• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 // A lightweight X64 Assembler.
36 
37 #ifndef V8_X64_ASSEMBLER_X64_H_
38 #define V8_X64_ASSEMBLER_X64_H_
39 
40 #include <deque>
41 
42 #include "src/assembler.h"
43 #include "src/x64/sse-instr.h"
44 
45 namespace v8 {
46 namespace internal {
47 
48 // Utility functions
49 
50 #define GENERAL_REGISTERS(V) \
51   V(rax)                     \
52   V(rcx)                     \
53   V(rdx)                     \
54   V(rbx)                     \
55   V(rsp)                     \
56   V(rbp)                     \
57   V(rsi)                     \
58   V(rdi)                     \
59   V(r8)                      \
60   V(r9)                      \
61   V(r10)                     \
62   V(r11)                     \
63   V(r12)                     \
64   V(r13)                     \
65   V(r14)                     \
66   V(r15)
67 
68 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
69   V(rax)                                 \
70   V(rbx)                                 \
71   V(rdx)                                 \
72   V(rcx)                                 \
73   V(rsi)                                 \
74   V(rdi)                                 \
75   V(r8)                                  \
76   V(r9)                                  \
77   V(r11)                                 \
78   V(r12)                                 \
79   V(r14)                                 \
80   V(r15)
81 
82 // The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
83 static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
84 
85 // CPU Registers.
86 //
87 // 1) We would prefer to use an enum, but enum values are assignment-
88 // compatible with int, which has caused code-generation bugs.
89 //
90 // 2) We would prefer to use a class instead of a struct but we don't like
91 // the register initialization to depend on the particular initialization
92 // order (which appears to be different on OS X, Linux, and Windows for the
93 // installed versions of C++ we tried). Using a struct permits C-style
94 // "initialization". Also, the Register objects cannot be const as this
95 // forces initialization stubs in MSVC, making us dependent on initialization
96 // order.
97 //
98 // 3) By not using an enum, we are possibly preventing the compiler from
99 // doing certain constant folds, which may significantly reduce the
100 // code generated for some assembly instructions (because they boil down
101 // to a few constants). If this is a problem, we could change the code
102 // such that we use an enum in optimized mode, and the struct in debug
103 // mode. This way we get the compile-time error checking in debug mode
104 // and best performance in optimized code.
105 //
106 struct Register {
107   enum Code {
108 #define REGISTER_CODE(R) kCode_##R,
109     GENERAL_REGISTERS(REGISTER_CODE)
110 #undef REGISTER_CODE
111         kAfterLast,
112     kCode_no_reg = -1
113   };
114 
115   static const int kNumRegisters = Code::kAfterLast;
116 
from_codeRegister117   static Register from_code(int code) {
118     DCHECK(code >= 0);
119     DCHECK(code < kNumRegisters);
120     Register r = {code};
121     return r;
122   }
is_validRegister123   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister124   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister125   int code() const {
126     DCHECK(is_valid());
127     return reg_code;
128   }
bitRegister129   int bit() const {
130     DCHECK(is_valid());
131     return 1 << reg_code;
132   }
133 
is_byte_registerRegister134   bool is_byte_register() const { return reg_code <= 3; }
135   // Return the high bit of the register code as a 0 or 1.  Used often
136   // when constructing the REX prefix byte.
high_bitRegister137   int high_bit() const { return reg_code >> 3; }
138   // Return the 3 low bits of the register code.  Used when encoding registers
139   // in modR/M, SIB, and opcode bytes.
low_bitsRegister140   int low_bits() const { return reg_code & 0x7; }
141 
142   // Unfortunately we can't make this private in a struct when initializing
143   // by assignment.
144   int reg_code;
145 };
146 
147 
148 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
149 GENERAL_REGISTERS(DECLARE_REGISTER)
150 #undef DECLARE_REGISTER
151 const Register no_reg = {Register::kCode_no_reg};
152 
153 
154 #ifdef _WIN64
155   // Windows calling convention
156 const Register arg_reg_1 = {Register::kCode_rcx};
157 const Register arg_reg_2 = {Register::kCode_rdx};
158 const Register arg_reg_3 = {Register::kCode_r8};
159 const Register arg_reg_4 = {Register::kCode_r9};
160 #else
161   // AMD64 calling convention
162 const Register arg_reg_1 = {Register::kCode_rdi};
163 const Register arg_reg_2 = {Register::kCode_rsi};
164 const Register arg_reg_3 = {Register::kCode_rdx};
165 const Register arg_reg_4 = {Register::kCode_rcx};
166 #endif  // _WIN64
167 
168 
169 #define DOUBLE_REGISTERS(V) \
170   V(xmm0)                   \
171   V(xmm1)                   \
172   V(xmm2)                   \
173   V(xmm3)                   \
174   V(xmm4)                   \
175   V(xmm5)                   \
176   V(xmm6)                   \
177   V(xmm7)                   \
178   V(xmm8)                   \
179   V(xmm9)                   \
180   V(xmm10)                  \
181   V(xmm11)                  \
182   V(xmm12)                  \
183   V(xmm13)                  \
184   V(xmm14)                  \
185   V(xmm15)
186 
187 #define FLOAT_REGISTERS DOUBLE_REGISTERS
188 #define SIMD128_REGISTERS DOUBLE_REGISTERS
189 
190 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
191   V(xmm0)                               \
192   V(xmm1)                               \
193   V(xmm2)                               \
194   V(xmm3)                               \
195   V(xmm4)                               \
196   V(xmm5)                               \
197   V(xmm6)                               \
198   V(xmm7)                               \
199   V(xmm8)                               \
200   V(xmm9)                               \
201   V(xmm10)                              \
202   V(xmm11)                              \
203   V(xmm12)                              \
204   V(xmm13)                              \
205   V(xmm14)
206 
207 static const bool kSimpleFPAliasing = true;
208 static const bool kSimdMaskRegisters = false;
209 
210 struct XMMRegister {
211   enum Code {
212 #define REGISTER_CODE(R) kCode_##R,
213     DOUBLE_REGISTERS(REGISTER_CODE)
214 #undef REGISTER_CODE
215         kAfterLast,
216     kCode_no_reg = -1
217   };
218 
219   static const int kMaxNumRegisters = Code::kAfterLast;
220 
from_codeXMMRegister221   static XMMRegister from_code(int code) {
222     XMMRegister result = {code};
223     return result;
224   }
225 
is_validXMMRegister226   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isXMMRegister227   bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
codeXMMRegister228   int code() const {
229     DCHECK(is_valid());
230     return reg_code;
231   }
232 
233   // Return the high bit of the register code as a 0 or 1.  Used often
234   // when constructing the REX prefix byte.
high_bitXMMRegister235   int high_bit() const { return reg_code >> 3; }
236   // Return the 3 low bits of the register code.  Used when encoding registers
237   // in modR/M, SIB, and opcode bytes.
low_bitsXMMRegister238   int low_bits() const { return reg_code & 0x7; }
239 
240   // Unfortunately we can't make this private in a struct when initializing
241   // by assignment.
242   int reg_code;
243 };
244 
245 typedef XMMRegister FloatRegister;
246 
247 typedef XMMRegister DoubleRegister;
248 
249 typedef XMMRegister Simd128Register;
250 
251 #define DECLARE_REGISTER(R) \
252   const DoubleRegister R = {DoubleRegister::kCode_##R};
253 DOUBLE_REGISTERS(DECLARE_REGISTER)
254 #undef DECLARE_REGISTER
255 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
256 
257 enum Condition {
258   // any value < 0 is considered no_condition
259   no_condition  = -1,
260 
261   overflow      =  0,
262   no_overflow   =  1,
263   below         =  2,
264   above_equal   =  3,
265   equal         =  4,
266   not_equal     =  5,
267   below_equal   =  6,
268   above         =  7,
269   negative      =  8,
270   positive      =  9,
271   parity_even   = 10,
272   parity_odd    = 11,
273   less          = 12,
274   greater_equal = 13,
275   less_equal    = 14,
276   greater       = 15,
277 
278   // Fake conditions that are handled by the
279   // opcodes using them.
280   always        = 16,
281   never         = 17,
282   // aliases
283   carry         = below,
284   not_carry     = above_equal,
285   zero          = equal,
286   not_zero      = not_equal,
287   sign          = negative,
288   not_sign      = positive,
289   last_condition = greater
290 };
291 
292 
293 // Returns the equivalent of !cc.
294 // Negation of the default no_condition (-1) results in a non-default
295 // no_condition value (-2). As long as tests for no_condition check
296 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)297 inline Condition NegateCondition(Condition cc) {
298   return static_cast<Condition>(cc ^ 1);
299 }
300 
301 
302 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)303 inline Condition CommuteCondition(Condition cc) {
304   switch (cc) {
305     case below:
306       return above;
307     case above:
308       return below;
309     case above_equal:
310       return below_equal;
311     case below_equal:
312       return above_equal;
313     case less:
314       return greater;
315     case greater:
316       return less;
317     case greater_equal:
318       return less_equal;
319     case less_equal:
320       return greater_equal;
321     default:
322       return cc;
323   }
324 }
325 
326 
327 enum RoundingMode {
328   kRoundToNearest = 0x0,
329   kRoundDown = 0x1,
330   kRoundUp = 0x2,
331   kRoundToZero = 0x3
332 };
333 
334 
335 // -----------------------------------------------------------------------------
336 // Machine instruction Immediates
337 
338 class Immediate BASE_EMBEDDED {
339  public:
Immediate(int32_t value)340   explicit Immediate(int32_t value) : value_(value) {}
Immediate(int32_t value,RelocInfo::Mode rmode)341   explicit Immediate(int32_t value, RelocInfo::Mode rmode)
342       : value_(value), rmode_(rmode) {}
Immediate(Smi * value)343   explicit Immediate(Smi* value) {
344     DCHECK(SmiValuesAre31Bits());  // Only available for 31-bit SMI.
345     value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
346   }
347 
348  private:
349   int32_t value_;
350   RelocInfo::Mode rmode_ = RelocInfo::NONE32;
351 
352   friend class Assembler;
353 };
354 
355 
356 // -----------------------------------------------------------------------------
357 // Machine instruction Operands
358 
359 enum ScaleFactor {
360   times_1 = 0,
361   times_2 = 1,
362   times_4 = 2,
363   times_8 = 3,
364   times_int_size = times_4,
365   times_pointer_size = (kPointerSize == 8) ? times_8 : times_4
366 };
367 
368 
369 class Operand BASE_EMBEDDED {
370  public:
371   // [base + disp/r]
372   Operand(Register base, int32_t disp);
373 
374   // [base + index*scale + disp/r]
375   Operand(Register base,
376           Register index,
377           ScaleFactor scale,
378           int32_t disp);
379 
380   // [index*scale + disp/r]
381   Operand(Register index,
382           ScaleFactor scale,
383           int32_t disp);
384 
385   // Offset from existing memory operand.
386   // Offset is added to existing displacement as 32-bit signed values and
387   // this must not overflow.
388   Operand(const Operand& base, int32_t offset);
389 
390   // [rip + disp/r]
391   explicit Operand(Label* label);
392 
393   // Checks whether either base or index register is the given register.
394   // Does not check the "reg" part of the Operand.
395   bool AddressUsesRegister(Register reg) const;
396 
397   // Queries related to the size of the generated instruction.
398   // Whether the generated instruction will have a REX prefix.
requires_rex()399   bool requires_rex() const { return rex_ != 0; }
400   // Size of the ModR/M, SIB and displacement parts of the generated
401   // instruction.
operand_size()402   int operand_size() const { return len_; }
403 
404  private:
405   byte rex_;
406   byte buf_[9];
407   // The number of bytes of buf_ in use.
408   byte len_;
409 
410   // Set the ModR/M byte without an encoded 'reg' register. The
411   // register is encoded later as part of the emit_operand operation.
412   // set_modrm can be called before or after set_sib and set_disp*.
413   inline void set_modrm(int mod, Register rm);
414 
415   // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
416   inline void set_sib(ScaleFactor scale, Register index, Register base);
417 
418   // Adds operand displacement fields (offsets added to the memory address).
419   // Needs to be called after set_sib, not before it.
420   inline void set_disp8(int disp);
421   inline void set_disp32(int disp);
422   inline void set_disp64(int64_t disp);  // for labels.
423 
424   friend class Assembler;
425 };
426 
427 #define ASSEMBLER_INSTRUCTION_LIST(V) \
428   V(add)                              \
429   V(and)                              \
430   V(cmp)                              \
431   V(cmpxchg)                          \
432   V(dec)                              \
433   V(idiv)                             \
434   V(div)                              \
435   V(imul)                             \
436   V(inc)                              \
437   V(lea)                              \
438   V(mov)                              \
439   V(movzxb)                           \
440   V(movzxw)                           \
441   V(neg)                              \
442   V(not)                              \
443   V(or)                               \
444   V(repmovs)                          \
445   V(sbb)                              \
446   V(sub)                              \
447   V(test)                             \
448   V(xchg)                             \
449   V(xor)
450 
451 // Shift instructions on operands/registers with kPointerSize, kInt32Size and
452 // kInt64Size.
