1 //===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //
9 //===----------------------------------------------------------------------===//
10
11 #define DEBUG_TYPE "hexagon-pei"
12
13 #include "HexagonBlockRanges.h"
14 #include "HexagonFrameLowering.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachinePostDominators.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegisterScavenging.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetOptions.h"
39
40 // Hexagon stack frame layout as defined by the ABI:
41 //
42 // Incoming arguments
43 // passed via stack
44 // |
45 // |
46 // SP during function's FP during function's |
47 // +-- runtime (top of stack) runtime (bottom) --+ |
48 // | | |
49 // --++---------------------+------------------+-----------------++-+-------
50 // | parameter area for | variable-size | fixed-size |LR| arg
51 // | called functions | local objects | local objects |FP|
52 // --+----------------------+------------------+-----------------+--+-------
53 // <- size known -> <- size unknown -> <- size known ->
54 //
55 // Low address High address
56 //
57 // <--- stack growth
58 //
59 //
60 // - In any circumstances, the outgoing function arguments are always accessi-
61 // ble using the SP, and the incoming arguments are accessible using the FP.
62 // - If the local objects are not aligned, they can always be accessed using
63 // the FP.
64 // - If there are no variable-sized objects, the local objects can always be
65 // accessed using the SP, regardless whether they are aligned or not. (The
66 // alignment padding will be at the bottom of the stack (highest address),
67 // and so the offset with respect to the SP will be known at the compile-
68 // -time.)
69 //
70 // The only complication occurs if there are both, local aligned objects, and
71 // dynamically allocated (variable-sized) objects. The alignment pad will be
72 // placed between the FP and the local objects, thus preventing the use of the
73 // FP to access the local objects. At the same time, the variable-sized objects
74 // will be between the SP and the local objects, thus introducing an unknown
75 // distance from the SP to the locals.
76 //
77 // To avoid this problem, a new register is created that holds the aligned
78 // address of the bottom of the stack, referred in the sources as AP (aligned
79 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
80 // that aligns AP to the required boundary (a maximum of the alignments of
81 // all stack objects, fixed- and variable-sized). All local objects[1] will
82 // then use AP as the base pointer.
83 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
84 // their name from being allocated at fixed locations on the stack, relative
85 // to the FP. In the presence of dynamic allocation and local alignment, such
86 // objects can only be accessed through the FP.
87 //
88 // Illustration of the AP:
89 // FP --+
90 // |
91 // ---------------+---------------------+-----+-----------------------++-+--
92 // Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
93 // stack frame | (aligned) | | (CSR, spills, etc.) |FP|
94 // ---------------+---------------------+-----+-----------------+-----+--+--
95 // |<-- Multiple of the -->|
96 // stack alignment +-- AP
97 //
98 // The AP is set up at the beginning of the function. Since it is not a dedi-
99 // cated (reserved) register, it needs to be kept live throughout the function
100 // to be available as the base register for local object accesses.
101 // Normally, an address of a stack objects is obtained by a pseudo-instruction
102 // TFR_FI. To access local objects with the AP register present, a different
103 // pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
104 // argument compared to TFR_FI: the first input register is the AP register.
105 // This keeps the register live between its definition and its uses.
106
107 // The AP register is originally set up using pseudo-instruction ALIGNA:
108 // AP = ALIGNA A
109 // where
110 // A - required stack alignment
111 // The alignment value must be the maximum of all alignments required by
112 // any stack object.
113
114 // The dynamic allocation uses a pseudo-instruction ALLOCA:
115 // Rd = ALLOCA Rs, A
116 // where
117 // Rd - address of the allocated space
118 // Rs - minimum size (the actual allocated can be larger to accommodate
119 // alignment)
120 // A - required alignment
121
122
123 using namespace llvm;
124
125 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
126 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
127
128 static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
129 cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
130 cl::ZeroOrMore);
131
132 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
133 cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
134 cl::init(6), cl::ZeroOrMore);
135
136 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
137 cl::Hidden, cl::desc("Specify Os spill func threshold"),
138 cl::init(1), cl::ZeroOrMore);
139
140 static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
141 cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
142 cl::init(false), cl::ZeroOrMore);
143
144 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
145 cl::init(true), cl::Hidden, cl::ZeroOrMore,
146 cl::desc("Enable stack frame shrink wrapping"));
147
148 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
149 cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
150 "shrink-wraps"));
151
152 static cl::opt<bool> UseAllocframe("use-allocframe", cl::init(true),
153 cl::Hidden, cl::desc("Use allocframe more conservatively"));
154
155 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
156 cl::init(true), cl::desc("Optimize spill slots"));
157
158
159 namespace llvm {
160 void initializeHexagonCallFrameInformationPass(PassRegistry&);
161 FunctionPass *createHexagonCallFrameInformation();
162 }
163
164 namespace {
165 class HexagonCallFrameInformation : public MachineFunctionPass {
166 public:
167 static char ID;
HexagonCallFrameInformation()168 HexagonCallFrameInformation() : MachineFunctionPass(ID) {
169 PassRegistry &PR = *PassRegistry::getPassRegistry();
170 initializeHexagonCallFrameInformationPass(PR);
171 }
172 bool runOnMachineFunction(MachineFunction &MF) override;
getRequiredProperties() const173 MachineFunctionProperties getRequiredProperties() const override {
174 return MachineFunctionProperties().set(
175 MachineFunctionProperties::Property::AllVRegsAllocated);
176 }
177 };
178
179 char HexagonCallFrameInformation::ID = 0;
180 }
181
runOnMachineFunction(MachineFunction & MF)182 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
183 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
184 bool NeedCFI = MF.getMMI().hasDebugInfo() ||
185 MF.getFunction()->needsUnwindTableEntry();
186
187 if (!NeedCFI)
188 return false;
189 HFI.insertCFIInstructions(MF);
190 return true;
191 }
192
193 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
194 "Hexagon call frame information", false, false)
195
createHexagonCallFrameInformation()196 FunctionPass *llvm::createHexagonCallFrameInformation() {
197 return new HexagonCallFrameInformation();
198 }
199
200
201 namespace {
202 /// Map a register pair Reg to the subregister that has the greater "number",
203 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
getMax32BitSubRegister(unsigned Reg,const TargetRegisterInfo & TRI,bool hireg=true)204 unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
205 bool hireg = true) {
206 if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
207 return Reg;
208
209 unsigned RegNo = 0;
210 for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
211 if (hireg) {
212 if (*SubRegs > RegNo)
213 RegNo = *SubRegs;
214 } else {
215 if (!RegNo || *SubRegs < RegNo)
216 RegNo = *SubRegs;
217 }
218 }
219 return RegNo;
220 }
221
222 /// Returns the callee saved register with the largest id in the vector.
getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo & TRI)223 unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
224 const TargetRegisterInfo &TRI) {
225 static_assert(Hexagon::R1 > 0,
226 "Assume physical registers are encoded as positive integers");
227 if (CSI.empty())
228 return 0;
229
230 unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
231 for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
232 unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
233 if (Reg > Max)
234 Max = Reg;
235 }
236 return Max;
237 }
238
239 /// Checks if the basic block contains any instruction that needs a stack
240 /// frame to be already in place.
needsStackFrame(const MachineBasicBlock & MBB,const BitVector & CSR,const HexagonRegisterInfo & HRI)241 bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
242 const HexagonRegisterInfo &HRI) {
243 for (auto &I : MBB) {
244 const MachineInstr *MI = &I;
245 if (MI->isCall())
246 return true;
247 unsigned Opc = MI->getOpcode();
248 switch (Opc) {
249 case Hexagon::ALLOCA:
250 case Hexagon::ALIGNA:
251 return true;
252 default:
253 break;
254 }
255 // Check individual operands.
256 for (const MachineOperand &MO : MI->operands()) {
257 // While the presence of a frame index does not prove that a stack
258 // frame will be required, all frame indexes should be within alloc-
259 // frame/deallocframe. Otherwise, the code that translates a frame
260 // index into an offset would have to be aware of the placement of
261 // the frame creation/destruction instructions.
262 if (MO.isFI())
263 return true;
264 if (!MO.isReg())
265 continue;
266 unsigned R = MO.getReg();
267 // Virtual registers will need scavenging, which then may require
268 // a stack slot.
269 if (TargetRegisterInfo::isVirtualRegister(R))
270 return true;
271 for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
272 if (CSR[*S])
273 return true;
274 }
275 }
276 return false;
277 }
278
279 /// Returns true if MBB has a machine instructions that indicates a tail call
280 /// in the block.
hasTailCall(const MachineBasicBlock & MBB)281 bool hasTailCall(const MachineBasicBlock &MBB) {
282 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
283 unsigned RetOpc = I->getOpcode();
284 return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
285 }
286
287 /// Returns true if MBB contains an instruction that returns.
hasReturn(const MachineBasicBlock & MBB)288 bool hasReturn(const MachineBasicBlock &MBB) {
289 for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
290 if (I->isReturn())
291 return true;
292 return false;
293 }
294
295 /// Returns the "return" instruction from this block, or nullptr if there
296 /// isn't any.
getReturn(MachineBasicBlock & MBB)297 MachineInstr *getReturn(MachineBasicBlock &MBB) {
298 for (auto &I : MBB)
299 if (I.isReturn())
300 return &I;
301 return nullptr;
302 }
303
isRestoreCall(unsigned Opc)304 bool isRestoreCall(unsigned Opc) {
305 switch (Opc) {
306 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
307 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
308 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
309 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
310 return true;
311 }
312 return false;
313 }
314
isOptNone(const MachineFunction & MF)315 inline bool isOptNone(const MachineFunction &MF) {
316 return MF.getFunction()->hasFnAttribute(Attribute::OptimizeNone) ||
317 MF.getTarget().getOptLevel() == CodeGenOpt::None;
318 }
319
isOptSize(const MachineFunction & MF)320 inline bool isOptSize(const MachineFunction &MF) {
321 const Function &F = *MF.getFunction();
322 return F.optForSize() && !F.optForMinSize();
323 }
324
isMinSize(const MachineFunction & MF)325 inline bool isMinSize(const MachineFunction &MF) {
326 return MF.getFunction()->optForMinSize();
327 }
328 }
329
330
331 /// Implements shrink-wrapping of the stack frame. By default, stack frame
332 /// is created in the function entry block, and is cleaned up in every block
333 /// that returns. This function finds alternate blocks: one for the frame
334 /// setup (prolog) and one for the cleanup (epilog).
