1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_simplifier.h"
18
19 #include "art_method-inl.h"
20 #include "class_linker-inl.h"
21 #include "escape.h"
22 #include "intrinsics.h"
23 #include "mirror/class-inl.h"
24 #include "sharpening.h"
25 #include "scoped_thread_state_change-inl.h"
26
27 namespace art {
28
29 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
30 public:
InstructionSimplifierVisitor(HGraph * graph,CodeGenerator * codegen,CompilerDriver * compiler_driver,OptimizingCompilerStats * stats)31 InstructionSimplifierVisitor(HGraph* graph,
32 CodeGenerator* codegen,
33 CompilerDriver* compiler_driver,
34 OptimizingCompilerStats* stats)
35 : HGraphDelegateVisitor(graph),
36 codegen_(codegen),
37 compiler_driver_(compiler_driver),
38 stats_(stats) {}
39
40 void Run();
41
42 private:
RecordSimplification()43 void RecordSimplification() {
44 simplification_occurred_ = true;
45 simplifications_at_current_position_++;
46 MaybeRecordStat(kInstructionSimplifications);
47 }
48
MaybeRecordStat(MethodCompilationStat stat)49 void MaybeRecordStat(MethodCompilationStat stat) {
50 if (stats_ != nullptr) {
51 stats_->RecordStat(stat);
52 }
53 }
54
55 bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
56 bool TryReplaceWithRotate(HBinaryOperation* instruction);
57 bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
58 bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
59 bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
60
61 bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
62 // `op` should be either HOr or HAnd.
63 // De Morgan's laws:
64 // ~a & ~b = ~(a | b) and ~a | ~b = ~(a & b)
65 bool TryDeMorganNegationFactoring(HBinaryOperation* op);
66 bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
67 bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
68
69 void VisitShift(HBinaryOperation* shift);
70
71 void VisitEqual(HEqual* equal) OVERRIDE;
72 void VisitNotEqual(HNotEqual* equal) OVERRIDE;
73 void VisitBooleanNot(HBooleanNot* bool_not) OVERRIDE;
74 void VisitInstanceFieldSet(HInstanceFieldSet* equal) OVERRIDE;
75 void VisitStaticFieldSet(HStaticFieldSet* equal) OVERRIDE;
76 void VisitArraySet(HArraySet* equal) OVERRIDE;
77 void VisitTypeConversion(HTypeConversion* instruction) OVERRIDE;
78 void VisitNullCheck(HNullCheck* instruction) OVERRIDE;
79 void VisitArrayLength(HArrayLength* instruction) OVERRIDE;
80 void VisitCheckCast(HCheckCast* instruction) OVERRIDE;
81 void VisitAdd(HAdd* instruction) OVERRIDE;
82 void VisitAnd(HAnd* instruction) OVERRIDE;
83 void VisitCondition(HCondition* instruction) OVERRIDE;
84 void VisitGreaterThan(HGreaterThan* condition) OVERRIDE;
85 void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) OVERRIDE;
86 void VisitLessThan(HLessThan* condition) OVERRIDE;
87 void VisitLessThanOrEqual(HLessThanOrEqual* condition) OVERRIDE;
88 void VisitBelow(HBelow* condition) OVERRIDE;
89 void VisitBelowOrEqual(HBelowOrEqual* condition) OVERRIDE;
90 void VisitAbove(HAbove* condition) OVERRIDE;
91 void VisitAboveOrEqual(HAboveOrEqual* condition) OVERRIDE;
92 void VisitDiv(HDiv* instruction) OVERRIDE;
93 void VisitMul(HMul* instruction) OVERRIDE;
94 void VisitNeg(HNeg* instruction) OVERRIDE;
95 void VisitNot(HNot* instruction) OVERRIDE;
96 void VisitOr(HOr* instruction) OVERRIDE;
97 void VisitShl(HShl* instruction) OVERRIDE;
98 void VisitShr(HShr* instruction) OVERRIDE;
99 void VisitSub(HSub* instruction) OVERRIDE;
100 void VisitUShr(HUShr* instruction) OVERRIDE;
101 void VisitXor(HXor* instruction) OVERRIDE;
102 void VisitSelect(HSelect* select) OVERRIDE;
103 void VisitIf(HIf* instruction) OVERRIDE;
104 void VisitInstanceOf(HInstanceOf* instruction) OVERRIDE;
105 void VisitInvoke(HInvoke* invoke) OVERRIDE;
106 void VisitDeoptimize(HDeoptimize* deoptimize) OVERRIDE;
107
108 bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
109
110 void SimplifyRotate(HInvoke* invoke, bool is_left, Primitive::Type type);
111 void SimplifySystemArrayCopy(HInvoke* invoke);
112 void SimplifyStringEquals(HInvoke* invoke);
113 void SimplifyCompare(HInvoke* invoke, bool is_signum, Primitive::Type type);
114 void SimplifyIsNaN(HInvoke* invoke);
115 void SimplifyFP2Int(HInvoke* invoke);
116 void SimplifyStringCharAt(HInvoke* invoke);
117 void SimplifyStringIsEmptyOrLength(HInvoke* invoke);
118 void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
119 void SimplifyReturnThis(HInvoke* invoke);
120 void SimplifyAllocationIntrinsic(HInvoke* invoke);
121 void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
122
123 CodeGenerator* codegen_;
124 CompilerDriver* compiler_driver_;
125 OptimizingCompilerStats* stats_;
126 bool simplification_occurred_ = false;
127 int simplifications_at_current_position_ = 0;
128 // We ensure we do not loop infinitely. The value should not be too high, since that
129 // would allow looping around the same basic block too many times. The value should
130 // not be too low either, however, since we want to allow revisiting a basic block
131 // with many statements and simplifications at least once.
132 static constexpr int kMaxSamePositionSimplifications = 50;
133 };
134
Run()135 void InstructionSimplifier::Run() {
136 InstructionSimplifierVisitor visitor(graph_, codegen_, compiler_driver_, stats_);
137 visitor.Run();
138 }
139
Run()140 void InstructionSimplifierVisitor::Run() {
141 // Iterate in reverse post order to open up more simplifications to users
142 // of instructions that got simplified.
143 for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
144 // The simplification of an instruction to another instruction may yield
145 // possibilities for other simplifications. So although we perform a reverse
146 // post order visit, we sometimes need to revisit an instruction index.
147 do {
148 simplification_occurred_ = false;
149 VisitBasicBlock(block);
150 } while (simplification_occurred_ &&
151 (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
152 simplifications_at_current_position_ = 0;
153 }
154 }
155
156 namespace {
157
AreAllBitsSet(HConstant * constant)158 bool AreAllBitsSet(HConstant* constant) {
159 return Int64FromConstant(constant) == -1;
160 }
161
162 } // namespace
163
164 // Returns true if the code was simplified to use only one negation operation
165 // after the binary operation instead of one on each of the inputs.
TryMoveNegOnInputsAfterBinop(HBinaryOperation * binop)166 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
167 DCHECK(binop->IsAdd() || binop->IsSub());
168 DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
169 HNeg* left_neg = binop->GetLeft()->AsNeg();
170 HNeg* right_neg = binop->GetRight()->AsNeg();
171 if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
172 !right_neg->HasOnlyOneNonEnvironmentUse()) {
173 return false;
174 }
175 // Replace code looking like
176 // NEG tmp1, a
177 // NEG tmp2, b
178 // ADD dst, tmp1, tmp2
179 // with
180 // ADD tmp, a, b
181 // NEG dst, tmp
182 // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
183 // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
184 // while the later yields `-0.0`.
185 if (!Primitive::IsIntegralType(binop->GetType())) {
186 return false;
187 }
188 binop->ReplaceInput(left_neg->GetInput(), 0);
189 binop->ReplaceInput(right_neg->GetInput(), 1);
190 left_neg->GetBlock()->RemoveInstruction(left_neg);
191 right_neg->GetBlock()->RemoveInstruction(right_neg);
192 HNeg* neg = new (GetGraph()->GetArena()) HNeg(binop->GetType(), binop);
193 binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
194 binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
195 RecordSimplification();
196 return true;
197 }
198
TryDeMorganNegationFactoring(HBinaryOperation * op)199 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
200 DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
201 Primitive::Type type = op->GetType();
202 HInstruction* left = op->GetLeft();
203 HInstruction* right = op->GetRight();
204
205 // We can apply De Morgan's laws if both inputs are Not's and are only used
206 // by `op`.
207 if (((left->IsNot() && right->IsNot()) ||
208 (left->IsBooleanNot() && right->IsBooleanNot())) &&
209 left->HasOnlyOneNonEnvironmentUse() &&
210 right->HasOnlyOneNonEnvironmentUse()) {
211 // Replace code looking like
212 // NOT nota, a
213 // NOT notb, b
214 // AND dst, nota, notb (respectively OR)
215 // with
216 // OR or, a, b (respectively AND)
217 // NOT dest, or
218 HInstruction* src_left = left->InputAt(0);
219 HInstruction* src_right = right->InputAt(0);
220 uint32_t dex_pc = op->GetDexPc();
221
222 // Remove the negations on the inputs.
223 left->ReplaceWith(src_left);
224 right->ReplaceWith(src_right);
225 left->GetBlock()->RemoveInstruction(left);
226 right->GetBlock()->RemoveInstruction(right);
227
228 // Replace the `HAnd` or `HOr`.
