
1934         BadFIs.insert(SFI);
1935         continue;
1936       }
1937       // Check for register classes of the register used as the source for
1938       // the store, and the register used as the destination for the load.
1939       // Also, only accept base+imm_offset addressing modes. Other addressing
1940       // modes can have side-effects (post-increments, etc.). For stack
1941       // slots they are very unlikely, so there is not much loss due to
1942       // this restriction.
1943       if (Load || Store) {
1944         int TFI = Load ? LFI : SFI;
1945         unsigned AM = HII.getAddrMode(&In);
1946         SlotInfo &SI = FIRangeMap[TFI];
1947         bool Bad = (AM != HexagonII::BaseImmOffset);
1948         if (!Bad) {
1949           // If the addressing mode is ok, check the register class.
1950           const TargetRegisterClass *RC = nullptr;
1951           if (Load) {
1952             MachineOperand &DataOp = In.getOperand(0);
1953             RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()});
1954           } else {
1955             MachineOperand &DataOp = In.getOperand(2);
1956             RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()});
1957           }
1958           RC = getCommonRC(SI.RC, RC);
1959           if (RC == nullptr)
1960             Bad = true;
1961           else
1962             SI.RC = RC;
1963         }
1964         if (!Bad) {
1965           // Check sizes.
1966           unsigned S = (1U << (HII.getMemAccessSize(&In) - 1));
1967           if (SI.Size != 0 && SI.Size != S)
1968             Bad = true;
1969           else
1970             SI.Size = S;
1971         }
1972         if (Bad)
1973           BadFIs.insert(TFI);
1974       }
1975 
1976       // Locate uses of frame indices.
1977       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
1978         const MachineOperand &Op = In.getOperand(i);
1979         if (!Op.isFI())
1980           continue;
1981         int FI = Op.getIndex();
1982         // Make sure that the following operand is an immediate and that
1983         // it is 0. This is the offset in the stack object.
1984         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
1985             In.getOperand(i+1).getImm() != 0)
1986           BadFIs.insert(FI);
1987         if (BadFIs.count(FI))
1988           continue;
1989 
1990         IndexType Index = IndexMap.getIndex(&In);
1991         if (Load) {
1992           if (LastStore[FI] == IndexType::None)
1993             LastStore[FI] = IndexType::Entry;
1994           LastLoad[FI] = Index;
1995         } else if (Store) {
1996           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
1997           if (LastStore[FI] != IndexType::None)
1998             RL.add(LastStore[FI], LastLoad[FI], false, false);
1999           else if (LastLoad[FI] != IndexType::None)
2000             RL.add(IndexType::Entry, LastLoad[FI], false, false);
2001           LastLoad[FI] = IndexType::None;
2002           LastStore[FI] = Index;
2003         } else {
2004           BadFIs.insert(FI);
2005         }
2006       }
2007     }
2008 
2009     for (auto &I : LastLoad) {
2010       IndexType LL = I.second;
2011       if (LL == IndexType::None)
2012         continue;
2013       auto &RL = FIRangeMap[I.first].Map[&B];
2014       IndexType &LS = LastStore[I.first];
2015       if (LS != IndexType::None)
2016         RL.add(LS, LL, false, false);
2017       else
2018         RL.add(IndexType::Entry, LL, false, false);
2019       LS = IndexType::None;
2020     }
2021     for (auto &I : LastStore) {
2022       IndexType LS = I.second;
2023       if (LS == IndexType::None)
2024         continue;
2025       auto &RL = FIRangeMap[I.first].Map[&B];
2026       RL.add(LS, IndexType::None, false, false);
2027     }
2028   }
2029 
2030   DEBUG({
2031     for (auto &P : FIRangeMap) {
2032       dbgs() << "fi#" << P.first;
2033       if (BadFIs.count(P.first))
2034         dbgs() << " (bad)";
2035       dbgs() << "  RC: ";
2036       if (P.second.RC != nullptr)
2037         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2038       else
2039         dbgs() << "<null>\n";
2040       for (auto &R : P.second.Map)
2041         dbgs() << "  BB#" << R.first->getNumber() << " { " << R.second << "}\n";
2042     }
2043   });
2044 
2045   // When a slot is loaded from in a block without being stored to in the
2046   // same block, it is live-on-entry to this block. To avoid CFG analysis,
2047   // consider this slot to be live-on-exit from all blocks.
