• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 
41 #include <set>
42 
43 #include "src/assembler.h"
44 #include "src/mips64/constants-mips64.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // clang-format off
50 #define GENERAL_REGISTERS(V)                              \
51   V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52   V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2)  V(t3)  \
53   V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54   V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55 
56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
57   V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58   V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2) V(s7)
59 
60 #define DOUBLE_REGISTERS(V)                               \
61   V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62   V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63   V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64   V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65 
66 #define FLOAT_REGISTERS DOUBLE_REGISTERS
67 #define SIMD128_REGISTERS DOUBLE_REGISTERS
68 
69 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
70   V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
71   V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
72 // clang-format on
73 
74 // CPU Registers.
75 //
76 // 1) We would prefer to use an enum, but enum values are assignment-
77 // compatible with int, which has caused code-generation bugs.
78 //
79 // 2) We would prefer to use a class instead of a struct but we don't like
80 // the register initialization to depend on the particular initialization
81 // order (which appears to be different on OS X, Linux, and Windows for the
82 // installed versions of C++ we tried). Using a struct permits C-style
83 // "initialization". Also, the Register objects cannot be const as this
84 // forces initialization stubs in MSVC, making us dependent on initialization
85 // order.
86 //
87 // 3) By not using an enum, we are possibly preventing the compiler from
88 // doing certain constant folds, which may significantly reduce the
89 // code generated for some assembly instructions (because they boil down
90 // to a few constants). If this is a problem, we could change the code
91 // such that we use an enum in optimized mode, and the struct in debug
92 // mode. This way we get the compile-time error checking in debug mode
93 // and best performance in optimized code.
94 
95 
96 // -----------------------------------------------------------------------------
97 // Implementation of Register and FPURegister.
98 
99 struct Register {
100   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
101 
102 #if defined(V8_TARGET_LITTLE_ENDIAN)
103   static const int kMantissaOffset = 0;
104   static const int kExponentOffset = 4;
105 #elif defined(V8_TARGET_BIG_ENDIAN)
106   static const int kMantissaOffset = 4;
107   static const int kExponentOffset = 0;
108 #else
109 #error Unknown endianness
110 #endif
111 
112   enum Code {
113 #define REGISTER_CODE(R) kCode_##R,
114     GENERAL_REGISTERS(REGISTER_CODE)
115 #undef REGISTER_CODE
116         kAfterLast,
117     kCode_no_reg = -1
118   };
119 
120   static const int kNumRegisters = Code::kAfterLast;
121 
from_codeRegister122   static Register from_code(int code) {
123     DCHECK(code >= 0);
124     DCHECK(code < kNumRegisters);
125     Register r = { code };
126     return r;
127   }
128 
is_validRegister129   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister130   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister131   int code() const {
132     DCHECK(is_valid());
133     return reg_code;
134   }
bitRegister135   int bit() const {
136     DCHECK(is_valid());
137     return 1 << reg_code;
138   }
139 
140   // Unfortunately we can't make this private in a struct.
141   int reg_code;
142 };
143 
144 // s7: context register
145 // s3: lithium scratch
146 // s4: lithium scratch2
147 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
148 GENERAL_REGISTERS(DECLARE_REGISTER)
149 #undef DECLARE_REGISTER
150 const Register no_reg = {Register::kCode_no_reg};
151 
152 
153 int ToNumber(Register reg);
154 
155 Register ToRegister(int num);
156 
157 static const bool kSimpleFPAliasing = true;
158 static const bool kSimdMaskRegisters = false;
159 
160 // Coprocessor register.
161 struct FPURegister {
162   enum Code {
163 #define REGISTER_CODE(R) kCode_##R,
164     DOUBLE_REGISTERS(REGISTER_CODE)
165 #undef REGISTER_CODE
166         kAfterLast,
167     kCode_no_reg = -1
168   };
169 
170   static const int kMaxNumRegisters = Code::kAfterLast;
171 
172   inline static int NumRegisters();
173 
174   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
175   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
176   // number of Double regs (64-bit regs, or FPU-reg-pairs).
177 
is_validFPURegister178   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isFPURegister179   bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
lowFPURegister180   FPURegister low() const {
181     // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
182     // Find low reg of a Double-reg pair, which is the reg itself.
183     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
184     FPURegister reg;
185     reg.reg_code = reg_code;
186     DCHECK(reg.is_valid());
187     return reg;
188   }
highFPURegister189   FPURegister high() const {
190     // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
191     // Find high reg of a Doubel-reg pair, which is reg + 1.
192     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
193     FPURegister reg;
194     reg.reg_code = reg_code + 1;
195     DCHECK(reg.is_valid());
196     return reg;
197   }
198 
codeFPURegister199   int code() const {
200     DCHECK(is_valid());
201     return reg_code;
202   }
bitFPURegister203   int bit() const {
204     DCHECK(is_valid());
205     return 1 << reg_code;
206   }
207 
from_codeFPURegister208   static FPURegister from_code(int code) {
209     FPURegister r = {code};
210     return r;
211   }
setcodeFPURegister212   void setcode(int f) {
213     reg_code = f;
214     DCHECK(is_valid());
215   }
216   // Unfortunately we can't make this private in a struct.
217   int reg_code;
218 };
219 
220 // A few double registers are reserved: one as a scratch register and one to
221 // hold 0.0.
222 //  f28: 0.0
223 //  f30: scratch register.
224 
225 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
226 // 32-bit registers, f0 through f31. When used as 'double' they are used
227 // in pairs, starting with the even numbered register. So a double operation
228 // on f0 really uses f0 and f1.
229 // (Modern mips hardware also supports 32 64-bit registers, via setting
230 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
231 // but it is not in common use. Someday we will want to support this in v8.)
232 
233 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
234 typedef FPURegister FloatRegister;
235 
236 typedef FPURegister DoubleRegister;
237 
238 // TODO(mips64) Define SIMD registers.
239 typedef FPURegister Simd128Register;
240 
241 const DoubleRegister no_freg = {-1};
242 
243 const DoubleRegister f0 = {0};  // Return value in hard float mode.
244 const DoubleRegister f1 = {1};
245 const DoubleRegister f2 = {2};
246 const DoubleRegister f3 = {3};
247 const DoubleRegister f4 = {4};
248 const DoubleRegister f5 = {5};
249 const DoubleRegister f6 = {6};
250 const DoubleRegister f7 = {7};
251 const DoubleRegister f8 = {8};
252 const DoubleRegister f9 = {9};
253 const DoubleRegister f10 = {10};
254 const DoubleRegister f11 = {11};
255 const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
256 const DoubleRegister f13 = {13};
257 const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
258 const DoubleRegister f15 = {15};
259 const DoubleRegister f16 = {16};
260 const DoubleRegister f17 = {17};
261 const DoubleRegister f18 = {18};
262 const DoubleRegister f19 = {19};
263 const DoubleRegister f20 = {20};
264 const DoubleRegister f21 = {21};
265 const DoubleRegister f22 = {22};
266 const DoubleRegister f23 = {23};
267 const DoubleRegister f24 = {24};
268 const DoubleRegister f25 = {25};
269 const DoubleRegister f26 = {26};
270 const DoubleRegister f27 = {27};
271 const DoubleRegister f28 = {28};
272 const DoubleRegister f29 = {29};
273 const DoubleRegister f30 = {30};
274 const DoubleRegister f31 = {31};
275 
276 // Register aliases.