229 HBinaryOperation* hbin;
230 if (op->IsAnd()) {
231 hbin = new (GetGraph()->GetArena()) HOr(type, src_left, src_right, dex_pc);
232 } else {
233 hbin = new (GetGraph()->GetArena()) HAnd(type, src_left, src_right, dex_pc);
234 }
235 HInstruction* hnot;
236 if (left->IsBooleanNot()) {
237 hnot = new (GetGraph()->GetArena()) HBooleanNot(hbin, dex_pc);
238 } else {
239 hnot = new (GetGraph()->GetArena()) HNot(type, hbin, dex_pc);
240 }
241
242 op->GetBlock()->InsertInstructionBefore(hbin, op);
243 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
244
245 RecordSimplification();
246 return true;
247 }
248
249 return false;
250 }
251
VisitShift(HBinaryOperation * instruction)252 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
253 DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
254 HInstruction* shift_amount = instruction->GetRight();
255 HInstruction* value = instruction->GetLeft();
256
257 int64_t implicit_mask = (value->GetType() == Primitive::kPrimLong)
258 ? kMaxLongShiftDistance
259 : kMaxIntShiftDistance;
260
261 if (shift_amount->IsConstant()) {
262 int64_t cst = Int64FromConstant(shift_amount->AsConstant());
263 int64_t masked_cst = cst & implicit_mask;
264 if (masked_cst == 0) {
265 // Replace code looking like
266 // SHL dst, value, 0
267 // with
268 // value
269 instruction->ReplaceWith(value);
270 instruction->GetBlock()->RemoveInstruction(instruction);
271 RecordSimplification();
272 return;
273 } else if (masked_cst != cst) {
274 // Replace code looking like
275 // SHL dst, value, cst
276 // where cst exceeds maximum distance with the equivalent
277 // SHL dst, value, cst & implicit_mask
278 // (as defined by shift semantics). This ensures other
279 // optimizations do not need to special case for such situations.
280 DCHECK_EQ(shift_amount->GetType(), Primitive::kPrimInt);
281 instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index */ 1);
282 RecordSimplification();
283 return;
284 }
285 }
286
287 // Shift operations implicitly mask the shift amount according to the type width. Get rid of
288 // unnecessary explicit masking operations on the shift amount.
289 // Replace code looking like
290 // AND masked_shift, shift, <superset of implicit mask>
291 // SHL dst, value, masked_shift
292 // with
293 // SHL dst, value, shift
294 if (shift_amount->IsAnd()) {
295 HAnd* and_insn = shift_amount->AsAnd();
296 HConstant* mask = and_insn->GetConstantRight();
297 if ((mask != nullptr) && ((Int64FromConstant(mask) & implicit_mask) == implicit_mask)) {
298 instruction->ReplaceInput(and_insn->GetLeastConstantLeft(), 1);
299 RecordSimplification();
300 }
301 }
302 }
303
IsSubRegBitsMinusOther(HSub * sub,size_t reg_bits,HInstruction * other)304 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
305 return (sub->GetRight() == other &&
306 sub->GetLeft()->IsConstant() &&
307 (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
308 }
309
ReplaceRotateWithRor(HBinaryOperation * op,HUShr * ushr,HShl * shl)310 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
311 HUShr* ushr,
312 HShl* shl) {
313 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
314 HRor* ror = new (GetGraph()->GetArena()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
315 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
316 if (!ushr->HasUses()) {
317 ushr->GetBlock()->RemoveInstruction(ushr);
318 }
319 if (!ushr->GetRight()->HasUses()) {
320 ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
321 }
322 if (!shl->HasUses()) {
323 shl->GetBlock()->RemoveInstruction(shl);
324 }
325 if (!shl->GetRight()->HasUses()) {
326 shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
327 }
328 RecordSimplification();
329 return true;
330 }
331
332 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
TryReplaceWithRotate(HBinaryOperation * op)333 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
334 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
335 HInstruction* left = op->GetLeft();
336 HInstruction* right = op->GetRight();
337 // If we have an UShr and a Shl (in either order).
338 if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
339 HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
340 HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
341 DCHECK(Primitive::IsIntOrLongType(ushr->GetType()));
342 if (ushr->GetType() == shl->GetType() &&
343 ushr->GetLeft() == shl->GetLeft()) {
344 if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
345 // Shift distances are both constant, try replacing with Ror if they
346 // add up to the register size.
347 return TryReplaceWithRotateConstantPattern(op, ushr, shl);
348 } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
349 // Shift distances are potentially of the form x and (reg_size - x).
350 return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
351 } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
352 // Shift distances are potentially of the form d and -d.
353 return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
354 }
355 }
356 }
357 return false;
358 }
359
360 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
361 // UShr dst, x, #rdist
362 // Shl tmp, x, #ldist
363 // OP dst, dst, tmp
364 // or like (x >>> #rdist OP x << #-ldist):
365 // UShr dst, x, #rdist
366 // Shl tmp, x, #-ldist
367 // OP dst, dst, tmp
368 // with
369 // Ror dst, x, #rdist
TryReplaceWithRotateConstantPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)370 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
371 HUShr* ushr,
372 HShl* shl) {
373 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
374 size_t reg_bits = Primitive::ComponentSize(ushr->GetType()) * kBitsPerByte;
375 size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
376 size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
377 if (((ldist + rdist) & (reg_bits - 1)) == 0) {
378 ReplaceRotateWithRor(op, ushr, shl);
379 return true;
380 }
381 return false;
382 }
383
384 // Replace code looking like (x >>> -d OP x << d):
385 // Neg neg, d
386 // UShr dst, x, neg
387 // Shl tmp, x, d
388 // OP dst, dst, tmp
389 // with
390 // Neg neg, d
391 // Ror dst, x, neg
392 // *** OR ***
393 // Replace code looking like (x >>> d OP x << -d):
394 // UShr dst, x, d
395 // Neg neg, d
396 // Shl tmp, x, neg
397 // OP dst, dst, tmp
398 // with
399 // Ror dst, x, d
TryReplaceWithRotateRegisterNegPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)400 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
401 HUShr* ushr,
402 HShl* shl) {
403 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
404 DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
405 bool neg_is_left = shl->GetRight()->IsNeg();
406 HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
407 // And the shift distance being negated is the distance being shifted the other way.
408 if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
409 ReplaceRotateWithRor(op, ushr, shl);
410 }
411 return false;
412 }
413
414 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
415 // UShr dst, x, d
416 // Sub ld, #bits, d
417 // Shl tmp, x, ld
418 // OP dst, dst, tmp
419 // with
420 // Ror dst, x, d
421 // *** OR ***
422 // Replace code looking like (x >>> (#bits - d) OP x << d):
423 // Sub rd, #bits, d
424 // UShr dst, x, rd
425 // Shl tmp, x, d
426 // OP dst, dst, tmp
427 // with
428 // Neg neg, d
429 // Ror dst, x, neg
TryReplaceWithRotateRegisterSubPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)430 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
431 HUShr* ushr,
432 HShl* shl) {
433 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
434 DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
435 size_t reg_bits = Primitive::ComponentSize(ushr->GetType()) * kBitsPerByte;
436 HInstruction* shl_shift = shl->GetRight();
437 HInstruction* ushr_shift = ushr->GetRight();
438 if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
439 (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
440 return ReplaceRotateWithRor(op, ushr, shl);
441 }
442 return false;
443 }
444
VisitNullCheck(HNullCheck * null_check)445 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
446 HInstruction* obj = null_check->InputAt(0);
447 if (!obj->CanBeNull()) {
448 null_check->ReplaceWith(obj);
449 null_check->GetBlock()->RemoveInstruction(null_check);
450 if (stats_ != nullptr) {
451 stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
452 }
453 }
454 }
455
CanEnsureNotNullAt(HInstruction * input,HInstruction * at) const456 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
457 if (!input->CanBeNull()) {
458 return true;
459 }
460
461 for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
462 HInstruction* user = use.GetUser();
463 if (user->IsNullCheck() && user->StrictlyDominates(at)) {
464 return true;
465 }
466 }
467
468 return false;
469 }
470
471 // Returns whether doing a type test between the class of `object` against `klass` has
472 // a statically known outcome. The result of the test is stored in `outcome`.
TypeCheckHasKnownOutcome(HLoadClass * klass,HInstruction * object,bool * outcome)473 static bool TypeCheckHasKnownOutcome(HLoadClass* klass, HInstruction* object, bool* outcome) {
474 DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
475 ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
476 ScopedObjectAccess soa(Thread::Current());
477 if (!obj_rti.IsValid()) {
478 // We run the simplifier before the reference type propagation so type info might not be
479 // available.
480 return false;
481 }
482
483 ReferenceTypeInfo class_rti = klass->GetLoadedClassRTI();
484 if (!class_rti.IsValid()) {
485 // Happens when the loaded class is unresolved.
486 return false;
487 }
488 DCHECK(class_rti.IsExact());
489 if (class_rti.IsSupertypeOf(obj_rti)) {
490 *outcome = true;
491 return true;
492 } else if (obj_rti.IsExact()) {
493 // The test failed at compile time so will also fail at runtime.
494 *outcome = false;
495 return true;
496 } else if (!class_rti.IsInterface()
497 && !obj_rti.IsInterface()
498 && !obj_rti.IsSupertypeOf(class_rti)) {
499 // Different type hierarchy. The test will fail.
500 *outcome = false;
501 return true;
502 }
503 return false;
504 }
505
VisitCheckCast(HCheckCast * check_cast)506 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
507 HInstruction* object = check_cast->InputAt(0);
508 HLoadClass* load_class = check_cast->InputAt(1)->AsLoadClass();
509 if (load_class->NeedsAccessCheck()) {
510 // If we need to perform an access check we cannot remove the instruction.
511 return;
512 }
513
514 if (CanEnsureNotNullAt(object, check_cast)) {
515 check_cast->ClearMustDoNullCheck();
516 }
517
518 if (object->IsNullConstant()) {
519 check_cast->GetBlock()->RemoveInstruction(check_cast);
520 MaybeRecordStat(MethodCompilationStat::kRemovedCheckedCast);
521 return;
522 }
523
524 // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
525 // the return value check with the `outcome` check, b/27651442 .
526 bool outcome = false;
527 if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
528 if (outcome) {
529 check_cast->GetBlock()->RemoveInstruction(check_cast);
530 MaybeRecordStat(MethodCompilationStat::kRemovedCheckedCast);
531 if (!load_class->HasUses()) {
532 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
533 // However, here we know that it cannot because the checkcast was successfull, hence
534 // the class was already loaded.