2048   SmallSet<int,4> LoxFIs;
2049 
2050   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2051 
2052   for (auto &P : FIRangeMap) {
2053     // P = pair(FI, map: BB->RangeList)
2054     if (BadFIs.count(P.first))
2055       continue;
2056     for (auto &B : MF) {
2057       auto F = P.second.Map.find(&B);
2058       // F = pair(BB, RangeList)
2059       if (F == P.second.Map.end() || F->second.empty())
2060         continue;
2061       HexagonBlockRanges::IndexRange &IR = F->second.front();
2062       if (IR.start() == IndexType::Entry)
2063         LoxFIs.insert(P.first);
2064       BlockFIMap[&B].push_back(P.first);
2065     }
2066   }
2067 
2068   DEBUG({
2069     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2070     for (auto &P : BlockFIMap) {
2071       auto &FIs = P.second;
2072       if (FIs.empty())
2073         continue;
2074       dbgs() << "  BB#" << P.first->getNumber() << ": {";
2075       for (auto I : FIs) {
2076         dbgs() << " fi#" << I;
2077         if (LoxFIs.count(I))
2078           dbgs() << '*';
2079       }
2080       dbgs() << " }\n";
2081     }
2082   });
2083 
2084   // eliminate loads, when all loads eliminated, eliminate all stores.
2085   for (auto &B : MF) {
2086     auto F = BlockIndexes.find(&B);
2087     assert(F != BlockIndexes.end());
2088     HexagonBlockRanges::InstrIndexMap &IM = F->second;
2089     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2090     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2091     DEBUG(dbgs() << "BB#" << B.getNumber() << " dead map\n"
2092                  << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2093 
2094     for (auto FI : BlockFIMap[&B]) {
2095       if (BadFIs.count(FI))
2096         continue;
2097       DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2098       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2099       for (auto &Range : RL) {
2100         DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2101         if (!IndexType::isInstr(Range.start()) ||
2102             !IndexType::isInstr(Range.end()))
2103           continue;
2104         MachineInstr *SI = IM.getInstr(Range.start());
2105         MachineInstr *EI = IM.getInstr(Range.end());
2106         assert(SI->mayStore() && "Unexpected start instruction");
2107         assert(EI->mayLoad() && "Unexpected end instruction");
2108         MachineOperand &SrcOp = SI->getOperand(2);
2109 
2110         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2111                                                   SrcOp.getSubReg() };
2112         auto *RC = getRegClass({SrcOp.getReg(), SrcOp.getSubReg()});
2113         // The this-> is needed to unconfuse MSVC.
2114         unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2115         DEBUG(dbgs() << "Replacement reg:" << PrintReg(FoundR, &HRI) << '\n');
2116         if (FoundR == 0)
2117           continue;
2118 
2119         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2120         MachineBasicBlock::iterator StartIt = SI, NextIt;
2121         MachineInstr *CopyIn = nullptr;
2122         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2123           const DebugLoc &DL = SI->getDebugLoc();
2124           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2125                       .addOperand(SrcOp);
2126         }
2127 
2128         ++StartIt;
2129         // Check if this is a last store and the FI is live-on-exit.
2130         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2131           // Update store's source register.
2132           if (unsigned SR = SrcOp.getSubReg())
2133             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2134           else
2135             SrcOp.setReg(FoundR);
2136           SrcOp.setSubReg(0);
2137           // We are keeping this register live.
2138           SrcOp.setIsKill(false);
2139         } else {
2140           B.erase(SI);
2141           IM.replaceInstr(SI, CopyIn);
2142         }
2143 
2144         auto EndIt = std::next(MachineBasicBlock::iterator(EI));
2145         for (auto It = StartIt; It != EndIt; It = NextIt) {
2146           MachineInstr *MI = &*It;
2147           NextIt = std::next(It);
2148           int TFI;
2149           if (!HII.isLoadFromStackSlot(*MI, TFI) || TFI != FI)
2150             continue;
2151           unsigned DstR = MI->getOperand(0).getReg();
2152           assert(MI->getOperand(0).getSubReg() == 0);
2153           MachineInstr *CopyOut = nullptr;
2154           if (DstR != FoundR) {
2155             DebugLoc DL = MI->getDebugLoc();
2156             unsigned MemSize = (1U << (HII.getMemAccessSize(MI) - 1));
2157             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2158             unsigned CopyOpc = TargetOpcode::COPY;
2159             if (HII.isSignExtendingLoad(*MI))
2160               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2161             else if (HII.isZeroExtendingLoad(*MI))
2162               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2163             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2164                         .addReg(FoundR, getKillRegState(MI == EI));
2165           }
2166           IM.replaceInstr(MI, CopyOut);
2167           B.erase(It);
2168         }
2169 
2170         // Update the dead map.