277 // cp is assumed to be a callee saved register.
278 // Defined using #define instead of "static const Register&" because Clang
279 // complains otherwise when a compilation unit that includes this header
280 // doesn't use the variables.
281 #define kRootRegister s6
282 #define cp s7
283 #define kLithiumScratchReg s3
284 #define kLithiumScratchReg2 s4
285 #define kLithiumScratchDouble f30
286 #define kDoubleRegZero f28
287 // Used on mips64r6 for compare operations.
288 // We use the last non-callee saved odd register for N64 ABI
289 #define kDoubleCompareReg f23
290 
291 // FPU (coprocessor 1) control registers.
292 // Currently only FCSR (#31) is implemented.
293 struct FPUControlRegister {
is_validFPUControlRegister294   bool is_valid() const { return reg_code == kFCSRRegister; }
isFPUControlRegister295   bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
codeFPUControlRegister296   int code() const {
297     DCHECK(is_valid());
298     return reg_code;
299   }
bitFPUControlRegister300   int bit() const {
301     DCHECK(is_valid());
302     return 1 << reg_code;
303   }
setcodeFPUControlRegister304   void setcode(int f) {
305     reg_code = f;
306     DCHECK(is_valid());
307   }
308   // Unfortunately we can't make this private in a struct.
309   int reg_code;
310 };
311 
312 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
313 const FPUControlRegister FCSR = { kFCSRRegister };
314 
315 // -----------------------------------------------------------------------------
316 // Machine instruction Operands.
317 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
318 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
319 // Class Operand represents a shifter operand in data processing instructions.
320 class Operand BASE_EMBEDDED {
321  public:
322   // Immediate.
323   INLINE(explicit Operand(int64_t immediate,
324          RelocInfo::Mode rmode = RelocInfo::NONE64));
325   INLINE(explicit Operand(const ExternalReference& f));
326   INLINE(explicit Operand(const char* s));
327   INLINE(explicit Operand(Object** opp));
328   INLINE(explicit Operand(Context** cpp));
329   explicit Operand(Handle<Object> handle);
330   INLINE(explicit Operand(Smi* value));
331 
332   // Register.
333   INLINE(explicit Operand(Register rm));
334 
335   // Return true if this is a register operand.
336   INLINE(bool is_reg() const);
337 
immediate()338   inline int64_t immediate() const {
339     DCHECK(!is_reg());
340     return imm64_;
341   }
342 
rm()343   Register rm() const { return rm_; }
344 
345  private:
346   Register rm_;
347   int64_t imm64_;  // Valid if rm_ == no_reg.
348   RelocInfo::Mode rmode_;
349 
350   friend class Assembler;
351   friend class MacroAssembler;
352 };
353 
354 
355 // On MIPS we have only one adressing mode with base_reg + offset.
356 // Class MemOperand represents a memory operand in load and store instructions.
357 class MemOperand : public Operand {
358  public:
359   // Immediate value attached to offset.
360   enum OffsetAddend {
361     offset_minus_one = -1,
362     offset_zero = 0
363   };
364 
365   explicit MemOperand(Register rn, int32_t offset = 0);
366   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
367                       OffsetAddend offset_addend = offset_zero);
offset()368   int32_t offset() const { return offset_; }
369 
OffsetIsInt16Encodable()370   bool OffsetIsInt16Encodable() const {
371     return is_int16(offset_);
372   }
373 
374  private:
375   int32_t offset_;
376 
377   friend class Assembler;
378 };
379 
380 
381 class Assembler : public AssemblerBase {
382  public:
383   // Create an assembler. Instructions and relocation information are emitted
384   // into a buffer, with the instructions starting from the beginning and the
385   // relocation information starting from the end of the buffer. See CodeDesc
386   // for a detailed comment on the layout (globals.h).
387   //
388   // If the provided buffer is NULL, the assembler allocates and grows its own
389   // buffer, and buffer_size determines the initial buffer size. The buffer is
390   // owned by the assembler and deallocated upon destruction of the assembler.
391   //
392   // If the provided buffer is not NULL, the assembler uses the provided buffer
393   // for code generation and assumes its size to be buffer_size. If the buffer
394   // is too small, a fatal error occurs. No deallocation of the buffer is done
395   // upon destruction of the assembler.
396   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()397   virtual ~Assembler() { }
398 
399   // GetCode emits any pending (non-emitted) code and fills the descriptor
400   // desc. GetCode() is idempotent; it returns the same result if no other
401   // Assembler functions are invoked in between GetCode() calls.
402   void GetCode(CodeDesc* desc);
403 
404   // Label operations & relative jumps (PPUM Appendix D).
405   //
406   // Takes a branch opcode (cc) and a label (L) and generates
407   // either a backward branch or a forward branch and links it
408   // to the label fixup chain. Usage:
409   //
410   // Label L;    // unbound label
411   // j(cc, &L);  // forward branch to unbound label
412   // bind(&L);   // bind label to the current pc
413   // j(cc, &L);  // backward branch to bound label
414   // bind(&L);   // illegal: a label may be bound only once
415   //
416   // Note: The same Label can be used for forward and backward branches
417   // but it may be bound only once.
418   void bind(Label* L);  // Binds an unbound label L to current code position.
419 
420   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
421 
422   // Determines if Label is bound and near enough so that branch instruction
423   // can be used to reach it, instead of jump instruction.
424   bool is_near(Label* L);
425   bool is_near(Label* L, OffsetSize bits);
426   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)427   inline bool is_near_pre_r6(Label* L) {
428     DCHECK(!(kArchVariant == kMips64r6));
429     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
430   }
is_near_r6(Label * L)431   inline bool is_near_r6(Label* L) {
432     DCHECK(kArchVariant == kMips64r6);
433     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
434   }
435 
436   int BranchOffset(Instr instr);
437 
438   // Returns the branch offset to the given label from the current code
439   // position. Links the label to the current position if it is still unbound.
440   // Manages the jump elimination optimization if the second parameter is true.