535 load_class->GetBlock()->RemoveInstruction(load_class);
536 }
537 } else {
538 // Don't do anything for exceptional cases for now. Ideally we should remove
539 // all instructions and blocks this instruction dominates.
540 }
541 }
542 }
543
VisitInstanceOf(HInstanceOf * instruction)544 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
545 HInstruction* object = instruction->InputAt(0);
546 HLoadClass* load_class = instruction->InputAt(1)->AsLoadClass();
547 if (load_class->NeedsAccessCheck()) {
548 // If we need to perform an access check we cannot remove the instruction.
549 return;
550 }
551
552 bool can_be_null = true;
553 if (CanEnsureNotNullAt(object, instruction)) {
554 can_be_null = false;
555 instruction->ClearMustDoNullCheck();
556 }
557
558 HGraph* graph = GetGraph();
559 if (object->IsNullConstant()) {
560 MaybeRecordStat(kRemovedInstanceOf);
561 instruction->ReplaceWith(graph->GetIntConstant(0));
562 instruction->GetBlock()->RemoveInstruction(instruction);
563 RecordSimplification();
564 return;
565 }
566
567 // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
568 // the return value check with the `outcome` check, b/27651442 .
569 bool outcome = false;
570 if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
571 MaybeRecordStat(kRemovedInstanceOf);
572 if (outcome && can_be_null) {
573 // Type test will succeed, we just need a null test.
574 HNotEqual* test = new (graph->GetArena()) HNotEqual(graph->GetNullConstant(), object);
575 instruction->GetBlock()->InsertInstructionBefore(test, instruction);
576 instruction->ReplaceWith(test);
577 } else {
578 // We've statically determined the result of the instanceof.
579 instruction->ReplaceWith(graph->GetIntConstant(outcome));
580 }
581 RecordSimplification();
582 instruction->GetBlock()->RemoveInstruction(instruction);
583 if (outcome && !load_class->HasUses()) {
584 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
585 // However, here we know that it cannot because the instanceof check was successfull, hence
586 // the class was already loaded.
587 load_class->GetBlock()->RemoveInstruction(load_class);
588 }
589 }
590 }
591
VisitInstanceFieldSet(HInstanceFieldSet * instruction)592 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
593 if ((instruction->GetValue()->GetType() == Primitive::kPrimNot)
594 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
595 instruction->ClearValueCanBeNull();
596 }
597 }
598
VisitStaticFieldSet(HStaticFieldSet * instruction)599 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
600 if ((instruction->GetValue()->GetType() == Primitive::kPrimNot)
601 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
602 instruction->ClearValueCanBeNull();
603 }
604 }
605
GetOppositeConditionSwapOps(ArenaAllocator * arena,HInstruction * cond)606 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* arena, HInstruction* cond) {
607 HInstruction *lhs = cond->InputAt(0);
608 HInstruction *rhs = cond->InputAt(1);
609 switch (cond->GetKind()) {
610 case HInstruction::kEqual:
611 return new (arena) HEqual(rhs, lhs);
612 case HInstruction::kNotEqual:
613 return new (arena) HNotEqual(rhs, lhs);
614 case HInstruction::kLessThan:
615 return new (arena) HGreaterThan(rhs, lhs);
616 case HInstruction::kLessThanOrEqual:
617 return new (arena) HGreaterThanOrEqual(rhs, lhs);
618 case HInstruction::kGreaterThan:
619 return new (arena) HLessThan(rhs, lhs);
620 case HInstruction::kGreaterThanOrEqual:
621 return new (arena) HLessThanOrEqual(rhs, lhs);
622 case HInstruction::kBelow:
623 return new (arena) HAbove(rhs, lhs);
624 case HInstruction::kBelowOrEqual:
625 return new (arena) HAboveOrEqual(rhs, lhs);
626 case HInstruction::kAbove:
627 return new (arena) HBelow(rhs, lhs);
628 case HInstruction::kAboveOrEqual:
629 return new (arena) HBelowOrEqual(rhs, lhs);
630 default:
631 LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
632 }
633 return nullptr;
634 }
635
CmpHasBoolType(HInstruction * input,HInstruction * cmp)636 static bool CmpHasBoolType(HInstruction* input, HInstruction* cmp) {
637 if (input->GetType() == Primitive::kPrimBoolean) {
638 return true; // input has direct boolean type
639 } else if (cmp->GetUses().HasExactlyOneElement()) {
640 // Comparison also has boolean type if both its input and the instruction
641 // itself feed into the same phi node.
642 HInstruction* user = cmp->GetUses().front().GetUser();
643 return user->IsPhi() && user->HasInput(input) && user->HasInput(cmp);
644 }
645 return false;
646 }
647
VisitEqual(HEqual * equal)648 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
649 HInstruction* input_const = equal->GetConstantRight();
650 if (input_const != nullptr) {
651 HInstruction* input_value = equal->GetLeastConstantLeft();
652 if (CmpHasBoolType(input_value, equal) && input_const->IsIntConstant()) {
653 HBasicBlock* block = equal->GetBlock();
654 // We are comparing the boolean to a constant which is of type int and can
655 // be any constant.
656 if (input_const->AsIntConstant()->IsTrue()) {
657 // Replace (bool_value == true) with bool_value
658 equal->ReplaceWith(input_value);
659 block->RemoveInstruction(equal);
660 RecordSimplification();
661 } else if (input_const->AsIntConstant()->IsFalse()) {
662 // Replace (bool_value == false) with !bool_value
663 equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
664 block->RemoveInstruction(equal);
665 RecordSimplification();
666 } else {
667 // Replace (bool_value == integer_not_zero_nor_one_constant) with false
668 equal->ReplaceWith(GetGraph()->GetIntConstant(0));
669 block->RemoveInstruction(equal);
670 RecordSimplification();
671 }
672 } else {
673 VisitCondition(equal);
674 }
675 } else {
676 VisitCondition(equal);
677 }
678 }
679
VisitNotEqual(HNotEqual * not_equal)680 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
681 HInstruction* input_const = not_equal->GetConstantRight();
682 if (input_const != nullptr) {
683 HInstruction* input_value = not_equal->GetLeastConstantLeft();
684 if (CmpHasBoolType(input_value, not_equal) && input_const->IsIntConstant()) {
685 HBasicBlock* block = not_equal->GetBlock();
686 // We are comparing the boolean to a constant which is of type int and can
687 // be any constant.
688 if (input_const->AsIntConstant()->IsTrue()) {
689 // Replace (bool_value != true) with !bool_value
690 not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
691 block->RemoveInstruction(not_equal);
692 RecordSimplification();
693 } else if (input_const->AsIntConstant()->IsFalse()) {
694 // Replace (bool_value != false) with bool_value
695 not_equal->ReplaceWith(input_value);
696 block->RemoveInstruction(not_equal);
697 RecordSimplification();
698 } else {
699 // Replace (bool_value != integer_not_zero_nor_one_constant) with true
700 not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
701 block->RemoveInstruction(not_equal);
702 RecordSimplification();
703 }
704 } else {
705 VisitCondition(not_equal);
706 }
707 } else {
708 VisitCondition(not_equal);
709 }
710 }
711
VisitBooleanNot(HBooleanNot * bool_not)712 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
713 HInstruction* input = bool_not->InputAt(0);
714 HInstruction* replace_with = nullptr;
715
716 if (input->IsIntConstant()) {
717 // Replace !(true/false) with false/true.
718 if (input->AsIntConstant()->IsTrue()) {
719 replace_with = GetGraph()->GetIntConstant(0);
720 } else {
721 DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
722 replace_with = GetGraph()->GetIntConstant(1);
723 }
724 } else if (input->IsBooleanNot()) {
725 // Replace (!(!bool_value)) with bool_value.
726 replace_with = input->InputAt(0);
727 } else if (input->IsCondition() &&
728 // Don't change FP compares. The definition of compares involving
729 // NaNs forces the compares to be done as written by the user.
730 !Primitive::IsFloatingPointType(input->InputAt(0)->GetType())) {
731 // Replace condition with its opposite.
732 replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
733 }
734
735 if (replace_with != nullptr) {
736 bool_not->ReplaceWith(replace_with);
737 bool_not->GetBlock()->RemoveInstruction(bool_not);
738 RecordSimplification();
739 }
740 }
741
VisitSelect(HSelect * select)742 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
743 HInstruction* replace_with = nullptr;
744 HInstruction* condition = select->GetCondition();
745 HInstruction* true_value = select->GetTrueValue();
746 HInstruction* false_value = select->GetFalseValue();
747
748 if (condition->IsBooleanNot()) {
749 // Change ((!cond) ? x : y) to (cond ? y : x).
750 condition = condition->InputAt(0);
751 std::swap(true_value, false_value);
752 select->ReplaceInput(false_value, 0);
753 select->ReplaceInput(true_value, 1);
754 select->ReplaceInput(condition, 2);
755 RecordSimplification();
756 }
757
758 if (true_value == false_value) {
759 // Replace (cond ? x : x) with (x).
760 replace_with = true_value;
761 } else if (condition->IsIntConstant()) {
762 if (condition->AsIntConstant()->IsTrue()) {
763 // Replace (true ? x : y) with (x).
764 replace_with = true_value;
765 } else {
766 // Replace (false ? x : y) with (y).
767 DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
768 replace_with = false_value;
769 }
770 } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
771 if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
772 // Replace (cond ? true : false) with (cond).
773 replace_with = condition;
774 } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
775 // Replace (cond ? false : true) with (!cond).
776 replace_with = GetGraph()->InsertOppositeCondition(condition, select);
777 }
778 }
779
780 if (replace_with != nullptr) {
781 select->ReplaceWith(replace_with);
782 select->GetBlock()->RemoveInstruction(select);
783 RecordSimplification();
784 }
785 }
786
VisitIf(HIf * instruction)787 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
788 HInstruction* condition = instruction->InputAt(0);
789 if (condition->IsBooleanNot()) {
790 // Swap successors if input is negated.