findShrunkPrologEpilog(MachineFunction & MF,MachineBasicBlock * & PrologB,MachineBasicBlock * & EpilogB) const335 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
336 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
337 static unsigned ShrinkCounter = 0;
338
339 if (ShrinkLimit.getPosition()) {
340 if (ShrinkCounter >= ShrinkLimit)
341 return;
342 ShrinkCounter++;
343 }
344
345 auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
346 auto &HRI = *HST.getRegisterInfo();
347
348 MachineDominatorTree MDT;
349 MDT.runOnMachineFunction(MF);
350 MachinePostDominatorTree MPT;
351 MPT.runOnMachineFunction(MF);
352
353 typedef DenseMap<unsigned,unsigned> UnsignedMap;
354 UnsignedMap RPO;
355 typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
356 RPOTType RPOT(&MF);
357 unsigned RPON = 0;
358 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
359 RPO[(*I)->getNumber()] = RPON++;
360
361 // Don't process functions that have loops, at least for now. Placement
362 // of prolog and epilog must take loop structure into account. For simpli-
363 // city don't do it right now.
364 for (auto &I : MF) {
365 unsigned BN = RPO[I.getNumber()];
366 for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
367 // If found a back-edge, return.
368 if (RPO[(*SI)->getNumber()] <= BN)
369 return;
370 }
371 }
372
373 // Collect the set of blocks that need a stack frame to execute. Scan
374 // each block for uses/defs of callee-saved registers, calls, etc.
375 SmallVector<MachineBasicBlock*,16> SFBlocks;
376 BitVector CSR(Hexagon::NUM_TARGET_REGS);
377 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
378 for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
379 CSR[*S] = true;
380
381 for (auto &I : MF)
382 if (needsStackFrame(I, CSR, HRI))
383 SFBlocks.push_back(&I);
384
385 DEBUG({
386 dbgs() << "Blocks needing SF: {";
387 for (auto &B : SFBlocks)
388 dbgs() << " BB#" << B->getNumber();
389 dbgs() << " }\n";
390 });
391 // No frame needed?
392 if (SFBlocks.empty())
393 return;
394
395 // Pick a common dominator and a common post-dominator.
396 MachineBasicBlock *DomB = SFBlocks[0];
397 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
398 DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
399 if (!DomB)
400 break;
401 }
402 MachineBasicBlock *PDomB = SFBlocks[0];
403 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
404 PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
405 if (!PDomB)
406 break;
407 }
408 DEBUG({
409 dbgs() << "Computed dom block: BB#";
410 if (DomB) dbgs() << DomB->getNumber();
411 else dbgs() << "<null>";
412 dbgs() << ", computed pdom block: BB#";
413 if (PDomB) dbgs() << PDomB->getNumber();
414 else dbgs() << "<null>";
415 dbgs() << "\n";
416 });
417 if (!DomB || !PDomB)
418 return;
419
420 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
421 if (!MDT.dominates(DomB, PDomB)) {
422 DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
423 return;
424 }
425 if (!MPT.dominates(PDomB, DomB)) {
426 DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
427 return;
428 }
429
430 // Finally, everything seems right.
431 PrologB = DomB;
432 EpilogB = PDomB;
433 }
434
435
436 /// Perform most of the PEI work here:
437 /// - saving/restoring of the callee-saved registers,
438 /// - stack frame creation and destruction.
439 /// Normally, this work is distributed among various functions, but doing it
440 /// in one place allows shrink-wrapping of the stack frame.
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const441 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
442 MachineBasicBlock &MBB) const {
443 auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
444 auto &HRI = *HST.getRegisterInfo();
445
446 MachineFrameInfo *MFI = MF.getFrameInfo();
447 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
448
449 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
450 if (EnableShrinkWrapping)
451 findShrunkPrologEpilog(MF, PrologB, EpilogB);
452
453 bool PrologueStubs = false;
454 insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
455 insertPrologueInBlock(*PrologB, PrologueStubs);
456
457 if (EpilogB) {
458 insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
459 insertEpilogueInBlock(*EpilogB);
460 } else {
461 for (auto &B : MF)
462 if (B.isReturnBlock())
463 insertCSRRestoresInBlock(B, CSI, HRI);
464
465 for (auto &B : MF)
466 if (B.isReturnBlock())
467 insertEpilogueInBlock(B);
468
469 for (auto &B : MF) {
470 if (B.empty())
471 continue;
472 MachineInstr *RetI = getReturn(B);
473 if (!RetI || isRestoreCall(RetI->getOpcode()))
474 continue;
475 for (auto &R : CSI)
476 RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
477 }
478 }
479
480 if (EpilogB) {
481 // If there is an epilog block, it may not have a return instruction.
482 // In such case, we need to add the callee-saved registers as live-ins
483 // in all blocks on all paths from the epilog to any return block.
484 unsigned MaxBN = 0;
485 for (auto &B : MF)
486 if (B.getNumber() >= 0)
487 MaxBN = std::max(MaxBN, unsigned(B.getNumber()));
488 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
489 updateExitPaths(*EpilogB, EpilogB, DoneT, DoneF, Path);
490 }
491 }
492
493
insertPrologueInBlock(MachineBasicBlock & MBB,bool PrologueStubs) const494 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
495 bool PrologueStubs) const {
496 MachineFunction &MF = *MBB.getParent();
497 MachineFrameInfo *MFI = MF.getFrameInfo();
498 auto &HST = MF.getSubtarget<HexagonSubtarget>();
499 auto &HII = *HST.getInstrInfo();
500 auto &HRI = *HST.getRegisterInfo();
501 DebugLoc dl;
502
503 unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
504
505 // Calculate the total stack frame size.
506 // Get the number of bytes to allocate from the FrameInfo.
507 unsigned FrameSize = MFI->getStackSize();
508 // Round up the max call frame size to the max alignment on the stack.
509 unsigned MaxCFA = alignTo(MFI->getMaxCallFrameSize(), MaxAlign);
510 MFI->setMaxCallFrameSize(MaxCFA);
511
512 FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
513 MFI->setStackSize(FrameSize);
514
515 bool AlignStack = (MaxAlign > getStackAlignment());
516
517 // Get the number of bytes to allocate from the FrameInfo.
518 unsigned NumBytes = MFI->getStackSize();
519 unsigned SP = HRI.getStackRegister();
520 unsigned MaxCF = MFI->getMaxCallFrameSize();
521 MachineBasicBlock::iterator InsertPt = MBB.begin();
522
523 auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
524 auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
525
526 for (auto MI : AdjustRegs) {
527 assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
528 expandAlloca(MI, HII, SP, MaxCF);
529 MI->eraseFromParent();
530 }
531
532 if (!hasFP(MF))
533 return;
534
535 // Check for overflow.
536 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
537 const unsigned int ALLOCFRAME_MAX = 16384;
538
539 // Create a dummy memory operand to avoid allocframe from being treated as
540 // a volatile memory reference.
541 MachineMemOperand *MMO =
542 MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
543 4, 4);
544
545 if (NumBytes >= ALLOCFRAME_MAX) {
546 // Emit allocframe(#0).
547 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
548 .addImm(0)
549 .addMemOperand(MMO);
550
551 // Subtract offset from frame pointer.
552 // We use a caller-saved non-parameter register for that.
553 unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
554 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
555 CallerSavedReg).addImm(NumBytes);
556 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
557 .addReg(SP)
558 .addReg(CallerSavedReg);
559 } else {
560 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
561 .addImm(NumBytes)
562 .addMemOperand(MMO);
563 }
564
565 if (AlignStack) {
566 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
567 .addReg(SP)
568 .addImm(-int64_t(MaxAlign));
569 }
570
571 // If the stack-checking is enabled, and we spilled the callee-saved
572 // registers inline (i.e. did not use a spill function), then call
573 // the stack checker directly.
574 if (EnableStackOVFSanitizer && !PrologueStubs)
575 BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CALLstk))
576 .addExternalSymbol("__runtime_stack_check");
577 }
578
insertEpilogueInBlock(MachineBasicBlock & MBB) const579 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
580 MachineFunction &MF = *MBB.getParent();
581 if (!hasFP(MF))
582 return;
583
584 auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
585 auto &HII = *HST.getInstrInfo();
586 auto &HRI = *HST.getRegisterInfo();
587 unsigned SP = HRI.getStackRegister();
588
589 MachineInstr *RetI = getReturn(MBB);
590 unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
591
592 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
593 DebugLoc DL;
594 if (InsertPt != MBB.end())
595 DL = InsertPt->getDebugLoc();
596 else if (!MBB.empty())
597 DL = std::prev(MBB.end())->getDebugLoc();
598
599 // Handle EH_RETURN.
600 if (RetOpc == Hexagon::EH_RETURN_JMPR) {
601 BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
602 BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
603 .addReg(SP)
604 .addReg(Hexagon::R28);
605 return;
606 }
607
608 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
609 // frame instruction if we encounter it.
610 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
611 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC) {
612 MachineBasicBlock::iterator It = RetI;
613 ++It;
614 // Delete all instructions after the RESTORE (except labels).
615 while (It != MBB.end()) {
616 if (!It->isLabel())
617 It = MBB.erase(It);
618 else
619 ++It;
620 }
621 return;
622 }
623
624 // It is possible that the restoring code is a call to a library function.
625 // All of the restore* functions include "deallocframe", so we need to make
626 // sure that we don't add an extra one.