441   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)442   inline int32_t branch_offset(Label* L) {
443     return branch_offset_helper(L, OffsetSize::kOffset16);
444   }
branch_offset21(Label * L)445   inline int32_t branch_offset21(Label* L) {
446     return branch_offset_helper(L, OffsetSize::kOffset21);
447   }
branch_offset26(Label * L)448   inline int32_t branch_offset26(Label* L) {
449     return branch_offset_helper(L, OffsetSize::kOffset26);
450   }
shifted_branch_offset(Label * L)451   inline int32_t shifted_branch_offset(Label* L) {
452     return branch_offset(L) >> 2;
453   }
shifted_branch_offset21(Label * L)454   inline int32_t shifted_branch_offset21(Label* L) {
455     return branch_offset21(L) >> 2;
456   }
shifted_branch_offset26(Label * L)457   inline int32_t shifted_branch_offset26(Label* L) {
458     return branch_offset26(L) >> 2;
459   }
460   uint64_t jump_address(Label* L);
461   uint64_t jump_offset(Label* L);
462 
463   // Puts a labels target address at the given position.
464   // The high 8 bits are set to zero.
465   void label_at_put(Label* L, int at_offset);
466 
467   // Read/Modify the code target address in the branch/call instruction at pc.
468   static Address target_address_at(Address pc);
469   static void set_target_address_at(
470       Isolate* isolate, Address pc, Address target,
471       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
472   // On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at (Address pc,Address constant_pool))473   INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
474     return target_address_at(pc);
475   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))476   INLINE(static void set_target_address_at(
477       Isolate* isolate, Address pc, Address constant_pool, Address target,
478       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
479     set_target_address_at(isolate, pc, target, icache_flush_mode);
480   }
481   INLINE(static Address target_address_at(Address pc, Code* code));
482   INLINE(static void set_target_address_at(
483       Isolate* isolate, Address pc, Code* code, Address target,
484       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
485 
486   // Return the code target address at a call site from the return address
487   // of that call in the instruction stream.
488   inline static Address target_address_from_return_address(Address pc);
489 
490   static void JumpLabelToJumpRegister(Address pc);
491 
492   static void QuietNaN(HeapObject* nan);
493 
494   // This sets the branch destination (which gets loaded at the call address).
495   // This is for calls and branches within generated code.  The serializer
496   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)497   inline static void deserialization_set_special_target_at(
498       Isolate* isolate, Address instruction_payload, Code* code,
499       Address target) {
500     set_target_address_at(
501         isolate,
502         instruction_payload - kInstructionsFor64BitConstant * kInstrSize, code,
503         target);
504   }
505 
506   // This sets the internal reference at the pc.
507   inline static void deserialization_set_target_internal_reference_at(
508       Isolate* isolate, Address pc, Address target,
509       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
510 
511   // Size of an instruction.
512   static const int kInstrSize = sizeof(Instr);
513 
514   // Difference between address of current opcode and target address offset.
515   static const int kBranchPCOffset = 4;
516 
517   // Here we are patching the address in the LUI/ORI instruction pair.
518   // These values are used in the serialization process and must be zero for
519   // MIPS platform, as Code, Embedded Object or External-reference pointers
520   // are split across two consecutive instructions and don't exist separately
521   // in the code, so the serializer should not step forwards in memory after
522   // a target is resolved and written.
523   static const int kSpecialTargetSize = 0;
524 
525   // Number of consecutive instructions used to store 32bit/64bit constant.
526   // This constant was used in RelocInfo::target_address_address() function
527   // to tell serializer address of the instruction that follows
528   // LUI/ORI instruction pair.
529   static const int kInstructionsFor32BitConstant = 2;
530   static const int kInstructionsFor64BitConstant = 4;
531 
532   // Distance between the instruction referring to the address of the call
533   // target and the return address.
534 #ifdef _MIPS_ARCH_MIPS64R6
535   static const int kCallTargetAddressOffset = 5 * kInstrSize;
536 #else
537   static const int kCallTargetAddressOffset = 6 * kInstrSize;
538 #endif
539 
540   // Distance between start of patched debug break slot and the emitted address
541   // to jump to.
542   static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize;
543 
544   // Difference between address of current opcode and value read from pc
545   // register.
546   static const int kPcLoadDelta = 4;
547 
548 #ifdef _MIPS_ARCH_MIPS64R6
549   static const int kDebugBreakSlotInstructions = 5;
550 #else
551   static const int kDebugBreakSlotInstructions = 6;
552 #endif
553   static const int kDebugBreakSlotLength =
554       kDebugBreakSlotInstructions * kInstrSize;
555 
556   // Max offset for instructions with 16-bit offset field
557   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
558 
559   // Max offset for compact branch instructions with 26-bit offset field
560   static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
561 
562   static const int kTrampolineSlotsSize = 2 * kInstrSize;
563 
564   // ---------------------------------------------------------------------------
565   // Code generation.
566 
567   // Insert the smallest number of nop instructions
568   // possible to align the pc offset to a multiple
569   // of m. m must be a power of 2 (>= 4).
570   void Align(int m);
571   // Insert the smallest number of zero bytes possible to align the pc offset
572   // to a mulitple of m. m must be a power of 2 (>= 2).
573   void DataAlign(int m);
574   // Aligns code to something that's optimal for a jump target for the platform.
575   void CodeTargetAlign();
576 
577   // Different nop operations are used by the code generator to detect certain
578   // states of the generated code.
579   enum NopMarkerTypes {
580     NON_MARKING_NOP = 0,
581     DEBUG_BREAK_NOP,
582     // IC markers.
583     PROPERTY_ACCESS_INLINED,
584     PROPERTY_ACCESS_INLINED_CONTEXT,
585     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
586     // Helper values.
587     LAST_CODE_MARKER,
588     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
589     // Code aging
590     CODE_AGE_MARKER_NOP = 6,
591     CODE_AGE_SEQUENCE_NOP
592   };
593 
594   // Type == 0 is the default non-marking nop. For mips this is a
595   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
596   // marking, to avoid conflict with ssnop and ehb instructions.
597   void nop(unsigned int type = 0) {
598     DCHECK(type < 32);
599     Register nop_rt_reg = (type == 0) ? zero_reg : at;
600     sll(zero_reg, nop_rt_reg, type, true);
601   }
602 
603 
604   // --------Branch-and-jump-instructions----------
605   // We don't use likely variant of instructions.