791 instruction->ReplaceInput(condition->InputAt(0), 0);
792 instruction->GetBlock()->SwapSuccessors();
793 RecordSimplification();
794 }
795 }
796
VisitArrayLength(HArrayLength * instruction)797 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
798 HInstruction* input = instruction->InputAt(0);
799 // If the array is a NewArray with constant size, replace the array length
800 // with the constant instruction. This helps the bounds check elimination phase.
801 if (input->IsNewArray()) {
802 input = input->AsNewArray()->GetLength();
803 if (input->IsIntConstant()) {
804 instruction->ReplaceWith(input);
805 }
806 }
807 }
808
VisitArraySet(HArraySet * instruction)809 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
810 HInstruction* value = instruction->GetValue();
811 if (value->GetType() != Primitive::kPrimNot) return;
812
813 if (CanEnsureNotNullAt(value, instruction)) {
814 instruction->ClearValueCanBeNull();
815 }
816
817 if (value->IsArrayGet()) {
818 if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
819 // If the code is just swapping elements in the array, no need for a type check.
820 instruction->ClearNeedsTypeCheck();
821 return;
822 }
823 }
824
825 if (value->IsNullConstant()) {
826 instruction->ClearNeedsTypeCheck();
827 return;
828 }
829
830 ScopedObjectAccess soa(Thread::Current());
831 ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
832 ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
833 if (!array_rti.IsValid()) {
834 return;
835 }
836
837 if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
838 instruction->ClearNeedsTypeCheck();
839 return;
840 }
841
842 if (array_rti.IsObjectArray()) {
843 if (array_rti.IsExact()) {
844 instruction->ClearNeedsTypeCheck();
845 return;
846 }
847 instruction->SetStaticTypeOfArrayIsObjectArray();
848 }
849 }
850
IsTypeConversionImplicit(Primitive::Type input_type,Primitive::Type result_type)851 static bool IsTypeConversionImplicit(Primitive::Type input_type, Primitive::Type result_type) {
852 // Invariant: We should never generate a conversion to a Boolean value.
853 DCHECK_NE(Primitive::kPrimBoolean, result_type);
854
855 // Besides conversion to the same type, widening integral conversions are implicit,
856 // excluding conversions to long and the byte->char conversion where we need to
857 // clear the high 16 bits of the 32-bit sign-extended representation of byte.
858 return result_type == input_type ||
859 (result_type == Primitive::kPrimInt && (input_type == Primitive::kPrimBoolean ||
860 input_type == Primitive::kPrimByte ||
861 input_type == Primitive::kPrimShort ||
862 input_type == Primitive::kPrimChar)) ||
863 (result_type == Primitive::kPrimChar && input_type == Primitive::kPrimBoolean) ||
864 (result_type == Primitive::kPrimShort && (input_type == Primitive::kPrimBoolean ||
865 input_type == Primitive::kPrimByte)) ||
866 (result_type == Primitive::kPrimByte && input_type == Primitive::kPrimBoolean);
867 }
868
IsTypeConversionLossless(Primitive::Type input_type,Primitive::Type result_type)869 static bool IsTypeConversionLossless(Primitive::Type input_type, Primitive::Type result_type) {
870 // The conversion to a larger type is loss-less with the exception of two cases,
871 // - conversion to char, the only unsigned type, where we may lose some bits, and
872 // - conversion from float to long, the only FP to integral conversion with smaller FP type.
873 // For integral to FP conversions this holds because the FP mantissa is large enough.
874 DCHECK_NE(input_type, result_type);
875 return Primitive::ComponentSize(result_type) > Primitive::ComponentSize(input_type) &&
876 result_type != Primitive::kPrimChar &&
877 !(result_type == Primitive::kPrimLong && input_type == Primitive::kPrimFloat);
878 }
879
VisitTypeConversion(HTypeConversion * instruction)880 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
881 HInstruction* input = instruction->GetInput();
882 Primitive::Type input_type = input->GetType();
883 Primitive::Type result_type = instruction->GetResultType();
884 if (IsTypeConversionImplicit(input_type, result_type)) {
885 // Remove the implicit conversion; this includes conversion to the same type.
886 instruction->ReplaceWith(input);
887 instruction->GetBlock()->RemoveInstruction(instruction);
888 RecordSimplification();
889 return;
890 }
891
892 if (input->IsTypeConversion()) {
893 HTypeConversion* input_conversion = input->AsTypeConversion();
894 HInstruction* original_input = input_conversion->GetInput();
895 Primitive::Type original_type = original_input->GetType();
896
897 // When the first conversion is lossless, a direct conversion from the original type
898 // to the final type yields the same result, even for a lossy second conversion, for
899 // example float->double->int or int->double->float.
900 bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
901
902 // For integral conversions, see if the first conversion loses only bits that the second
903 // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
904 // conversion yields the same result, for example long->int->short or int->char->short.
905 bool integral_conversions_with_non_widening_second =
906 Primitive::IsIntegralType(input_type) &&
907 Primitive::IsIntegralType(original_type) &&
908 Primitive::IsIntegralType(result_type) &&
909 Primitive::ComponentSize(result_type) <= Primitive::ComponentSize(input_type);
910
911 if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
912 // If the merged conversion is implicit, do the simplification unconditionally.
913 if (IsTypeConversionImplicit(original_type, result_type)) {
914 instruction->ReplaceWith(original_input);
915 instruction->GetBlock()->RemoveInstruction(instruction);
916 if (!input_conversion->HasUses()) {
917 // Don't wait for DCE.
918 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
919 }
920 RecordSimplification();
921 return;
922 }
923 // Otherwise simplify only if the first conversion has no other use.
924 if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
925 input_conversion->ReplaceWith(original_input);
926 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
927 RecordSimplification();
928 return;
929 }
930 }
931 } else if (input->IsAnd() && Primitive::IsIntegralType(result_type)) {
932 DCHECK(Primitive::IsIntegralType(input_type));
933 HAnd* input_and = input->AsAnd();
934 HConstant* constant = input_and->GetConstantRight();
935 if (constant != nullptr) {
936 int64_t value = Int64FromConstant(constant);
937 DCHECK_NE(value, -1); // "& -1" would have been optimized away in VisitAnd().
938 size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
939 if (trailing_ones >= kBitsPerByte * Primitive::ComponentSize(result_type)) {
940 // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
941 HInstruction* original_input = input_and->GetLeastConstantLeft();
942 if (IsTypeConversionImplicit(original_input->GetType(), result_type)) {
943 instruction->ReplaceWith(original_input);
944 instruction->GetBlock()->RemoveInstruction(instruction);
945 RecordSimplification();
946 return;
947 } else if (input->HasOnlyOneNonEnvironmentUse()) {
948 input_and->ReplaceWith(original_input);
949 input_and->GetBlock()->RemoveInstruction(input_and);
950 RecordSimplification();
951 return;
952 }
953 }
954 }
955 }
956 }
957
VisitAdd(HAdd * instruction)958 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
959 HConstant* input_cst = instruction->GetConstantRight();
960 HInstruction* input_other = instruction->GetLeastConstantLeft();
961 bool integral_type = Primitive::IsIntegralType(instruction->GetType());
962 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
963 // Replace code looking like
964 // ADD dst, src, 0
965 // with
966 // src
967 // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
968 // `x` is `-0.0`, the former expression yields `0.0`, while the later
969 // yields `-0.0`.
970 if (integral_type) {
971 instruction->ReplaceWith(input_other);
972 instruction->GetBlock()->RemoveInstruction(instruction);
973 RecordSimplification();
974 return;
975 }
976 }
977
978 HInstruction* left = instruction->GetLeft();
979 HInstruction* right = instruction->GetRight();
980 bool left_is_neg = left->IsNeg();
981 bool right_is_neg = right->IsNeg();
982
983 if (left_is_neg && right_is_neg) {
984 if (TryMoveNegOnInputsAfterBinop(instruction)) {
985 return;
986 }
987 }
988
989 HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
990 if ((left_is_neg ^ right_is_neg) && neg->HasOnlyOneNonEnvironmentUse()) {
991 // Replace code looking like
992 // NEG tmp, b
993 // ADD dst, a, tmp
994 // with
995 // SUB dst, a, b
996 // We do not perform the optimization if the input negation has environment
997 // uses or multiple non-environment uses as it could lead to worse code. In
998 // particular, we do not want the live range of `b` to be extended if we are
999 // not sure the initial 'NEG' instruction can be removed.
1000 HInstruction* other = left_is_neg ? right : left;
1001 HSub* sub = new(GetGraph()->GetArena()) HSub(instruction->GetType(), other, neg->GetInput());
1002 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
1003 RecordSimplification();
1004 neg->GetBlock()->RemoveInstruction(neg);
1005 return;
1006 }
1007
1008 if (TryReplaceWithRotate(instruction)) {
1009 return;
1010 }
1011
1012 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1013 // so no need to return.
1014 TryHandleAssociativeAndCommutativeOperation(instruction);
1015
1016 if ((left->IsSub() || right->IsSub()) &&
1017 TrySubtractionChainSimplification(instruction)) {
1018 return;
1019 }
1020
1021 if (integral_type) {
1022 // Replace code patterns looking like
1023 // SUB dst1, x, y SUB dst1, x, y
1024 // ADD dst2, dst1, y ADD dst2, y, dst1
1025 // with
1026 // SUB dst1, x, y
1027 // ADD instruction is not needed in this case, we may use
1028 // one of inputs of SUB instead.
