1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file streamout_jit.cpp
24 *
25 * @brief Implementation of the streamout jitter
26 *
27 * Notes:
28 *
29 ******************************************************************************/
30 #include "jit_api.h"
31 #include "streamout_jit.h"
32 #include "builder.h"
33 #include "state_llvm.h"
34 #include "llvm/IR/DataLayout.h"
35
36 #include <sstream>
37 #include <unordered_set>
38
39 using namespace llvm;
40 using namespace SwrJit;
41
42 //////////////////////////////////////////////////////////////////////////
43 /// Interface to Jitting a fetch shader
44 //////////////////////////////////////////////////////////////////////////
45 struct StreamOutJit : public Builder
46 {
StreamOutJitStreamOutJit47 StreamOutJit(JitManager* pJitMgr) : Builder(pJitMgr){};
48
49 // returns pointer to SWR_STREAMOUT_BUFFER
getSOBufferStreamOutJit50 Value* getSOBuffer(Value* pSoCtx, uint32_t buffer)
51 {
52 return LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_pBuffer, buffer });
53 }
54
55
56 //////////////////////////////////////////////////////////////////////////
57 // @brief checks if streamout buffer is oob
58 // @return <i1> true/false
oobStreamOutJit59 Value* oob(const STREAMOUT_COMPILE_STATE& state, Value* pSoCtx, uint32_t buffer)
60 {
61 Value* returnMask = C(false);
62
63 Value* pBuf = getSOBuffer(pSoCtx, buffer);
64
65 // load enable
66 // @todo bool data types should generate <i1> llvm type
67 Value* enabled = TRUNC(LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_enable }), IRB()->getInt1Ty());
68
69 // load buffer size
70 Value* bufferSize = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_bufferSize });
71
72 // load current streamOffset
73 Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
74
75 // load buffer pitch
76 Value* pitch = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pitch });
77
78 // buffer is considered oob if in use in a decl but not enabled
79 returnMask = OR(returnMask, NOT(enabled));
80
81 // buffer is oob if cannot fit a prims worth of verts
82 Value* newOffset = ADD(streamOffset, MUL(pitch, C(state.numVertsPerPrim)));
83 returnMask = OR(returnMask, ICMP_SGT(newOffset, bufferSize));
84
85 return returnMask;
86 }
87
88
89 //////////////////////////////////////////////////////////////////////////
90 // @brief converts scalar bitmask to <4 x i32> suitable for shuffle vector,
91 // packing the active mask bits
92 // ex. bitmask 0011 -> (0, 1, 0, 0)
93 // bitmask 1000 -> (3, 0, 0, 0)
94 // bitmask 1100 -> (2, 3, 0, 0)
PackMaskStreamOutJit95 Value* PackMask(uint32_t bitmask)
96 {
97 std::vector<Constant*> indices(4, C(0));
98 DWORD index;
99 uint32_t elem = 0;
100 while (_BitScanForward(&index, bitmask))
101 {
102 indices[elem++] = C((int)index);
103 bitmask &= ~(1 << index);
104 }
105
106 return ConstantVector::get(indices);
107 }
108
109 //////////////////////////////////////////////////////////////////////////
110 // @brief convert scalar bitmask to <4xfloat> bitmask
ToMaskStreamOutJit111 Value* ToMask(uint32_t bitmask)
112 {
113 std::vector<Constant*> indices;
114 for (uint32_t i = 0; i < 4; ++i)
115 {
116 if (bitmask & (1 << i))
117 {
118 indices.push_back(C(-1.0f));
119 }
120 else
121 {
122 indices.push_back(C(0.0f));
123 }
124 }
125 return ConstantVector::get(indices);
126 }
127
128 //////////////////////////////////////////////////////////////////////////
129 // @brief processes a single decl from the streamout stream. Reads 4 components from the input
130 // stream and writes N components to the output buffer given the componentMask or if
131 // a hole, just increments the buffer pointer
132 // @param pStream - pointer to current attribute
133 // @param pOutBuffers - pointers to the current location of each output buffer
134 // @param decl - input decl
buildDeclStreamOutJit135 void buildDecl(Value* pStream, Value* pOutBuffers[4], const STREAMOUT_DECL& decl)
136 {
137 // @todo add this to x86 macros
138 Function* maskStore = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx_maskstore_ps);
139
140 uint32_t numComponents = _mm_popcnt_u32(decl.componentMask);
141 uint32_t packedMask = (1 << numComponents) - 1;