606   void b(int16_t offset);
b(Label * L)607   inline void b(Label* L) { b(shifted_branch_offset(L)); }
608   void bal(int16_t offset);
bal(Label * L)609   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
610   void bc(int32_t offset);
bc(Label * L)611   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
612   void balc(int32_t offset);
balc(Label * L)613   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
614 
615   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)616   inline void beq(Register rs, Register rt, Label* L) {
617     beq(rs, rt, shifted_branch_offset(L));
618   }
619   void bgez(Register rs, int16_t offset);
620   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)621   inline void bgezc(Register rt, Label* L) {
622     bgezc(rt, shifted_branch_offset(L));
623   }
624   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)625   inline void bgeuc(Register rs, Register rt, Label* L) {
626     bgeuc(rs, rt, shifted_branch_offset(L));
627   }
628   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)629   inline void bgec(Register rs, Register rt, Label* L) {
630     bgec(rs, rt, shifted_branch_offset(L));
631   }
632   void bgezal(Register rs, int16_t offset);
633   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)634   inline void bgezalc(Register rt, Label* L) {
635     bgezalc(rt, shifted_branch_offset(L));
636   }
637   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)638   inline void bgezall(Register rs, Label* L) {
639     bgezall(rs, branch_offset(L) >> 2);
640   }
641   void bgtz(Register rs, int16_t offset);
642   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)643   inline void bgtzc(Register rt, Label* L) {
644     bgtzc(rt, shifted_branch_offset(L));
645   }
646   void blez(Register rs, int16_t offset);
647   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)648   inline void blezc(Register rt, Label* L) {
649     blezc(rt, shifted_branch_offset(L));
650   }
651   void bltz(Register rs, int16_t offset);
652   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)653   inline void bltzc(Register rt, Label* L) {
654     bltzc(rt, shifted_branch_offset(L));
655   }
656   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)657   inline void bltuc(Register rs, Register rt, Label* L) {
658     bltuc(rs, rt, shifted_branch_offset(L));
659   }
660   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)661   inline void bltc(Register rs, Register rt, Label* L) {
662     bltc(rs, rt, shifted_branch_offset(L));
663   }
664   void bltzal(Register rs, int16_t offset);
665   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)666   inline void blezalc(Register rt, Label* L) {
667     blezalc(rt, shifted_branch_offset(L));
668   }
669   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)670   inline void bltzalc(Register rt, Label* L) {
671     bltzalc(rt, shifted_branch_offset(L));
672   }
673   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)674   inline void bgtzalc(Register rt, Label* L) {
675     bgtzalc(rt, shifted_branch_offset(L));
676   }
677   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)678   inline void beqzalc(Register rt, Label* L) {
679     beqzalc(rt, shifted_branch_offset(L));
680   }
681   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)682   inline void beqc(Register rs, Register rt, Label* L) {
683     beqc(rs, rt, shifted_branch_offset(L));
684   }
685   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)686   inline void beqzc(Register rs, Label* L) {
687     beqzc(rs, shifted_branch_offset21(L));
688   }
689   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)690   inline void bnezalc(Register rt, Label* L) {
691     bnezalc(rt, shifted_branch_offset(L));
692   }
693   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)694   inline void bnec(Register rs, Register rt, Label* L) {
695     bnec(rs, rt, shifted_branch_offset(L));
696   }
697   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)698   inline void bnezc(Register rt, Label* L) {
699     bnezc(rt, shifted_branch_offset21(L));
700   }
701   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)702   inline void bne(Register rs, Register rt, Label* L) {
703     bne(rs, rt, shifted_branch_offset(L));
704   }
705   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)706   inline void bovc(Register rs, Register rt, Label* L) {
707     bovc(rs, rt, shifted_branch_offset(L));
708   }
709   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)710   inline void bnvc(Register rs, Register rt, Label* L) {
711     bnvc(rs, rt, shifted_branch_offset(L));
712   }
713 
714   // Never use the int16_t b(l)cond version with a branch offset
715   // instead of using the Label* version.
716 
717   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
718   void j(int64_t target);
719   void jal(int64_t target);
720   void j(Label* target);
721   void jal(Label* target);
722   void jalr(Register rs, Register rd = ra);
723   void jr(Register target);
724   void jic(Register rt, int16_t offset);
725   void jialc(Register rt, int16_t offset);
726 
727 
728   // -------Data-processing-instructions---------
729 
730   // Arithmetic.
731   void addu(Register rd, Register rs, Register rt);
732   void subu(Register rd, Register rs, Register rt);
733 
734   void div(Register rs, Register rt);
735   void divu(Register rs, Register rt);
736   void ddiv(Register rs, Register rt);
737   void ddivu(Register rs, Register rt);
738   void div(Register rd, Register rs, Register rt);
739   void divu(Register rd, Register rs, Register rt);
740   void ddiv(Register rd, Register rs, Register rt);
741   void ddivu(Register rd, Register rs, Register rt);
742   void mod(Register rd, Register rs, Register rt);
743   void modu(Register rd, Register rs, Register rt);
744   void dmod(Register rd, Register rs, Register rt);
745   void dmodu(Register rd, Register rs, Register rt);
746 
747   void mul(Register rd, Register rs, Register rt);
748   void muh(Register rd, Register rs, Register rt);
749   void mulu(Register rd, Register rs, Register rt);
750   void muhu(Register rd, Register rs, Register rt);
751   void mult(Register rs, Register rt);
752   void multu(Register rs, Register rt);
753   void dmul(Register rd, Register rs, Register rt);
754   void dmuh(Register rd, Register rs, Register rt);
755   void dmulu(Register rd, Register rs, Register rt);
756   void dmuhu(Register rd, Register rs, Register rt);
757   void daddu(Register rd, Register rs, Register rt);
758   void dsubu(Register rd, Register rs, Register rt);
759   void dmult(Register rs, Register rt);
760   void dmultu(Register rs, Register rt);
761 
762   void addiu(Register rd, Register rs, int32_t j);
763   void daddiu(Register rd, Register rs, int32_t j);
764 
765   // Logical.
766   void and_(Register rd, Register rs, Register rt);
767   void or_(Register rd, Register rs, Register rt);
768   void xor_(Register rd, Register rs, Register rt);
769   void nor(Register rd, Register rs, Register rt);
770 
771   void andi(Register rd, Register rs, int32_t j);
772   void ori(Register rd, Register rs, int32_t j);
773   void xori(Register rd, Register rs, int32_t j);
774   void lui(Register rd, int32_t j);
775   void aui(Register rt, Register rs, int32_t j);
776   void daui(Register rt, Register rs, int32_t j);
777   void dahi(Register rs, int32_t j);
778   void dati(Register rs, int32_t j);
779 
780   // Shifts.
781   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
782   // and may cause problems in normal code. coming_from_nop makes sure this
783   // doesn't happen.