627 bool NeedsDeallocframe = true;
628 if (!MBB.empty() && InsertPt != MBB.begin()) {
629 MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
630 unsigned COpc = PrevIt->getOpcode();
631 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
632 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)
633 NeedsDeallocframe = false;
634 }
635
636 if (!NeedsDeallocframe)
637 return;
638 // If the returning instruction is JMPret, replace it with dealloc_return,
639 // otherwise just add deallocframe. The function could be returning via a
640 // tail call.
641 if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
642 BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
643 return;
644 }
645 unsigned NewOpc = Hexagon::L4_return;
646 MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
647 // Transfer the function live-out registers.
648 NewI->copyImplicitOps(MF, *RetI);
649 MBB.erase(RetI);
650 }
651
652
updateExitPaths(MachineBasicBlock & MBB,MachineBasicBlock * RestoreB,BitVector & DoneT,BitVector & DoneF,BitVector & Path) const653 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
654 MachineBasicBlock *RestoreB, BitVector &DoneT, BitVector &DoneF,
655 BitVector &Path) const {
656 assert(MBB.getNumber() >= 0);
657 unsigned BN = MBB.getNumber();
658 if (Path[BN] || DoneF[BN])
659 return false;
660 if (DoneT[BN])
661 return true;
662
663 auto &CSI = MBB.getParent()->getFrameInfo()->getCalleeSavedInfo();
664
665 Path[BN] = true;
666 bool ReachedExit = false;
667 for (auto &SB : MBB.successors())
668 ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
669
670 if (!MBB.empty() && MBB.back().isReturn()) {
671 // Add implicit uses of all callee-saved registers to the reached
672 // return instructions. This is to prevent the anti-dependency breaker
673 // from renaming these registers.
674 MachineInstr &RetI = MBB.back();
675 if (!isRestoreCall(RetI.getOpcode()))
676 for (auto &R : CSI)
677 RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
678 ReachedExit = true;
679 }
680
681 // We don't want to add unnecessary live-ins to the restore block: since
682 // the callee-saved registers are being defined in it, the entry of the
683 // restore block cannot be on the path from the definitions to any exit.
684 if (ReachedExit && &MBB != RestoreB) {
685 for (auto &R : CSI)
686 if (!MBB.isLiveIn(R.getReg()))
687 MBB.addLiveIn(R.getReg());
688 DoneT[BN] = true;
689 }
690 if (!ReachedExit)
691 DoneF[BN] = true;
692
693 Path[BN] = false;
694 return ReachedExit;
695 }
696
697
698 namespace {
IsAllocFrame(MachineBasicBlock::const_iterator It)699 bool IsAllocFrame(MachineBasicBlock::const_iterator It) {
700 if (!It->isBundle())
701 return It->getOpcode() == Hexagon::S2_allocframe;
702 auto End = It->getParent()->instr_end();
703 MachineBasicBlock::const_instr_iterator I = It.getInstrIterator();
704 while (++I != End && I->isBundled())
705 if (I->getOpcode() == Hexagon::S2_allocframe)
706 return true;
707 return false;
708 }
709
FindAllocFrame(MachineBasicBlock & B)710 MachineBasicBlock::iterator FindAllocFrame(MachineBasicBlock &B) {
711 for (auto &I : B)
712 if (IsAllocFrame(I))
713 return I;
714 return B.end();
715 }
716 }
717
718
insertCFIInstructions(MachineFunction & MF) const719 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
720 for (auto &B : MF) {
721 auto AF = FindAllocFrame(B);
722 if (AF == B.end())
723 continue;
724 insertCFIInstructionsAt(B, ++AF);
725 }
726 }
727
728
insertCFIInstructionsAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator At) const729 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
730 MachineBasicBlock::iterator At) const {
731 MachineFunction &MF = *MBB.getParent();
732 MachineFrameInfo &MFI = *MF.getFrameInfo();
733 MachineModuleInfo &MMI = MF.getMMI();
734 auto &HST = MF.getSubtarget<HexagonSubtarget>();
735 auto &HII = *HST.getInstrInfo();
736 auto &HRI = *HST.getRegisterInfo();
737
738 // If CFI instructions have debug information attached, something goes
739 // wrong with the final assembly generation: the prolog_end is placed
740 // in a wrong location.
741 DebugLoc DL;
742 const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
743
744 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
745 bool HasFP = hasFP(MF);
746
747 if (HasFP) {
748 unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
749 unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
750
751 // Define CFA via an offset from the value of FP.
752 //
753 // -8 -4 0 (SP)
754 // --+----+----+---------------------
755 // | FP | LR | increasing addresses -->
756 // --+----+----+---------------------
757 // | +-- Old SP (before allocframe)
758 // +-- New FP (after allocframe)
759 //
760 // MCCFIInstruction::createDefCfa subtracts the offset from the register.
761 // MCCFIInstruction::createOffset takes the offset without sign change.
762 auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
763 BuildMI(MBB, At, DL, CFID)
764 .addCFIIndex(MMI.addFrameInst(DefCfa));
765 // R31 (return addr) = CFA - 4
766 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
767 BuildMI(MBB, At, DL, CFID)
768 .addCFIIndex(MMI.addFrameInst(OffR31));
769 // R30 (frame ptr) = CFA - 8
770 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
771 BuildMI(MBB, At, DL, CFID)
772 .addCFIIndex(MMI.addFrameInst(OffR30));
773 }
774
775 static unsigned int RegsToMove[] = {
776 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
777 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
778 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
779 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
780 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9,
781 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
782 Hexagon::NoRegister
783 };
784
785 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
786
787 for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
788 unsigned Reg = RegsToMove[i];
789 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
790 return C.getReg() == Reg;
791 };
792 auto F = std::find_if(CSI.begin(), CSI.end(), IfR);
793 if (F == CSI.end())
794 continue;
795
796 int64_t Offset;
797 if (HasFP) {
798 // If the function has a frame pointer (i.e. has an allocframe),
799 // then the CFA has been defined in terms of FP. Any offsets in
800 // the following CFI instructions have to be defined relative
801 // to FP, which points to the bottom of the stack frame.
802 // The function getFrameIndexReference can still choose to use SP
803 // for the offset calculation, so we cannot simply call it here.
804 // Instead, get the offset (relative to the FP) directly.
805 Offset = MFI.getObjectOffset(F->getFrameIdx());
806 } else {
807 unsigned FrameReg;
808 Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg);
809 }
810 // Subtract 8 to make room for R30 and R31, which are added above.
811 Offset -= 8;
812
813 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
814 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
815 auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
816 Offset);
817 BuildMI(MBB, At, DL, CFID)
818 .addCFIIndex(MMI.addFrameInst(OffReg));
819 } else {
820 // Split the double regs into subregs, and generate appropriate
821 // cfi_offsets.
822 // The only reason, we are split double regs is, llvm-mc does not
823 // understand paired registers for cfi_offset.
824 // Eg .cfi_offset r1:0, -64
825
826 unsigned HiReg = HRI.getSubReg(Reg, Hexagon::subreg_hireg);
827 unsigned LoReg = HRI.getSubReg(Reg, Hexagon::subreg_loreg);
828 unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
829 unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
830 auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
831 Offset+4);
832 BuildMI(MBB, At, DL, CFID)
833 .addCFIIndex(MMI.addFrameInst(OffHi));
834 auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
835 Offset);
836 BuildMI(MBB, At, DL, CFID)
837 .addCFIIndex(MMI.addFrameInst(OffLo));
838 }
839 }
840 }
841
842
hasFP(const MachineFunction & MF) const843 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
844 auto &MFI = *MF.getFrameInfo();
845 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
846
847 bool HasFixed = MFI.getNumFixedObjects();
848 bool HasPrealloc = const_cast<MachineFrameInfo&>(MFI)
849 .getLocalFrameObjectCount();
850 bool HasExtraAlign = HRI.needsStackRealignment(MF);
851 bool HasAlloca = MFI.hasVarSizedObjects();
852
853 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
854 // that this shouldn't be required, but doing so now because gcc does and
855 // gdb can't break at the start of the function without it. Will remove if
856 // this turns out to be a gdb bug.
857 //
858 if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
859 return true;
860
861 // By default we want to use SP (since it's always there). FP requires
862 // some setup (i.e. ALLOCFRAME).
863 // Fixed and preallocated objects need FP if the distance from them to
864 // the SP is unknown (as is with alloca or aligna).
865 if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign))
866 return true;
867
868 if (MFI.getStackSize() > 0) {
869 if (EnableStackOVFSanitizer || UseAllocframe)
870 return true;
871 }
872
873 if (MFI.hasCalls() ||
874 MF.getInfo<HexagonMachineFunctionInfo>()->hasClobberLR())
875 return true;
876
877 return false;
878 }
879
880
881 enum SpillKind {
882 SK_ToMem,
883 SK_FromMem,
884 SK_FromMemTailcall
885 };
886
getSpillFunctionFor(unsigned MaxReg,SpillKind SpillType,bool Stkchk=false)887 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
888 bool Stkchk = false) {
889 const char * V4SpillToMemoryFunctions[] = {
890 "__save_r16_through_r17",
891 "__save_r16_through_r19",
892 "__save_r16_through_r21",
893 "__save_r16_through_r23",
894 "__save_r16_through_r25",
895 "__save_r16_through_r27" };
896
897 const char * V4SpillToMemoryStkchkFunctions[] = {
898 "__save_r16_through_r17_stkchk",
899 "__save_r16_through_r19_stkchk",
900 "__save_r16_through_r21_stkchk",
901 "__save_r16_through_r23_stkchk",
902 "__save_r16_through_r25_stkchk",
903 "__save_r16_through_r27_stkchk" };
904
905 const char * V4SpillFromMemoryFunctions[] = {
906 "__restore_r16_through_r17_and_deallocframe",
907 "__restore_r16_through_r19_and_deallocframe",
908 "__restore_r16_through_r21_and_deallocframe",
909 "__restore_r16_through_r23_and_deallocframe",
910 "__restore_r16_through_r25_and_deallocframe",
911 "__restore_r16_through_r27_and_deallocframe" };
912
913 const char * V4SpillFromMemoryTailcallFunctions[] = {
914 "__restore_r16_through_r17_and_deallocframe_before_tailcall",
915 "__restore_r16_through_r19_and_deallocframe_before_tailcall",
916 "__restore_r16_through_r21_and_deallocframe_before_tailcall",
917 "__restore_r16_through_r23_and_deallocframe_before_tailcall",
918 "__restore_r16_through_r25_and_deallocframe_before_tailcall",
919 "__restore_r16_through_r27_and_deallocframe_before_tailcall"
920 };
921
922 const char **SpillFunc = nullptr;
923
924 switch(SpillType) {
925 case SK_ToMem:
926 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
927 : V4SpillToMemoryFunctions;
928 break;
929 case SK_FromMem:
930 SpillFunc = V4SpillFromMemoryFunctions;
931 break;
932 case SK_FromMemTailcall:
933 SpillFunc = V4SpillFromMemoryTailcallFunctions;
934 break;
935 }
936 assert(SpillFunc && "Unknown spill kind");
937
938 // Spill all callee-saved registers up to the highest register used.
