• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_sinking.h"
18 
19 #include "common_dominator.h"
20 #include "nodes.h"
21 
22 namespace art {
23 
Run()24 void CodeSinking::Run() {
25   HBasicBlock* exit = graph_->GetExitBlock();
26   if (exit == nullptr) {
27     // Infinite loop, just bail.
28     return;
29   }
30   // TODO(ngeoffray): we do not profile branches yet, so use throw instructions
31   // as an indicator of an uncommon branch.
32   for (HBasicBlock* exit_predecessor : exit->GetPredecessors()) {
33     if (exit_predecessor->GetLastInstruction()->IsThrow()) {
34       SinkCodeToUncommonBranch(exit_predecessor);
35     }
36   }
37 }
38 
IsInterestingInstruction(HInstruction * instruction)39 static bool IsInterestingInstruction(HInstruction* instruction) {
40   // Instructions from the entry graph (for example constants) are never interesting to move.
41   if (instruction->GetBlock() == instruction->GetBlock()->GetGraph()->GetEntryBlock()) {
42     return false;
43   }
44   // We want to move moveable instructions that cannot throw, as well as
45   // heap stores and allocations.
46 
47   // Volatile stores cannot be moved.
48   if (instruction->IsInstanceFieldSet()) {
49     if (instruction->AsInstanceFieldSet()->IsVolatile()) {
50       return false;
51     }
52   }
53 
54   // Check allocations first, as they can throw, but it is safe to move them.
55   if (instruction->IsNewInstance() || instruction->IsNewArray()) {
56     return true;
57   }
58 
59   // Check it is safe to move ConstructorFence.
60   // (Safe to move ConstructorFence for only protecting the new-instance but not for finals.)
61   if (instruction->IsConstructorFence()) {
62     HConstructorFence* ctor_fence = instruction->AsConstructorFence();
63 
64     // A fence with "0" inputs is dead and should've been removed in a prior pass.
65     DCHECK_NE(0u, ctor_fence->InputCount());
66 
67     return ctor_fence->GetAssociatedAllocation() != nullptr;
68   }
69 
70   // All other instructions that can throw cannot be moved.
71   if (instruction->CanThrow()) {
72     return false;
73   }
74 
75   // We can only store on local allocations. Other heap references can
76   // be escaping. Note that allocations can escape too, but we only move
77   // allocations if their users can move to, or are in the list of
78   // post dominated blocks.
79   if (instruction->IsInstanceFieldSet()) {
80     if (!instruction->InputAt(0)->IsNewInstance()) {
81       return false;
82     }
83   }
84 
85   if (instruction->IsArraySet()) {
86     if (!instruction->InputAt(0)->IsNewArray()) {
87       return false;
88     }
89   }
90 
91   // Heap accesses cannot go pass instructions that have memory side effects, which
92   // we are not tracking here. Note that the load/store elimination optimization
93   // runs before this optimization, and should have removed interesting ones.
94   // In theory, we could handle loads of local allocations, but this is currently
95   // hard to test, as LSE removes them.
96   if (instruction->IsStaticFieldGet() ||
97       instruction->IsInstanceFieldGet() ||
98       instruction->IsArrayGet()) {
99     return false;
100   }
101 
102   if (instruction->IsInstanceFieldSet() ||
103       instruction->IsArraySet() ||
104       instruction->CanBeMoved()) {
105     return true;
106   }
107   return false;
108 }
109 
AddInstruction(HInstruction * instruction,const ArenaBitVector & processed_instructions,const ArenaBitVector & discard_blocks,ArenaVector<HInstruction * > * worklist)110 static void AddInstruction(HInstruction* instruction,
111                            const ArenaBitVector& processed_instructions,
112                            const ArenaBitVector& discard_blocks,
113                            ArenaVector<HInstruction*>* worklist) {
114   // Add to the work list if the instruction is not in the list of blocks
115   // to discard, hasn't been already processed and is of interest.