453 #define SHIFT_INSTRUCTION_LIST(V)       \
454   V(rol, 0x0)                           \
455   V(ror, 0x1)                           \
456   V(rcl, 0x2)                           \
457   V(rcr, 0x3)                           \
458   V(shl, 0x4)                           \
459   V(shr, 0x5)                           \
460   V(sar, 0x7)                           \
461 
462 
463 class Assembler : public AssemblerBase {
464  private:
465   // We check before assembling an instruction that there is sufficient
466   // space to write an instruction and its relocation information.
467   // The relocation writer's position must be kGap bytes above the end of
468   // the generated instructions. This leaves enough space for the
469   // longest possible x64 instruction, 15 bytes, and the longest possible
470   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
471   // (There is a 15 byte limit on x64 instruction length that rules out some
472   // otherwise valid instructions.)
473   // This allows for a single, fast space check per instruction.
474   static const int kGap = 32;
475 
476  public:
477   // Create an assembler. Instructions and relocation information are emitted
478   // into a buffer, with the instructions starting from the beginning and the
479   // relocation information starting from the end of the buffer. See CodeDesc
480   // for a detailed comment on the layout (globals.h).
481   //
482   // If the provided buffer is NULL, the assembler allocates and grows its own
483   // buffer, and buffer_size determines the initial buffer size. The buffer is
484   // owned by the assembler and deallocated upon destruction of the assembler.
485   //
486   // If the provided buffer is not NULL, the assembler uses the provided buffer
487   // for code generation and assumes its size to be buffer_size. If the buffer
488   // is too small, a fatal error occurs. No deallocation of the buffer is done
489   // upon destruction of the assembler.
490   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()491   virtual ~Assembler() { }
492 
493   // GetCode emits any pending (non-emitted) code and fills the descriptor
494   // desc. GetCode() is idempotent; it returns the same result if no other
495   // Assembler functions are invoked in between GetCode() calls.
496   void GetCode(CodeDesc* desc);
497 
498   // Read/Modify the code target in the relative branch/call instruction at pc.
499   // On the x64 architecture, we use relative jumps with a 32-bit displacement
500   // to jump to other Code objects in the Code space in the heap.
501   // Jumps to C functions are done indirectly through a 64-bit register holding
502   // the absolute address of the target.
503   // These functions convert between absolute Addresses of Code objects and
504   // the relative displacements stored in the code.
505   static inline Address target_address_at(Address pc, Address constant_pool);
506   static inline void set_target_address_at(
507       Isolate* isolate, Address pc, Address constant_pool, Address target,
508       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
509   static inline Address target_address_at(Address pc, Code* code);
510   static inline void set_target_address_at(
511       Isolate* isolate, Address pc, Code* code, Address target,
512       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
513 
514   // Return the code target address at a call site from the return address
515   // of that call in the instruction stream.
516   static inline Address target_address_from_return_address(Address pc);
517 
518   // This sets the branch destination (which is in the instruction on x64).
519   // This is for calls and branches within generated code.
520   inline static void deserialization_set_special_target_at(
521       Isolate* isolate, Address instruction_payload, Code* code,
522       Address target);
523 
524   // This sets the internal reference at the pc.
525   inline static void deserialization_set_target_internal_reference_at(
526       Isolate* isolate, Address pc, Address target,
527       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
528 
RelocInfoNone()529   static inline RelocInfo::Mode RelocInfoNone() {
530     if (kPointerSize == kInt64Size) {
531       return RelocInfo::NONE64;
532     } else {
533       DCHECK(kPointerSize == kInt32Size);
534       return RelocInfo::NONE32;
535     }
536   }
537 
538   inline Handle<Object> code_target_object_handle_at(Address pc);
539   inline Address runtime_entry_at(Address pc);
540   // Number of bytes taken up by the branch target in the code.
541   static const int kSpecialTargetSize = 4;  // Use 32-bit displacement.
542   // Distance between the address of the code target in the call instruction
543   // and the return address pushed on the stack.
544   static const int kCallTargetAddressOffset = 4;  // Use 32-bit displacement.
545   // The length of call(kScratchRegister).
546   static const int kCallScratchRegisterInstructionLength = 3;
547   // The length of call(Immediate32).
548   static const int kShortCallInstructionLength = 5;
549   // The length of movq(kScratchRegister, address).
550   static const int kMoveAddressIntoScratchRegisterInstructionLength =
551       2 + kPointerSize;
552   // The length of movq(kScratchRegister, address) and call(kScratchRegister).
553   static const int kCallSequenceLength =
554       kMoveAddressIntoScratchRegisterInstructionLength +
555       kCallScratchRegisterInstructionLength;
556 
557   // The debug break slot must be able to contain an indirect call sequence.
558   static const int kDebugBreakSlotLength = kCallSequenceLength;
559   // Distance between start of patched debug break slot and the emitted address
560   // to jump to.
561   static const int kPatchDebugBreakSlotAddressOffset =
562       kMoveAddressIntoScratchRegisterInstructionLength - kPointerSize;
563 
564   // One byte opcode for test eax,0xXXXXXXXX.
565   static const byte kTestEaxByte = 0xA9;
566   // One byte opcode for test al, 0xXX.
567   static const byte kTestAlByte = 0xA8;
568   // One byte opcode for nop.
569   static const byte kNopByte = 0x90;
570 
571   // One byte prefix for a short conditional jump.
572   static const byte kJccShortPrefix = 0x70;
573   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
574   static const byte kJcShortOpcode = kJccShortPrefix | carry;
575   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
576   static const byte kJzShortOpcode = kJccShortPrefix | zero;
577 
578   // VEX prefix encodings.
579   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
580   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
581   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
582   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
583 
584   // ---------------------------------------------------------------------------
585   // Code generation
586   //
587   // Function names correspond one-to-one to x64 instruction mnemonics.
588   // Unless specified otherwise, instructions operate on 64-bit operands.
589   //
590   // If we need versions of an assembly instruction that operate on different
591   // width arguments, we add a single-letter suffix specifying the width.
592   // This is done for the following instructions: mov, cmp, inc, dec,
593   // add, sub, and test.
594   // There are no versions of these instructions without the suffix.
595   // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
596   // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
597   // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
598   // - Instructions on 64-bit (quadword) operands/registers use 'q'.
599   // - Instructions on operands/registers with pointer size use 'p'.
600 
601   STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
602 
603 #define DECLARE_INSTRUCTION(instruction)                \
604   template<class P1>                                    \
605   void instruction##p(P1 p1) {                          \
606     emit_##instruction(p1, kPointerSize);               \
607   }                                                     \
608                                                         \
609   template<class P1>                                    \
610   void instruction##l(P1 p1) {                          \
611     emit_##instruction(p1, kInt32Size);                 \
612   }                                                     \
613                                                         \
614   template<class P1>                                    \
615   void instruction##q(P1 p1) {                          \
616     emit_##instruction(p1, kInt64Size);                 \
617   }                                                     \
618                                                         \
619   template<class P1, class P2>                          \
620   void instruction##p(P1 p1, P2 p2) {                   \
621     emit_##instruction(p1, p2, kPointerSize);           \
622   }                                                     \
623                                                         \
624   template<class P1, class P2>                          \
625   void instruction##l(P1 p1, P2 p2) {                   \
626     emit_##instruction(p1, p2, kInt32Size);             \
627   }                                                     \
628                                                         \
629   template<class P1, class P2>                          \
630   void instruction##q(P1 p1, P2 p2) {                   \
631     emit_##instruction(p1, p2, kInt64Size);             \
632   }                                                     \
633                                                         \
634   template<class P1, class P2, class P3>                \
635   void instruction##p(P1 p1, P2 p2, P3 p3) {            \
636     emit_##instruction(p1, p2, p3, kPointerSize);       \
637   }                                                     \
638                                                         \
639   template<class P1, class P2, class P3>                \
640   void instruction##l(P1 p1, P2 p2, P3 p3) {            \
641     emit_##instruction(p1, p2, p3, kInt32Size);         \
642   }                                                     \
643                                                         \
644   template<class P1, class P2, class P3>                \
645   void instruction##q(P1 p1, P2 p2, P3 p3) {            \
646     emit_##instruction(p1, p2, p3, kInt64Size);         \
647   }
648   ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
649 #undef DECLARE_INSTRUCTION
650 
651   // Insert the smallest number of nop instructions
652   // possible to align the pc offset to a multiple
653   // of m, where m must be a power of 2.
654   void Align(int m);
655   // Insert the smallest number of zero bytes possible to align the pc offset
656   // to a mulitple of m. m must be a power of 2 (>= 2).
657   void DataAlign(int m);
658   void Nop(int bytes = 1);
659   // Aligns code to something that's optimal for a jump target for the platform.
660   void CodeTargetAlign();
661 
662   // Stack
663   void pushfq();
664   void popfq();
665 
666   void pushq(Immediate value);
667   // Push a 32 bit integer, and guarantee that it is actually pushed as a
668   // 32 bit value, the normal push will optimize the 8 bit case.
669   void pushq_imm32(int32_t imm32);
670   void pushq(Register src);
671   void pushq(const Operand& src);
672 
673   void popq(Register dst);
674   void popq(const Operand& dst);
675 
676   void enter(Immediate size);
677   void leave();
678 
679   // Moves
680   void movb(Register dst, const Operand& src);
681   void movb(Register dst, Immediate imm);
682   void movb(const Operand& dst, Register src);
683   void movb(const Operand& dst, Immediate imm);
684 
685   // Move the low 16 bits of a 64-bit register value to a 16-bit
686   // memory location.
687   void movw(Register dst, const Operand& src);
688   void movw(const Operand& dst, Register src);
689   void movw(const Operand& dst, Immediate imm);
690 
691   // Move the offset of the label location relative to the current
692   // position (after the move) to the destination.
693   void movl(const Operand& dst, Label* src);
694 
695   // Loads a pointer into a register with a relocation mode.
696   void movp(Register dst, void* ptr, RelocInfo::Mode rmode);
697 
698   // Loads a 64-bit immediate into a register.
699   void movq(Register dst, int64_t value,
700             RelocInfo::Mode rmode = RelocInfo::NONE64);
701   void movq(Register dst, uint64_t value,
702             RelocInfo::Mode rmode = RelocInfo::NONE64);
703 
704   void movsxbl(Register dst, Register src);
705   void movsxbl(Register dst, const Operand& src);
706   void movsxbq(Register dst, Register src);
707   void movsxbq(Register dst, const Operand& src);
708   void movsxwl(Register dst, Register src);
709   void movsxwl(Register dst, const Operand& src);
710   void movsxwq(Register dst, Register src);
711   void movsxwq(Register dst, const Operand& src);
712   void movsxlq(Register dst, Register src);
713   void movsxlq(Register dst, const Operand& src);
714 
715   // Repeated moves.
716 
717   void repmovsb();
718   void repmovsw();
repmovsp()719   void repmovsp() { emit_repmovs(kPointerSize); }
repmovsl()720   void repmovsl() { emit_repmovs(kInt32Size); }
repmovsq()721   void repmovsq() { emit_repmovs(kInt64Size); }
722 
723   // Instruction to load from an immediate 64-bit pointer into RAX.
724   void load_rax(void* ptr, RelocInfo::Mode rmode);
725   void load_rax(ExternalReference ext);
726 
727   // Conditional moves.