939 switch (MaxReg) {
940 case Hexagon::R17:
941 return SpillFunc[0];
942 case Hexagon::R19:
943 return SpillFunc[1];
944 case Hexagon::R21:
945 return SpillFunc[2];
946 case Hexagon::R23:
947 return SpillFunc[3];
948 case Hexagon::R25:
949 return SpillFunc[4];
950 case Hexagon::R27:
951 return SpillFunc[5];
952 default:
953 llvm_unreachable("Unhandled maximum callee save register");
954 }
955 return 0;
956 }
957
958
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const959 int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
960 int FI, unsigned &FrameReg) const {
961 auto &MFI = *MF.getFrameInfo();
962 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
963
964 int Offset = MFI.getObjectOffset(FI);
965 bool HasAlloca = MFI.hasVarSizedObjects();
966 bool HasExtraAlign = HRI.needsStackRealignment(MF);
967 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
968
969 unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister();
970 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
971 unsigned AP = HMFI.getStackAlignBasePhysReg();
972 unsigned FrameSize = MFI.getStackSize();
973
974 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0).
975 // Use FP at -O0, except when there are objects with extra alignment.
976 // That additional alignment requirement may cause a pad to be inserted,
977 // which will make it impossible to use FP to access objects located
978 // past the pad.
979 if (NoOpt && !HasExtraAlign)
980 UseFP = true;
981 if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
982 // Fixed and preallocated objects will be located before any padding
983 // so FP must be used to access them.
984 UseFP |= (HasAlloca || HasExtraAlign);
985 } else {
986 if (HasAlloca) {
987 if (HasExtraAlign)
988 UseAP = true;
989 else
990 UseFP = true;
991 }
992 }
993
994 // If FP was picked, then there had better be FP.
995 bool HasFP = hasFP(MF);
996 assert((HasFP || !UseFP) && "This function must have frame pointer");
997
998 // Having FP implies allocframe. Allocframe will store extra 8 bytes:
999 // FP/LR. If the base register is used to access an object across these
1000 // 8 bytes, then the offset will need to be adjusted by 8.
1001 //
1002 // After allocframe:
1003 // HexagonISelLowering adds 8 to ---+
1004 // the offsets of all stack-based |
1005 // arguments (*) |
1006 // |
1007 // getObjectOffset < 0 0 8 getObjectOffset >= 8
1008 // ------------------------+-----+------------------------> increasing
1009 // <local objects> |FP/LR| <input arguments> addresses
1010 // -----------------+------+-----+------------------------>
1011 // | |
1012 // SP/AP point --+ +-- FP points here (**)
1013 // somewhere on
1014 // this side of FP/LR
1015 //
1016 // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1017 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1018
1019 // The lowering assumes that FP/LR is present, and so the offsets of
1020 // the formal arguments start at 8. If FP/LR is not there we need to
1021 // reduce the offset by 8.
1022 if (Offset > 0 && !HasFP)
1023 Offset -= 8;
1024
1025 if (UseFP)
1026 FrameReg = FP;
1027 else if (UseAP)
1028 FrameReg = AP;
1029 else
1030 FrameReg = SP;
1031
1032 // Calculate the actual offset in the instruction. If there is no FP
1033 // (in other words, no allocframe), then SP will not be adjusted (i.e.
1034 // there will be no SP -= FrameSize), so the frame size should not be
1035 // added to the calculated offset.
1036 int RealOffset = Offset;
1037 if (!UseFP && !UseAP && HasFP)
1038 RealOffset = FrameSize+Offset;
1039 return RealOffset;
1040 }
1041
1042
insertCSRSpillsInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI,bool & PrologueStubs) const1043 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1044 const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1045 bool &PrologueStubs) const {
1046 if (CSI.empty())
1047 return true;
1048
1049 MachineBasicBlock::iterator MI = MBB.begin();
1050 PrologueStubs = false;
1051 MachineFunction &MF = *MBB.getParent();
1052 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1053
1054 if (useSpillFunction(MF, CSI)) {
1055 PrologueStubs = true;
1056 unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1057 bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1058 const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1059 StkOvrFlowEnabled);
1060 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1061 bool IsPIC = HTM.isPositionIndependent();
1062
1063 // Call spill function.
1064 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1065 unsigned SpillOpc;
1066 if (StkOvrFlowEnabled)
1067 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1068 : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1069 else
1070 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1071 : Hexagon::SAVE_REGISTERS_CALL_V4;
1072
1073 MachineInstr *SaveRegsCall =
1074 BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1075 .addExternalSymbol(SpillFun);
1076 // Add callee-saved registers as use.
1077 addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1078 // Add live in registers.
1079 for (unsigned I = 0; I < CSI.size(); ++I)
1080 MBB.addLiveIn(CSI[I].getReg());
1081 return true;
1082 }
1083
1084 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1085 unsigned Reg = CSI[i].getReg();
1086 // Add live in registers. We treat eh_return callee saved register r0 - r3
1087 // specially. They are not really callee saved registers as they are not
1088 // supposed to be killed.
1089 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1090 int FI = CSI[i].getFrameIdx();
1091 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1092 HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1093 if (IsKill)
1094 MBB.addLiveIn(Reg);
1095 }
1096 return true;
1097 }
1098
1099
insertCSRRestoresInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI) const1100 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1101 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1102 if (CSI.empty())
1103 return false;
1104
1105 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1106 MachineFunction &MF = *MBB.getParent();
1107 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1108
1109 if (useRestoreFunction(MF, CSI)) {
1110 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1111 unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1112 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1113 const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1114 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1115 bool IsPIC = HTM.isPositionIndependent();
1116
1117 // Call spill function.
1118 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1119 : MBB.getLastNonDebugInstr()->getDebugLoc();
1120 MachineInstr *DeallocCall = nullptr;
1121
1122 if (HasTC) {
1123 unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1124 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1125 DeallocCall = BuildMI(MBB, MI, DL, HII.get(ROpc))
1126 .addExternalSymbol(RestoreFn);
1127 } else {
1128 // The block has a return.
1129 MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1130 assert(It->isReturn() && std::next(It) == MBB.end());
1131 unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1132 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1133 DeallocCall = BuildMI(MBB, It, DL, HII.get(ROpc))
1134 .addExternalSymbol(RestoreFn);
1135 // Transfer the function live-out registers.
1136 DeallocCall->copyImplicitOps(MF, *It);
1137 }
1138 addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1139 return true;
1140 }
1141
1142 for (unsigned i = 0; i < CSI.size(); ++i) {
1143 unsigned Reg = CSI[i].getReg();
1144 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1145 int FI = CSI[i].getFrameIdx();
1146 HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1147 }
1148
1149 return true;
1150 }
1151
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const1152 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1153 MachineFunction &MF, MachineBasicBlock &MBB,
1154 MachineBasicBlock::iterator I) const {
1155 MachineInstr &MI = *I;
1156 unsigned Opc = MI.getOpcode();
1157 (void)Opc; // Silence compiler warning.
1158 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1159 "Cannot handle this call frame pseudo instruction");
1160 return MBB.erase(I);
1161 }
1162
1163
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const1164 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1165 MachineFunction &MF, RegScavenger *RS) const {
1166 // If this function has uses aligned stack and also has variable sized stack
1167 // objects, then we need to map all spill slots to fixed positions, so that
1168 // they can be accessed through FP. Otherwise they would have to be accessed
1169 // via AP, which may not be available at the particular place in the program.
1170 MachineFrameInfo *MFI = MF.getFrameInfo();
1171 bool HasAlloca = MFI->hasVarSizedObjects();
1172 bool NeedsAlign = (MFI->getMaxAlignment() > getStackAlignment());
1173
1174 if (!HasAlloca || !NeedsAlign)
1175 return;
1176
1177 unsigned LFS = MFI->getLocalFrameSize();
1178 for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
1179 if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
1180 continue;
1181 unsigned S = MFI->getObjectSize(i);
1182 // Reduce the alignment to at most 8. This will require unaligned vector
1183 // stores if they happen here.
1184 unsigned A = std::max(MFI->getObjectAlignment(i), 8U);
1185 MFI->setObjectAlignment(i, 8);
1186 LFS = alignTo(LFS+S, A);
1187 MFI->mapLocalFrameObject(i, -LFS);
1188 }
1189
1190 MFI->setLocalFrameSize(LFS);
1191 unsigned A = MFI->getLocalFrameMaxAlign();
1192 assert(A <= 8 && "Unexpected local frame alignment");
1193 if (A == 0)
1194 MFI->setLocalFrameMaxAlign(8);
1195 MFI->setUseLocalStackAllocationBlock(true);
1196
1197 // Set the physical aligned-stack base address register.