784   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
785   void sllv(Register rd, Register rt, Register rs);
786   void srl(Register rd, Register rt, uint16_t sa);
787   void srlv(Register rd, Register rt, Register rs);
788   void sra(Register rt, Register rd, uint16_t sa);
789   void srav(Register rt, Register rd, Register rs);
790   void rotr(Register rd, Register rt, uint16_t sa);
791   void rotrv(Register rd, Register rt, Register rs);
792   void dsll(Register rd, Register rt, uint16_t sa);
793   void dsllv(Register rd, Register rt, Register rs);
794   void dsrl(Register rd, Register rt, uint16_t sa);
795   void dsrlv(Register rd, Register rt, Register rs);
796   void drotr(Register rd, Register rt, uint16_t sa);
797   void drotr32(Register rd, Register rt, uint16_t sa);
798   void drotrv(Register rd, Register rt, Register rs);
799   void dsra(Register rt, Register rd, uint16_t sa);
800   void dsrav(Register rd, Register rt, Register rs);
801   void dsll32(Register rt, Register rd, uint16_t sa);
802   void dsrl32(Register rt, Register rd, uint16_t sa);
803   void dsra32(Register rt, Register rd, uint16_t sa);
804 
805   // ------------Memory-instructions-------------
806 
807   void lb(Register rd, const MemOperand& rs);
808   void lbu(Register rd, const MemOperand& rs);
809   void lh(Register rd, const MemOperand& rs);
810   void lhu(Register rd, const MemOperand& rs);
811   void lw(Register rd, const MemOperand& rs);
812   void lwu(Register rd, const MemOperand& rs);
813   void lwl(Register rd, const MemOperand& rs);
814   void lwr(Register rd, const MemOperand& rs);
815   void sb(Register rd, const MemOperand& rs);
816   void sh(Register rd, const MemOperand& rs);
817   void sw(Register rd, const MemOperand& rs);
818   void swl(Register rd, const MemOperand& rs);
819   void swr(Register rd, const MemOperand& rs);
820   void ldl(Register rd, const MemOperand& rs);
821   void ldr(Register rd, const MemOperand& rs);
822   void sdl(Register rd, const MemOperand& rs);
823   void sdr(Register rd, const MemOperand& rs);
824   void ld(Register rd, const MemOperand& rs);
825   void sd(Register rd, const MemOperand& rs);
826 
827 
828   // ---------PC-Relative-instructions-----------
829 
830   void addiupc(Register rs, int32_t imm19);
831   void lwpc(Register rs, int32_t offset19);
832   void lwupc(Register rs, int32_t offset19);
833   void ldpc(Register rs, int32_t offset18);
834   void auipc(Register rs, int16_t imm16);
835   void aluipc(Register rs, int16_t imm16);
836 
837 
838   // ----------------Prefetch--------------------
839 
840   void pref(int32_t hint, const MemOperand& rs);
841 
842 
843   // -------------Misc-instructions--------------
844 
845   // Break / Trap instructions.
846   void break_(uint32_t code, bool break_as_stop = false);
847   void stop(const char* msg, uint32_t code = kMaxStopCode);
848   void tge(Register rs, Register rt, uint16_t code);
849   void tgeu(Register rs, Register rt, uint16_t code);
850   void tlt(Register rs, Register rt, uint16_t code);
851   void tltu(Register rs, Register rt, uint16_t code);
852   void teq(Register rs, Register rt, uint16_t code);
853   void tne(Register rs, Register rt, uint16_t code);
854 
855   // Memory barrier instruction.
856   void sync();
857 
858   // Move from HI/LO register.
859   void mfhi(Register rd);
860   void mflo(Register rd);
861 
862   // Set on less than.
863   void slt(Register rd, Register rs, Register rt);
864   void sltu(Register rd, Register rs, Register rt);
865   void slti(Register rd, Register rs, int32_t j);
866   void sltiu(Register rd, Register rs, int32_t j);
867 
868   // Conditional move.
869   void movz(Register rd, Register rs, Register rt);
870   void movn(Register rd, Register rs, Register rt);
871   void movt(Register rd, Register rs, uint16_t cc = 0);
872   void movf(Register rd, Register rs, uint16_t cc = 0);
873 
874   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
875   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
876   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
877   void seleqz(Register rd, Register rs, Register rt);
878   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
879               FPURegister ft);
880   void selnez(Register rs, Register rt, Register rd);
881   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
882               FPURegister ft);
883   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
884   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
885   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
886   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
887 
888   void movz_s(FPURegister fd, FPURegister fs, Register rt);
889   void movz_d(FPURegister fd, FPURegister fs, Register rt);
890   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
891   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
892   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
893   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
894   void movn_s(FPURegister fd, FPURegister fs, Register rt);
895   void movn_d(FPURegister fd, FPURegister fs, Register rt);
896   // Bit twiddling.
897   void clz(Register rd, Register rs);
898   void dclz(Register rd, Register rs);
899   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
900   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
901   void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
902   void dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
903   void dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
904   void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
905   void bitswap(Register rd, Register rt);
906   void dbitswap(Register rd, Register rt);
907   void align(Register rd, Register rs, Register rt, uint8_t bp);
908   void dalign(Register rd, Register rs, Register rt, uint8_t bp);
909 
910   void wsbh(Register rd, Register rt);
911   void dsbh(Register rd, Register rt);
912   void dshd(Register rd, Register rt);
913   void seh(Register rd, Register rt);
914   void seb(Register rd, Register rt);
915 
916   // --------Coprocessor-instructions----------------
917 
918   // Load, store, and move.
919   void lwc1(FPURegister fd, const MemOperand& src);
920   void ldc1(FPURegister fd, const MemOperand& src);
921 
922   void swc1(FPURegister fs, const MemOperand& dst);
923   void sdc1(FPURegister fs, const MemOperand& dst);
924 
925   void mtc1(Register rt, FPURegister fs);
926   void mthc1(Register rt, FPURegister fs);
927   void dmtc1(Register rt, FPURegister fs);
928 
929   void mfc1(Register rt, FPURegister fs);
930   void mfhc1(Register rt, FPURegister fs);
931   void dmfc1(Register rt, FPURegister fs);
932 
933   void ctc1(Register rt, FPUControlRegister fs);
934   void cfc1(Register rt, FPUControlRegister fs);
935 
936   // Arithmetic.
937   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
938   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
939   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
940   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
941   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
942   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
943   void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
944   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
945   void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
946   void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
947   void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
948   void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
949   void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
950   void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
951   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
952   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
953   void abs_s(FPURegister fd, FPURegister fs);
954   void abs_d(FPURegister fd, FPURegister fs);
955   void mov_d(FPURegister fd, FPURegister fs);
956   void mov_s(FPURegister fd, FPURegister fs);
957   void neg_s(FPURegister fd, FPURegister fs);
958   void neg_d(FPURegister fd, FPURegister fs);
959   void sqrt_s(FPURegister fd, FPURegister fs);
960   void sqrt_d(FPURegister fd, FPURegister fs);
961   void rsqrt_s(FPURegister fd, FPURegister fs);
962   void rsqrt_d(FPURegister fd, FPURegister fs);
963   void recip_d(FPURegister fd, FPURegister fs);
964   void recip_s(FPURegister fd, FPURegister fs);
965 
966   // Conversion.