728   void cmovq(Condition cc, Register dst, Register src);
729   void cmovq(Condition cc, Register dst, const Operand& src);
730   void cmovl(Condition cc, Register dst, Register src);
731   void cmovl(Condition cc, Register dst, const Operand& src);
732 
cmpb(Register dst,Immediate src)733   void cmpb(Register dst, Immediate src) {
734     immediate_arithmetic_op_8(0x7, dst, src);
735   }
736 
737   void cmpb_al(Immediate src);
738 
cmpb(Register dst,Register src)739   void cmpb(Register dst, Register src) {
740     arithmetic_op_8(0x3A, dst, src);
741   }
742 
cmpb(Register dst,const Operand & src)743   void cmpb(Register dst, const Operand& src) {
744     arithmetic_op_8(0x3A, dst, src);
745   }
746 
cmpb(const Operand & dst,Register src)747   void cmpb(const Operand& dst, Register src) {
748     arithmetic_op_8(0x38, src, dst);
749   }
750 
cmpb(const Operand & dst,Immediate src)751   void cmpb(const Operand& dst, Immediate src) {
752     immediate_arithmetic_op_8(0x7, dst, src);
753   }
754 
cmpw(const Operand & dst,Immediate src)755   void cmpw(const Operand& dst, Immediate src) {
756     immediate_arithmetic_op_16(0x7, dst, src);
757   }
758 
cmpw(Register dst,Immediate src)759   void cmpw(Register dst, Immediate src) {
760     immediate_arithmetic_op_16(0x7, dst, src);
761   }
762 
cmpw(Register dst,const Operand & src)763   void cmpw(Register dst, const Operand& src) {
764     arithmetic_op_16(0x3B, dst, src);
765   }
766 
cmpw(Register dst,Register src)767   void cmpw(Register dst, Register src) {
768     arithmetic_op_16(0x3B, dst, src);
769   }
770 
cmpw(const Operand & dst,Register src)771   void cmpw(const Operand& dst, Register src) {
772     arithmetic_op_16(0x39, src, dst);
773   }
774 
testb(Register reg,const Operand & op)775   void testb(Register reg, const Operand& op) { testb(op, reg); }
776 
testw(Register reg,const Operand & op)777   void testw(Register reg, const Operand& op) { testw(op, reg); }
778 
andb(Register dst,Immediate src)779   void andb(Register dst, Immediate src) {
780     immediate_arithmetic_op_8(0x4, dst, src);
781   }
782 
783   void decb(Register dst);
784   void decb(const Operand& dst);
785 
786   // Lock prefix.
787   void lock();
788 
789   void xchgb(Register reg, const Operand& op);
790   void xchgw(Register reg, const Operand& op);
791 
792   void cmpxchgb(const Operand& dst, Register src);
793   void cmpxchgw(const Operand& dst, Register src);
794 
795   // Sign-extends rax into rdx:rax.
796   void cqo();
797   // Sign-extends eax into edx:eax.
798   void cdq();
799 
800   // Multiply eax by src, put the result in edx:eax.
801   void mull(Register src);
802   void mull(const Operand& src);
803   // Multiply rax by src, put the result in rdx:rax.
804   void mulq(Register src);
805 
806 #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode)                       \
807   void instruction##p(Register dst, Immediate imm8) {                         \
808     shift(dst, imm8, subcode, kPointerSize);                                  \
809   }                                                                           \
810                                                                               \
811   void instruction##l(Register dst, Immediate imm8) {                         \
812     shift(dst, imm8, subcode, kInt32Size);                                    \
813   }                                                                           \
814                                                                               \
815   void instruction##q(Register dst, Immediate imm8) {                         \
816     shift(dst, imm8, subcode, kInt64Size);                                    \
817   }                                                                           \
818                                                                               \
819   void instruction##p(Operand dst, Immediate imm8) {                          \
820     shift(dst, imm8, subcode, kPointerSize);                                  \
821   }                                                                           \
822                                                                               \
823   void instruction##l(Operand dst, Immediate imm8) {                          \
824     shift(dst, imm8, subcode, kInt32Size);                                    \
825   }                                                                           \
826                                                                               \
827   void instruction##q(Operand dst, Immediate imm8) {                          \
828     shift(dst, imm8, subcode, kInt64Size);                                    \
829   }                                                                           \
830                                                                               \
831   void instruction##p_cl(Register dst) { shift(dst, subcode, kPointerSize); } \
832                                                                               \
833   void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); }   \
834                                                                               \
835   void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); }   \
836                                                                               \
837   void instruction##p_cl(Operand dst) { shift(dst, subcode, kPointerSize); }  \
838                                                                               \
839   void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); }    \
840                                                                               \
841   void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
842   SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
843 #undef DECLARE_SHIFT_INSTRUCTION
844 
845   // Shifts dst:src left by cl bits, affecting only dst.
846   void shld(Register dst, Register src);
847 
848   // Shifts src:dst right by cl bits, affecting only dst.
849   void shrd(Register dst, Register src);
850 
851   void store_rax(void* dst, RelocInfo::Mode mode);
852   void store_rax(ExternalReference ref);
853 
subb(Register dst,Immediate src)854   void subb(Register dst, Immediate src) {
855     immediate_arithmetic_op_8(0x5, dst, src);
856   }
857 
858   void testb(Register dst, Register src);
859   void testb(Register reg, Immediate mask);
860   void testb(const Operand& op, Immediate mask);
861   void testb(const Operand& op, Register reg);
862 
863   void testw(Register dst, Register src);
864   void testw(Register reg, Immediate mask);
865   void testw(const Operand& op, Immediate mask);
866   void testw(const Operand& op, Register reg);
867 
868   // Bit operations.
869   void bt(const Operand& dst, Register src);
870   void bts(const Operand& dst, Register src);
871   void bsrq(Register dst, Register src);
872   void bsrq(Register dst, const Operand& src);
873   void bsrl(Register dst, Register src);
874   void bsrl(Register dst, const Operand& src);
875   void bsfq(Register dst, Register src);
876   void bsfq(Register dst, const Operand& src);
877   void bsfl(Register dst, Register src);
878   void bsfl(Register dst, const Operand& src);
879 
880   // Miscellaneous
881   void clc();
882   void cld();
883   void cpuid();
884   void hlt();
885   void int3();
886   void nop();
887   void ret(int imm16);
888   void ud2();
889   void setcc(Condition cc, Register reg);
890 
891   // Label operations & relative jumps (PPUM Appendix D)
892   //
893   // Takes a branch opcode (cc) and a label (L) and generates
894   // either a backward branch or a forward branch and links it
895   // to the label fixup chain. Usage:
896   //
897   // Label L;    // unbound label
898   // j(cc, &L);  // forward branch to unbound label
899   // bind(&L);   // bind label to the current pc
900   // j(cc, &L);  // backward branch to bound label
901   // bind(&L);   // illegal: a label may be bound only once
902   //
903   // Note: The same Label can be used for forward and backward branches
904   // but it may be bound only once.
905 
906   void bind(Label* L);  // binds an unbound label L to the current code position
907 
908   // Calls
909   // Call near relative 32-bit displacement, relative to next instruction.
910   void call(Label* L);
911   void call(Address entry, RelocInfo::Mode rmode);
912   void call(Handle<Code> target,
913             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
914             TypeFeedbackId ast_id = TypeFeedbackId::None());
915 
916   // Calls directly to the given address using a relative offset.
917   // Should only ever be used in Code objects for calls within the
918   // same Code object. Should not be used when generating new code (use labels),
919   // but only when patching existing code.
920   void call(Address target);
921 
922   // Call near absolute indirect, address in register
923   void call(Register adr);
924 
925   // Jumps
926   // Jump short or near relative.
927   // Use a 32-bit signed displacement.
928   // Unconditional jump to L
929   void jmp(Label* L, Label::Distance distance = Label::kFar);
930   void jmp(Address entry, RelocInfo::Mode rmode);
931   void jmp(Handle<Code> target, RelocInfo::Mode rmode);
932 
933   // Jump near absolute indirect (r64)
934   void jmp(Register adr);
935   void jmp(const Operand& src);
936 
937   // Conditional jumps
938   void j(Condition cc,
939          Label* L,
940          Label::Distance distance = Label::kFar);
941   void j(Condition cc, Address entry, RelocInfo::Mode rmode);
942   void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
943 
944   // Floating-point operations
945   void fld(int i);
946 
947   void fld1();
948   void fldz();
949   void fldpi();
950   void fldln2();
951 
952   void fld_s(const Operand& adr);
953   void fld_d(const Operand& adr);
954 
955   void fstp_s(const Operand& adr);
956   void fstp_d(const Operand& adr);
957   void fstp(int index);
958 
959   void fild_s(const Operand& adr);
960   void fild_d(const Operand& adr);
961 
962   void fist_s(const Operand& adr);
963 
964   void fistp_s(const Operand& adr);
965   void fistp_d(const Operand& adr);
966 
967   void fisttp_s(const Operand& adr);
968   void fisttp_d(const Operand& adr);
969 
970   void fabs();
971   void fchs();
972 
973   void fadd(int i);
974   void fsub(int i);
975   void fmul(int i);
976   void fdiv(int i);
977 
978   void fisub_s(const Operand& adr);
979 
980   void faddp(int i = 1);
981   void fsubp(int i = 1);
982   void fsubrp(int i = 1);
983   void fmulp(int i = 1);
984   void fdivp(int i = 1);
985   void fprem();
986   void fprem1();
987 
988   void fxch(int i = 1);
989   void fincstp();
990   void ffree(int i = 0);
991 
992   void ftst();
993   void fucomp(int i);
994   void fucompp();
995   void fucomi(int i);
996   void fucomip();
997 
998   void fcompp();
999   void fnstsw_ax();
1000   void fwait();
1001   void fnclex();
1002 
1003   void fsin();
1004   void fcos();
1005   void fptan();
1006   void fyl2x();
1007   void f2xm1();
1008   void fscale();
1009   void fninit();
1010 
1011   void frndint();
1012 
1013   void sahf();
1014 
1015   // SSE instructions
1016   void addss(XMMRegister dst, XMMRegister src);
1017   void addss(XMMRegister dst, const Operand& src);
1018   void subss(XMMRegister dst, XMMRegister src);
1019   void subss(XMMRegister dst, const Operand& src);
1020   void mulss(XMMRegister dst, XMMRegister src);
1021   void mulss(XMMRegister dst, const Operand& src);
1022   void divss(XMMRegister dst, XMMRegister src);
1023   void divss(XMMRegister dst, const Operand& src);
1024 
1025   void maxss(XMMRegister dst, XMMRegister src);
1026   void maxss(XMMRegister dst, const Operand& src);
1027   void minss(XMMRegister dst, XMMRegister src);
1028   void minss(XMMRegister dst, const Operand& src);
1029 
1030   void sqrtss(XMMRegister dst, XMMRegister src);
1031   void sqrtss(XMMRegister dst, const Operand& src);
1032 
1033   void ucomiss(XMMRegister dst, XMMRegister src);
1034   void ucomiss(XMMRegister dst, const Operand& src);
1035   void movaps(XMMRegister dst, XMMRegister src);
1036 
1037   // Don't use this unless it's important to keep the
1038   // top half of the destination register unchanged.
1039   // Use movaps when moving float values and movd for integer
1040   // values in xmm registers.
1041   void movss(XMMRegister dst, XMMRegister src);
1042 
1043   void movss(XMMRegister dst, const Operand& src);
1044   void movss(const Operand& dst, XMMRegister src);
1045   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
1046 
1047   void cvttss2si(Register dst, const Operand& src);
1048   void cvttss2si(Register dst, XMMRegister src);
1049   void cvtlsi2ss(XMMRegister dst, const Operand& src);
1050   void cvtlsi2ss(XMMRegister dst, Register src);
1051 
1052   void andps(XMMRegister dst, XMMRegister src);
1053   void andps(XMMRegister dst, const Operand& src);
1054   void orps(XMMRegister dst, XMMRegister src);
1055   void orps(XMMRegister dst, const Operand& src);
1056   void xorps(XMMRegister dst, XMMRegister src);
1057   void xorps(XMMRegister dst, const Operand& src);
1058 
1059   void addps(XMMRegister dst, XMMRegister src);
1060   void addps(XMMRegister dst, const Operand& src);
1061   void subps(XMMRegister dst, XMMRegister src);
1062   void subps(XMMRegister dst, const Operand& src);
1063   void mulps(XMMRegister dst, XMMRegister src);
1064   void mulps(XMMRegister dst, const Operand& src);
1065   void divps(XMMRegister dst, XMMRegister src);
1066   void divps(XMMRegister dst, const Operand& src);
1067 
1068   void movmskps(Register dst, XMMRegister src);
1069 
1070   void vinstr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
1071               SIMDPrefix pp, LeadingOpcode m, VexW w);
1072   void vinstr(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2,
1073               SIMDPrefix pp, LeadingOpcode m, VexW w);
1074 
1075   // SSE2 instructions
1076   void sse2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape,
1077                   byte opcode);
1078   void sse2_instr(XMMRegister dst, const Operand& src, byte prefix, byte escape,
1079                   byte opcode);
1080 #define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
1081   void instruction(XMMRegister dst, XMMRegister src) {                \
1082     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
1083   }                                                                   \
1084   void instruction(XMMRegister dst, const Operand& src) {             \
1085     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
1086   }
1087 
1088   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
1089 #undef DECLARE_SSE2_INSTRUCTION
1090 
1091 #define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode)    \
1092   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1093     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
1094   }                                                                          \
1095   void v##instruction(XMMRegister dst, XMMRegister src1,                     \
1096                       const Operand& src2) {                                 \
1097     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
1098   }
1099 
1100   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
1101 #undef DECLARE_SSE2_AVX_INSTRUCTION
1102 
1103   // SSE3
1104   void lddqu(XMMRegister dst, const Operand& src);
1105 
1106   // SSSE3
1107   void ssse3_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
1108                    byte escape2, byte opcode);
1109   void ssse3_instr(XMMRegister dst, const Operand& src, byte prefix,
1110                    byte escape1, byte escape2, byte opcode);
1111 
1112 #define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2,     \
1113                                   opcode)                                    \
1114   void instruction(XMMRegister dst, XMMRegister src) {                       \
1115     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1116   }                                                                          \
1117   void instruction(XMMRegister dst, const Operand& src) {                    \
1118     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1119   }
1120 
1121   SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
1122 #undef DECLARE_SSSE3_INSTRUCTION
1123 
1124   // SSE4
1125   void sse4_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
1126                   byte escape2, byte opcode);
1127   void sse4_instr(XMMRegister dst, const Operand& src, byte prefix,
1128                   byte escape1, byte escape2, byte opcode);
1129 #define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2,     \
1130                                  opcode)                                    \
1131   void instruction(XMMRegister dst, XMMRegister src) {                      \
1132     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1133   }                                                                         \
1134   void instruction(XMMRegister dst, const Operand& src) {                   \
1135     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
1136   }
1137 
1138   SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
1139 #undef DECLARE_SSE4_INSTRUCTION
1140 
1141 #define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2,  \
1142                                       opcode)                                 \
1143   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) {  \
1144     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
1145   }                                                                           \
1146   void v##instruction(XMMRegister dst, XMMRegister src1,                      \
1147                       const Operand& src2) {                                  \
1148     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
1149   }
1150 
1151   SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
1152   SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
1153 #undef DECLARE_SSE34_AVX_INSTRUCTION
1154 
1155   void movd(XMMRegister dst, Register src);
1156   void movd(XMMRegister dst, const Operand& src);
1157   void movd(Register dst, XMMRegister src);
1158   void movq(XMMRegister dst, Register src);
1159   void movq(Register dst, XMMRegister src);
1160   void movq(XMMRegister dst, XMMRegister src);
1161 
1162   // Don't use this unless it's important to keep the
1163   // top half of the destination register unchanged.