1198 unsigned AP = 0;
1199 if (const MachineInstr *AI = getAlignaInstr(MF))
1200 AP = AI->getOperand(0).getReg();
1201 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1202 HMFI.setStackAlignBasePhysReg(AP);
1203 }
1204
1205 /// Returns true if there are no caller-saved registers available in class RC.
needToReserveScavengingSpillSlots(MachineFunction & MF,const HexagonRegisterInfo & HRI,const TargetRegisterClass * RC)1206 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1207 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1208 MachineRegisterInfo &MRI = MF.getRegInfo();
1209
1210 auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1211 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1212 if (MRI.isPhysRegUsed(*AI))
1213 return true;
1214 return false;
1215 };
1216
1217 // Check for an unused caller-saved register. Callee-saved registers
1218 // have become pristine by now.
1219 for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1220 if (!IsUsed(*P))
1221 return false;
1222
1223 // All caller-saved registers are used.
1224 return true;
1225 }
1226
1227
1228 #ifndef NDEBUG
dump_registers(BitVector & Regs,const TargetRegisterInfo & TRI)1229 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1230 dbgs() << '{';
1231 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1232 unsigned R = x;
1233 dbgs() << ' ' << PrintReg(R, &TRI);
1234 }
1235 dbgs() << " }";
1236 }
1237 #endif
1238
1239
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1240 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1241 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1242 DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
1243 << MF.getFunction()->getName() << '\n');
1244 MachineFrameInfo *MFI = MF.getFrameInfo();
1245 BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1246
1247 // Generate a set of unique, callee-saved registers (SRegs), where each
1248 // register in the set is maximal in terms of sub-/super-register relation,
1249 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1250
1251 // (1) For each callee-saved register, add that register and all of its
1252 // sub-registers to SRegs.
1253 DEBUG(dbgs() << "Initial CS registers: {");
1254 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1255 unsigned R = CSI[i].getReg();
1256 DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
1257 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1258 SRegs[*SR] = true;
1259 }
1260 DEBUG(dbgs() << " }\n");
1261 DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1262
1263 // (2) For each reserved register, remove that register and all of its
1264 // sub- and super-registers from SRegs.
1265 BitVector Reserved = TRI->getReservedRegs(MF);
1266 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1267 unsigned R = x;
1268 for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1269 SRegs[*SR] = false;
1270 }
1271 DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n");
1272 DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1273
1274 // (3) Collect all registers that have at least one sub-register in SRegs,
1275 // and also have no sub-registers that are reserved. These will be the can-
1276 // didates for saving as a whole instead of their individual sub-registers.
1277 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1278 BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1279 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1280 unsigned R = x;
1281 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1282 TmpSup[*SR] = true;
1283 }
1284 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1285 unsigned R = x;
1286 for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1287 if (!Reserved[*SR])
1288 continue;
1289 TmpSup[R] = false;
1290 break;
1291 }
1292 }
1293 DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
1294
1295 // (4) Include all super-registers found in (3) into SRegs.
1296 SRegs |= TmpSup;
1297 DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1298
1299 // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1300 // remove R from SRegs.
1301 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1302 unsigned R = x;
1303 for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1304 if (!SRegs[*SR])
1305 continue;
1306 SRegs[R] = false;
1307 break;
1308 }
1309 }
1310 DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1311
1312 // Now, for each register that has a fixed stack slot, create the stack
1313 // object for it.
1314 CSI.clear();
1315
1316 typedef TargetFrameLowering::SpillSlot SpillSlot;
1317 unsigned NumFixed;
1318 int MinOffset = 0; // CS offsets are negative.
1319 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1320 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1321 if (!SRegs[S->Reg])
1322 continue;
1323 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1324 int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
1325 MinOffset = std::min(MinOffset, S->Offset);
1326 CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1327 SRegs[S->Reg] = false;
1328 }
1329
1330 // There can be some registers that don't have fixed slots. For example,
1331 // we need to store R0-R3 in functions with exception handling. For each
1332 // such register, create a non-fixed stack object.
1333 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1334 unsigned R = x;
1335 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1336 int Off = MinOffset - RC->getSize();
1337 unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
1338 assert(isPowerOf2_32(Align));
1339 Off &= -Align;
1340 int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
1341 MinOffset = std::min(MinOffset, Off);
1342 CSI.push_back(CalleeSavedInfo(R, FI));
1343 SRegs[R] = false;
1344 }
1345
1346 DEBUG({
1347 dbgs() << "CS information: {";
1348 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1349 int FI = CSI[i].getFrameIdx();
1350 int Off = MFI->getObjectOffset(FI);
1351 dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
1352 if (Off >= 0)
1353 dbgs() << '+';
1354 dbgs() << Off;
1355 }
1356 dbgs() << " }\n";
1357 });
1358
1359 #ifndef NDEBUG
1360 // Verify that all registers were handled.
1361 bool MissedReg = false;
1362 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1363 unsigned R = x;
1364 dbgs() << PrintReg(R, TRI) << ' ';
1365 MissedReg = true;
1366 }
1367 if (MissedReg)
1368 llvm_unreachable("...there are unhandled callee-saved registers!");
1369 #endif
1370
1371 return true;
1372 }
1373
1374
expandCopy(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1375 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1376 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1377 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1378 MachineInstr *MI = &*It;
1379 DebugLoc DL = MI->getDebugLoc();
1380 unsigned DstR = MI->getOperand(0).getReg();
1381 unsigned SrcR = MI->getOperand(1).getReg();
1382 if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1383 !Hexagon::ModRegsRegClass.contains(SrcR))
1384 return false;
1385
1386 unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1387 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR)
1388 .addOperand(MI->getOperand(1));
1389 BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1390 .addReg(TmpR, RegState::Kill);
1391
1392 NewRegs.push_back(TmpR);
1393 B.erase(It);
1394 return true;
1395 }
1396
expandStoreInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1397 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1398 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1399 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1400 MachineInstr *MI = &*It;
1401 DebugLoc DL = MI->getDebugLoc();
1402 unsigned Opc = MI->getOpcode();
1403 unsigned SrcR = MI->getOperand(2).getReg();
1404 bool IsKill = MI->getOperand(2).isKill();
1405
1406 assert(MI->getOperand(0).isFI() && "Expect a frame index");
1407 int FI = MI->getOperand(0).getIndex();
1408
1409 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register
1410 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
1411 unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1412 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1413 : Hexagon::A2_tfrcrr;
1414 BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1415 .addReg(SrcR, getKillRegState(IsKill));
1416
1417 // S2_storeri_io FI, 0, TmpR
1418 BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1419 .addFrameIndex(FI)
1420 .addImm(0)
1421 .addReg(TmpR, RegState::Kill)
1422 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1423
1424 NewRegs.push_back(TmpR);
1425 B.erase(It);
1426 return true;
1427 }
1428
expandLoadInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1429 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1430 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1431 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1432 MachineInstr *MI = &*It;
1433 DebugLoc DL = MI->getDebugLoc();
1434 unsigned Opc = MI->getOpcode();
1435 unsigned DstR = MI->getOperand(0).getReg();
1436
1437 assert(MI->getOperand(1).isFI() && "Expect a frame index");
1438 int FI = MI->getOperand(1).getIndex();
1439
1440 // TmpR = L2_loadri_io FI, 0
1441 unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1442 BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1443 .addFrameIndex(FI)
1444 .addImm(0)
1445 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1446
1447 // DstR = C2_tfrrp TmpR if DstR is a predicate register
1448 // DstR = A2_tfrrcr TmpR if DstR is a modifier register
1449 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1450 : Hexagon::A2_tfrrcr;
1451 BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1452 .addReg(TmpR, RegState::Kill);
1453
1454 NewRegs.push_back(TmpR);
1455 B.erase(It);
1456 return true;
1457 }
1458
1459
expandStoreVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1460 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1461 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1462 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1463 auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
1464 MachineInstr *MI = &*It;
1465 DebugLoc DL = MI->getDebugLoc();
1466 unsigned SrcR = MI->getOperand(2).getReg();
1467 bool IsKill = MI->getOperand(2).isKill();
1468
1469 assert(MI->getOperand(0).isFI() && "Expect a frame index");
1470 int FI = MI->getOperand(0).getIndex();
1471
1472 bool Is128B = HST.useHVXDblOps();
1473 auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1474 : &Hexagon::VectorRegs128BRegClass;
1475
1476 // Insert transfer to general vector register.