967   void cvt_w_s(FPURegister fd, FPURegister fs);
968   void cvt_w_d(FPURegister fd, FPURegister fs);
969   void trunc_w_s(FPURegister fd, FPURegister fs);
970   void trunc_w_d(FPURegister fd, FPURegister fs);
971   void round_w_s(FPURegister fd, FPURegister fs);
972   void round_w_d(FPURegister fd, FPURegister fs);
973   void floor_w_s(FPURegister fd, FPURegister fs);
974   void floor_w_d(FPURegister fd, FPURegister fs);
975   void ceil_w_s(FPURegister fd, FPURegister fs);
976   void ceil_w_d(FPURegister fd, FPURegister fs);
977   void rint_s(FPURegister fd, FPURegister fs);
978   void rint_d(FPURegister fd, FPURegister fs);
979   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
980 
981 
982   void cvt_l_s(FPURegister fd, FPURegister fs);
983   void cvt_l_d(FPURegister fd, FPURegister fs);
984   void trunc_l_s(FPURegister fd, FPURegister fs);
985   void trunc_l_d(FPURegister fd, FPURegister fs);
986   void round_l_s(FPURegister fd, FPURegister fs);
987   void round_l_d(FPURegister fd, FPURegister fs);
988   void floor_l_s(FPURegister fd, FPURegister fs);
989   void floor_l_d(FPURegister fd, FPURegister fs);
990   void ceil_l_s(FPURegister fd, FPURegister fs);
991   void ceil_l_d(FPURegister fd, FPURegister fs);
992 
993   void class_s(FPURegister fd, FPURegister fs);
994   void class_d(FPURegister fd, FPURegister fs);
995 
996   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
997   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
998   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
999   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
1000   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
1001   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
1002   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
1003   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
1004   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
1005   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
1006   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
1007   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
1008 
1009   void cvt_s_w(FPURegister fd, FPURegister fs);
1010   void cvt_s_l(FPURegister fd, FPURegister fs);
1011   void cvt_s_d(FPURegister fd, FPURegister fs);
1012 
1013   void cvt_d_w(FPURegister fd, FPURegister fs);
1014   void cvt_d_l(FPURegister fd, FPURegister fs);
1015   void cvt_d_s(FPURegister fd, FPURegister fs);
1016 
1017   // Conditions and branches for MIPSr6.
1018   void cmp(FPUCondition cond, SecondaryField fmt,
1019          FPURegister fd, FPURegister ft, FPURegister fs);
1020   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1021   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1022 
1023   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)1024   inline void bc1eqz(Label* L, FPURegister ft) {
1025     bc1eqz(shifted_branch_offset(L), ft);
1026   }
1027   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)1028   inline void bc1nez(Label* L, FPURegister ft) {
1029     bc1nez(shifted_branch_offset(L), ft);
1030   }
1031 
1032   // Conditions and branches for non MIPSr6.
1033   void c(FPUCondition cond, SecondaryField fmt,
1034          FPURegister ft, FPURegister fs, uint16_t cc = 0);
1035   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1036   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1037 
1038   void bc1f(int16_t offset, uint16_t cc = 0);
1039   inline void bc1f(Label* L, uint16_t cc = 0) {
1040     bc1f(shifted_branch_offset(L), cc);
1041   }
1042   void bc1t(int16_t offset, uint16_t cc = 0);
1043   inline void bc1t(Label* L, uint16_t cc = 0) {
1044     bc1t(shifted_branch_offset(L), cc);
1045   }
1046   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
1047 
1048   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1049   int SizeOfCodeGeneratedSince(Label* label) {
1050     return pc_offset() - label->pos();
1051   }
1052 
1053   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)1054   int InstructionsGeneratedSince(Label* label) {
1055     return SizeOfCodeGeneratedSince(label) / kInstrSize;
1056   }
1057 
1058   // Class for scoping postponing the trampoline pool generation.
1059   class BlockTrampolinePoolScope {
1060    public:
BlockTrampolinePoolScope(Assembler * assem)1061     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1062       assem_->StartBlockTrampolinePool();
1063     }
~BlockTrampolinePoolScope()1064     ~BlockTrampolinePoolScope() {
1065       assem_->EndBlockTrampolinePool();
1066     }
1067 
1068    private:
1069     Assembler* assem_;
1070 
1071     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1072   };
1073 
1074   // Class for postponing the assembly buffer growth. Typically used for
1075   // sequences of instructions that must be emitted as a unit, before
1076   // buffer growth (and relocation) can occur.
1077   // This blocking scope is not nestable.
1078   class BlockGrowBufferScope {
1079    public:
BlockGrowBufferScope(Assembler * assem)1080     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1081       assem_->StartBlockGrowBuffer();
1082     }
~BlockGrowBufferScope()1083     ~BlockGrowBufferScope() {
1084       assem_->EndBlockGrowBuffer();
1085     }
1086 
1087    private:
1088     Assembler* assem_;
1089 
1090     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1091   };
1092 
1093   // Debugging.
1094 
1095   // Mark address of a debug break slot.
1096   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1097 
1098   // Record the AST id of the CallIC being compiled, so that it can be placed
1099   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1100   void SetRecordedAstId(TypeFeedbackId ast_id) {
1101     DCHECK(recorded_ast_id_.IsNone());
1102     recorded_ast_id_ = ast_id;
1103   }
1104 
RecordedAstId()1105   TypeFeedbackId RecordedAstId() {
1106     DCHECK(!recorded_ast_id_.IsNone());
1107     return recorded_ast_id_;
1108   }
1109 
ClearRecordedAstId()1110   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1111 
1112   // Record a comment relocation entry that can be used by a disassembler.
1113   // Use --code-comments to enable.
1114   void RecordComment(const char* msg);
1115 
1116   // Record a deoptimization reason that can be used by a log or cpu profiler.
1117   // Use --trace-deopt to enable.
1118   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1119                          int id);
1120 
1121   static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1122                                        intptr_t pc_delta);
1123 
1124   // Writes a single byte or word of data in the code stream.  Used for
1125   // inline tables, e.g., jump-tables.
1126   void db(uint8_t data);
1127   void dd(uint32_t data);
1128   void dq(uint64_t data);
dp(uintptr_t data)1129   void dp(uintptr_t data) { dq(data); }
1130   void dd(Label* label);
1131 
1132   // Postpone the generation of the trampoline pool for the specified number of
1133   // instructions.
1134   void BlockTrampolinePoolFor(int instructions);
1135 
1136   // Check if there is less than kGap bytes available in the buffer.
1137   // If this is the case, we need to grow the buffer before emitting
1138   // an instruction or relocation information.
overflow()1139   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1140 
1141   // Get the number of bytes available in the buffer.
available_space()1142   inline intptr_t available_space() const {
1143     return reloc_info_writer.pos() - pc_;
1144   }
1145 
1146   // Read/patch instructions.
instr_at(byte * pc)1147   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)1148   static void instr_at_put(byte* pc, Instr instr) {
1149     *reinterpret_cast<Instr*>(pc) = instr;
1150   }
instr_at(int pos)1151   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)1152   void instr_at_put(int pos, Instr instr) {
1153     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1154   }
1155 
1156   // Check if an instruction is a branch of some kind.