1164   // Use movapd when moving double values and movq for integer
1165   // values in xmm registers.
1166   void movsd(XMMRegister dst, XMMRegister src);
1167 
1168   void movsd(const Operand& dst, XMMRegister src);
1169   void movsd(XMMRegister dst, const Operand& src);
1170 
1171   void movdqa(const Operand& dst, XMMRegister src);
1172   void movdqa(XMMRegister dst, const Operand& src);
1173 
1174   void movdqu(const Operand& dst, XMMRegister src);
1175   void movdqu(XMMRegister dst, const Operand& src);
1176 
1177   void movapd(XMMRegister dst, XMMRegister src);
1178   void movupd(XMMRegister dst, const Operand& src);
1179   void movupd(const Operand& dst, XMMRegister src);
1180 
1181   void psllq(XMMRegister reg, byte imm8);
1182   void psrlq(XMMRegister reg, byte imm8);
1183   void psllw(XMMRegister reg, byte imm8);
1184   void pslld(XMMRegister reg, byte imm8);
1185   void psrlw(XMMRegister reg, byte imm8);
1186   void psrld(XMMRegister reg, byte imm8);
1187   void psraw(XMMRegister reg, byte imm8);
1188   void psrad(XMMRegister reg, byte imm8);
1189 
1190   void cvttsd2si(Register dst, const Operand& src);
1191   void cvttsd2si(Register dst, XMMRegister src);
1192   void cvttss2siq(Register dst, XMMRegister src);
1193   void cvttss2siq(Register dst, const Operand& src);
1194   void cvttsd2siq(Register dst, XMMRegister src);
1195   void cvttsd2siq(Register dst, const Operand& src);
1196 
1197   void cvtlsi2sd(XMMRegister dst, const Operand& src);
1198   void cvtlsi2sd(XMMRegister dst, Register src);
1199 
1200   void cvtqsi2ss(XMMRegister dst, const Operand& src);
1201   void cvtqsi2ss(XMMRegister dst, Register src);
1202 
1203   void cvtqsi2sd(XMMRegister dst, const Operand& src);
1204   void cvtqsi2sd(XMMRegister dst, Register src);
1205 
1206 
1207   void cvtss2sd(XMMRegister dst, XMMRegister src);
1208   void cvtss2sd(XMMRegister dst, const Operand& src);
1209   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1210   void cvtsd2ss(XMMRegister dst, const Operand& src);
1211 
1212   void cvtsd2si(Register dst, XMMRegister src);
1213   void cvtsd2siq(Register dst, XMMRegister src);
1214 
1215   void addsd(XMMRegister dst, XMMRegister src);
1216   void addsd(XMMRegister dst, const Operand& src);
1217   void subsd(XMMRegister dst, XMMRegister src);
1218   void subsd(XMMRegister dst, const Operand& src);
1219   void mulsd(XMMRegister dst, XMMRegister src);
1220   void mulsd(XMMRegister dst, const Operand& src);
1221   void divsd(XMMRegister dst, XMMRegister src);
1222   void divsd(XMMRegister dst, const Operand& src);
1223 
1224   void maxsd(XMMRegister dst, XMMRegister src);
1225   void maxsd(XMMRegister dst, const Operand& src);
1226   void minsd(XMMRegister dst, XMMRegister src);
1227   void minsd(XMMRegister dst, const Operand& src);
1228 
1229   void andpd(XMMRegister dst, XMMRegister src);
1230   void andpd(XMMRegister dst, const Operand& src);
1231   void orpd(XMMRegister dst, XMMRegister src);
1232   void orpd(XMMRegister dst, const Operand& src);
1233   void xorpd(XMMRegister dst, XMMRegister src);
1234   void xorpd(XMMRegister dst, const Operand& src);
1235   void sqrtsd(XMMRegister dst, XMMRegister src);
1236   void sqrtsd(XMMRegister dst, const Operand& src);
1237 
1238   void ucomisd(XMMRegister dst, XMMRegister src);
1239   void ucomisd(XMMRegister dst, const Operand& src);
1240   void cmpltsd(XMMRegister dst, XMMRegister src);
1241 
1242   void movmskpd(Register dst, XMMRegister src);
1243 
1244   void punpckldq(XMMRegister dst, XMMRegister src);
1245   void punpckldq(XMMRegister dst, const Operand& src);
1246   void punpckhdq(XMMRegister dst, XMMRegister src);
1247 
1248   // SSE 4.1 instruction
1249   void insertps(XMMRegister dst, XMMRegister src, byte imm8);
1250   void extractps(Register dst, XMMRegister src, byte imm8);
1251   void pextrb(Register dst, XMMRegister src, int8_t imm8);
1252   void pextrb(const Operand& dst, XMMRegister src, int8_t imm8);
1253   void pextrw(Register dst, XMMRegister src, int8_t imm8);
1254   void pextrw(const Operand& dst, XMMRegister src, int8_t imm8);
1255   void pextrd(Register dst, XMMRegister src, int8_t imm8);
1256   void pextrd(const Operand& dst, XMMRegister src, int8_t imm8);
1257   void pinsrb(XMMRegister dst, Register src, int8_t imm8);
1258   void pinsrb(XMMRegister dst, const Operand& src, int8_t imm8);
1259   void pinsrw(XMMRegister dst, Register src, int8_t imm8);
1260   void pinsrw(XMMRegister dst, const Operand& src, int8_t imm8);
1261   void pinsrd(XMMRegister dst, Register src, int8_t imm8);
1262   void pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
1263 
1264   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
1265   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1266 
1267   void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp);
1268   void cmpps(XMMRegister dst, const Operand& src, int8_t cmp);
1269   void cmppd(XMMRegister dst, XMMRegister src, int8_t cmp);
1270   void cmppd(XMMRegister dst, const Operand& src, int8_t cmp);
1271 
1272 #define SSE_CMP_P(instr, imm8)                                                \
1273   void instr##ps(XMMRegister dst, XMMRegister src) { cmpps(dst, src, imm8); } \
1274   void instr##ps(XMMRegister dst, const Operand& src) {                       \
1275     cmpps(dst, src, imm8);                                                    \
1276   }                                                                           \
1277   void instr##pd(XMMRegister dst, XMMRegister src) { cmppd(dst, src, imm8); } \
1278   void instr##pd(XMMRegister dst, const Operand& src) { cmppd(dst, src, imm8); }
1279 
1280   SSE_CMP_P(cmpeq, 0x0);
1281   SSE_CMP_P(cmplt, 0x1);
1282   SSE_CMP_P(cmple, 0x2);
1283   SSE_CMP_P(cmpneq, 0x4);
1284   SSE_CMP_P(cmpnlt, 0x5);
1285   SSE_CMP_P(cmpnle, 0x6);
1286 
1287 #undef SSE_CMP_P
1288 
1289   void minps(XMMRegister dst, XMMRegister src);
1290   void minps(XMMRegister dst, const Operand& src);
1291   void maxps(XMMRegister dst, XMMRegister src);
1292   void maxps(XMMRegister dst, const Operand& src);
1293   void rcpps(XMMRegister dst, XMMRegister src);
1294   void rcpps(XMMRegister dst, const Operand& src);
1295   void rsqrtps(XMMRegister dst, XMMRegister src);
1296   void rsqrtps(XMMRegister dst, const Operand& src);
1297   void sqrtps(XMMRegister dst, XMMRegister src);
1298   void sqrtps(XMMRegister dst, const Operand& src);
1299   void movups(XMMRegister dst, XMMRegister src);
1300   void movups(XMMRegister dst, const Operand& src);
1301   void movups(const Operand& dst, XMMRegister src);
1302   void psrldq(XMMRegister dst, uint8_t shift);
1303   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
1304   void pshufd(XMMRegister dst, const Operand& src, uint8_t shuffle);
1305   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1306   void cvtdq2ps(XMMRegister dst, const Operand& src);
1307 
1308   // AVX instruction
vfmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1309   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1310     vfmasd(0x99, dst, src1, src2);
1311   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1312   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1313     vfmasd(0xa9, dst, src1, src2);
1314   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1315   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1316     vfmasd(0xb9, dst, src1, src2);
1317   }
vfmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1318   void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1319     vfmasd(0x99, dst, src1, src2);
1320   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1321   void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1322     vfmasd(0xa9, dst, src1, src2);
1323   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1324   void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1325     vfmasd(0xb9, dst, src1, src2);
1326   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1327   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1328     vfmasd(0x9b, dst, src1, src2);
1329   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1330   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1331     vfmasd(0xab, dst, src1, src2);
1332   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1333   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1334     vfmasd(0xbb, dst, src1, src2);
1335   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1336   void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1337     vfmasd(0x9b, dst, src1, src2);
1338   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1339   void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1340     vfmasd(0xab, dst, src1, src2);
1341   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1342   void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1343     vfmasd(0xbb, dst, src1, src2);
1344   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1345   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1346     vfmasd(0x9d, dst, src1, src2);
1347   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1348   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1349     vfmasd(0xad, dst, src1, src2);
1350   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1351   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1352     vfmasd(0xbd, dst, src1, src2);
1353   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1354   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1355     vfmasd(0x9d, dst, src1, src2);
1356   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1357   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1358     vfmasd(0xad, dst, src1, src2);
1359   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1360   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1361     vfmasd(0xbd, dst, src1, src2);
1362   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1363   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1364     vfmasd(0x9f, dst, src1, src2);
1365   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1366   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1367     vfmasd(0xaf, dst, src1, src2);
1368   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1369   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1370     vfmasd(0xbf, dst, src1, src2);
1371   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1372   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1373     vfmasd(0x9f, dst, src1, src2);
1374   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1375   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1376     vfmasd(0xaf, dst, src1, src2);
1377   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1378   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1379     vfmasd(0xbf, dst, src1, src2);
1380   }
1381   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1382   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1383 
vfmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1384   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1385     vfmass(0x99, dst, src1, src2);
1386   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1387   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1388     vfmass(0xa9, dst, src1, src2);
1389   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1390   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1391     vfmass(0xb9, dst, src1, src2);
1392   }
vfmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1393   void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1394     vfmass(0x99, dst, src1, src2);
1395   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1396   void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1397     vfmass(0xa9, dst, src1, src2);
1398   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1399   void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1400     vfmass(0xb9, dst, src1, src2);
1401   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1402   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1403     vfmass(0x9b, dst, src1, src2);
1404   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1405   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1406     vfmass(0xab, dst, src1, src2);
1407   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1408   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1409     vfmass(0xbb, dst, src1, src2);
1410   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1411   void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1412     vfmass(0x9b, dst, src1, src2);
1413   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1414   void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1415     vfmass(0xab, dst, src1, src2);
1416   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1417   void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1418     vfmass(0xbb, dst, src1, src2);
1419   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1420   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1421     vfmass(0x9d, dst, src1, src2);
1422   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1423   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1424     vfmass(0xad, dst, src1, src2);
1425   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1426   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1427     vfmass(0xbd, dst, src1, src2);
1428   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1429   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1430     vfmass(0x9d, dst, src1, src2);
1431   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1432   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1433     vfmass(0xad, dst, src1, src2);