1029 if (left->IsSub() && left->InputAt(1) == right) {
1030 instruction->ReplaceWith(left->InputAt(0));
1031 RecordSimplification();
1032 instruction->GetBlock()->RemoveInstruction(instruction);
1033 return;
1034 } else if (right->IsSub() && right->InputAt(1) == left) {
1035 instruction->ReplaceWith(right->InputAt(0));
1036 RecordSimplification();
1037 instruction->GetBlock()->RemoveInstruction(instruction);
1038 return;
1039 }
1040 }
1041 }
1042
VisitAnd(HAnd * instruction)1043 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
1044 HConstant* input_cst = instruction->GetConstantRight();
1045 HInstruction* input_other = instruction->GetLeastConstantLeft();
1046
1047 if (input_cst != nullptr) {
1048 int64_t value = Int64FromConstant(input_cst);
1049 if (value == -1) {
1050 // Replace code looking like
1051 // AND dst, src, 0xFFF...FF
1052 // with
1053 // src
1054 instruction->ReplaceWith(input_other);
1055 instruction->GetBlock()->RemoveInstruction(instruction);
1056 RecordSimplification();
1057 return;
1058 }
1059 // Eliminate And from UShr+And if the And-mask contains all the bits that
1060 // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
1061 // precisely clears the shifted-in sign bits.
1062 if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
1063 size_t reg_bits = (instruction->GetResultType() == Primitive::kPrimLong) ? 64 : 32;
1064 size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
1065 size_t num_tail_bits_set = CTZ(value + 1);
1066 if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
1067 // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
1068 instruction->ReplaceWith(input_other);
1069 instruction->GetBlock()->RemoveInstruction(instruction);
1070 RecordSimplification();
1071 return;
1072 } else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
1073 input_other->HasOnlyOneNonEnvironmentUse()) {
1074 DCHECK(input_other->IsShr()); // For UShr, we would have taken the branch above.
1075 // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
1076 HUShr* ushr = new (GetGraph()->GetArena()) HUShr(instruction->GetType(),
1077 input_other->InputAt(0),
1078 input_other->InputAt(1),
1079 input_other->GetDexPc());
1080 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
1081 input_other->GetBlock()->RemoveInstruction(input_other);
1082 RecordSimplification();
1083 return;
1084 }
1085 }
1086 }
1087
1088 // We assume that GVN has run before, so we only perform a pointer comparison.
1089 // If for some reason the values are equal but the pointers are different, we
1090 // are still correct and only miss an optimization opportunity.
1091 if (instruction->GetLeft() == instruction->GetRight()) {
1092 // Replace code looking like
1093 // AND dst, src, src
1094 // with
1095 // src
1096 instruction->ReplaceWith(instruction->GetLeft());
1097 instruction->GetBlock()->RemoveInstruction(instruction);
1098 RecordSimplification();
1099 return;
1100 }
1101
1102 if (TryDeMorganNegationFactoring(instruction)) {
1103 return;
1104 }
1105
1106 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1107 // so no need to return.
1108 TryHandleAssociativeAndCommutativeOperation(instruction);
1109 }
1110
VisitGreaterThan(HGreaterThan * condition)1111 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
1112 VisitCondition(condition);
1113 }
1114
VisitGreaterThanOrEqual(HGreaterThanOrEqual * condition)1115 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
1116 VisitCondition(condition);
1117 }
1118
VisitLessThan(HLessThan * condition)1119 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
1120 VisitCondition(condition);
1121 }
1122
VisitLessThanOrEqual(HLessThanOrEqual * condition)1123 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
1124 VisitCondition(condition);
1125 }
1126
VisitBelow(HBelow * condition)1127 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
1128 VisitCondition(condition);
1129 }
1130
VisitBelowOrEqual(HBelowOrEqual * condition)1131 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
1132 VisitCondition(condition);
1133 }
1134
VisitAbove(HAbove * condition)1135 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
1136 VisitCondition(condition);
1137 }
1138
VisitAboveOrEqual(HAboveOrEqual * condition)1139 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
1140 VisitCondition(condition);
1141 }
1142
1143 // Recognize the following pattern:
1144 // obj.getClass() ==/!= Foo.class
1145 // And replace it with a constant value if the type of `obj` is statically known.
RecognizeAndSimplifyClassCheck(HCondition * condition)1146 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
1147 HInstruction* input_one = condition->InputAt(0);
1148 HInstruction* input_two = condition->InputAt(1);
1149 HLoadClass* load_class = input_one->IsLoadClass()
1150 ? input_one->AsLoadClass()
1151 : input_two->AsLoadClass();
1152 if (load_class == nullptr) {
1153 return false;
1154 }
1155
1156 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
1157 if (!class_rti.IsValid()) {
1158 // Unresolved class.
1159 return false;
1160 }
1161
1162 HInstanceFieldGet* field_get = (load_class == input_one)
1163 ? input_two->AsInstanceFieldGet()
1164 : input_one->AsInstanceFieldGet();
1165 if (field_get == nullptr) {
1166 return false;
1167 }
1168
1169 HInstruction* receiver = field_get->InputAt(0);
1170 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
1171 if (!receiver_type.IsExact()) {
1172 return false;
1173 }
1174
1175 {
1176 ScopedObjectAccess soa(Thread::Current());
1177 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1178 ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
1179 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
1180 if (field_get->GetFieldInfo().GetField() != field) {
1181 return false;
1182 }
1183
1184 // We can replace the compare.
1185 int value = 0;
1186 if (receiver_type.IsEqual(class_rti)) {
1187 value = condition->IsEqual() ? 1 : 0;
1188 } else {
1189 value = condition->IsNotEqual() ? 1 : 0;
1190 }
1191 condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
1192 return true;
1193 }
1194 }
1195
VisitCondition(HCondition * condition)1196 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
1197 if (condition->IsEqual() || condition->IsNotEqual()) {
1198 if (RecognizeAndSimplifyClassCheck(condition)) {
1199 return;
1200 }
1201 }
1202
1203 // Reverse condition if left is constant. Our code generators prefer constant
1204 // on the right hand side.
1205 if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
1206 HBasicBlock* block = condition->GetBlock();
1207 HCondition* replacement = GetOppositeConditionSwapOps(block->GetGraph()->GetArena(), condition);
1208 // If it is a fp we must set the opposite bias.
1209 if (replacement != nullptr) {
1210 if (condition->IsLtBias()) {
1211 replacement->SetBias(ComparisonBias::kGtBias);
1212 } else if (condition->IsGtBias()) {
1213 replacement->SetBias(ComparisonBias::kLtBias);
1214 }
1215 block->ReplaceAndRemoveInstructionWith(condition, replacement);
1216 RecordSimplification();
1217
1218 condition = replacement;
1219 }
1220 }
1221
1222 HInstruction* left = condition->GetLeft();
1223 HInstruction* right = condition->GetRight();
1224
1225 // Try to fold an HCompare into this HCondition.
1226
1227 // We can only replace an HCondition which compares a Compare to 0.
1228 // Both 'dx' and 'jack' generate a compare to 0 when compiling a
1229 // condition with a long, float or double comparison as input.
1230 if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
1231 // Conversion is not possible.
1232 return;
1233 }
1234
1235 // Is the Compare only used for this purpose?
1236 if (!left->GetUses().HasExactlyOneElement()) {
1237 // Someone else also wants the result of the compare.
1238 return;
1239 }
1240
1241 if (!left->GetEnvUses().empty()) {
1242 // There is a reference to the compare result in an environment. Do we really need it?
1243 if (GetGraph()->IsDebuggable()) {
1244 return;
1245 }
1246
1247 // We have to ensure that there are no deopt points in the sequence.
1248 if (left->HasAnyEnvironmentUseBefore(condition)) {
1249 return;
1250 }
1251 }
1252
1253 // Clean up any environment uses from the HCompare, if any.
1254 left->RemoveEnvironmentUsers();
1255
1256 // We have decided to fold the HCompare into the HCondition. Transfer the information.
1257 condition->SetBias(left->AsCompare()->GetBias());
1258
1259 // Replace the operands of the HCondition.
1260 condition->ReplaceInput(left->InputAt(0), 0);
1261 condition->ReplaceInput(left->InputAt(1), 1);
1262
1263 // Remove the HCompare.
1264 left->GetBlock()->RemoveInstruction(left);
1265
1266 RecordSimplification();
1267 }
1268
1269 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
CanDivideByReciprocalMultiplyFloat(int32_t divisor)1270 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
1271 // True, if the most significant bits of divisor are 0.
1272 return ((divisor & 0x7fffff) == 0);
1273 }
1274
1275 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
CanDivideByReciprocalMultiplyDouble(int64_t divisor)1276 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
1277 // True, if the most significant bits of divisor are 0.