116   if (!discard_blocks.IsBitSet(instruction->GetBlock()->GetBlockId()) &&
117       !processed_instructions.IsBitSet(instruction->GetId()) &&
118       IsInterestingInstruction(instruction)) {
119     worklist->push_back(instruction);
120   }
121 }
122 
AddInputs(HInstruction * instruction,const ArenaBitVector & processed_instructions,const ArenaBitVector & discard_blocks,ArenaVector<HInstruction * > * worklist)123 static void AddInputs(HInstruction* instruction,
124                       const ArenaBitVector& processed_instructions,
125                       const ArenaBitVector& discard_blocks,
126                       ArenaVector<HInstruction*>* worklist) {
127   for (HInstruction* input : instruction->GetInputs()) {
128     AddInstruction(input, processed_instructions, discard_blocks, worklist);
129   }
130 }
131 
AddInputs(HBasicBlock * block,const ArenaBitVector & processed_instructions,const ArenaBitVector & discard_blocks,ArenaVector<HInstruction * > * worklist)132 static void AddInputs(HBasicBlock* block,
133                       const ArenaBitVector& processed_instructions,
134                       const ArenaBitVector& discard_blocks,
135                       ArenaVector<HInstruction*>* worklist) {
136   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
137     AddInputs(it.Current(), processed_instructions, discard_blocks, worklist);
138   }
139   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
140     AddInputs(it.Current(), processed_instructions, discard_blocks, worklist);
141   }
142 }
143 
ShouldFilterUse(HInstruction * instruction,HInstruction * user,const ArenaBitVector & post_dominated)144 static bool ShouldFilterUse(HInstruction* instruction,
145                             HInstruction* user,
146                             const ArenaBitVector& post_dominated) {
147   if (instruction->IsNewInstance()) {
148     return (user->IsInstanceFieldSet() || user->IsConstructorFence()) &&
149         (user->InputAt(0) == instruction) &&
150         !post_dominated.IsBitSet(user->GetBlock()->GetBlockId());
151   } else if (instruction->IsNewArray()) {
152     return (user->IsArraySet() || user->IsConstructorFence()) &&
153         (user->InputAt(0) == instruction) &&
154         !post_dominated.IsBitSet(user->GetBlock()->GetBlockId());
155   }
156   return false;
157 }
158 
159 
160 // Find the ideal position for moving `instruction`. If `filter` is true,
161 // we filter out store instructions to that instruction, which are processed
162 // first in the step (3) of the sinking algorithm.
163 // This method is tailored to the sinking algorithm, unlike
164 // the generic HInstruction::MoveBeforeFirstUserAndOutOfLoops.
FindIdealPosition(HInstruction * instruction,const ArenaBitVector & post_dominated,bool filter=false)165 static HInstruction* FindIdealPosition(HInstruction* instruction,
166                                        const ArenaBitVector& post_dominated,
167                                        bool filter = false) {
168   DCHECK(!instruction->IsPhi());  // Makes no sense for Phi.
169 
170   // Find the target block.
171   CommonDominator finder(/* start_block */ nullptr);
172   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
173     HInstruction* user = use.GetUser();
174     if (!(filter && ShouldFilterUse(instruction, user, post_dominated))) {
175       HBasicBlock* block = user->GetBlock();
176       if (user->IsPhi()) {
177         // Special case phis by taking the incoming block for regular ones,
178         // or the dominator for catch phis.
179         block = user->AsPhi()->IsCatchPhi()
180             ? block->GetDominator()
181             : block->GetPredecessors()[use.GetIndex()];
182       }
183       finder.Update(block);
184     }
185   }
186   for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
187     DCHECK(!use.GetUser()->GetHolder()->IsPhi());
188     DCHECK(!filter || !ShouldFilterUse(instruction, use.GetUser()->GetHolder(), post_dominated));
189     finder.Update(use.GetUser()->GetHolder()->GetBlock());
190   }
191   HBasicBlock* target_block = finder.Get();
192   if (target_block == nullptr) {
193     // No user we can go next to? Likely a LSE or DCE limitation.
194     return nullptr;
195   }
196 
197   // Move to the first dominator not in a loop, if we can.
198   while (target_block->IsInLoop()) {
199     if (!post_dominated.IsBitSet(target_block->GetDominator()->GetBlockId())) {
200       break;
201     }
202     target_block = target_block->GetDominator();
203     DCHECK(target_block != nullptr);
204   }
205 
206   // Find insertion position. No need to filter anymore, as we have found a
207   // target block.
208   HInstruction* insert_pos = nullptr;
209   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
210     if (use.GetUser()->GetBlock() == target_block &&
211         (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
212       insert_pos = use.GetUser();
213     }
214   }
215   for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
216     HInstruction* user = use.GetUser()->GetHolder();
217     if (user->GetBlock() == target_block &&
218         (insert_pos == nullptr || user->StrictlyDominates(insert_pos))) {
219       insert_pos = user;
220     }
221   }
222   if (insert_pos == nullptr) {
223     // No user in `target_block`, insert before the control flow instruction.