1477 // TmpR0 = A2_tfrsi 0x01010101
1478 // TmpR1 = V6_vandqrt Qx, TmpR0
1479 // store FI, 0, TmpR1
1480 unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1481 unsigned TmpR1 = MRI.createVirtualRegister(RC);
1482
1483 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1484 .addImm(0x01010101);
1485
1486 unsigned VandOpc = !Is128B ? Hexagon::V6_vandqrt : Hexagon::V6_vandqrt_128B;
1487 BuildMI(B, It, DL, HII.get(VandOpc), TmpR1)
1488 .addReg(SrcR, getKillRegState(IsKill))
1489 .addReg(TmpR0, RegState::Kill);
1490
1491 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1492 HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1493 expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1494
1495 NewRegs.push_back(TmpR0);
1496 NewRegs.push_back(TmpR1);
1497 B.erase(It);
1498 return true;
1499 }
1500
expandLoadVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1501 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1502 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1503 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1504 auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
1505 MachineInstr *MI = &*It;
1506 DebugLoc DL = MI->getDebugLoc();
1507 unsigned DstR = MI->getOperand(0).getReg();
1508
1509 assert(MI->getOperand(1).isFI() && "Expect a frame index");
1510 int FI = MI->getOperand(1).getIndex();
1511
1512 bool Is128B = HST.useHVXDblOps();
1513 auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1514 : &Hexagon::VectorRegs128BRegClass;
1515
1516 // TmpR0 = A2_tfrsi 0x01010101
1517 // TmpR1 = load FI, 0
1518 // DstR = V6_vandvrt TmpR1, TmpR0
1519 unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1520 unsigned TmpR1 = MRI.createVirtualRegister(RC);
1521
1522 BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1523 .addImm(0x01010101);
1524 auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1525 HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1526 expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1527
1528 unsigned VandOpc = !Is128B ? Hexagon::V6_vandvrt : Hexagon::V6_vandvrt_128B;
1529 BuildMI(B, It, DL, HII.get(VandOpc), DstR)
1530 .addReg(TmpR1, RegState::Kill)
1531 .addReg(TmpR0, RegState::Kill);
1532
1533 NewRegs.push_back(TmpR0);
1534 NewRegs.push_back(TmpR1);
1535 B.erase(It);
1536 return true;
1537 }
1538
expandStoreVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1539 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1540 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1541 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1542 MachineFunction &MF = *B.getParent();
1543 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1544 auto &MFI = *MF.getFrameInfo();
1545 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1546 MachineInstr *MI = &*It;
1547 DebugLoc DL = MI->getDebugLoc();
1548
1549 unsigned SrcR = MI->getOperand(2).getReg();
1550 unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::subreg_loreg);
1551 unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::subreg_hireg);
1552 bool IsKill = MI->getOperand(2).isKill();
1553
1554 assert(MI->getOperand(0).isFI() && "Expect a frame index");
1555 int FI = MI->getOperand(0).getIndex();
1556
1557 bool Is128B = HST.useHVXDblOps();
1558 auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1559 : &Hexagon::VectorRegs128BRegClass;
1560 unsigned Size = RC->getSize();
1561 unsigned NeedAlign = RC->getAlignment();
1562 unsigned HasAlign = MFI.getObjectAlignment(FI);
1563 unsigned StoreOpc;
1564
1565 // Store low part.
1566 if (NeedAlign <= HasAlign)
1567 StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
1568 else
1569 StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
1570
1571 BuildMI(B, It, DL, HII.get(StoreOpc))
1572 .addFrameIndex(FI)
1573 .addImm(0)
1574 .addReg(SrcLo, getKillRegState(IsKill))
1575 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1576
1577 // Load high part.
1578 if (NeedAlign <= MinAlign(HasAlign, Size))
1579 StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
1580 else
1581 StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
1582
1583 BuildMI(B, It, DL, HII.get(StoreOpc))
1584 .addFrameIndex(FI)
1585 .addImm(Size)
1586 .addReg(SrcHi, getKillRegState(IsKill))
1587 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1588
1589 B.erase(It);
1590 return true;
1591 }
1592
expandLoadVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1593 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1594 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1595 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1596 MachineFunction &MF = *B.getParent();
1597 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1598 auto &MFI = *MF.getFrameInfo();
1599 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1600 MachineInstr *MI = &*It;
1601 DebugLoc DL = MI->getDebugLoc();
1602
1603 unsigned DstR = MI->getOperand(0).getReg();
1604 unsigned DstHi = HRI.getSubReg(DstR, Hexagon::subreg_hireg);
1605 unsigned DstLo = HRI.getSubReg(DstR, Hexagon::subreg_loreg);
1606
1607 assert(MI->getOperand(1).isFI() && "Expect a frame index");
1608 int FI = MI->getOperand(1).getIndex();
1609
1610 bool Is128B = HST.useHVXDblOps();
1611 auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1612 : &Hexagon::VectorRegs128BRegClass;
1613 unsigned Size = RC->getSize();
1614 unsigned NeedAlign = RC->getAlignment();
1615 unsigned HasAlign = MFI.getObjectAlignment(FI);
1616 unsigned LoadOpc;
1617
1618 // Load low part.
1619 if (NeedAlign <= HasAlign)
1620 LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
1621 else
1622 LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
1623
1624 BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
1625 .addFrameIndex(FI)
1626 .addImm(0)
1627 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1628
1629 // Load high part.
1630 if (NeedAlign <= MinAlign(HasAlign, Size))
1631 LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
1632 else
1633 LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
1634
1635 BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
1636 .addFrameIndex(FI)
1637 .addImm(Size)
1638 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1639
1640 B.erase(It);
1641 return true;
1642 }
1643
expandStoreVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1644 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
1645 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1646 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1647 MachineFunction &MF = *B.getParent();
1648 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1649 auto &MFI = *MF.getFrameInfo();
1650 MachineInstr *MI = &*It;
1651 DebugLoc DL = MI->getDebugLoc();
1652
1653 unsigned SrcR = MI->getOperand(2).getReg();
1654 bool IsKill = MI->getOperand(2).isKill();
1655
1656 assert(MI->getOperand(0).isFI() && "Expect a frame index");
1657 int FI = MI->getOperand(0).getIndex();
1658
1659 bool Is128B = HST.useHVXDblOps();
1660 auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1661 : &Hexagon::VectorRegs128BRegClass;
1662
1663 unsigned NeedAlign = RC->getAlignment();
1664 unsigned HasAlign = MFI.getObjectAlignment(FI);
1665 unsigned StoreOpc;
1666
1667 if (NeedAlign <= HasAlign)
1668 StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
1669 else
1670 StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
1671
1672 BuildMI(B, It, DL, HII.get(StoreOpc))
1673 .addFrameIndex(FI)
1674 .addImm(0)
1675 .addReg(SrcR, getKillRegState(IsKill))
1676 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1677
1678 B.erase(It);
1679 return true;
1680 }
1681
expandLoadVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<unsigned> & NewRegs) const1682 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
1683 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1684 const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1685 MachineFunction &MF = *B.getParent();
1686 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1687 auto &MFI = *MF.getFrameInfo();
1688 MachineInstr *MI = &*It;
1689 DebugLoc DL = MI->getDebugLoc();
1690
1691 unsigned DstR = MI->getOperand(0).getReg();
1692
1693 assert(MI->getOperand(1).isFI() && "Expect a frame index");
1694 int FI = MI->getOperand(1).getIndex();
1695
1696 bool Is128B = HST.useHVXDblOps();
1697 auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
1698 : &Hexagon::VectorRegs128BRegClass;
1699
1700 unsigned NeedAlign = RC->getAlignment();
1701 unsigned HasAlign = MFI.getObjectAlignment(FI);
1702 unsigned LoadOpc;
1703
1704 if (NeedAlign <= HasAlign)
1705 LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
1706 else
1707 LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
1708
1709 BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
1710 .addFrameIndex(FI)
1711 .addImm(0)
1712 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1713
1714 B.erase(It);
1715 return true;
1716 }
1717
1718
expandSpillMacros(MachineFunction & MF,SmallVectorImpl<unsigned> & NewRegs) const1719 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
1720 SmallVectorImpl<unsigned> &NewRegs) const {
1721 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1722 auto &HII = *HST.getInstrInfo();
1723 MachineRegisterInfo &MRI = MF.getRegInfo();
1724 bool Changed = false;
1725
1726 for (auto &B : MF) {
1727 // Traverse the basic block.
1728 MachineBasicBlock::iterator NextI;
1729 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
1730 MachineInstr *MI = &*I;
1731 NextI = std::next(I);
1732 unsigned Opc = MI->getOpcode();
1733
1734 switch (Opc) {
1735 case TargetOpcode::COPY:
1736 Changed |= expandCopy(B, I, MRI, HII, NewRegs);
1737 break;
1738 case Hexagon::STriw_pred:
1739 case Hexagon::STriw_mod:
1740 Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
1741 break;
1742 case Hexagon::LDriw_pred:
1743 case Hexagon::LDriw_mod:
1744 Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
1745 break;
1746 case Hexagon::STriq_pred_V6:
1747 case Hexagon::STriq_pred_V6_128B:
1748 Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
1749 break;
1750 case Hexagon::LDriq_pred_V6:
1751 case Hexagon::LDriq_pred_V6_128B:
1752 Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
1753 break;
1754 case Hexagon::LDrivv_pseudo_V6:
1755 case Hexagon::LDrivv_pseudo_V6_128B:
1756 Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
1757 break;
1758 case Hexagon::STrivv_pseudo_V6:
1759 case Hexagon::STrivv_pseudo_V6_128B:
1760 Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
1761 break;
1762 case Hexagon::STriv_pseudo_V6:
1763 case Hexagon::STriv_pseudo_V6_128B:
1764 Changed |= expandStoreVec(B, I, MRI, HII, NewRegs);
1765 break;
1766 case Hexagon::LDriv_pseudo_V6:
1767 case Hexagon::LDriv_pseudo_V6_128B:
1768 Changed |= expandLoadVec(B, I, MRI, HII, NewRegs);
1769 break;
1770 }
1771 }
1772 }
1773
1774 return Changed;
1775 }
1776
1777
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const1778 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
1779 BitVector &SavedRegs,
1780 RegScavenger *RS) const {
1781 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1782 auto &HRI = *HST.getRegisterInfo();
1783
1784 SavedRegs.resize(HRI.getNumRegs());
1785
1786 // If we have a function containing __builtin_eh_return we want to spill and
1787 // restore all callee saved registers. Pretend that they are used.
1788 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
1789 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
1790 SavedRegs.set(*R);
1791
1792 // Replace predicate register pseudo spill code.
1793 SmallVector<unsigned,8> NewRegs;
1794 expandSpillMacros(MF, NewRegs);
1795 if (OptimizeSpillSlots && !isOptNone(MF))
1796 optimizeSpillSlots(MF, NewRegs);
1797
1798 // We need to reserve a a spill slot if scavenging could potentially require
1799 // spilling a scavenged register.
1800 if (!NewRegs.empty()) {
1801 MachineFrameInfo &MFI = *MF.getFrameInfo();
1802 MachineRegisterInfo &MRI = MF.getRegInfo();
1803 SetVector<const TargetRegisterClass*> SpillRCs;
1804 // Reserve an int register in any case, because it could be used to hold
1805 // the stack offset in case it does not fit into a spill instruction.