1278 return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
1279 }
1280
VisitDiv(HDiv * instruction)1281 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
1282 HConstant* input_cst = instruction->GetConstantRight();
1283 HInstruction* input_other = instruction->GetLeastConstantLeft();
1284 Primitive::Type type = instruction->GetType();
1285
1286 if ((input_cst != nullptr) && input_cst->IsOne()) {
1287 // Replace code looking like
1288 // DIV dst, src, 1
1289 // with
1290 // src
1291 instruction->ReplaceWith(input_other);
1292 instruction->GetBlock()->RemoveInstruction(instruction);
1293 RecordSimplification();
1294 return;
1295 }
1296
1297 if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
1298 // Replace code looking like
1299 // DIV dst, src, -1
1300 // with
1301 // NEG dst, src
1302 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1303 instruction, new (GetGraph()->GetArena()) HNeg(type, input_other));
1304 RecordSimplification();
1305 return;
1306 }
1307
1308 if ((input_cst != nullptr) && Primitive::IsFloatingPointType(type)) {
1309 // Try replacing code looking like
1310 // DIV dst, src, constant
1311 // with
1312 // MUL dst, src, 1 / constant
1313 HConstant* reciprocal = nullptr;
1314 if (type == Primitive::Primitive::kPrimDouble) {
1315 double value = input_cst->AsDoubleConstant()->GetValue();
1316 if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
1317 reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
1318 }
1319 } else {
1320 DCHECK_EQ(type, Primitive::kPrimFloat);
1321 float value = input_cst->AsFloatConstant()->GetValue();
1322 if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
1323 reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
1324 }
1325 }
1326
1327 if (reciprocal != nullptr) {
1328 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1329 instruction, new (GetGraph()->GetArena()) HMul(type, input_other, reciprocal));
1330 RecordSimplification();
1331 return;
1332 }
1333 }
1334 }
1335
VisitMul(HMul * instruction)1336 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
1337 HConstant* input_cst = instruction->GetConstantRight();
1338 HInstruction* input_other = instruction->GetLeastConstantLeft();
1339 Primitive::Type type = instruction->GetType();
1340 HBasicBlock* block = instruction->GetBlock();
1341 ArenaAllocator* allocator = GetGraph()->GetArena();
1342
1343 if (input_cst == nullptr) {
1344 return;
1345 }
1346
1347 if (input_cst->IsOne()) {
1348 // Replace code looking like
1349 // MUL dst, src, 1
1350 // with
1351 // src
1352 instruction->ReplaceWith(input_other);
1353 instruction->GetBlock()->RemoveInstruction(instruction);
1354 RecordSimplification();
1355 return;
1356 }
1357
1358 if (input_cst->IsMinusOne() &&
1359 (Primitive::IsFloatingPointType(type) || Primitive::IsIntOrLongType(type))) {
1360 // Replace code looking like
1361 // MUL dst, src, -1
1362 // with
1363 // NEG dst, src
1364 HNeg* neg = new (allocator) HNeg(type, input_other);
1365 block->ReplaceAndRemoveInstructionWith(instruction, neg);
1366 RecordSimplification();
1367 return;
1368 }
1369
1370 if (Primitive::IsFloatingPointType(type) &&
1371 ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
1372 (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
1373 // Replace code looking like
1374 // FP_MUL dst, src, 2.0
1375 // with
1376 // FP_ADD dst, src, src
1377 // The 'int' and 'long' cases are handled below.
1378 block->ReplaceAndRemoveInstructionWith(instruction,
1379 new (allocator) HAdd(type, input_other, input_other));
1380 RecordSimplification();
1381 return;
1382 }
1383
1384 if (Primitive::IsIntOrLongType(type)) {
1385 int64_t factor = Int64FromConstant(input_cst);
1386 // Even though constant propagation also takes care of the zero case, other
1387 // optimizations can lead to having a zero multiplication.
1388 if (factor == 0) {
1389 // Replace code looking like
1390 // MUL dst, src, 0
1391 // with
1392 // 0
1393 instruction->ReplaceWith(input_cst);
1394 instruction->GetBlock()->RemoveInstruction(instruction);
1395 RecordSimplification();
1396 return;
1397 } else if (IsPowerOfTwo(factor)) {
1398 // Replace code looking like
1399 // MUL dst, src, pow_of_2
1400 // with
1401 // SHL dst, src, log2(pow_of_2)
1402 HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
1403 HShl* shl = new (allocator) HShl(type, input_other, shift);
1404 block->ReplaceAndRemoveInstructionWith(instruction, shl);
1405 RecordSimplification();
1406 return;
1407 } else if (IsPowerOfTwo(factor - 1)) {
1408 // Transform code looking like
1409 // MUL dst, src, (2^n + 1)
1410 // into
1411 // SHL tmp, src, n
1412 // ADD dst, src, tmp
1413 HShl* shl = new (allocator) HShl(type,
1414 input_other,
1415 GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
1416 HAdd* add = new (allocator) HAdd(type, input_other, shl);
1417
1418 block->InsertInstructionBefore(shl, instruction);
1419 block->ReplaceAndRemoveInstructionWith(instruction, add);
1420 RecordSimplification();
1421 return;
1422 } else if (IsPowerOfTwo(factor + 1)) {
1423 // Transform code looking like
1424 // MUL dst, src, (2^n - 1)
1425 // into
1426 // SHL tmp, src, n
1427 // SUB dst, tmp, src
1428 HShl* shl = new (allocator) HShl(type,
1429 input_other,
1430 GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
1431 HSub* sub = new (allocator) HSub(type, shl, input_other);
1432
1433 block->InsertInstructionBefore(shl, instruction);
1434 block->ReplaceAndRemoveInstructionWith(instruction, sub);
1435 RecordSimplification();
1436 return;
1437 }
1438 }
1439
1440 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1441 // so no need to return.
1442 TryHandleAssociativeAndCommutativeOperation(instruction);
1443 }
1444
VisitNeg(HNeg * instruction)1445 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
1446 HInstruction* input = instruction->GetInput();
1447 if (input->IsNeg()) {
1448 // Replace code looking like
1449 // NEG tmp, src
1450 // NEG dst, tmp
1451 // with
1452 // src
1453 HNeg* previous_neg = input->AsNeg();
1454 instruction->ReplaceWith(previous_neg->GetInput());
1455 instruction->GetBlock()->RemoveInstruction(instruction);
1456 // We perform the optimization even if the input negation has environment
1457 // uses since it allows removing the current instruction. But we only delete
1458 // the input negation only if it is does not have any uses left.
1459 if (!previous_neg->HasUses()) {
1460 previous_neg->GetBlock()->RemoveInstruction(previous_neg);
1461 }
1462 RecordSimplification();
1463 return;
1464 }
1465
1466 if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
1467 !Primitive::IsFloatingPointType(input->GetType())) {
1468 // Replace code looking like
1469 // SUB tmp, a, b
1470 // NEG dst, tmp
1471 // with
1472 // SUB dst, b, a
1473 // We do not perform the optimization if the input subtraction has
1474 // environment uses or multiple non-environment uses as it could lead to
1475 // worse code. In particular, we do not want the live ranges of `a` and `b`
1476 // to be extended if we are not sure the initial 'SUB' instruction can be
1477 // removed.
1478 // We do not perform optimization for fp because we could lose the sign of zero.
1479 HSub* sub = input->AsSub();
1480 HSub* new_sub =
1481 new (GetGraph()->GetArena()) HSub(instruction->GetType(), sub->GetRight(), sub->GetLeft());
1482 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
1483 if (!sub->HasUses()) {
1484 sub->GetBlock()->RemoveInstruction(sub);
1485 }
1486 RecordSimplification();
1487 }
1488 }
1489
VisitNot(HNot * instruction)1490 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
1491 HInstruction* input = instruction->GetInput();
1492 if (input->IsNot()) {
1493 // Replace code looking like
1494 // NOT tmp, src
1495 // NOT dst, tmp
1496 // with
1497 // src
1498 // We perform the optimization even if the input negation has environment
1499 // uses since it allows removing the current instruction. But we only delete
1500 // the input negation only if it is does not have any uses left.
1501 HNot* previous_not = input->AsNot();
1502 instruction->ReplaceWith(previous_not->GetInput());
1503 instruction->GetBlock()->RemoveInstruction(instruction);
1504 if (!previous_not->HasUses()) {
1505 previous_not->GetBlock()->RemoveInstruction(previous_not);
1506 }
1507 RecordSimplification();
1508 }
1509 }
1510
VisitOr(HOr * instruction)1511 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
1512 HConstant* input_cst = instruction->GetConstantRight();
1513 HInstruction* input_other = instruction->GetLeastConstantLeft();
1514
1515 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
1516 // Replace code looking like
1517 // OR dst, src, 0
1518 // with
1519 // src
1520 instruction->ReplaceWith(input_other);
1521 instruction->GetBlock()->RemoveInstruction(instruction);
1522 RecordSimplification();
1523 return;
1524 }
1525
1526 // We assume that GVN has run before, so we only perform a pointer comparison.
1527 // If for some reason the values are equal but the pointers are different, we
1528 // are still correct and only miss an optimization opportunity.
1529 if (instruction->GetLeft() == instruction->GetRight()) {
1530 // Replace code looking like
1531 // OR dst, src, src
1532 // with
1533 // src
1534 instruction->ReplaceWith(instruction->GetLeft());
1535 instruction->GetBlock()->RemoveInstruction(instruction);
1536 RecordSimplification();
1537 return;
1538 }
1539
1540 if (TryDeMorganNegationFactoring(instruction)) return;
1541
1542 if (TryReplaceWithRotate(instruction)) {
1543 return;
1544 }
1545
1546 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1547 // so no need to return.
1548 TryHandleAssociativeAndCommutativeOperation(instruction);
1549 }
1550
VisitShl(HShl * instruction)1551 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
1552 VisitShift(instruction);
1553 }
1554
VisitShr(HShr * instruction)1555 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
1556 VisitShift(instruction);
1557 }
1558
VisitSub(HSub * instruction)1559 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
1560 HConstant* input_cst = instruction->GetConstantRight();
1561 HInstruction* input_other = instruction->GetLeastConstantLeft();
1562
1563 Primitive::Type type = instruction->GetType();
1564 if (Primitive::IsFloatingPointType(type)) {
1565 return;
1566 }
1567
1568 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1569 // Replace code looking like
1570 // SUB dst, src, 0
1571 // with
1572 // src
1573 // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
1574 // `x` is `-0.0`, the former expression yields `0.0`, while the later
1575 // yields `-0.0`.
1576 instruction->ReplaceWith(input_other);
1577 instruction->GetBlock()->RemoveInstruction(instruction);
1578 RecordSimplification();
1579 return;
1580 }
1581
1582 HBasicBlock* block = instruction->GetBlock();
1583 ArenaAllocator* allocator = GetGraph()->GetArena();
1584
1585 HInstruction* left = instruction->GetLeft();
1586 HInstruction* right = instruction->GetRight();
1587 if (left->IsConstant()) {
1588 if (Int64FromConstant(left->AsConstant()) == 0) {
1589 // Replace code looking like
1590 // SUB dst, 0, src
1591 // with
1592 // NEG dst, src
1593 // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
1594 // `x` is `0.0`, the former expression yields `0.0`, while the later
1595 // yields `-0.0`.