224     insert_pos = target_block->GetLastInstruction();
225     DCHECK(insert_pos->IsControlFlow());
226     // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
227     if (insert_pos->IsIf()) {
228       HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
229       if (if_input == insert_pos->GetPrevious()) {
230         insert_pos = if_input;
231       }
232     }
233   }
234   DCHECK(!insert_pos->IsPhi());
235   return insert_pos;
236 }
237 
238 
SinkCodeToUncommonBranch(HBasicBlock * end_block)239 void CodeSinking::SinkCodeToUncommonBranch(HBasicBlock* end_block) {
240   // Local allocator to discard data structures created below at the end of
241   // this optimization.
242   ArenaAllocator allocator(graph_->GetArena()->GetArenaPool());
243 
244   size_t number_of_instructions = graph_->GetCurrentInstructionId();
245   ArenaVector<HInstruction*> worklist(allocator.Adapter(kArenaAllocMisc));
246   ArenaBitVector processed_instructions(&allocator, number_of_instructions, /* expandable */ false);
247   ArenaBitVector post_dominated(&allocator, graph_->GetBlocks().size(), /* expandable */ false);
248   ArenaBitVector instructions_that_can_move(
249       &allocator, number_of_instructions, /* expandable */ false);
250   ArenaVector<HInstruction*> move_in_order(allocator.Adapter(kArenaAllocMisc));
251 
252   // Step (1): Visit post order to get a subset of blocks post dominated by `end_block`.
253   // TODO(ngeoffray): Getting the full set of post-dominated shoud be done by
254   // computint the post dominator tree, but that could be too time consuming. Also,
255   // we should start the analysis from blocks dominated by an uncommon branch, but we
256   // don't profile branches yet.
257   bool found_block = false;
258   for (HBasicBlock* block : graph_->GetPostOrder()) {
259     if (block == end_block) {
260       found_block = true;
261       post_dominated.SetBit(block->GetBlockId());
262     } else if (found_block) {
263       bool is_post_dominated = true;
264       if (block->GetSuccessors().empty()) {
265         // We currently bail for loops.
266         is_post_dominated = false;
267       } else {
268         for (HBasicBlock* successor : block->GetSuccessors()) {
269           if (!post_dominated.IsBitSet(successor->GetBlockId())) {
270             is_post_dominated = false;
271             break;
272           }
273         }
274       }
275       if (is_post_dominated) {
276         post_dominated.SetBit(block->GetBlockId());
277       }
278     }
279   }
280 
281   // Now that we have found a subset of post-dominated blocks, add to the worklist all inputs
282   // of instructions in these blocks that are not themselves in these blocks.
283   // Also find the common dominator of the found post dominated blocks, to help filtering
284   // out un-movable uses in step (2).
285   CommonDominator finder(end_block);
286   for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) {
287     if (post_dominated.IsBitSet(i)) {
288       finder.Update(graph_->GetBlocks()[i]);
289       AddInputs(graph_->GetBlocks()[i], processed_instructions, post_dominated, &worklist);
290     }
291   }
292   HBasicBlock* common_dominator = finder.Get();
293 
294   // Step (2): iterate over the worklist to find sinking candidates.
295   while (!worklist.empty()) {
296     HInstruction* instruction = worklist.back();
297     if (processed_instructions.IsBitSet(instruction->GetId())) {
298       // The instruction has already been processed, continue. This happens
299       // when the instruction is the input/user of multiple instructions.
300       worklist.pop_back();
301       continue;
302     }
303     bool all_users_in_post_dominated_blocks = true;
304     bool can_move = true;
305     // Check users of the instruction.
306     for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
307       HInstruction* user = use.GetUser();
308       if (!post_dominated.IsBitSet(user->GetBlock()->GetBlockId()) &&
309           !instructions_that_can_move.IsBitSet(user->GetId())) {
310         all_users_in_post_dominated_blocks = false;
311         // If we've already processed this user, or the user cannot be moved, or
312         // is not dominating the post dominated blocks, bail.
313         // TODO(ngeoffray): The domination check is an approximation. We should
314         // instead check if the dominated blocks post dominate the user's block,
315         // but we do not have post dominance information here.