1806 SpillRCs.insert(&Hexagon::IntRegsRegClass);
1807
1808 for (unsigned VR : NewRegs)
1809 SpillRCs.insert(MRI.getRegClass(VR));
1810
1811 for (auto *RC : SpillRCs) {
1812 if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
1813 continue;
1814 unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1;
1815 unsigned S = RC->getSize(), A = RC->getAlignment();
1816 for (unsigned i = 0; i < Num; i++) {
1817 int NewFI = MFI.CreateSpillStackObject(S, A);
1818 RS->addScavengingFrameIndex(NewFI);
1819 }
1820 }
1821 }
1822
1823 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1824 }
1825
1826
findPhysReg(MachineFunction & MF,HexagonBlockRanges::IndexRange & FIR,HexagonBlockRanges::InstrIndexMap & IndexMap,HexagonBlockRanges::RegToRangeMap & DeadMap,const TargetRegisterClass * RC) const1827 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
1828 HexagonBlockRanges::IndexRange &FIR,
1829 HexagonBlockRanges::InstrIndexMap &IndexMap,
1830 HexagonBlockRanges::RegToRangeMap &DeadMap,
1831 const TargetRegisterClass *RC) const {
1832 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1833 auto &MRI = MF.getRegInfo();
1834
1835 auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
1836 auto F = DeadMap.find({Reg,0});
1837 if (F == DeadMap.end())
1838 return false;
1839 for (auto &DR : F->second)
1840 if (DR.contains(FIR))
1841 return true;
1842 return false;
1843 };
1844
1845 for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
1846 bool Dead = true;
1847 for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
1848 if (isDead(R.Reg))
1849 continue;
1850 Dead = false;
1851 break;
1852 }
1853 if (Dead)
1854 return Reg;
1855 }
1856 return 0;
1857 }
1858
optimizeSpillSlots(MachineFunction & MF,SmallVectorImpl<unsigned> & VRegs) const1859 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
1860 SmallVectorImpl<unsigned> &VRegs) const {
1861 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1862 auto &HII = *HST.getInstrInfo();
1863 auto &HRI = *HST.getRegisterInfo();
1864 auto &MRI = MF.getRegInfo();
1865 HexagonBlockRanges HBR(MF);
1866
1867 typedef std::map<MachineBasicBlock*,HexagonBlockRanges::InstrIndexMap>
1868 BlockIndexMap;
1869 typedef std::map<MachineBasicBlock*,HexagonBlockRanges::RangeList>
1870 BlockRangeMap;
1871 typedef HexagonBlockRanges::IndexType IndexType;
1872
1873 struct SlotInfo {
1874 BlockRangeMap Map;
1875 unsigned Size;
1876 const TargetRegisterClass *RC;
1877
1878 SlotInfo() : Map(), Size(0), RC(nullptr) {}
1879 };
1880
1881 BlockIndexMap BlockIndexes;
1882 SmallSet<int,4> BadFIs;
1883 std::map<int,SlotInfo> FIRangeMap;
1884
1885 auto getRegClass = [&MRI,&HRI] (HexagonBlockRanges::RegisterRef R)
1886 -> const TargetRegisterClass* {
1887 if (TargetRegisterInfo::isPhysicalRegister(R.Reg))
1888 assert(R.Sub == 0);
1889 if (TargetRegisterInfo::isVirtualRegister(R.Reg)) {
1890 auto *RCR = MRI.getRegClass(R.Reg);
1891 if (R.Sub == 0)
1892 return RCR;
1893 unsigned PR = *RCR->begin();
1894 R.Reg = HRI.getSubReg(PR, R.Sub);
1895 }
1896 return HRI.getMinimalPhysRegClass(R.Reg);
1897 };
1898 // Accumulate register classes: get a common class for a pre-existing
1899 // class HaveRC and a new class NewRC. Return nullptr if a common class
1900 // cannot be found, otherwise return the resulting class. If HaveRC is
1901 // nullptr, assume that it is still unset.
1902 auto getCommonRC = [&HRI] (const TargetRegisterClass *HaveRC,
1903 const TargetRegisterClass *NewRC)
1904 -> const TargetRegisterClass* {
1905 if (HaveRC == nullptr || HaveRC == NewRC)
1906 return NewRC;
1907 // Different classes, both non-null. Pick the more general one.
1908 if (HaveRC->hasSubClassEq(NewRC))
1909 return HaveRC;
1910 if (NewRC->hasSubClassEq(HaveRC))
1911 return NewRC;
1912 return nullptr;
1913 };
1914
1915 // Scan all blocks in the function. Check all occurrences of frame indexes,
1916 // and collect relevant information.
1917 for (auto &B : MF) {
1918 std::map<int,IndexType> LastStore, LastLoad;
1919 // Emplace appears not to be supported in gcc 4.7.2-4.
1920 //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
1921 auto P = BlockIndexes.insert(
1922 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
1923 auto &IndexMap = P.first->second;
1924 DEBUG(dbgs() << "Index map for BB#" << B.getNumber() << "\n"
1925 << IndexMap << '\n');
1926
1927 for (auto &In : B) {
1928 int LFI, SFI;
1929 bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
1930 bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
1931 if (Load && Store) {
1932 // If it's both a load and a store, then we won't handle it.
1933 BadFIs.insert(LFI);
1934 BadFIs.insert(SFI);
1935 continue;
1936 }
1937 // Check for register classes of the register used as the source for
1938 // the store, and the register used as the destination for the load.
1939 // Also, only accept base+imm_offset addressing modes. Other addressing
1940 // modes can have side-effects (post-increments, etc.). For stack
1941 // slots they are very unlikely, so there is not much loss due to
1942 // this restriction.
1943 if (Load || Store) {
1944 int TFI = Load ? LFI : SFI;
1945 unsigned AM = HII.getAddrMode(&In);
1946 SlotInfo &SI = FIRangeMap[TFI];
1947 bool Bad = (AM != HexagonII::BaseImmOffset);
1948 if (!Bad) {
1949 // If the addressing mode is ok, check the register class.
1950 const TargetRegisterClass *RC = nullptr;
1951 if (Load) {
1952 MachineOperand &DataOp = In.getOperand(0);
1953 RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()});
1954 } else {
1955 MachineOperand &DataOp = In.getOperand(2);
1956 RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()});
1957 }
1958 RC = getCommonRC(SI.RC, RC);
1959 if (RC == nullptr)
1960 Bad = true;
1961 else
1962 SI.RC = RC;
1963 }
1964 if (!Bad) {
1965 // Check sizes.
1966 unsigned S = (1U << (HII.getMemAccessSize(&In) - 1));
1967 if (SI.Size != 0 && SI.Size != S)
1968 Bad = true;
1969 else
1970 SI.Size = S;
1971 }
1972 if (Bad)
1973 BadFIs.insert(TFI);
1974 }
1975
1976 // Locate uses of frame indices.
1977 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
1978 const MachineOperand &Op = In.getOperand(i);
1979 if (!Op.isFI())
1980 continue;
1981 int FI = Op.getIndex();
1982 // Make sure that the following operand is an immediate and that
1983 // it is 0. This is the offset in the stack object.
1984 if (i+1 >= n || !In.getOperand(i+1).isImm() ||
1985 In.getOperand(i+1).getImm() != 0)
1986 BadFIs.insert(FI);
1987 if (BadFIs.count(FI))
1988 continue;
1989
1990 IndexType Index = IndexMap.getIndex(&In);
1991 if (Load) {
1992 if (LastStore[FI] == IndexType::None)
1993 LastStore[FI] = IndexType::Entry;
1994 LastLoad[FI] = Index;
1995 } else if (Store) {
1996 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
1997 if (LastStore[FI] != IndexType::None)
1998 RL.add(LastStore[FI], LastLoad[FI], false, false);
1999 else if (LastLoad[FI] != IndexType::None)
2000 RL.add(IndexType::Entry, LastLoad[FI], false, false);
2001 LastLoad[FI] = IndexType::None;
2002 LastStore[FI] = Index;
2003 } else {
2004 BadFIs.insert(FI);
2005 }
2006 }
2007 }
2008
2009 for (auto &I : LastLoad) {
2010 IndexType LL = I.second;
2011 if (LL == IndexType::None)
2012 continue;
2013 auto &RL = FIRangeMap[I.first].Map[&B];
2014 IndexType &LS = LastStore[I.first];
2015 if (LS != IndexType::None)
2016 RL.add(LS, LL, false, false);
2017 else
2018 RL.add(IndexType::Entry, LL, false, false);
2019 LS = IndexType::None;
2020 }
2021 for (auto &I : LastStore) {
2022 IndexType LS = I.second;
2023 if (LS == IndexType::None)
2024 continue;
2025 auto &RL = FIRangeMap[I.first].Map[&B];
2026 RL.add(LS, IndexType::None, false, false);
2027 }
2028 }
2029
2030 DEBUG({
2031 for (auto &P : FIRangeMap) {
2032 dbgs() << "fi#" << P.first;
2033 if (BadFIs.count(P.first))
2034 dbgs() << " (bad)";
2035 dbgs() << " RC: ";
2036 if (P.second.RC != nullptr)
2037 dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2038 else
2039 dbgs() << "<null>\n";
2040 for (auto &R : P.second.Map)
2041 dbgs() << " BB#" << R.first->getNumber() << " { " << R.second << "}\n";
2042 }
2043 });
2044
2045 // When a slot is loaded from in a block without being stored to in the
2046 // same block, it is live-on-entry to this block. To avoid CFG analysis,
2047 // consider this slot to be live-on-exit from all blocks.