1434   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1435   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1436     vfmass(0xbd, dst, src1, src2);
1437   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1438   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1439     vfmass(0x9f, dst, src1, src2);
1440   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1441   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1442     vfmass(0xaf, dst, src1, src2);
1443   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1444   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1445     vfmass(0xbf, dst, src1, src2);
1446   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1447   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1448     vfmass(0x9f, dst, src1, src2);
1449   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1450   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1451     vfmass(0xaf, dst, src1, src2);
1452   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1453   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1454     vfmass(0xbf, dst, src1, src2);
1455   }
1456   void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1457   void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1458 
1459   void vmovd(XMMRegister dst, Register src);
1460   void vmovd(XMMRegister dst, const Operand& src);
1461   void vmovd(Register dst, XMMRegister src);
1462   void vmovq(XMMRegister dst, Register src);
1463   void vmovq(XMMRegister dst, const Operand& src);
1464   void vmovq(Register dst, XMMRegister src);
1465 
vmovsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1466   void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1467     vsd(0x10, dst, src1, src2);
1468   }
vmovsd(XMMRegister dst,const Operand & src)1469   void vmovsd(XMMRegister dst, const Operand& src) {
1470     vsd(0x10, dst, xmm0, src);
1471   }
vmovsd(const Operand & dst,XMMRegister src)1472   void vmovsd(const Operand& dst, XMMRegister src) {
1473     vsd(0x11, src, xmm0, dst);
1474   }
1475 
1476 #define AVX_SP_3(instr, opcode) \
1477   AVX_S_3(instr, opcode)        \
1478   AVX_P_3(instr, opcode)
1479 
1480 #define AVX_S_3(instr, opcode)  \
1481   AVX_3(instr##ss, opcode, vss) \
1482   AVX_3(instr##sd, opcode, vsd)
1483 
1484 #define AVX_P_3(instr, opcode)  \
1485   AVX_3(instr##ps, opcode, vps) \
1486   AVX_3(instr##pd, opcode, vpd)
1487 
1488 #define AVX_3(instr, opcode, impl)                                     \
1489   void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1490     impl(opcode, dst, src1, src2);                                     \
1491   }                                                                    \
1492   void instr(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1493     impl(opcode, dst, src1, src2);                                     \
1494   }
1495 
1496   AVX_SP_3(vsqrt, 0x51);
1497   AVX_SP_3(vadd, 0x58);
1498   AVX_SP_3(vsub, 0x5c);
1499   AVX_SP_3(vmul, 0x59);
1500   AVX_SP_3(vdiv, 0x5e);
1501   AVX_SP_3(vmin, 0x5d);
1502   AVX_SP_3(vmax, 0x5f);
1503   AVX_P_3(vand, 0x54);
1504   AVX_P_3(vor, 0x56);
1505   AVX_P_3(vxor, 0x57);
1506   AVX_3(vcvtsd2ss, 0x5a, vsd);
1507 
1508 #undef AVX_3
1509 #undef AVX_S_3
1510 #undef AVX_P_3
1511 #undef AVX_SP_3
1512 
vpsrlq(XMMRegister dst,XMMRegister src,byte imm8)1513   void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) {
1514     XMMRegister iop = {2};
1515     vpd(0x73, iop, dst, src);
1516     emit(imm8);
1517   }
vpsllq(XMMRegister dst,XMMRegister src,byte imm8)1518   void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) {
1519     XMMRegister iop = {6};
1520     vpd(0x73, iop, dst, src);
1521     emit(imm8);
1522   }
vcvtss2sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1523   void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1524     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
1525   }
vcvtss2sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1526   void vcvtss2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1527     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
1528   }
vcvtlsi2sd(XMMRegister dst,XMMRegister src1,Register src2)1529   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
1530     XMMRegister isrc2 = {src2.code()};
1531     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
1532   }
vcvtlsi2sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1533   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1534     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW0);
1535   }
vcvtlsi2ss(XMMRegister dst,XMMRegister src1,Register src2)1536   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
1537     XMMRegister isrc2 = {src2.code()};
1538     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW0);
1539   }
vcvtlsi2ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1540   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1541     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW0);
1542   }
vcvtqsi2ss(XMMRegister dst,XMMRegister src1,Register src2)1543   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
1544     XMMRegister isrc2 = {src2.code()};
1545     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
1546   }
vcvtqsi2ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1547   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1548     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW1);
1549   }
vcvtqsi2sd(XMMRegister dst,XMMRegister src1,Register src2)1550   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
1551     XMMRegister isrc2 = {src2.code()};
1552     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
1553   }
vcvtqsi2sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1554   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1555     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW1);
1556   }
vcvttss2si(Register dst,XMMRegister src)1557   void vcvttss2si(Register dst, XMMRegister src) {
1558     XMMRegister idst = {dst.code()};
1559     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
1560   }
vcvttss2si(Register dst,const Operand & src)1561   void vcvttss2si(Register dst, const Operand& src) {
1562     XMMRegister idst = {dst.code()};
1563     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
1564   }
vcvttsd2si(Register dst,XMMRegister src)1565   void vcvttsd2si(Register dst, XMMRegister src) {
1566     XMMRegister idst = {dst.code()};
1567     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
1568   }
vcvttsd2si(Register dst,const Operand & src)1569   void vcvttsd2si(Register dst, const Operand& src) {
1570     XMMRegister idst = {dst.code()};
1571     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
1572   }
vcvttss2siq(Register dst,XMMRegister src)1573   void vcvttss2siq(Register dst, XMMRegister src) {
1574     XMMRegister idst = {dst.code()};
1575     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
1576   }
vcvttss2siq(Register dst,const Operand & src)1577   void vcvttss2siq(Register dst, const Operand& src) {
1578     XMMRegister idst = {dst.code()};
1579     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
1580   }
vcvttsd2siq(Register dst,XMMRegister src)1581   void vcvttsd2siq(Register dst, XMMRegister src) {
1582     XMMRegister idst = {dst.code()};
1583     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
1584   }
vcvttsd2siq(Register dst,const Operand & src)1585   void vcvttsd2siq(Register dst, const Operand& src) {
1586     XMMRegister idst = {dst.code()};
1587     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
1588   }
vcvtsd2si(Register dst,XMMRegister src)1589   void vcvtsd2si(Register dst, XMMRegister src) {
1590     XMMRegister idst = {dst.code()};
1591     vinstr(0x2d, idst, xmm0, src, kF2, k0F, kW0);
1592   }
vucomisd(XMMRegister dst,XMMRegister src)1593   void vucomisd(XMMRegister dst, XMMRegister src) {
1594     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
1595   }
vucomisd(XMMRegister dst,const Operand & src)1596   void vucomisd(XMMRegister dst, const Operand& src) {
1597     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
1598   }
vroundss(XMMRegister dst,XMMRegister src1,XMMRegister src2,RoundingMode mode)1599   void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
1600                 RoundingMode mode) {
1601     vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
1602     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
1603   }
vroundsd(XMMRegister dst,XMMRegister src1,XMMRegister src2,RoundingMode mode)1604   void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
1605                 RoundingMode mode) {
1606     vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
1607     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
1608   }
1609 
vsd(byte op,XMMRegister dst,XMMRegister src1,XMMRegister src2)1610   void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1611     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
1612   }
vsd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)1613   void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2) {
1614     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
1615   }
1616 
vmovss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1617   void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1618     vss(0x10, dst, src1, src2);
1619   }
vmovss(XMMRegister dst,const Operand & src)1620   void vmovss(XMMRegister dst, const Operand& src) {
1621     vss(0x10, dst, xmm0, src);
1622   }
vmovss(const Operand & dst,XMMRegister src)1623   void vmovss(const Operand& dst, XMMRegister src) {
1624     vss(0x11, src, xmm0, dst);
1625   }
1626   void vucomiss(XMMRegister dst, XMMRegister src);
1627   void vucomiss(XMMRegister dst, const Operand& src);
1628   void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1629   void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1630 
vmovaps(XMMRegister dst,XMMRegister src)1631   void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
vmovups(XMMRegister dst,XMMRegister src)1632   void vmovups(XMMRegister dst, XMMRegister src) { vps(0x10, dst, xmm0, src); }
vmovups(XMMRegister dst,const Operand & src)1633   void vmovups(XMMRegister dst, const Operand& src) {
1634     vps(0x10, dst, xmm0, src);
1635   }
vmovups(const Operand & dst,XMMRegister src)1636   void vmovups(const Operand& dst, XMMRegister src) {
1637     vps(0x11, src, xmm0, dst);
1638   }
vmovapd(XMMRegister dst,XMMRegister src)1639   void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
vmovupd(XMMRegister dst,const Operand & src)1640   void vmovupd(XMMRegister dst, const Operand& src) {
1641     vpd(0x10, dst, xmm0, src);
1642   }
vmovupd(const Operand & dst,XMMRegister src)1643   void vmovupd(const Operand& dst, XMMRegister src) {
1644     vpd(0x11, src, xmm0, dst);
1645   }
vmovmskps(Register dst,XMMRegister src)1646   void vmovmskps(Register dst, XMMRegister src) {
1647     XMMRegister idst = {dst.code()};
1648     vps(0x50, idst, xmm0, src);
1649   }
vmovmskpd(Register dst,XMMRegister src)1650   void vmovmskpd(Register dst, XMMRegister src) {
1651     XMMRegister idst = {dst.code()};
1652     vpd(0x50, idst, xmm0, src);
1653   }
vcmpps(XMMRegister dst,XMMRegister src1,XMMRegister src2,int8_t cmp)1654   void vcmpps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
1655     vps(0xC2, dst, src1, src2);
1656     emit(cmp);
1657   }
vcmpps(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t cmp)1658   void vcmpps(XMMRegister dst, XMMRegister src1, const Operand& src2,
1659               int8_t cmp) {
1660     vps(0xC2, dst, src1, src2);
1661     emit(cmp);
1662   }
vcmppd(XMMRegister dst,XMMRegister src1,XMMRegister src2,int8_t cmp)1663   void vcmppd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
1664     vpd(0xC2, dst, src1, src2);
1665     emit(cmp);
1666   }
vcmppd(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t cmp)1667   void vcmppd(XMMRegister dst, XMMRegister src1, const Operand& src2,
1668               int8_t cmp) {
1669     vpd(0xC2, dst, src1, src2);
1670     emit(cmp);
1671   }
1672 
1673 #define AVX_CMP_P(instr, imm8)                                             \
1674   void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1675     vcmpps(dst, src1, src2, imm8);                                         \
1676   }                                                                        \
1677   void instr##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1678     vcmpps(dst, src1, src2, imm8);                                         \
1679   }                                                                        \
1680   void instr##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1681     vcmppd(dst, src1, src2, imm8);                                         \
1682   }                                                                        \
1683   void instr##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1684     vcmppd(dst, src1, src2, imm8);                                         \
1685   }
1686 
1687   AVX_CMP_P(vcmpeq, 0x0);
1688   AVX_CMP_P(vcmplt, 0x1);
1689   AVX_CMP_P(vcmple, 0x2);
1690   AVX_CMP_P(vcmpneq, 0x4);
1691   AVX_CMP_P(vcmpnlt, 0x5);
1692   AVX_CMP_P(vcmpnle, 0x6);
1693 
1694 #undef AVX_CMP_P
1695 
vlddqu(XMMRegister dst,const Operand & src)1696   void vlddqu(XMMRegister dst, const Operand& src) {
1697     vinstr(0xF0, dst, xmm0, src, kF2, k0F, kWIG);
1698   }
vpsllw(XMMRegister dst,XMMRegister src,int8_t imm8)1699   void vpsllw(XMMRegister dst, XMMRegister src, int8_t imm8) {
1700     XMMRegister iop = {6};
1701     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
1702     emit(imm8);
1703   }
vpsrlw(XMMRegister dst,XMMRegister src,int8_t imm8)1704   void vpsrlw(XMMRegister dst, XMMRegister src, int8_t imm8) {
1705     XMMRegister iop = {2};