1157   static bool IsBranch(Instr instr);
1158   static bool IsBc(Instr instr);
1159   static bool IsBzc(Instr instr);
1160 
1161   static bool IsBeq(Instr instr);
1162   static bool IsBne(Instr instr);
1163   static bool IsBeqzc(Instr instr);
1164   static bool IsBnezc(Instr instr);
1165   static bool IsBeqc(Instr instr);
1166   static bool IsBnec(Instr instr);
1167 
1168 
1169   static bool IsJump(Instr instr);
1170   static bool IsJ(Instr instr);
1171   static bool IsLui(Instr instr);
1172   static bool IsOri(Instr instr);
1173 
1174   static bool IsJal(Instr instr);
1175   static bool IsJr(Instr instr);
1176   static bool IsJalr(Instr instr);
1177 
1178   static bool IsNop(Instr instr, unsigned int type);
1179   static bool IsPop(Instr instr);
1180   static bool IsPush(Instr instr);
1181   static bool IsLwRegFpOffset(Instr instr);
1182   static bool IsSwRegFpOffset(Instr instr);
1183   static bool IsLwRegFpNegOffset(Instr instr);
1184   static bool IsSwRegFpNegOffset(Instr instr);
1185 
1186   static Register GetRtReg(Instr instr);
1187   static Register GetRsReg(Instr instr);
1188   static Register GetRdReg(Instr instr);
1189 
1190   static uint32_t GetRt(Instr instr);
1191   static uint32_t GetRtField(Instr instr);
1192   static uint32_t GetRs(Instr instr);
1193   static uint32_t GetRsField(Instr instr);
1194   static uint32_t GetRd(Instr instr);
1195   static uint32_t GetRdField(Instr instr);
1196   static uint32_t GetSa(Instr instr);
1197   static uint32_t GetSaField(Instr instr);
1198   static uint32_t GetOpcodeField(Instr instr);
1199   static uint32_t GetFunction(Instr instr);
1200   static uint32_t GetFunctionField(Instr instr);
1201   static uint32_t GetImmediate16(Instr instr);
1202   static uint32_t GetLabelConst(Instr instr);
1203 
1204   static int32_t GetBranchOffset(Instr instr);
1205   static bool IsLw(Instr instr);
1206   static int16_t GetLwOffset(Instr instr);
1207   static Instr SetLwOffset(Instr instr, int16_t offset);
1208 
1209   static bool IsSw(Instr instr);
1210   static Instr SetSwOffset(Instr instr, int16_t offset);
1211   static bool IsAddImmediate(Instr instr);
1212   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1213 
1214   static bool IsAndImmediate(Instr instr);
1215   static bool IsEmittedConstant(Instr instr);
1216 
1217   void CheckTrampolinePool();
1218 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1219   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1220                                           ConstantPoolEntry::Access access,
1221                                           ConstantPoolEntry::Type type) {
1222     // No embedded constant pool support.
1223     UNREACHABLE();
1224   }
1225 
IsPrevInstrCompactBranch()1226   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
IsCompactBranchSupported()1227   static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; }
1228 
UnboundLabelsCount()1229   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1230 
1231  protected:
1232   // Load Scaled Address instructions.
1233   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1234   void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
1235 
1236   // Helpers.
1237   void LoadRegPlusOffsetToAt(const MemOperand& src);
1238   int32_t LoadRegPlusUpperOffsetPartToAt(const MemOperand& src);
1239 
1240   // Relocation for a type-recording IC has the AST id added to it.  This
1241   // member variable is a way to pass the information from the call site to
1242   // the relocation info.
1243   TypeFeedbackId recorded_ast_id_;
1244 
1245   inline static void set_target_internal_reference_encoded_at(Address pc,
1246                                                               Address target);
1247 
buffer_space()1248   int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1249 
1250   // Decode branch instruction at pos and return branch target pos.
1251   int target_at(int pos, bool is_internal);
1252 
1253   // Patch branch instruction at pos to branch to given branch target pos.
1254   void target_at_put(int pos, int target_pos, bool is_internal);
1255 
1256   // Say if we need to relocate with this mode.
1257   bool MustUseReg(RelocInfo::Mode rmode);
1258 
1259   // Record reloc info for current pc_.
1260   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1261 
1262   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1263   void BlockTrampolinePoolBefore(int pc_offset) {
1264     if (no_trampoline_pool_before_ < pc_offset)
1265       no_trampoline_pool_before_ = pc_offset;
1266   }
1267 
StartBlockTrampolinePool()1268   void StartBlockTrampolinePool() {
1269     trampoline_pool_blocked_nesting_++;
1270   }
1271 
EndBlockTrampolinePool()1272   void EndBlockTrampolinePool() {
1273     trampoline_pool_blocked_nesting_--;
1274   }
1275 
is_trampoline_pool_blocked()1276   bool is_trampoline_pool_blocked() const {
1277     return trampoline_pool_blocked_nesting_ > 0;
1278   }
1279 
has_exception()1280   bool has_exception() const {
1281     return internal_trampoline_exception_;
1282   }
1283 
1284   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1285 
is_trampoline_emitted()1286   bool is_trampoline_emitted() const {
1287     return trampoline_emitted_;
1288   }
1289 
1290   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1291   void StartBlockGrowBuffer() {
1292     DCHECK(!block_buffer_growth_);
1293     block_buffer_growth_ = true;
1294   }
1295 
EndBlockGrowBuffer()1296   void EndBlockGrowBuffer() {
1297     DCHECK(block_buffer_growth_);
1298     block_buffer_growth_ = false;
1299   }
1300 
is_buffer_growth_blocked()1301   bool is_buffer_growth_blocked() const {
1302     return block_buffer_growth_;
1303   }
1304 
EmitForbiddenSlotInstruction()1305   void EmitForbiddenSlotInstruction() {
1306     if (IsPrevInstrCompactBranch()) {
1307       nop();
1308     }
1309   }
1310 
1311   inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1312 
1313  private:
1314   // Buffer size and constant pool distance are checked together at regular
1315   // intervals of kBufferCheckInterval emitted bytes.
1316   static const int kBufferCheckInterval = 1*KB/2;
1317 
1318   // Code generation.
1319   // The relocation writer's position is at least kGap bytes below the end of
1320   // the generated instructions. This is so that multi-instruction sequences do
1321   // not have to check for overflow. The same is true for writes of large
1322   // relocation info entries.
1323   static const int kGap = 32;
1324 
1325 
1326   // Repeated checking whether the trampoline pool should be emitted is rather
1327   // expensive. By default we only check again once a number of instructions
1328   // has been generated.
1329   static const int kCheckConstIntervalInst = 32;
1330   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1331 
1332   int next_buffer_check_;  // pc offset of next buffer check.
1333 
1334   // Emission of the trampoline pool may be blocked in some code sequences.
1335   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1336   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1337 
1338   // Keep track of the last emitted pool to guarantee a maximal distance.