142 if (!decl.hole)
143 {
144 // increment stream pointer to correct slot
145 Value* pAttrib = GEP(pStream, C(4 * decl.attribSlot));
146
147 // load 4 components from stream
148 Type* simd4Ty = VectorType::get(IRB()->getFloatTy(), 4);
149 Type* simd4PtrTy = PointerType::get(simd4Ty, 0);
150 pAttrib = BITCAST(pAttrib, simd4PtrTy);
151 Value *vattrib = LOAD(pAttrib);
152
153 // shuffle/pack enabled components
154 Value* vpackedAttrib = VSHUFFLE(vattrib, vattrib, PackMask(decl.componentMask));
155
156 // store to output buffer
157 // cast SO buffer to i8*, needed by maskstore
158 Value* pOut = BITCAST(pOutBuffers[decl.bufferIndex], PointerType::get(mInt8Ty, 0));
159
160 // cast input to <4xfloat>
161 Value* src = BITCAST(vpackedAttrib, simd4Ty);
162 CALL(maskStore, {pOut, ToMask(packedMask), src});
163 }
164
165 // increment SO buffer
166 pOutBuffers[decl.bufferIndex] = GEP(pOutBuffers[decl.bufferIndex], C(numComponents));
167 }
168
169 //////////////////////////////////////////////////////////////////////////
170 // @brief builds a single vertex worth of data for the given stream
171 // @param streamState - state for this stream
172 // @param pCurVertex - pointer to src stream vertex data
173 // @param pOutBuffer - pointers to up to 4 SO buffers
buildVertexStreamOutJit174 void buildVertex(const STREAMOUT_STREAM& streamState, Value* pCurVertex, Value* pOutBuffer[4])
175 {
176 for (uint32_t d = 0; d < streamState.numDecls; ++d)
177 {
178 const STREAMOUT_DECL& decl = streamState.decl[d];
179 buildDecl(pCurVertex, pOutBuffer, decl);
180 }
181 }
182
buildStreamStreamOutJit183 void buildStream(const STREAMOUT_COMPILE_STATE& state, const STREAMOUT_STREAM& streamState, Value* pSoCtx, BasicBlock* returnBB, Function* soFunc)
184 {
185 // get list of active SO buffers
186 std::unordered_set<uint32_t> activeSOBuffers;
187 for (uint32_t d = 0; d < streamState.numDecls; ++d)
188 {
189 const STREAMOUT_DECL& decl = streamState.decl[d];
190 activeSOBuffers.insert(decl.bufferIndex);
191 }
192
193 // always increment numPrimStorageNeeded
194 Value *numPrimStorageNeeded = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimStorageNeeded });
195 numPrimStorageNeeded = ADD(numPrimStorageNeeded, C(1));
196 STORE(numPrimStorageNeeded, pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimStorageNeeded });
197
198 // check OOB on active SO buffers. If any buffer is out of bound, don't write
199 // the primitive to any buffer
200 Value* oobMask = C(false);
201 for (uint32_t buffer : activeSOBuffers)
202 {
203 oobMask = OR(oobMask, oob(state, pSoCtx, buffer));
204 }
205
206 BasicBlock* validBB = BasicBlock::Create(JM()->mContext, "valid", soFunc);
207
208 // early out if OOB
209 COND_BR(oobMask, returnBB, validBB);
210
211 IRB()->SetInsertPoint(validBB);
212
213 Value* numPrimsWritten = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimsWritten });
214 numPrimsWritten = ADD(numPrimsWritten, C(1));
215 STORE(numPrimsWritten, pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimsWritten });
216
217 // compute start pointer for each output buffer
218 Value* pOutBuffer[4];
219 Value* pOutBufferStartVertex[4];
220 Value* outBufferPitch[4];
221 for (uint32_t b: activeSOBuffers)
222 {
223 Value* pBuf = getSOBuffer(pSoCtx, b);
224 Value* pData = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pBuffer });
225 Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
226 pOutBuffer[b] = GEP(pData, streamOffset);
227 pOutBufferStartVertex[b] = pOutBuffer[b];
228
229 outBufferPitch[b] = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pitch });
230 }
231
232 // loop over the vertices of the prim
233 Value* pStreamData = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_pPrimData });
234 for (uint32_t v = 0; v < state.numVertsPerPrim; ++v)
235 {
236 buildVertex(streamState, pStreamData, pOutBuffer);
237
238 // increment stream and output buffer pointers
239 // stream verts are always 32*4 dwords apart
240 pStreamData = GEP(pStreamData, C(KNOB_NUM_ATTRIBUTES * 4));
241
242 // output buffers offset using pitch in buffer state
243 for (uint32_t b : activeSOBuffers)
244 {