1706     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
1707     emit(imm8);
1708   }
vpsraw(XMMRegister dst,XMMRegister src,int8_t imm8)1709   void vpsraw(XMMRegister dst, XMMRegister src, int8_t imm8) {
1710     XMMRegister iop = {4};
1711     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
1712     emit(imm8);
1713   }
vpslld(XMMRegister dst,XMMRegister src,int8_t imm8)1714   void vpslld(XMMRegister dst, XMMRegister src, int8_t imm8) {
1715     XMMRegister iop = {6};
1716     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
1717     emit(imm8);
1718   }
vpsrld(XMMRegister dst,XMMRegister src,int8_t imm8)1719   void vpsrld(XMMRegister dst, XMMRegister src, int8_t imm8) {
1720     XMMRegister iop = {2};
1721     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
1722     emit(imm8);
1723   }
vpsrad(XMMRegister dst,XMMRegister src,int8_t imm8)1724   void vpsrad(XMMRegister dst, XMMRegister src, int8_t imm8) {
1725     XMMRegister iop = {4};
1726     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
1727     emit(imm8);
1728   }
vpextrb(Register dst,XMMRegister src,int8_t imm8)1729   void vpextrb(Register dst, XMMRegister src, int8_t imm8) {
1730     XMMRegister idst = {dst.code()};
1731     vinstr(0x14, src, xmm0, idst, k66, k0F3A, kW0);
1732     emit(imm8);
1733   }
vpextrb(const Operand & dst,XMMRegister src,int8_t imm8)1734   void vpextrb(const Operand& dst, XMMRegister src, int8_t imm8) {
1735     vinstr(0x14, src, xmm0, dst, k66, k0F3A, kW0);
1736     emit(imm8);
1737   }
vpextrw(Register dst,XMMRegister src,int8_t imm8)1738   void vpextrw(Register dst, XMMRegister src, int8_t imm8) {
1739     XMMRegister idst = {dst.code()};
1740     vinstr(0xc5, idst, xmm0, src, k66, k0F, kW0);
1741     emit(imm8);
1742   }
vpextrw(const Operand & dst,XMMRegister src,int8_t imm8)1743   void vpextrw(const Operand& dst, XMMRegister src, int8_t imm8) {
1744     vinstr(0x15, src, xmm0, dst, k66, k0F3A, kW0);
1745     emit(imm8);
1746   }
vpextrd(Register dst,XMMRegister src,int8_t imm8)1747   void vpextrd(Register dst, XMMRegister src, int8_t imm8) {
1748     XMMRegister idst = {dst.code()};
1749     vinstr(0x16, src, xmm0, idst, k66, k0F3A, kW0);
1750     emit(imm8);
1751   }
vpextrd(const Operand & dst,XMMRegister src,int8_t imm8)1752   void vpextrd(const Operand& dst, XMMRegister src, int8_t imm8) {
1753     vinstr(0x16, src, xmm0, dst, k66, k0F3A, kW0);
1754     emit(imm8);
1755   }
vpinsrb(XMMRegister dst,XMMRegister src1,Register src2,int8_t imm8)1756   void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
1757     XMMRegister isrc = {src2.code()};
1758     vinstr(0x20, dst, src1, isrc, k66, k0F3A, kW0);
1759     emit(imm8);
1760   }
vpinsrb(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t imm8)1761   void vpinsrb(XMMRegister dst, XMMRegister src1, const Operand& src2,
1762                int8_t imm8) {
1763     vinstr(0x20, dst, src1, src2, k66, k0F3A, kW0);
1764     emit(imm8);
1765   }
vpinsrw(XMMRegister dst,XMMRegister src1,Register src2,int8_t imm8)1766   void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
1767     XMMRegister isrc = {src2.code()};
1768     vinstr(0xc4, dst, src1, isrc, k66, k0F, kW0);
1769     emit(imm8);
1770   }
vpinsrw(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t imm8)1771   void vpinsrw(XMMRegister dst, XMMRegister src1, const Operand& src2,
1772                int8_t imm8) {
1773     vinstr(0xc4, dst, src1, src2, k66, k0F, kW0);
1774     emit(imm8);
1775   }
vpinsrd(XMMRegister dst,XMMRegister src1,Register src2,int8_t imm8)1776   void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
1777     XMMRegister isrc = {src2.code()};
1778     vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW0);
1779     emit(imm8);
1780   }
vpinsrd(XMMRegister dst,XMMRegister src1,const Operand & src2,int8_t imm8)1781   void vpinsrd(XMMRegister dst, XMMRegister src1, const Operand& src2,
1782                int8_t imm8) {
1783     vinstr(0x22, dst, src1, src2, k66, k0F3A, kW0);
1784     emit(imm8);
1785   }
vpshufd(XMMRegister dst,XMMRegister src,int8_t imm8)1786   void vpshufd(XMMRegister dst, XMMRegister src, int8_t imm8) {
1787     vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
1788     emit(imm8);
1789   }
1790 
1791   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1792   void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1793   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1794   void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1795 
1796   // BMI instruction
andnq(Register dst,Register src1,Register src2)1797   void andnq(Register dst, Register src1, Register src2) {
1798     bmi1q(0xf2, dst, src1, src2);
1799   }
andnq(Register dst,Register src1,const Operand & src2)1800   void andnq(Register dst, Register src1, const Operand& src2) {
1801     bmi1q(0xf2, dst, src1, src2);
1802   }
andnl(Register dst,Register src1,Register src2)1803   void andnl(Register dst, Register src1, Register src2) {
1804     bmi1l(0xf2, dst, src1, src2);
1805   }
andnl(Register dst,Register src1,const Operand & src2)1806   void andnl(Register dst, Register src1, const Operand& src2) {
1807     bmi1l(0xf2, dst, src1, src2);
1808   }
bextrq(Register dst,Register src1,Register src2)1809   void bextrq(Register dst, Register src1, Register src2) {
1810     bmi1q(0xf7, dst, src2, src1);
1811   }
bextrq(Register dst,const Operand & src1,Register src2)1812   void bextrq(Register dst, const Operand& src1, Register src2) {
1813     bmi1q(0xf7, dst, src2, src1);
1814   }
bextrl(Register dst,Register src1,Register src2)1815   void bextrl(Register dst, Register src1, Register src2) {
1816     bmi1l(0xf7, dst, src2, src1);
1817   }
bextrl(Register dst,const Operand & src1,Register src2)1818   void bextrl(Register dst, const Operand& src1, Register src2) {
1819     bmi1l(0xf7, dst, src2, src1);
1820   }
blsiq(Register dst,Register src)1821   void blsiq(Register dst, Register src) {
1822     Register ireg = {3};
1823     bmi1q(0xf3, ireg, dst, src);
1824   }
blsiq(Register dst,const Operand & src)1825   void blsiq(Register dst, const Operand& src) {
1826     Register ireg = {3};
1827     bmi1q(0xf3, ireg, dst, src);
1828   }
blsil(Register dst,Register src)1829   void blsil(Register dst, Register src) {
1830     Register ireg = {3};
1831     bmi1l(0xf3, ireg, dst, src);
1832   }
blsil(Register dst,const Operand & src)1833   void blsil(Register dst, const Operand& src) {
1834     Register ireg = {3};
1835     bmi1l(0xf3, ireg, dst, src);
1836   }
blsmskq(Register dst,Register src)1837   void blsmskq(Register dst, Register src) {
1838     Register ireg = {2};
1839     bmi1q(0xf3, ireg, dst, src);
1840   }
blsmskq(Register dst,const Operand & src)1841   void blsmskq(Register dst, const Operand& src) {
1842     Register ireg = {2};
1843     bmi1q(0xf3, ireg, dst, src);
1844   }
blsmskl(Register dst,Register src)1845   void blsmskl(Register dst, Register src) {
1846     Register ireg = {2};
1847     bmi1l(0xf3, ireg, dst, src);
1848   }
blsmskl(Register dst,const Operand & src)1849   void blsmskl(Register dst, const Operand& src) {
1850     Register ireg = {2};
1851     bmi1l(0xf3, ireg, dst, src);
1852   }
blsrq(Register dst,Register src)1853   void blsrq(Register dst, Register src) {
1854     Register ireg = {1};
1855     bmi1q(0xf3, ireg, dst, src);
1856   }
blsrq(Register dst,const Operand & src)1857   void blsrq(Register dst, const Operand& src) {
1858     Register ireg = {1};
1859     bmi1q(0xf3, ireg, dst, src);
1860   }
blsrl(Register dst,Register src)1861   void blsrl(Register dst, Register src) {
1862     Register ireg = {1};
1863     bmi1l(0xf3, ireg, dst, src);
1864   }
blsrl(Register dst,const Operand & src)1865   void blsrl(Register dst, const Operand& src) {
1866     Register ireg = {1};
1867     bmi1l(0xf3, ireg, dst, src);
1868   }
1869   void tzcntq(Register dst, Register src);
1870   void tzcntq(Register dst, const Operand& src);
1871   void tzcntl(Register dst, Register src);
1872   void tzcntl(Register dst, const Operand& src);
1873 
1874   void lzcntq(Register dst, Register src);
1875   void lzcntq(Register dst, const Operand& src);
1876   void lzcntl(Register dst, Register src);
1877   void lzcntl(Register dst, const Operand& src);
1878 
1879   void popcntq(Register dst, Register src);
1880   void popcntq(Register dst, const Operand& src);
1881   void popcntl(Register dst, Register src);
1882   void popcntl(Register dst, const Operand& src);
1883 
bzhiq(Register dst,Register src1,Register src2)1884   void bzhiq(Register dst, Register src1, Register src2) {
1885     bmi2q(kNone, 0xf5, dst, src2, src1);
1886   }
bzhiq(Register dst,const Operand & src1,Register src2)1887   void bzhiq(Register dst, const Operand& src1, Register src2) {
1888     bmi2q(kNone, 0xf5, dst, src2, src1);
1889   }
bzhil(Register dst,Register src1,Register src2)1890   void bzhil(Register dst, Register src1, Register src2) {
1891     bmi2l(kNone, 0xf5, dst, src2, src1);
1892   }
bzhil(Register dst,const Operand & src1,Register src2)1893   void bzhil(Register dst, const Operand& src1, Register src2) {
1894     bmi2l(kNone, 0xf5, dst, src2, src1);
1895   }
mulxq(Register dst1,Register dst2,Register src)1896   void mulxq(Register dst1, Register dst2, Register src) {
1897     bmi2q(kF2, 0xf6, dst1, dst2, src);
1898   }
mulxq(Register dst1,Register dst2,const Operand & src)1899   void mulxq(Register dst1, Register dst2, const Operand& src) {
1900     bmi2q(kF2, 0xf6, dst1, dst2, src);
1901   }
mulxl(Register dst1,Register dst2,Register src)1902   void mulxl(Register dst1, Register dst2, Register src) {
1903     bmi2l(kF2, 0xf6, dst1, dst2, src);
1904   }
mulxl(Register dst1,Register dst2,const Operand & src)1905   void mulxl(Register dst1, Register dst2, const Operand& src) {
1906     bmi2l(kF2, 0xf6, dst1, dst2, src);
1907   }
pdepq(Register dst,Register src1,Register src2)1908   void pdepq(Register dst, Register src1, Register src2) {
1909     bmi2q(kF2, 0xf5, dst, src1, src2);
1910   }
pdepq(Register dst,Register src1,const Operand & src2)1911   void pdepq(Register dst, Register src1, const Operand& src2) {
1912     bmi2q(kF2, 0xf5, dst, src1, src2);
1913   }
pdepl(Register dst,Register src1,Register src2)1914   void pdepl(Register dst, Register src1, Register src2) {
1915     bmi2l(kF2, 0xf5, dst, src1, src2);
1916   }
pdepl(Register dst,Register src1,const Operand & src2)1917   void pdepl(Register dst, Register src1, const Operand& src2) {
1918     bmi2l(kF2, 0xf5, dst, src1, src2);
1919   }
pextq(Register dst,Register src1,Register src2)1920   void pextq(Register dst, Register src1, Register src2) {
1921     bmi2q(kF3, 0xf5, dst, src1, src2);
1922   }
pextq(Register dst,Register src1,const Operand & src2)1923   void pextq(Register dst, Register src1, const Operand& src2) {
1924     bmi2q(kF3, 0xf5, dst, src1, src2);
1925   }
pextl(Register dst,Register src1,Register src2)1926   void pextl(Register dst, Register src1, Register src2) {
1927     bmi2l(kF3, 0xf5, dst, src1, src2);
1928   }
pextl(Register dst,Register src1,const Operand & src2)1929   void pextl(Register dst, Register src1, const Operand& src2) {
1930     bmi2l(kF3, 0xf5, dst, src1, src2);
1931   }
sarxq(Register dst,Register src1,Register src2)1932   void sarxq(Register dst, Register src1, Register src2) {
1933     bmi2q(kF3, 0xf7, dst, src2, src1);
1934   }
sarxq(Register dst,const Operand & src1,Register src2)1935   void sarxq(Register dst, const Operand& src1, Register src2) {
1936     bmi2q(kF3, 0xf7, dst, src2, src1);
1937   }
sarxl(Register dst,Register src1,Register src2)1938   void sarxl(Register dst, Register src1, Register src2) {
1939     bmi2l(kF3, 0xf7, dst, src2, src1);
1940   }
sarxl(Register dst,const Operand & src1,Register src2)1941   void sarxl(Register dst, const Operand& src1, Register src2) {
1942     bmi2l(kF3, 0xf7, dst, src2, src1);
1943   }
shlxq(Register dst,Register src1,Register src2)1944   void shlxq(Register dst, Register src1, Register src2) {
1945     bmi2q(k66, 0xf7, dst, src2, src1);
1946   }
shlxq(Register dst,const Operand & src1,Register src2)1947   void shlxq(Register dst, const Operand& src1, Register src2) {
1948     bmi2q(k66, 0xf7, dst, src2, src1);
1949   }
shlxl(Register dst,Register src1,Register src2)1950   void shlxl(Register dst, Register src1, Register src2) {
1951     bmi2l(k66, 0xf7, dst, src2, src1);
1952   }
shlxl(Register dst,const Operand & src1,Register src2)1953   void shlxl(Register dst, const Operand& src1, Register src2) {
1954     bmi2l(k66, 0xf7, dst, src2, src1);
1955   }
shrxq(Register dst,Register src1,Register src2)1956   void shrxq(Register dst, Register src1, Register src2) {
1957     bmi2q(kF2, 0xf7, dst, src2, src1);
1958   }
shrxq(Register dst,const Operand & src1,Register src2)1959   void shrxq(Register dst, const Operand& src1, Register src2) {
1960     bmi2q(kF2, 0xf7, dst, src2, src1);
1961   }
shrxl(Register dst,Register src1,Register src2)1962   void shrxl(Register dst, Register src1, Register src2) {
1963     bmi2l(kF2, 0xf7, dst, src2, src1);
1964   }
shrxl(Register dst,const Operand & src1,Register src2)1965   void shrxl(Register dst, const Operand& src1, Register src2) {
1966     bmi2l(kF2, 0xf7, dst, src2, src1);
1967   }
1968   void rorxq(Register dst, Register src, byte imm8);
1969   void rorxq(Register dst, const Operand& src, byte imm8);
1970   void rorxl(Register dst, Register src, byte imm8);
1971   void rorxl(Register dst, const Operand& src, byte imm8);
1972 
1973   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1974   int SizeOfCodeGeneratedSince(Label* label) {
1975     return pc_offset() - label->pos();
1976   }
1977 
1978   // Mark address of a debug break slot.