1596 HNeg* neg = new (allocator) HNeg(type, right);
1597 block->ReplaceAndRemoveInstructionWith(instruction, neg);
1598 RecordSimplification();
1599 return;
1600 }
1601 }
1602
1603 if (left->IsNeg() && right->IsNeg()) {
1604 if (TryMoveNegOnInputsAfterBinop(instruction)) {
1605 return;
1606 }
1607 }
1608
1609 if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
1610 // Replace code looking like
1611 // NEG tmp, b
1612 // SUB dst, a, tmp
1613 // with
1614 // ADD dst, a, b
1615 HAdd* add = new(GetGraph()->GetArena()) HAdd(type, left, right->AsNeg()->GetInput());
1616 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
1617 RecordSimplification();
1618 right->GetBlock()->RemoveInstruction(right);
1619 return;
1620 }
1621
1622 if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
1623 // Replace code looking like
1624 // NEG tmp, a
1625 // SUB dst, tmp, b
1626 // with
1627 // ADD tmp, a, b
1628 // NEG dst, tmp
1629 // The second version is not intrinsically better, but enables more
1630 // transformations.
1631 HAdd* add = new(GetGraph()->GetArena()) HAdd(type, left->AsNeg()->GetInput(), right);
1632 instruction->GetBlock()->InsertInstructionBefore(add, instruction);
1633 HNeg* neg = new (GetGraph()->GetArena()) HNeg(instruction->GetType(), add);
1634 instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
1635 instruction->ReplaceWith(neg);
1636 instruction->GetBlock()->RemoveInstruction(instruction);
1637 RecordSimplification();
1638 left->GetBlock()->RemoveInstruction(left);
1639 return;
1640 }
1641
1642 if (TrySubtractionChainSimplification(instruction)) {
1643 return;
1644 }
1645
1646 if (left->IsAdd()) {
1647 // Replace code patterns looking like
1648 // ADD dst1, x, y ADD dst1, x, y
1649 // SUB dst2, dst1, y SUB dst2, dst1, x
1650 // with
1651 // ADD dst1, x, y
1652 // SUB instruction is not needed in this case, we may use
1653 // one of inputs of ADD instead.
1654 // It is applicable to integral types only.
1655 DCHECK(Primitive::IsIntegralType(type));
1656 if (left->InputAt(1) == right) {
1657 instruction->ReplaceWith(left->InputAt(0));
1658 RecordSimplification();
1659 instruction->GetBlock()->RemoveInstruction(instruction);
1660 return;
1661 } else if (left->InputAt(0) == right) {
1662 instruction->ReplaceWith(left->InputAt(1));
1663 RecordSimplification();
1664 instruction->GetBlock()->RemoveInstruction(instruction);
1665 return;
1666 }
1667 }
1668 }
1669
VisitUShr(HUShr * instruction)1670 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
1671 VisitShift(instruction);
1672 }
1673
VisitXor(HXor * instruction)1674 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
1675 HConstant* input_cst = instruction->GetConstantRight();
1676 HInstruction* input_other = instruction->GetLeastConstantLeft();
1677
1678 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
1679 // Replace code looking like
1680 // XOR dst, src, 0
1681 // with
1682 // src
1683 instruction->ReplaceWith(input_other);
1684 instruction->GetBlock()->RemoveInstruction(instruction);
1685 RecordSimplification();
1686 return;
1687 }
1688
1689 if ((input_cst != nullptr) && input_cst->IsOne()
1690 && input_other->GetType() == Primitive::kPrimBoolean) {
1691 // Replace code looking like
1692 // XOR dst, src, 1
1693 // with
1694 // BOOLEAN_NOT dst, src
1695 HBooleanNot* boolean_not = new (GetGraph()->GetArena()) HBooleanNot(input_other);
1696 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
1697 RecordSimplification();
1698 return;
1699 }
1700
1701 if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
1702 // Replace code looking like
1703 // XOR dst, src, 0xFFF...FF
1704 // with
1705 // NOT dst, src
1706 HNot* bitwise_not = new (GetGraph()->GetArena()) HNot(instruction->GetType(), input_other);
1707 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
1708 RecordSimplification();
1709 return;
1710 }
1711
1712 HInstruction* left = instruction->GetLeft();
1713 HInstruction* right = instruction->GetRight();
1714 if (((left->IsNot() && right->IsNot()) ||
1715 (left->IsBooleanNot() && right->IsBooleanNot())) &&
1716 left->HasOnlyOneNonEnvironmentUse() &&
1717 right->HasOnlyOneNonEnvironmentUse()) {
1718 // Replace code looking like
1719 // NOT nota, a
1720 // NOT notb, b
1721 // XOR dst, nota, notb
1722 // with
1723 // XOR dst, a, b
1724 instruction->ReplaceInput(left->InputAt(0), 0);
1725 instruction->ReplaceInput(right->InputAt(0), 1);
1726 left->GetBlock()->RemoveInstruction(left);
1727 right->GetBlock()->RemoveInstruction(right);
1728 RecordSimplification();
1729 return;
1730 }
1731
1732 if (TryReplaceWithRotate(instruction)) {
1733 return;
1734 }
1735
1736 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1737 // so no need to return.
1738 TryHandleAssociativeAndCommutativeOperation(instruction);
1739 }
1740
SimplifyStringEquals(HInvoke * instruction)1741 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
1742 HInstruction* argument = instruction->InputAt(1);
1743 HInstruction* receiver = instruction->InputAt(0);
1744 if (receiver == argument) {
1745 // Because String.equals is an instance call, the receiver is
1746 // a null check if we don't know it's null. The argument however, will
1747 // be the actual object. So we cannot end up in a situation where both
1748 // are equal but could be null.
1749 DCHECK(CanEnsureNotNullAt(argument, instruction));
1750 instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
1751 instruction->GetBlock()->RemoveInstruction(instruction);
1752 } else {
1753 StringEqualsOptimizations optimizations(instruction);
1754 if (CanEnsureNotNullAt(argument, instruction)) {
1755 optimizations.SetArgumentNotNull();
1756 }
1757 ScopedObjectAccess soa(Thread::Current());
1758 ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
1759 if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
1760 optimizations.SetArgumentIsString();
1761 }
1762 }
1763 }
1764
SimplifyRotate(HInvoke * invoke,bool is_left,Primitive::Type type)1765 void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke,
1766 bool is_left,
1767 Primitive::Type type) {
1768 DCHECK(invoke->IsInvokeStaticOrDirect());
1769 DCHECK_EQ(invoke->GetInvokeType(), InvokeType::kStatic);
1770 HInstruction* value = invoke->InputAt(0);
1771 HInstruction* distance = invoke->InputAt(1);
1772 // Replace the invoke with an HRor.
1773 if (is_left) {
1774 // Unconditionally set the type of the negated distance to `int`,
1775 // as shift and rotate operations expect a 32-bit (or narrower)
1776 // value for their distance input.
1777 distance = new (GetGraph()->GetArena()) HNeg(Primitive::kPrimInt, distance);
1778 invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
1779 }
1780 HRor* ror = new (GetGraph()->GetArena()) HRor(type, value, distance);
1781 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
1782 // Remove ClinitCheck and LoadClass, if possible.
1783 HInstruction* clinit = invoke->GetInputs().back();
1784 if (clinit->IsClinitCheck() && !clinit->HasUses()) {
1785 clinit->GetBlock()->RemoveInstruction(clinit);
1786 HInstruction* ldclass = clinit->InputAt(0);
1787 if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
1788 ldclass->GetBlock()->RemoveInstruction(ldclass);
1789 }
1790 }
1791 }
1792
IsArrayLengthOf(HInstruction * potential_length,HInstruction * potential_array)1793 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
1794 if (potential_length->IsArrayLength()) {
1795 return potential_length->InputAt(0) == potential_array;
1796 }
1797
1798 if (potential_array->IsNewArray()) {
1799 return potential_array->AsNewArray()->GetLength() == potential_length;
1800 }
1801
1802 return false;
1803 }
1804
SimplifySystemArrayCopy(HInvoke * instruction)1805 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
1806 HInstruction* source = instruction->InputAt(0);
1807 HInstruction* destination = instruction->InputAt(2);
1808 HInstruction* count = instruction->InputAt(4);
1809 SystemArrayCopyOptimizations optimizations(instruction);
1810 if (CanEnsureNotNullAt(source, instruction)) {
1811 optimizations.SetSourceIsNotNull();
1812 }
1813 if (CanEnsureNotNullAt(destination, instruction)) {
1814 optimizations.SetDestinationIsNotNull();
1815 }
1816 if (destination == source) {
1817 optimizations.SetDestinationIsSource();
1818 }
1819
1820 if (IsArrayLengthOf(count, source)) {
1821 optimizations.SetCountIsSourceLength();
1822 }
1823
1824 if (IsArrayLengthOf(count, destination)) {
1825 optimizations.SetCountIsDestinationLength();
1826 }
1827
1828 {
1829 ScopedObjectAccess soa(Thread::Current());
1830 Primitive::Type source_component_type = Primitive::kPrimVoid;
1831 Primitive::Type destination_component_type = Primitive::kPrimVoid;
1832 ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
1833 if (destination_rti.IsValid()) {
1834 if (destination_rti.IsObjectArray()) {
1835 if (destination_rti.IsExact()) {
1836 optimizations.SetDoesNotNeedTypeCheck();
1837 }
1838 optimizations.SetDestinationIsTypedObjectArray();
1839 }
1840 if (destination_rti.IsPrimitiveArrayClass()) {
1841 destination_component_type =
1842 destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType();
1843 optimizations.SetDestinationIsPrimitiveArray();
1844 } else if (destination_rti.IsNonPrimitiveArrayClass()) {
1845 optimizations.SetDestinationIsNonPrimitiveArray();
1846 }
1847 }
1848 ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
1849 if (source_rti.IsValid()) {
1850 if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
1851 optimizations.SetDoesNotNeedTypeCheck();
1852 }
1853 if (source_rti.IsPrimitiveArrayClass()) {
1854 optimizations.SetSourceIsPrimitiveArray();
1855 source_component_type = source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType();
1856 } else if (source_rti.IsNonPrimitiveArrayClass()) {
1857 optimizations.SetSourceIsNonPrimitiveArray();
1858 }
1859 }
1860 // For primitive arrays, use their optimized ArtMethod implementations.