1339   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1340 
1341   // Automatic growth of the assembly buffer may be blocked for some sequences.
1342   bool block_buffer_growth_;  // Block growth when true.
1343 
1344   // Relocation information generation.
1345   // Each relocation is encoded as a variable size value.
1346   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1347   RelocInfoWriter reloc_info_writer;
1348 
1349   // The bound position, before this we cannot do instruction elimination.
1350   int last_bound_pos_;
1351 
1352   // Readable constants for compact branch handling in emit()
1353   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1354 
1355   // Code emission.
1356   inline void CheckBuffer();
1357   void GrowBuffer();
1358   inline void emit(Instr x,
1359                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1360   inline void emit(uint64_t x);
1361   inline void CheckForEmitInForbiddenSlot();
1362   template <typename T>
1363   inline void EmitHelper(T x);
1364   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1365 
1366   // Instruction generation.
1367   // We have 3 different kind of encoding layout on MIPS.
1368   // However due to many different types of objects encoded in the same fields
1369   // we have quite a few aliases for each mode.
1370   // Using the same structure to refer to Register and FPURegister would spare a
1371   // few aliases, but mixing both does not look clean to me.
1372   // Anyway we could surely implement this differently.
1373 
1374   void GenInstrRegister(Opcode opcode,
1375                         Register rs,
1376                         Register rt,
1377                         Register rd,
1378                         uint16_t sa = 0,
1379                         SecondaryField func = NULLSF);
1380 
1381   void GenInstrRegister(Opcode opcode,
1382                         Register rs,
1383                         Register rt,
1384                         uint16_t msb,
1385                         uint16_t lsb,
1386                         SecondaryField func);
1387 
1388   void GenInstrRegister(Opcode opcode,
1389                         SecondaryField fmt,
1390                         FPURegister ft,
1391                         FPURegister fs,
1392                         FPURegister fd,
1393                         SecondaryField func = NULLSF);
1394 
1395   void GenInstrRegister(Opcode opcode,
1396                         FPURegister fr,
1397                         FPURegister ft,
1398                         FPURegister fs,
1399                         FPURegister fd,
1400                         SecondaryField func = NULLSF);
1401 
1402   void GenInstrRegister(Opcode opcode,
1403                         SecondaryField fmt,
1404                         Register rt,
1405                         FPURegister fs,
1406                         FPURegister fd,
1407                         SecondaryField func = NULLSF);
1408 
1409   void GenInstrRegister(Opcode opcode,
1410                         SecondaryField fmt,
1411                         Register rt,
1412                         FPUControlRegister fs,
1413                         SecondaryField func = NULLSF);
1414 
1415 
1416   void GenInstrImmediate(
1417       Opcode opcode, Register rs, Register rt, int32_t j,
1418       CompactBranchType is_compact_branch = CompactBranchType::NO);
1419   void GenInstrImmediate(
1420       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1421       CompactBranchType is_compact_branch = CompactBranchType::NO);
1422   void GenInstrImmediate(
1423       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1424       CompactBranchType is_compact_branch = CompactBranchType::NO);
1425   void GenInstrImmediate(
1426       Opcode opcode, Register rs, int32_t offset21,
1427       CompactBranchType is_compact_branch = CompactBranchType::NO);
1428   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1429   void GenInstrImmediate(
1430       Opcode opcode, int32_t offset26,
1431       CompactBranchType is_compact_branch = CompactBranchType::NO);
1432 
1433   void GenInstrJump(Opcode opcode,
1434                      uint32_t address);
1435 
1436   // Labels.
1437   void print(Label* L);
1438   void bind_to(Label* L, int pos);
1439   void next(Label* L, bool is_internal);
1440 
1441   // One trampoline consists of:
1442   // - space for trampoline slots,
1443   // - space for labels.
1444   //
1445   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1446   // Space for trampoline slots preceeds space for labels. Each label is of one
1447   // instruction size, so total amount for labels is equal to
1448   // label_count *  kInstrSize.
1449   class Trampoline {
1450    public:
Trampoline()1451     Trampoline() {
1452       start_ = 0;
1453       next_slot_ = 0;
1454       free_slot_count_ = 0;
1455       end_ = 0;
1456     }
Trampoline(int start,int slot_count)1457     Trampoline(int start, int slot_count) {
1458       start_ = start;
1459       next_slot_ = start;
1460       free_slot_count_ = slot_count;
1461       end_ = start + slot_count * kTrampolineSlotsSize;
1462     }
start()1463     int start() {
1464       return start_;
1465     }
end()1466     int end() {
1467       return end_;
1468     }
take_slot()1469     int take_slot() {
1470       int trampoline_slot = kInvalidSlotPos;
1471       if (free_slot_count_ <= 0) {
1472         // We have run out of space on trampolines.
1473         // Make sure we fail in debug mode, so we become aware of each case
1474         // when this happens.
1475         DCHECK(0);
1476         // Internal exception will be caught.
1477       } else {
1478         trampoline_slot = next_slot_;
1479         free_slot_count_--;
1480         next_slot_ += kTrampolineSlotsSize;
1481       }
1482       return trampoline_slot;
1483     }
1484 
1485    private:
1486     int start_;
1487     int end_;
1488     int next_slot_;
1489     int free_slot_count_;
1490   };
1491 
1492   int32_t get_trampoline_entry(int32_t pos);
1493   int unbound_labels_count_;
1494   // After trampoline is emitted, long branches are used in generated code for
1495   // the forward branches whose target offsets could be beyond reach of branch
1496   // instruction. We use this information to trigger different mode of
1497   // branch instruction generation, where we use jump instructions rather
1498   // than regular branch instructions.
1499   bool trampoline_emitted_;
1500   static const int kInvalidSlotPos = -1;
1501 
1502   // Internal reference positions, required for unbounded internal reference
1503   // labels.
1504   std::set<int64_t> internal_reference_positions_;
is_internal_reference(Label * L)1505   bool is_internal_reference(Label* L) {
1506     return internal_reference_positions_.find(L->pos()) !=
1507            internal_reference_positions_.end();
1508   }
1509 
EmittedCompactBranchInstruction()1510   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1511   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1512   bool prev_instr_compact_branch_ = false;
1513 
1514   Trampoline trampoline_;
1515   bool internal_trampoline_exception_;
1516 
1517   friend class RegExpMacroAssemblerMIPS;
1518   friend class RelocInfo;
1519   friend class CodePatcher;
1520   friend class BlockTrampolinePoolScope;
1521   friend class EnsureSpace;
1522 };
1523 
1524 
1525 class EnsureSpace BASE_EMBEDDED {
1526  public:
EnsureSpace(Assembler * assembler)1527   explicit EnsureSpace(Assembler* assembler) {
1528     assembler->CheckBuffer();
1529   }
1530 };
1531 
1532 }  // namespace internal
1533 }  // namespace v8
1534 
1535 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1536