1979   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1980 
1981   // Record a comment relocation entry that can be used by a disassembler.
1982   // Use --code-comments to enable.
1983   void RecordComment(const char* msg);
1984 
1985   // Record a deoptimization reason that can be used by a log or cpu profiler.
1986   // Use --trace-deopt to enable.
1987   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1988                          int id);
1989 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1990   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1991                                           ConstantPoolEntry::Access access,
1992                                           ConstantPoolEntry::Type type) {
1993     // No embedded constant pool support.
1994     UNREACHABLE();
1995   }
1996 
1997   void RecordProtectedInstructionLanding(int pc_offset);
1998 
1999   // Writes a single word of data in the code stream.
2000   // Used for inline tables, e.g., jump-tables.
2001   void db(uint8_t data);
2002   void dd(uint32_t data);
2003   void dq(uint64_t data);
dp(uintptr_t data)2004   void dp(uintptr_t data) { dq(data); }
2005   void dq(Label* label);
2006 
2007   // Check if there is less than kGap bytes available in the buffer.
2008   // If this is the case, we need to grow the buffer before emitting
2009   // an instruction or relocation information.
buffer_overflow()2010   inline bool buffer_overflow() const {
2011     return pc_ >= reloc_info_writer.pos() - kGap;
2012   }
2013 
2014   // Get the number of bytes available in the buffer.
available_space()2015   inline int available_space() const {
2016     return static_cast<int>(reloc_info_writer.pos() - pc_);
2017   }
2018 
2019   static bool IsNop(Address addr);
2020 
2021   // Avoid overflows for displacements etc.
2022   static const int kMaximalBufferSize = 512*MB;
2023 
byte_at(int pos)2024   byte byte_at(int pos)  { return buffer_[pos]; }
set_byte_at(int pos,byte value)2025   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
2026 
pc()2027   Address pc() const { return pc_; }
2028 
2029  protected:
2030   // Call near indirect
2031   void call(const Operand& operand);
2032 
2033  private:
addr_at(int pos)2034   byte* addr_at(int pos)  { return buffer_ + pos; }
long_at(int pos)2035   uint32_t long_at(int pos)  {
2036     return *reinterpret_cast<uint32_t*>(addr_at(pos));
2037   }
long_at_put(int pos,uint32_t x)2038   void long_at_put(int pos, uint32_t x)  {
2039     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
2040   }
2041 
2042   // code emission
2043   void GrowBuffer();
2044 
emit(byte x)2045   void emit(byte x) { *pc_++ = x; }
2046   inline void emitl(uint32_t x);
2047   inline void emitp(void* x, RelocInfo::Mode rmode);
2048   inline void emitq(uint64_t x);
2049   inline void emitw(uint16_t x);
2050   inline void emit_code_target(Handle<Code> target,
2051                                RelocInfo::Mode rmode,
2052                                TypeFeedbackId ast_id = TypeFeedbackId::None());
2053   inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
2054   inline void emit(Immediate x);
2055 
2056   // Emits a REX prefix that encodes a 64-bit operand size and
2057   // the top bit of both register codes.
2058   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
2059   // REX.W is set.
2060   inline void emit_rex_64(XMMRegister reg, Register rm_reg);
2061   inline void emit_rex_64(Register reg, XMMRegister rm_reg);
2062   inline void emit_rex_64(Register reg, Register rm_reg);
2063 
2064   // Emits a REX prefix that encodes a 64-bit operand size and
2065   // the top bit of the destination, index, and base register codes.
2066   // The high bit of reg is used for REX.R, the high bit of op's base
2067   // register is used for REX.B, and the high bit of op's index register
2068   // is used for REX.X.  REX.W is set.
2069   inline void emit_rex_64(Register reg, const Operand& op);
2070   inline void emit_rex_64(XMMRegister reg, const Operand& op);
2071 
2072   // Emits a REX prefix that encodes a 64-bit operand size and
2073   // the top bit of the register code.
2074   // The high bit of register is used for REX.B.
2075   // REX.W is set and REX.R and REX.X are clear.
2076   inline void emit_rex_64(Register rm_reg);
2077 
2078   // Emits a REX prefix that encodes a 64-bit operand size and
2079   // the top bit of the index and base register codes.
2080   // The high bit of op's base register is used for REX.B, and the high
2081   // bit of op's index register is used for REX.X.
2082   // REX.W is set and REX.R clear.
2083   inline void emit_rex_64(const Operand& op);
2084 
2085   // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
emit_rex_64()2086   void emit_rex_64() { emit(0x48); }
2087 
2088   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
2089   // REX.W is clear.
2090   inline void emit_rex_32(Register reg, Register rm_reg);
2091 
2092   // The high bit of reg is used for REX.R, the high bit of op's base
2093   // register is used for REX.B, and the high bit of op's index register
2094   // is used for REX.X.  REX.W is cleared.
2095   inline void emit_rex_32(Register reg, const Operand& op);
2096 
2097   // High bit of rm_reg goes to REX.B.
2098   // REX.W, REX.R and REX.X are clear.
2099   inline void emit_rex_32(Register rm_reg);
2100 
2101   // High bit of base goes to REX.B and high bit of index to REX.X.
2102   // REX.W and REX.R are clear.
2103   inline void emit_rex_32(const Operand& op);
2104 
2105   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
2106   // REX.W is cleared.  If no REX bits are set, no byte is emitted.
2107   inline void emit_optional_rex_32(Register reg, Register rm_reg);
2108 
2109   // The high bit of reg is used for REX.R, the high bit of op's base
2110   // register is used for REX.B, and the high bit of op's index register
2111   // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
2112   // is emitted.
2113   inline void emit_optional_rex_32(Register reg, const Operand& op);
2114 
2115   // As for emit_optional_rex_32(Register, Register), except that
2116   // the registers are XMM registers.
2117   inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
2118 
2119   // As for emit_optional_rex_32(Register, Register), except that
2120   // one of the registers is an XMM registers.
2121   inline void emit_optional_rex_32(XMMRegister reg, Register base);
2122 
2123   // As for emit_optional_rex_32(Register, Register), except that
2124   // one of the registers is an XMM registers.
2125   inline void emit_optional_rex_32(Register reg, XMMRegister base);
2126 
2127   // As for emit_optional_rex_32(Register, const Operand&), except that
2128   // the register is an XMM register.
2129   inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
2130 
2131   // Optionally do as emit_rex_32(Register) if the register number has
2132   // the high bit set.
2133   inline void emit_optional_rex_32(Register rm_reg);
2134   inline void emit_optional_rex_32(XMMRegister rm_reg);
2135 
2136   // Optionally do as emit_rex_32(const Operand&) if the operand register
2137   // numbers have a high bit set.
2138   inline void emit_optional_rex_32(const Operand& op);
2139 
emit_rex(int size)2140   void emit_rex(int size) {
2141     if (size == kInt64Size) {
2142       emit_rex_64();
2143     } else {
2144       DCHECK(size == kInt32Size);
2145     }
2146   }
2147 
2148   template<class P1>
emit_rex(P1 p1,int size)2149   void emit_rex(P1 p1, int size) {
2150     if (size == kInt64Size) {
2151       emit_rex_64(p1);
2152     } else {
2153       DCHECK(size == kInt32Size);
2154       emit_optional_rex_32(p1);
2155     }
2156   }
2157 
2158   template<class P1, class P2>
emit_rex(P1 p1,P2 p2,int size)2159   void emit_rex(P1 p1, P2 p2, int size) {
2160     if (size == kInt64Size) {
2161       emit_rex_64(p1, p2);
2162     } else {
2163       DCHECK(size == kInt32Size);
2164       emit_optional_rex_32(p1, p2);
2165     }
2166   }
2167 
2168   // Emit vex prefix
emit_vex2_byte0()2169   void emit_vex2_byte0() { emit(0xc5); }
2170   inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
2171                               SIMDPrefix pp);
emit_vex3_byte0()2172   void emit_vex3_byte0() { emit(0xc4); }
2173   inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
2174   inline void emit_vex3_byte1(XMMRegister reg, const Operand& rm,
2175                               LeadingOpcode m);
2176   inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
2177                               SIMDPrefix pp);
2178   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
2179                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2180                               VexW w);
2181   inline void emit_vex_prefix(Register reg, Register v, Register rm,
2182                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2183                               VexW w);
2184   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, const Operand& rm,
2185                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2186                               VexW w);
2187   inline void emit_vex_prefix(Register reg, Register v, const Operand& rm,
2188                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
2189                               VexW w);
2190 
2191   // Emit the ModR/M byte, and optionally the SIB byte and
2192   // 1- or 4-byte offset for a memory operand.  Also encodes
2193   // the second operand of the operation, a register or operation
2194   // subcode, into the reg field of the ModR/M byte.
emit_operand(Register reg,const Operand & adr)2195   void emit_operand(Register reg, const Operand& adr) {
2196     emit_operand(reg.low_bits(), adr);
2197   }
2198 
2199   // Emit the ModR/M byte, and optionally the SIB byte and
2200   // 1- or 4-byte offset for a memory operand.  Also used to encode
2201   // a three-bit opcode extension into the ModR/M byte.
2202   void emit_operand(int rm, const Operand& adr);
2203 
2204   // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
emit_modrm(Register reg,Register rm_reg)2205   void emit_modrm(Register reg, Register rm_reg) {
2206     emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
2207   }
2208 
2209   // Emit a ModR/M byte with an operation subcode in the reg field and
2210   // a register in the rm_reg field.
emit_modrm(int code,Register rm_reg)2211   void emit_modrm(int code, Register rm_reg) {
2212     DCHECK(is_uint3(code));
2213     emit(0xC0 | code << 3 | rm_reg.low_bits());
2214   }
2215 
2216   // Emit the code-object-relative offset of the label's position
2217   inline void emit_code_relative_offset(Label* label);
2218 
2219   // The first argument is the reg field, the second argument is the r/m field.
2220   void emit_sse_operand(XMMRegister dst, XMMRegister src);
2221   void emit_sse_operand(XMMRegister reg, const Operand& adr);
2222   void emit_sse_operand(Register reg, const Operand& adr);
2223   void emit_sse_operand(XMMRegister dst, Register src);
2224   void emit_sse_operand(Register dst, XMMRegister src);
2225   void emit_sse_operand(XMMRegister dst);
2226 
2227   // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
2228   // AND, OR, XOR, or CMP.  The encodings of these operations are all
2229   // similar, differing just in the opcode or in the reg field of the
2230   // ModR/M byte.