316         if (processed_instructions.IsBitSet(user->GetId()) ||
317             !IsInterestingInstruction(user) ||
318             !user->GetBlock()->Dominates(common_dominator)) {
319           can_move = false;
320           break;
321         }
322       }
323     }
324 
325     // Check environment users of the instruction. Some of these users require
326     // the instruction not to move.
327     if (all_users_in_post_dominated_blocks) {
328       for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
329         HEnvironment* environment = use.GetUser();
330         HInstruction* user = environment->GetHolder();
331         if (!post_dominated.IsBitSet(user->GetBlock()->GetBlockId())) {
332           if (graph_->IsDebuggable() ||
333               user->IsDeoptimize() ||
334               user->CanThrowIntoCatchBlock() ||
335               (user->IsSuspendCheck() && graph_->IsCompilingOsr())) {
336             can_move = false;
337             break;
338           }
339         }
340       }
341     }
342     if (!can_move) {
343       // Instruction cannot be moved, mark it as processed and remove it from the work
344       // list.
345       processed_instructions.SetBit(instruction->GetId());
346       worklist.pop_back();
347     } else if (all_users_in_post_dominated_blocks) {
348       // Instruction is a candidate for being sunk. Mark it as such, remove it from the
349       // work list, and add its inputs to the work list.
350       instructions_that_can_move.SetBit(instruction->GetId());
351       move_in_order.push_back(instruction);
352       processed_instructions.SetBit(instruction->GetId());
353       worklist.pop_back();
354       AddInputs(instruction, processed_instructions, post_dominated, &worklist);
355       // Drop the environment use not in the list of post-dominated block. This is
356       // to help step (3) of this optimization, when we start moving instructions
357       // closer to their use.
358       for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
359         HEnvironment* environment = use.GetUser();
360         HInstruction* user = environment->GetHolder();
361         if (!post_dominated.IsBitSet(user->GetBlock()->GetBlockId())) {
362           environment->RemoveAsUserOfInput(use.GetIndex());
363           environment->SetRawEnvAt(use.GetIndex(), nullptr);
364         }
365       }
366     } else {
367       // The information we have on the users was not enough to decide whether the
368       // instruction could be moved.
369       // Add the users to the work list, and keep the instruction in the work list
370       // to process it again once all users have been processed.
371       for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
372         AddInstruction(use.GetUser(), processed_instructions, post_dominated, &worklist);
373       }
374     }
375   }
376 
377   // Make sure we process instructions in dominated order. This is required for heap
378   // stores.
379   std::sort(move_in_order.begin(), move_in_order.end(), [](HInstruction* a, HInstruction* b) {
380     return b->StrictlyDominates(a);
381   });
382 
383   // Step (3): Try to move sinking candidates.
384   for (HInstruction* instruction : move_in_order) {
385     HInstruction* position = nullptr;
386     if (instruction->IsArraySet()
387             || instruction->IsInstanceFieldSet()
388             || instruction->IsConstructorFence()) {
389       if (!instructions_that_can_move.IsBitSet(instruction->InputAt(0)->GetId())) {
390         // A store can trivially move, but it can safely do so only if the heap
391         // location it stores to can also move.
392         // TODO(ngeoffray): Handle allocation/store cycles by pruning these instructions
393         // from the set and all their inputs.
394         continue;
395       }
396       // Find the position of the instruction we're storing into, filtering out this
397       // store and all other stores to that instruction.
398       position = FindIdealPosition(instruction->InputAt(0), post_dominated, /* filter */ true);
399 
400       // The position needs to be dominated by the store, in order for the store to move there.
401       if (position == nullptr || !instruction->GetBlock()->Dominates(position->GetBlock())) {
402         continue;
403       }
404     } else {
405       // Find the ideal position within the post dominated blocks.
406       position = FindIdealPosition(instruction, post_dominated);
407       if (position == nullptr) {
408         continue;
409       }
410     }
411     // Bail if we could not find a position in the post dominated blocks (for example,
412     // if there are multiple users whose common dominator is not in the list of
413     // post dominated blocks).
414     if (!post_dominated.IsBitSet(position->GetBlock()->GetBlockId())) {
415       continue;
416     }
417     MaybeRecordStat(MethodCompilationStat::kInstructionSunk);
418     instruction->MoveBefore(position, /* ensure_safety */ false);
419   }
420 }
421 
422 }  // namespace art
423