2048 SmallSet<int,4> LoxFIs;
2049
2050 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2051
2052 for (auto &P : FIRangeMap) {
2053 // P = pair(FI, map: BB->RangeList)
2054 if (BadFIs.count(P.first))
2055 continue;
2056 for (auto &B : MF) {
2057 auto F = P.second.Map.find(&B);
2058 // F = pair(BB, RangeList)
2059 if (F == P.second.Map.end() || F->second.empty())
2060 continue;
2061 HexagonBlockRanges::IndexRange &IR = F->second.front();
2062 if (IR.start() == IndexType::Entry)
2063 LoxFIs.insert(P.first);
2064 BlockFIMap[&B].push_back(P.first);
2065 }
2066 }
2067
2068 DEBUG({
2069 dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2070 for (auto &P : BlockFIMap) {
2071 auto &FIs = P.second;
2072 if (FIs.empty())
2073 continue;
2074 dbgs() << " BB#" << P.first->getNumber() << ": {";
2075 for (auto I : FIs) {
2076 dbgs() << " fi#" << I;
2077 if (LoxFIs.count(I))
2078 dbgs() << '*';
2079 }
2080 dbgs() << " }\n";
2081 }
2082 });
2083
2084 // eliminate loads, when all loads eliminated, eliminate all stores.
2085 for (auto &B : MF) {
2086 auto F = BlockIndexes.find(&B);
2087 assert(F != BlockIndexes.end());
2088 HexagonBlockRanges::InstrIndexMap &IM = F->second;
2089 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2090 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2091 DEBUG(dbgs() << "BB#" << B.getNumber() << " dead map\n"
2092 << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2093
2094 for (auto FI : BlockFIMap[&B]) {
2095 if (BadFIs.count(FI))
2096 continue;
2097 DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2098 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2099 for (auto &Range : RL) {
2100 DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2101 if (!IndexType::isInstr(Range.start()) ||
2102 !IndexType::isInstr(Range.end()))
2103 continue;
2104 MachineInstr *SI = IM.getInstr(Range.start());
2105 MachineInstr *EI = IM.getInstr(Range.end());
2106 assert(SI->mayStore() && "Unexpected start instruction");
2107 assert(EI->mayLoad() && "Unexpected end instruction");
2108 MachineOperand &SrcOp = SI->getOperand(2);
2109
2110 HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2111 SrcOp.getSubReg() };
2112 auto *RC = getRegClass({SrcOp.getReg(), SrcOp.getSubReg()});
2113 // The this-> is needed to unconfuse MSVC.
2114 unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2115 DEBUG(dbgs() << "Replacement reg:" << PrintReg(FoundR, &HRI) << '\n');
2116 if (FoundR == 0)
2117 continue;
2118
2119 // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2120 MachineBasicBlock::iterator StartIt = SI, NextIt;
2121 MachineInstr *CopyIn = nullptr;
2122 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2123 const DebugLoc &DL = SI->getDebugLoc();
2124 CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2125 .addOperand(SrcOp);
2126 }
2127
2128 ++StartIt;
2129 // Check if this is a last store and the FI is live-on-exit.
2130 if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2131 // Update store's source register.
2132 if (unsigned SR = SrcOp.getSubReg())
2133 SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2134 else
2135 SrcOp.setReg(FoundR);
2136 SrcOp.setSubReg(0);
2137 // We are keeping this register live.
2138 SrcOp.setIsKill(false);
2139 } else {
2140 B.erase(SI);
2141 IM.replaceInstr(SI, CopyIn);
2142 }
2143
2144 auto EndIt = std::next(MachineBasicBlock::iterator(EI));
2145 for (auto It = StartIt; It != EndIt; It = NextIt) {
2146 MachineInstr *MI = &*It;
2147 NextIt = std::next(It);
2148 int TFI;
2149 if (!HII.isLoadFromStackSlot(*MI, TFI) || TFI != FI)
2150 continue;
2151 unsigned DstR = MI->getOperand(0).getReg();
2152 assert(MI->getOperand(0).getSubReg() == 0);
2153 MachineInstr *CopyOut = nullptr;
2154 if (DstR != FoundR) {
2155 DebugLoc DL = MI->getDebugLoc();
2156 unsigned MemSize = (1U << (HII.getMemAccessSize(MI) - 1));
2157 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2158 unsigned CopyOpc = TargetOpcode::COPY;
2159 if (HII.isSignExtendingLoad(*MI))
2160 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2161 else if (HII.isZeroExtendingLoad(*MI))
2162 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2163 CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2164 .addReg(FoundR, getKillRegState(MI == EI));
2165 }
2166 IM.replaceInstr(MI, CopyOut);
2167 B.erase(It);
2168 }
2169
2170 // Update the dead map.
2171 HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2172 for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2173 DM[RR].subtract(Range);
2174 } // for Range in range list
2175 }
2176 }
2177 }
2178
2179
expandAlloca(MachineInstr * AI,const HexagonInstrInfo & HII,unsigned SP,unsigned CF) const2180 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2181 const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2182 MachineBasicBlock &MB = *AI->getParent();
2183 DebugLoc DL = AI->getDebugLoc();
2184 unsigned A = AI->getOperand(2).getImm();
2185
2186 // Have
2187 // Rd = alloca Rs, #A
2188 //
2189 // If Rs and Rd are different registers, use this sequence:
2190 // Rd = sub(r29, Rs)
2191 // r29 = sub(r29, Rs)
2192 // Rd = and(Rd, #-A) ; if necessary
2193 // r29 = and(r29, #-A) ; if necessary
2194 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2195 // otherwise, do
2196 // Rd = sub(r29, Rs)
2197 // Rd = and(Rd, #-A) ; if necessary
2198 // r29 = Rd
2199 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2200
2201 MachineOperand &RdOp = AI->getOperand(0);
2202 MachineOperand &RsOp = AI->getOperand(1);
2203 unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2204
2205 // Rd = sub(r29, Rs)
2206 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2207 .addReg(SP)
2208 .addReg(Rs);
2209 if (Rs != Rd) {
2210 // r29 = sub(r29, Rs)
2211 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2212 .addReg(SP)
2213 .addReg(Rs);
2214 }
2215 if (A > 8) {
2216 // Rd = and(Rd, #-A)
2217 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2218 .addReg(Rd)
2219 .addImm(-int64_t(A));
2220 if (Rs != Rd)
2221 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2222 .addReg(SP)
2223 .addImm(-int64_t(A));
2224 }
2225 if (Rs == Rd) {
2226 // r29 = Rd
2227 BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2228 .addReg(Rd);
2229 }
2230 if (CF > 0) {
2231 // Rd = add(Rd, #CF)
2232 BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2233 .addReg(Rd)
2234 .addImm(CF);
2235 }
2236 }
2237
2238
needsAligna(const MachineFunction & MF) const2239 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2240 const MachineFrameInfo *MFI = MF.getFrameInfo();
2241 if (!MFI->hasVarSizedObjects())
2242 return false;
2243 unsigned MaxA = MFI->getMaxAlignment();
2244 if (MaxA <= getStackAlignment())
2245 return false;
2246 return true;
2247 }
2248
2249
getAlignaInstr(const MachineFunction & MF) const2250 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2251 const MachineFunction &MF) const {
2252 for (auto &B : MF)
2253 for (auto &I : B)
2254 if (I.getOpcode() == Hexagon::ALIGNA)
2255 return &I;
2256 return nullptr;
2257 }
2258
2259
2260 /// Adds all callee-saved registers as implicit uses or defs to the
2261 /// instruction.
addCalleeSaveRegistersAsImpOperand(MachineInstr * MI,const CSIVect & CSI,bool IsDef,bool IsKill) const2262 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2263 const CSIVect &CSI, bool IsDef, bool IsKill) const {
2264 // Add the callee-saved registers as implicit uses.
2265 for (auto &R : CSI)
2266 MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2267 }
2268
2269
2270 /// Determine whether the callee-saved register saves and restores should
2271 /// be generated via inline code. If this function returns "true", inline
2272 /// code will be generated. If this function returns "false", additional
2273 /// checks are performed, which may still lead to the inline code.
shouldInlineCSR(MachineFunction & MF,const CSIVect & CSI) const2274 bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
2275 const CSIVect &CSI) const {
2276 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2277 return true;
2278 if (!isOptSize(MF) && !isMinSize(MF))
2279 if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2280 return true;
2281
2282 // Check if CSI only has double registers, and if the registers form
2283 // a contiguous block starting from D8.
2284 BitVector Regs(Hexagon::NUM_TARGET_REGS);
2285 for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
2286 unsigned R = CSI[i].getReg();
2287 if (!Hexagon::DoubleRegsRegClass.contains(R))
2288 return true;
2289 Regs[R] = true;
2290 }
2291 int F = Regs.find_first();
2292 if (F != Hexagon::D8)
2293 return true;
2294 while (F >= 0) {
2295 int N = Regs.find_next(F);
2296 if (N >= 0 && N != F+1)
2297 return true;
2298 F = N;
2299 }
2300
2301 return false;
2302 }
2303
2304
useSpillFunction(MachineFunction & MF,const CSIVect & CSI) const2305 bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
2306 const CSIVect &CSI) const {
2307 if (shouldInlineCSR(MF, CSI))
2308 return false;
2309 unsigned NumCSI = CSI.size();
2310 if (NumCSI <= 1)
2311 return false;
2312
2313 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2314 : SpillFuncThreshold;
2315 return Threshold < NumCSI;
2316 }
2317
2318
useRestoreFunction(MachineFunction & MF,const CSIVect & CSI) const2319 bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
2320 const CSIVect &CSI) const {
2321 if (shouldInlineCSR(MF, CSI))
2322 return false;
2323 // The restore functions do a bit more than just restoring registers.
2324 // The non-returning versions will go back directly to the caller's
2325 // caller, others will clean up the stack frame in preparation for
2326 // a tail call. Using them can still save code size even if only one
2327 // register is getting restores. Make the decision based on -Oz:
2328 // using -Os will use inline restore for a single register.
2329 if (isMinSize(MF))
2330 return true;
2331 unsigned NumCSI = CSI.size();
2332 if (NumCSI <= 1)
2333 return false;
2334
2335 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2336 : SpillFuncThreshold;
2337 return Threshold < NumCSI;
2338 }
2339