• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#
2# Copyright (C) 2017 The Android Open Source Project
3#
4# Licensed under the Apache License, Version 2.0 (the "License");
5# you may not use this file except in compliance with the License.
6# You may obtain a copy of the License at
7#
8#      http://www.apache.org/licenses/LICENSE-2.0
9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15#
16
17batches = 2
18units = 4
19input_size = 3
20memory_size = 10
21
22model = Model()
23
24input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
25weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size))
26weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (units, memory_size))
27bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units))
28state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
29rank_param = Input("rank_param", "TENSOR_INT32", "{1}")
30activation_param = Input("activation_param", "TENSOR_INT32", "{1}")
31state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
32output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
33
34model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
35                        rank_param, activation_param).To([state_out, output])
36
37input0 = {
38    weights_feature: [
39        -0.31930989, -0.36118156, 0.0079667, 0.37613347,
40      0.22197971, 0.12416199, 0.27901134, 0.27557442,
41      0.3905206, -0.36137494, -0.06634006, -0.10640851
42    ],
43    weights_time: [
44        -0.31930989, 0.37613347,  0.27901134,  -0.36137494, -0.36118156,
45      0.22197971,  0.27557442,  -0.06634006, 0.0079667,   0.12416199,
46
47       0.3905206,   -0.10640851, -0.0976817,  0.15294972,  0.39635518,
48      -0.02702999, 0.39296314,  0.15785322,  0.21931258,  0.31053296,
49
50       -0.36916667, 0.38031587,  -0.21580373, 0.27072677,  0.23622236,
51      0.34936687,  0.18174365,  0.35907319,  -0.17493086, 0.324846,
52
53       -0.10781813, 0.27201805,  0.14324132,  -0.23681851, -0.27115166,
54      -0.01580888, -0.14943552, 0.15465137,  0.09784451,  -0.0337657
55    ],
56    bias: [],
57    rank_param: [1],
58    activation_param: [0],
59}
60
61# TODO: State is an intermediate buffer, don't check this against test result.
62test_inputs = [
63    0.12609188,  -0.46347019, -0.89598465,
64    0.12609188,  -0.46347019, -0.89598465,
65
66    0.14278367,  -1.64410412, -0.75222826,
67    0.14278367,  -1.64410412, -0.75222826,
68
69    0.49837467,  0.19278903,  0.26584083,
70    0.49837467,  0.19278903,  0.26584083,
71
72    -0.11186574, 0.13164264,  -0.05349274,
73    -0.11186574, 0.13164264,  -0.05349274,
74
75    -0.68892461, 0.37783599,  0.18263303,
76    -0.68892461, 0.37783599,  0.18263303,
77
78    -0.81299269, -0.86831826, 1.43940818,
79    -0.81299269, -0.86831826, 1.43940818,
80
81    -1.45006323, -0.82251364, -1.69082689,
82    -1.45006323, -0.82251364, -1.69082689,
83
84    0.03966608,  -0.24936394, -0.77526885,
85    0.03966608,  -0.24936394, -0.77526885,
86
87    0.11771342,  -0.23761693, -0.65898693,
88    0.11771342,  -0.23761693, -0.65898693,
89
90    -0.89477462, 1.67204106,  -0.53235275,
91    -0.89477462, 1.67204106,  -0.53235275
92]
93
94golden_outputs = [
95    0.014899,    -0.0517661, -0.143725, -0.00271883,
96    0.014899,    -0.0517661, -0.143725, -0.00271883,
97
98    0.068281,    -0.162217,  -0.152268, 0.00323521,
99    0.068281,    -0.162217,  -0.152268, 0.00323521,
100
101    -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
102    -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
103
104    -0.00623099, -0.077701,  -0.391193, -0.0136691,
105    -0.00623099, -0.077701,  -0.391193, -0.0136691,
106
107    0.201551,    -0.164607,  -0.179462, -0.0592739,
108    0.201551,    -0.164607,  -0.179462, -0.0592739,
109
110    0.0886511,   -0.0875401, -0.269283, 0.0281379,
111    0.0886511,   -0.0875401, -0.269283, 0.0281379,
112
113    -0.201174,   -0.586145,  -0.628624, -0.0330412,
114    -0.201174,   -0.586145,  -0.628624, -0.0330412,
115
116    -0.0839096,  -0.299329,  0.108746,  0.109808,
117    -0.0839096,  -0.299329,  0.108746,  0.109808,
118
119    0.419114,    -0.237824,  -0.422627, 0.175115,
120    0.419114,    -0.237824,  -0.422627, 0.175115,
121
122    0.36726,     -0.522303,  -0.456502, -0.175475,
123    0.36726,     -0.522303,  -0.456502, -0.175475
124]
125
126input_sequence_size = int(len(test_inputs) / input_size / batches)
127
128# TODO: enable more data points after fixing the reference issue
129#for i in range(input_sequence_size):
130for i in range(1):
131  batch_start = i * input_size * batches
132  batch_end = batch_start + input_size * batches
133  input0[input] = test_inputs[batch_start:batch_end]
134  input0[state_in]  = [0 for _ in range(batches * (memory_size - 1) * units)]
135  output0 = {state_out:[0 for x in range(batches * (memory_size - 1) * units)],
136             output: []}
137  golden_start = i * units * batches
138  golden_end = golden_start + units * batches
139  output0[output] = golden_outputs[golden_start:golden_end]
140  Example((input0, output0))
141