2171         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2172         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2173           DM[RR].subtract(Range);
2174       } // for Range in range list
2175     }
2176   }
2177 }
2178 
2179 
expandAlloca(MachineInstr * AI,const HexagonInstrInfo & HII,unsigned SP,unsigned CF) const2180 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2181       const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2182   MachineBasicBlock &MB = *AI->getParent();
2183   DebugLoc DL = AI->getDebugLoc();
2184   unsigned A = AI->getOperand(2).getImm();
2185 
2186   // Have
2187   //    Rd  = alloca Rs, #A
2188   //
2189   // If Rs and Rd are different registers, use this sequence:
2190   //    Rd  = sub(r29, Rs)
2191   //    r29 = sub(r29, Rs)
2192   //    Rd  = and(Rd, #-A)    ; if necessary
2193   //    r29 = and(r29, #-A)   ; if necessary
2194   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2195   // otherwise, do
2196   //    Rd  = sub(r29, Rs)
2197   //    Rd  = and(Rd, #-A)    ; if necessary
2198   //    r29 = Rd
2199   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2200 
2201   MachineOperand &RdOp = AI->getOperand(0);
2202   MachineOperand &RsOp = AI->getOperand(1);
2203   unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2204 
2205   // Rd = sub(r29, Rs)
2206   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2207       .addReg(SP)
2208       .addReg(Rs);
2209   if (Rs != Rd) {
2210     // r29 = sub(r29, Rs)
2211     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2212         .addReg(SP)
2213         .addReg(Rs);
2214   }
2215   if (A > 8) {
2216     // Rd  = and(Rd, #-A)
2217     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2218         .addReg(Rd)
2219         .addImm(-int64_t(A));
2220     if (Rs != Rd)
2221       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2222           .addReg(SP)
2223           .addImm(-int64_t(A));
2224   }
2225   if (Rs == Rd) {
2226     // r29 = Rd
2227     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2228         .addReg(Rd);
2229   }
2230   if (CF > 0) {
2231     // Rd = add(Rd, #CF)
2232     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2233         .addReg(Rd)
2234         .addImm(CF);
2235   }
2236 }
2237 
2238 
needsAligna(const MachineFunction & MF) const2239 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2240   const MachineFrameInfo *MFI = MF.getFrameInfo();
2241   if (!MFI->hasVarSizedObjects())
2242     return false;
2243   unsigned MaxA = MFI->getMaxAlignment();
2244   if (MaxA <= getStackAlignment())
2245     return false;
2246   return true;
2247 }
2248 
2249 
getAlignaInstr(const MachineFunction & MF) const2250 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2251       const MachineFunction &MF) const {
2252   for (auto &B : MF)
2253     for (auto &I : B)
2254       if (I.getOpcode() == Hexagon::ALIGNA)
2255         return &I;
2256   return nullptr;
2257 }
2258 
2259 
2260 /// Adds all callee-saved registers as implicit uses or defs to the
2261 /// instruction.
addCalleeSaveRegistersAsImpOperand(MachineInstr * MI,const CSIVect & CSI,bool IsDef,bool IsKill) const2262 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2263       const CSIVect &CSI, bool IsDef, bool IsKill) const {
2264   // Add the callee-saved registers as implicit uses.
2265   for (auto &R : CSI)
2266     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2267 }
2268 
2269 
2270 /// Determine whether the callee-saved register saves and restores should
2271 /// be generated via inline code. If this function returns "true", inline
2272 /// code will be generated. If this function returns "false", additional
2273 /// checks are performed, which may still lead to the inline code.
shouldInlineCSR(MachineFunction & MF,const CSIVect & CSI) const2274 bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
2275       const CSIVect &CSI) const {
2276   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2277     return true;
2278   if (!isOptSize(MF) && !isMinSize(MF))
2279     if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2280       return true;
2281 
2282   // Check if CSI only has double registers, and if the registers form
2283   // a contiguous block starting from D8.
2284   BitVector Regs(Hexagon::NUM_TARGET_REGS);
2285   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
2286     unsigned R = CSI[i].getReg();
2287     if (!Hexagon::DoubleRegsRegClass.contains(R))
2288       return true;
2289     Regs[R] = true;
2290   }
2291   int F = Regs.find_first();
2292   if (F != Hexagon::D8)
2293     return true;
2294   while (F >= 0) {
2295     int N = Regs.find_next(F);
2296     if (N >= 0 && N != F+1)
2297       return true;
2298     F = N;
2299   }
2300 
2301   return false;
2302 }
2303 
2304 
useSpillFunction(MachineFunction & MF,const CSIVect & CSI) const2305 bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
2306       const CSIVect &CSI) const {
2307   if (shouldInlineCSR(MF, CSI))
2308     return false;
2309   unsigned NumCSI = CSI.size();
2310   if (NumCSI <= 1)
2311     return false;
2312 
2313   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2314                                      : SpillFuncThreshold;
2315   return Threshold < NumCSI;
2316 }
2317 
2318 
useRestoreFunction(MachineFunction & MF,const CSIVect & CSI) const2319 bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
2320       const CSIVect &CSI) const {
2321   if (shouldInlineCSR(MF, CSI))
2322     return false;
2323   // The restore functions do a bit more than just restoring registers.
2324   // The non-returning versions will go back directly to the caller's
2325   // caller, others will clean up the stack frame in preparation for
2326   // a tail call. Using them can still save code size even if only one
2327   // register is getting restores. Make the decision based on -Oz:
2328   // using -Os will use inline restore for a single register.
2329   if (isMinSize(MF))
2330     return true;
2331   unsigned NumCSI = CSI.size();
2332   if (NumCSI <= 1)
2333     return false;
2334 
2335   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2336                                      : SpillFuncThreshold;
2337   return Threshold < NumCSI;
2338 }
2339