/frameworks/ml/nn/runtime/test/specs/ |
D | svdf.mod.py | 17 batches = 2 variable 24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 126 input_sequence_size = int(len(test_inputs) / input_size / batches) 131 batch_start = i * input_size * batches 132 batch_end = batch_start + input_size * batches 134 input0[state_in] = [0 for _ in range(batches * (memory_size - 1) * units)] 135 output0 = {state_out:[0 for x in range(batches * (memory_size - 1) * units)], [all …]
|
D | rnn.mod.py | 17 batches = 2 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units… 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 185 input_sequence_size = int(len(test_inputs) / input_size / batches) 194 input0[hidden_state_in] = [0 for x in range(batches * units)] 196 hidden_state_out: [0 for x in range(batches * units)],
|
D | rnn_state.mod.py | 17 batches = 2 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units… 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
|
D | svdf_state.mod.py | 17 batches = 2 variable 24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
|
/frameworks/ml/nn/common/operations/internal/reference/ |
D | reference_ops.h | 168 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); in Conv() local 180 for (int batch = 0; batch < batches; ++batch) { in Conv() 241 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); in Conv() local 251 for (int batch = 0; batch < batches; ++batch) { in Conv() 386 const int batches = ArraySize(output_dims, 1) * ArraySize(output_dims, 2) * in FullyConnected() local 392 for (int b = 0; b < batches; ++b) { in FullyConnected() 433 const int batches = ArraySize(output_dims, 1) * ArraySize(output_dims, 2) * in FullyConnected() local 439 for (int b = 0; b < batches; ++b) { in FullyConnected() 467 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); in NonGlobalBatchNormalization() local 478 for (int b = 0; b < batches; ++b) { in NonGlobalBatchNormalization() [all …]
|
D | depthwiseconv_float.h | 34 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); in DepthwiseConv() local 45 for (int b = 0; b < batches; ++b) { in DepthwiseConv()
|
D | depthwiseconv_uint8.h | 50 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); in DepthwiseConv() local 61 for (int b = 0; b < batches; ++b) { in DepthwiseConv()
|
/frameworks/ml/nn/common/ |
D | OperationsUtils.cpp | 240 uint32_t batches = getSizeOfDimension(input, 0); in convPrepare() local 248 output->dimensions = {batches, outHeight, outWidth, channels_out}; in convPrepare() 276 uint32_t batches = getSizeOfDimension(input, 0); in depthwiseConvPrepare() local 284 output->dimensions = {batches, outHeight, outWidth, channels_out}; in depthwiseConvPrepare() 297 uint32_t batches = getSizeOfDimension(input, 0); in genericPoolingPrepare() local 308 output->dimensions = {batches, outHeight, outWidth, channels_out}; in genericPoolingPrepare() 437 uint32_t batches = getSizeOfDimension(input, 0); in resizeBilinearPrepare() local 441 output->dimensions = {batches, (uint32_t)height, (uint32_t)width, channels}; in resizeBilinearPrepare() 452 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare() local 459 output->dimensions = {batches, in depthToSpacePrepare() [all …]
|
/frameworks/ml/nn/common/operations/internal/optimized/ |
D | optimized_ops.h | 609 const int batches = ArraySize(output_dims, 1) * ArraySize(output_dims, 2) * 613 if (batches == 1 && !(output_size % 4)) { 635 input_data, filter_cols, batches, filter_cols); 637 output_data, output_rows, batches, output_rows); 741 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); 751 for (int b = 0; b < batches; ++b) { 1032 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); 1043 for (int b = 0; b < batches; ++b) { 1068 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); 1075 for (int b = 0; b < batches; ++b) { [all …]
|
D | depthwiseconv_float.h | 626 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); 692 for (int b = 0; b < batches; ++b) {
|
D | depthwiseconv_uint8.h | 1366 const int batches = MatchingArraySize(input_dims, 3, output_dims, 3); 1441 for (int b = 0; b < batches; ++b) {
|
/frameworks/ml/nn/common/operations/ |
D | RNNTest.cpp | 152 BasicRNNOpModel(uint32_t batches, uint32_t units, uint32_t size) in BasicRNNOpModel() argument 153 : batches_(batches), in BasicRNNOpModel()
|
D | SVDFTest.cpp | 122 SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size, in SVDFOpModel() argument 124 : batches_(batches), in SVDFOpModel()
|
/frameworks/base/services/core/java/com/android/server/ |
D | AlarmManagerService.java | 2442 void recordWakeupAlarms(ArrayList<Batch> batches, long nowELAPSED, long nowRTC) { in recordWakeupAlarms() argument 2443 final int numBatches = batches.size(); in recordWakeupAlarms() 2445 Batch b = batches.get(nextBatch); in recordWakeupAlarms()
|