245 pOutBufferStartVertex[b] = GEP(pOutBufferStartVertex[b], outBufferPitch[b]);
246 pOutBuffer[b] = pOutBufferStartVertex[b];
247 }
248 }
249
250 // update each active buffer's streamOffset
251 for (uint32_t b : activeSOBuffers)
252 {
253 Value* pBuf = getSOBuffer(pSoCtx, b);
254 Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
255 streamOffset = ADD(streamOffset, MUL(C(state.numVertsPerPrim), outBufferPitch[b]));
256 STORE(streamOffset, pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
257 }
258 }
259
CreateStreamOutJit260 Function* Create(const STREAMOUT_COMPILE_STATE& state)
261 {
262 static std::size_t soNum = 0;
263
264 std::stringstream fnName("SOShader", std::ios_base::in | std::ios_base::out | std::ios_base::ate);
265 fnName << soNum++;
266
267 // SO function signature
268 // typedef void(__cdecl *PFN_SO_FUNC)(SWR_STREAMOUT_CONTEXT*)
269
270 std::vector<Type*> args{
271 PointerType::get(Gen_SWR_STREAMOUT_CONTEXT(JM()), 0), // SWR_STREAMOUT_CONTEXT*
272 };
273
274 FunctionType* fTy = FunctionType::get(IRB()->getVoidTy(), args, false);
275 Function* soFunc = Function::Create(fTy, GlobalValue::ExternalLinkage, fnName.str(), JM()->mpCurrentModule);
276
277 // create return basic block
278 BasicBlock* entry = BasicBlock::Create(JM()->mContext, "entry", soFunc);
279 BasicBlock* returnBB = BasicBlock::Create(JM()->mContext, "return", soFunc);
280
281 IRB()->SetInsertPoint(entry);
282
283 // arguments
284 auto argitr = soFunc->arg_begin();
285 Value* pSoCtx = &*argitr++;
286 pSoCtx->setName("pSoCtx");
287
288 const STREAMOUT_STREAM& streamState = state.stream;
289 buildStream(state, streamState, pSoCtx, returnBB, soFunc);
290
291 BR(returnBB);
292
293 IRB()->SetInsertPoint(returnBB);
294 RET_VOID();
295
296 JitManager::DumpToFile(soFunc, "SoFunc");
297
298 ::FunctionPassManager passes(JM()->mpCurrentModule);
299
300 passes.add(createBreakCriticalEdgesPass());
301 passes.add(createCFGSimplificationPass());
302 passes.add(createEarlyCSEPass());
303 passes.add(createPromoteMemoryToRegisterPass());
304 passes.add(createCFGSimplificationPass());
305 passes.add(createEarlyCSEPass());
306 passes.add(createInstructionCombiningPass());
307 passes.add(createInstructionSimplifierPass());
308 passes.add(createConstantPropagationPass());
309 passes.add(createSCCPPass());
310 passes.add(createAggressiveDCEPass());
311
312 passes.run(*soFunc);
313
314 JitManager::DumpToFile(soFunc, "SoFunc_optimized");
315
316 return soFunc;
317 }
318 };
319
320 //////////////////////////////////////////////////////////////////////////
321 /// @brief JITs from streamout shader IR
322 /// @param hJitMgr - JitManager handle
323 /// @param func - LLVM function IR
324 /// @return PFN_SO_FUNC - pointer to SOS function
JitStreamoutFunc(HANDLE hJitMgr,const HANDLE hFunc)325 PFN_SO_FUNC JitStreamoutFunc(HANDLE hJitMgr, const HANDLE hFunc)
326 {
327 const llvm::Function *func = (const llvm::Function*)hFunc;
328 JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);
329 PFN_SO_FUNC pfnStreamOut;
330 pfnStreamOut = (PFN_SO_FUNC)(pJitMgr->mpExec->getFunctionAddress(func->getName().str()));
331 // MCJIT finalizes modules the first time you JIT code from them. After finalized, you cannot add new IR to the module
332 pJitMgr->mIsModuleFinalized = true;
333
334 return pfnStreamOut;
335 }
336
337 //////////////////////////////////////////////////////////////////////////
338 /// @brief JIT compiles streamout shader
339 /// @param hJitMgr - JitManager handle
340 /// @param state - SO state to build function from
JitCompileStreamout(HANDLE hJitMgr,const STREAMOUT_COMPILE_STATE & state)341 extern "C" PFN_SO_FUNC JITCALL JitCompileStreamout(HANDLE hJitMgr, const STREAMOUT_COMPILE_STATE& state)
342 {
343 JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);
344
345 STREAMOUT_COMPILE_STATE soState = state;
346 if (soState.offsetAttribs)
347 {
348 for (uint32_t i = 0; i < soState.stream.numDecls; ++i)
349 {
350 soState.stream.decl[i].attribSlot -= soState.offsetAttribs;
351 }
352 }
353
354 pJitMgr->SetupNewModule();
355
356 StreamOutJit theJit(pJitMgr);
357 HANDLE hFunc = theJit.Create(soState);
358
359 return JitStreamoutFunc(hJitMgr, hFunc);
360 }
361