2231   void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
2232   void arithmetic_op_8(byte opcode, Register reg, const Operand& rm_reg);
2233   void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
2234   void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
2235   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
2236   void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
2237   void arithmetic_op(byte opcode,
2238                      Register reg,
2239                      const Operand& rm_reg,
2240                      int size);
2241   // Operate on a byte in memory or register.
2242   void immediate_arithmetic_op_8(byte subcode,
2243                                  Register dst,
2244                                  Immediate src);
2245   void immediate_arithmetic_op_8(byte subcode,
2246                                  const Operand& dst,
2247                                  Immediate src);
2248   // Operate on a word in memory or register.
2249   void immediate_arithmetic_op_16(byte subcode,
2250                                   Register dst,
2251                                   Immediate src);
2252   void immediate_arithmetic_op_16(byte subcode,
2253                                   const Operand& dst,
2254                                   Immediate src);
2255   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
2256   void immediate_arithmetic_op(byte subcode,
2257                                Register dst,
2258                                Immediate src,
2259                                int size);
2260   void immediate_arithmetic_op(byte subcode,
2261                                const Operand& dst,
2262                                Immediate src,
2263                                int size);
2264 
2265   // Emit machine code for a shift operation.
2266   void shift(Operand dst, Immediate shift_amount, int subcode, int size);
2267   void shift(Register dst, Immediate shift_amount, int subcode, int size);
2268   // Shift dst by cl % 64 bits.
2269   void shift(Register dst, int subcode, int size);
2270   void shift(Operand dst, int subcode, int size);
2271 
2272   void emit_farith(int b1, int b2, int i);
2273 
2274   // labels
2275   // void print(Label* L);
2276   void bind_to(Label* L, int pos);
2277 
2278   // record reloc info for current pc_
2279   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
2280 
2281   // Arithmetics
emit_add(Register dst,Register src,int size)2282   void emit_add(Register dst, Register src, int size) {
2283     arithmetic_op(0x03, dst, src, size);
2284   }
2285 
emit_add(Register dst,Immediate src,int size)2286   void emit_add(Register dst, Immediate src, int size) {
2287     immediate_arithmetic_op(0x0, dst, src, size);
2288   }
2289 
emit_add(Register dst,const Operand & src,int size)2290   void emit_add(Register dst, const Operand& src, int size) {
2291     arithmetic_op(0x03, dst, src, size);
2292   }
2293 
emit_add(const Operand & dst,Register src,int size)2294   void emit_add(const Operand& dst, Register src, int size) {
2295     arithmetic_op(0x1, src, dst, size);
2296   }
2297 
emit_add(const Operand & dst,Immediate src,int size)2298   void emit_add(const Operand& dst, Immediate src, int size) {
2299     immediate_arithmetic_op(0x0, dst, src, size);
2300   }
2301 
emit_and(Register dst,Register src,int size)2302   void emit_and(Register dst, Register src, int size) {
2303     arithmetic_op(0x23, dst, src, size);
2304   }
2305 
emit_and(Register dst,const Operand & src,int size)2306   void emit_and(Register dst, const Operand& src, int size) {
2307     arithmetic_op(0x23, dst, src, size);
2308   }
2309 
emit_and(const Operand & dst,Register src,int size)2310   void emit_and(const Operand& dst, Register src, int size) {
2311     arithmetic_op(0x21, src, dst, size);
2312   }
2313 
emit_and(Register dst,Immediate src,int size)2314   void emit_and(Register dst, Immediate src, int size) {
2315     immediate_arithmetic_op(0x4, dst, src, size);
2316   }
2317 
emit_and(const Operand & dst,Immediate src,int size)2318   void emit_and(const Operand& dst, Immediate src, int size) {
2319     immediate_arithmetic_op(0x4, dst, src, size);
2320   }
2321 
emit_cmp(Register dst,Register src,int size)2322   void emit_cmp(Register dst, Register src, int size) {
2323     arithmetic_op(0x3B, dst, src, size);
2324   }
2325 
emit_cmp(Register dst,const Operand & src,int size)2326   void emit_cmp(Register dst, const Operand& src, int size) {
2327     arithmetic_op(0x3B, dst, src, size);
2328   }
2329 
emit_cmp(const Operand & dst,Register src,int size)2330   void emit_cmp(const Operand& dst, Register src, int size) {
2331     arithmetic_op(0x39, src, dst, size);
2332   }
2333 
emit_cmp(Register dst,Immediate src,int size)2334   void emit_cmp(Register dst, Immediate src, int size) {
2335     immediate_arithmetic_op(0x7, dst, src, size);
2336   }
2337 
emit_cmp(const Operand & dst,Immediate src,int size)2338   void emit_cmp(const Operand& dst, Immediate src, int size) {
2339     immediate_arithmetic_op(0x7, dst, src, size);
2340   }
2341 
2342   // Compare {al,ax,eax,rax} with src.  If equal, set ZF and write dst into
2343   // src. Otherwise clear ZF and write src into {al,ax,eax,rax}.  This
2344   // operation is only atomic if prefixed by the lock instruction.
2345   void emit_cmpxchg(const Operand& dst, Register src, int size);
2346 
2347   void emit_dec(Register dst, int size);
2348   void emit_dec(const Operand& dst, int size);
2349 
2350   // Divide rdx:rax by src.  Quotient in rax, remainder in rdx when size is 64.
2351   // Divide edx:eax by lower 32 bits of src.  Quotient in eax, remainder in edx
2352   // when size is 32.
2353   void emit_idiv(Register src, int size);
2354   void emit_div(Register src, int size);
2355 
2356   // Signed multiply instructions.
2357   // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
2358   void emit_imul(Register src, int size);
2359   void emit_imul(const Operand& src, int size);
2360   void emit_imul(Register dst, Register src, int size);
2361   void emit_imul(Register dst, const Operand& src, int size);
2362   void emit_imul(Register dst, Register src, Immediate imm, int size);
2363   void emit_imul(Register dst, const Operand& src, Immediate imm, int size);
2364 
2365   void emit_inc(Register dst, int size);
2366   void emit_inc(const Operand& dst, int size);
2367 
2368   void emit_lea(Register dst, const Operand& src, int size);
2369 
2370   void emit_mov(Register dst, const Operand& src, int size);
2371   void emit_mov(Register dst, Register src, int size);
2372   void emit_mov(const Operand& dst, Register src, int size);
2373   void emit_mov(Register dst, Immediate value, int size);
2374   void emit_mov(const Operand& dst, Immediate value, int size);
2375 
2376   void emit_movzxb(Register dst, const Operand& src, int size);
2377   void emit_movzxb(Register dst, Register src, int size);
2378   void emit_movzxw(Register dst, const Operand& src, int size);
2379   void emit_movzxw(Register dst, Register src, int size);
2380 
2381   void emit_neg(Register dst, int size);
2382   void emit_neg(const Operand& dst, int size);
2383 
2384   void emit_not(Register dst, int size);
2385   void emit_not(const Operand& dst, int size);
2386 
emit_or(Register dst,Register src,int size)2387   void emit_or(Register dst, Register src, int size) {
2388     arithmetic_op(0x0B, dst, src, size);
2389   }
2390 
emit_or(Register dst,const Operand & src,int size)2391   void emit_or(Register dst, const Operand& src, int size) {
2392     arithmetic_op(0x0B, dst, src, size);
2393   }
2394 
emit_or(const Operand & dst,Register src,int size)2395   void emit_or(const Operand& dst, Register src, int size) {
2396     arithmetic_op(0x9, src, dst, size);
2397   }
2398 
emit_or(Register dst,Immediate src,int size)2399   void emit_or(Register dst, Immediate src, int size) {
2400     immediate_arithmetic_op(0x1, dst, src, size);
2401   }
2402 
emit_or(const Operand & dst,Immediate src,int size)2403   void emit_or(const Operand& dst, Immediate src, int size) {
2404     immediate_arithmetic_op(0x1, dst, src, size);
2405   }
2406 
2407   void emit_repmovs(int size);
2408 
emit_sbb(Register dst,Register src,int size)2409   void emit_sbb(Register dst, Register src, int size) {
2410     arithmetic_op(0x1b, dst, src, size);
2411   }
2412 
emit_sub(Register dst,Register src,int size)2413   void emit_sub(Register dst, Register src, int size) {
2414     arithmetic_op(0x2B, dst, src, size);
2415   }
2416 
emit_sub(Register dst,Immediate src,int size)2417   void emit_sub(Register dst, Immediate src, int size) {
2418     immediate_arithmetic_op(0x5, dst, src, size);
2419   }
2420 
emit_sub(Register dst,const Operand & src,int size)2421   void emit_sub(Register dst, const Operand& src, int size) {
2422     arithmetic_op(0x2B, dst, src, size);
2423   }
2424 
emit_sub(const Operand & dst,Register src,int size)2425   void emit_sub(const Operand& dst, Register src, int size) {
2426     arithmetic_op(0x29, src, dst, size);
2427   }
2428 
emit_sub(const Operand & dst,Immediate src,int size)2429   void emit_sub(const Operand& dst, Immediate src, int size) {
2430     immediate_arithmetic_op(0x5, dst, src, size);
2431   }
2432 
2433   void emit_test(Register dst, Register src, int size);
2434   void emit_test(Register reg, Immediate mask, int size);
2435   void emit_test(const Operand& op, Register reg, int size);
2436   void emit_test(const Operand& op, Immediate mask, int size);
emit_test(Register reg,const Operand & op,int size)2437   void emit_test(Register reg, const Operand& op, int size) {
2438     return emit_test(op, reg, size);
2439   }
2440 
2441   void emit_xchg(Register dst, Register src, int size);
2442   void emit_xchg(Register dst, const Operand& src, int size);
2443 
emit_xor(Register dst,Register src,int size)2444   void emit_xor(Register dst, Register src, int size) {
2445     if (size == kInt64Size && dst.code() == src.code()) {
2446     // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
2447     // there is no need to make this a 64 bit operation.
2448       arithmetic_op(0x33, dst, src, kInt32Size);
2449     } else {
2450       arithmetic_op(0x33, dst, src, size);
2451     }
2452   }
2453 
emit_xor(Register dst,const Operand & src,int size)2454   void emit_xor(Register dst, const Operand& src, int size) {
2455     arithmetic_op(0x33, dst, src, size);
2456   }
2457 
emit_xor(Register dst,Immediate src,int size)2458   void emit_xor(Register dst, Immediate src, int size) {
2459     immediate_arithmetic_op(0x6, dst, src, size);
2460   }
2461 
emit_xor(const Operand & dst,Immediate src,int size)2462   void emit_xor(const Operand& dst, Immediate src, int size) {
2463     immediate_arithmetic_op(0x6, dst, src, size);
2464   }
2465 
emit_xor(const Operand & dst,Register src,int size)2466   void emit_xor(const Operand& dst, Register src, int size) {
2467     arithmetic_op(0x31, src, dst, size);
2468   }
2469 
2470   // Most BMI instructions are similiar.
2471   void bmi1q(byte op, Register reg, Register vreg, Register rm);
2472   void bmi1q(byte op, Register reg, Register vreg, const Operand& rm);
2473   void bmi1l(byte op, Register reg, Register vreg, Register rm);
2474   void bmi1l(byte op, Register reg, Register vreg, const Operand& rm);
2475   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
2476   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg,
2477              const Operand& rm);
2478   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
2479   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg,
2480              const Operand& rm);
2481 
2482   friend class CodePatcher;
2483   friend class EnsureSpace;
2484   friend class RegExpMacroAssemblerX64;
2485 
2486   // code generation
2487   RelocInfoWriter reloc_info_writer;
2488 
2489   // Internal reference positions, required for (potential) patching in
2490   // GrowBuffer(); contains only those internal references whose labels
2491   // are already bound.
2492   std::deque<int> internal_reference_positions_;
2493 
2494   List< Handle<Code> > code_targets_;
2495 };
2496 
2497 
2498 // Helper class that ensures that there is enough space for generating
2499 // instructions and relocation information.  The constructor makes
2500 // sure that there is enough space and (in debug mode) the destructor
2501 // checks that we did not generate too much.
2502 class EnsureSpace BASE_EMBEDDED {
2503  public:
EnsureSpace(Assembler * assembler)2504   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
2505     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
2506 #ifdef DEBUG
2507     space_before_ = assembler_->available_space();
2508 #endif
2509   }
2510 
2511 #ifdef DEBUG
~EnsureSpace()2512   ~EnsureSpace() {
2513     int bytes_generated = space_before_ - assembler_->available_space();
2514     DCHECK(bytes_generated < assembler_->kGap);
2515   }
2516 #endif
2517 
2518  private:
2519   Assembler* assembler_;
2520 #ifdef DEBUG
2521   int space_before_;
2522 #endif
2523 };
2524 
2525 }  // namespace internal
2526 }  // namespace v8
2527 
2528 #endif  // V8_X64_ASSEMBLER_X64_H_
2529