1861 if ((source_component_type != Primitive::kPrimVoid) &&
1862 (source_component_type == destination_component_type)) {
1863 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1864 PointerSize image_size = class_linker->GetImagePointerSize();
1865 HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
1866 mirror::Class* system = invoke->GetResolvedMethod()->GetDeclaringClass();
1867 ArtMethod* method = nullptr;
1868 switch (source_component_type) {
1869 case Primitive::kPrimBoolean:
1870 method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size);
1871 break;
1872 case Primitive::kPrimByte:
1873 method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size);
1874 break;
1875 case Primitive::kPrimChar:
1876 method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size);
1877 break;
1878 case Primitive::kPrimShort:
1879 method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size);
1880 break;
1881 case Primitive::kPrimInt:
1882 method = system->FindClassMethod("arraycopy", "([II[III)V", image_size);
1883 break;
1884 case Primitive::kPrimFloat:
1885 method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size);
1886 break;
1887 case Primitive::kPrimLong:
1888 method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size);
1889 break;
1890 case Primitive::kPrimDouble:
1891 method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size);
1892 break;
1893 default:
1894 LOG(FATAL) << "Unreachable";
1895 }
1896 DCHECK(method != nullptr);
1897 DCHECK(method->IsStatic());
1898 DCHECK(method->GetDeclaringClass() == system);
1899 invoke->SetResolvedMethod(method);
1900 // Sharpen the new invoke. Note that we do not update the dex method index of
1901 // the invoke, as we would need to look it up in the current dex file, and it
1902 // is unlikely that it exists. The most usual situation for such typed
1903 // arraycopy methods is a direct pointer to the boot image.
1904 HSharpening::SharpenInvokeStaticOrDirect(invoke, codegen_, compiler_driver_);
1905 }
1906 }
1907 }
1908
SimplifyCompare(HInvoke * invoke,bool is_signum,Primitive::Type type)1909 void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke,
1910 bool is_signum,
1911 Primitive::Type type) {
1912 DCHECK(invoke->IsInvokeStaticOrDirect());
1913 uint32_t dex_pc = invoke->GetDexPc();
1914 HInstruction* left = invoke->InputAt(0);
1915 HInstruction* right;
1916 if (!is_signum) {
1917 right = invoke->InputAt(1);
1918 } else if (type == Primitive::kPrimLong) {
1919 right = GetGraph()->GetLongConstant(0);
1920 } else {
1921 right = GetGraph()->GetIntConstant(0);
1922 }
1923 HCompare* compare = new (GetGraph()->GetArena())
1924 HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
1925 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
1926 }
1927
SimplifyIsNaN(HInvoke * invoke)1928 void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
1929 DCHECK(invoke->IsInvokeStaticOrDirect());
1930 uint32_t dex_pc = invoke->GetDexPc();
1931 // IsNaN(x) is the same as x != x.
1932 HInstruction* x = invoke->InputAt(0);
1933 HCondition* condition = new (GetGraph()->GetArena()) HNotEqual(x, x, dex_pc);
1934 condition->SetBias(ComparisonBias::kLtBias);
1935 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
1936 }
1937
SimplifyFP2Int(HInvoke * invoke)1938 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
1939 DCHECK(invoke->IsInvokeStaticOrDirect());
1940 uint32_t dex_pc = invoke->GetDexPc();
1941 HInstruction* x = invoke->InputAt(0);
1942 Primitive::Type type = x->GetType();
1943 // Set proper bit pattern for NaN and replace intrinsic with raw version.
1944 HInstruction* nan;
1945 if (type == Primitive::kPrimDouble) {
1946 nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
1947 invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
1948 kNeedsEnvironmentOrCache,
1949 kNoSideEffects,
1950 kNoThrow);
1951 } else {
1952 DCHECK_EQ(type, Primitive::kPrimFloat);
1953 nan = GetGraph()->GetIntConstant(0x7fc00000);
1954 invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
1955 kNeedsEnvironmentOrCache,
1956 kNoSideEffects,
1957 kNoThrow);
1958 }
1959 // Test IsNaN(x), which is the same as x != x.
1960 HCondition* condition = new (GetGraph()->GetArena()) HNotEqual(x, x, dex_pc);
1961 condition->SetBias(ComparisonBias::kLtBias);
1962 invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
1963 // Select between the two.
1964 HInstruction* select = new (GetGraph()->GetArena()) HSelect(condition, nan, invoke, dex_pc);
1965 invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
1966 invoke->ReplaceWithExceptInReplacementAtIndex(select, 0); // false at index 0
1967 }
1968
SimplifyStringCharAt(HInvoke * invoke)1969 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
1970 HInstruction* str = invoke->InputAt(0);
1971 HInstruction* index = invoke->InputAt(1);
1972 uint32_t dex_pc = invoke->GetDexPc();
1973 ArenaAllocator* arena = GetGraph()->GetArena();
1974 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
1975 // so create the HArrayLength, HBoundsCheck and HArrayGet.
1976 HArrayLength* length = new (arena) HArrayLength(str, dex_pc, /* is_string_length */ true);
1977 invoke->GetBlock()->InsertInstructionBefore(length, invoke);
1978 HBoundsCheck* bounds_check = new (arena) HBoundsCheck(
1979 index, length, dex_pc, invoke->GetDexMethodIndex());
1980 invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
1981 HArrayGet* array_get = new (arena) HArrayGet(
1982 str, bounds_check, Primitive::kPrimChar, dex_pc, /* is_string_char_at */ true);
1983 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
1984 bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
1985 GetGraph()->SetHasBoundsChecks(true);
1986 }
1987
SimplifyStringIsEmptyOrLength(HInvoke * invoke)1988 void InstructionSimplifierVisitor::SimplifyStringIsEmptyOrLength(HInvoke* invoke) {
1989 HInstruction* str = invoke->InputAt(0);
1990 uint32_t dex_pc = invoke->GetDexPc();
1991 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
1992 // so create the HArrayLength.
1993 HArrayLength* length =
1994 new (GetGraph()->GetArena()) HArrayLength(str, dex_pc, /* is_string_length */ true);
1995 HInstruction* replacement;
1996 if (invoke->GetIntrinsic() == Intrinsics::kStringIsEmpty) {
1997 // For String.isEmpty(), create the `HEqual` representing the `length == 0`.
1998 invoke->GetBlock()->InsertInstructionBefore(length, invoke);
1999 HIntConstant* zero = GetGraph()->GetIntConstant(0);
2000 HEqual* equal = new (GetGraph()->GetArena()) HEqual(length, zero, dex_pc);
2001 replacement = equal;
2002 } else {
2003 DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringLength);
2004 replacement = length;
2005 }
2006 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, replacement);
2007 }
2008
2009 // This method should only be used on intrinsics whose sole way of throwing an
2010 // exception is raising a NPE when the nth argument is null. If that argument
2011 // is provably non-null, we can clear the flag.
SimplifyNPEOnArgN(HInvoke * invoke,size_t n)2012 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
2013 HInstruction* arg = invoke->InputAt(n);
2014 if (invoke->CanThrow() && !arg->CanBeNull()) {
2015 invoke->SetCanThrow(false);
2016 }
2017 }
2018
2019 // Methods that return "this" can replace the returned value with the receiver.
SimplifyReturnThis(HInvoke * invoke)2020 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
2021 if (invoke->HasUses()) {
2022 HInstruction* receiver = invoke->InputAt(0);
2023 invoke->ReplaceWith(receiver);
2024 RecordSimplification();
2025 }
2026 }
2027
2028 // Helper method for StringBuffer escape analysis.
NoEscapeForStringBufferReference(HInstruction * reference,HInstruction * user)2029 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
2030 if (user->IsInvokeStaticOrDirect()) {
2031 // Any constructor on StringBuffer is okay.
2032 return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2033 user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2034 user->InputAt(0) == reference;
2035 } else if (user->IsInvokeVirtual()) {
2036 switch (user->AsInvokeVirtual()->GetIntrinsic()) {
2037 case Intrinsics::kStringBufferLength:
2038 case Intrinsics::kStringBufferToString:
2039 DCHECK_EQ(user->InputAt(0), reference);
2040 return true;
2041 case Intrinsics::kStringBufferAppend:
2042 // Returns "this", so only okay if no further uses.
2043 DCHECK_EQ(user->InputAt(0), reference);
2044 DCHECK_NE(user->InputAt(1), reference);
2045 return !user->HasUses();
2046 default:
2047 break;
2048 }
2049 }
2050 return false;
2051 }
2052
2053 // Certain allocation intrinsics are not removed by dead code elimination
2054 // because of potentially throwing an OOM exception or other side effects.
2055 // This method removes such intrinsics when special circumstances allow.
SimplifyAllocationIntrinsic(HInvoke * invoke)2056 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
2057 if (!invoke->HasUses()) {
2058 // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
2059 // the potential OOM of course. Otherwise, we must ensure the receiver object of this
2060 // call does not escape since only thread-local synchronization may be removed.
2061 bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
2062 HInstruction* receiver = invoke->InputAt(0);
2063 if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
2064 invoke->GetBlock()->RemoveInstruction(invoke);
2065 RecordSimplification();
2066 }
2067 }
2068 }
2069
SimplifyMemBarrier(HInvoke * invoke,MemBarrierKind barrier_kind)2070 void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind) {
2071 uint32_t dex_pc = invoke->GetDexPc();
2072 HMemoryBarrier* mem_barrier = new (GetGraph()->GetArena()) HMemoryBarrier(barrier_kind, dex_pc);
2073 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
2074 }
2075
VisitInvoke(HInvoke * instruction)2076 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
2077 switch (instruction->GetIntrinsic()) {
2078 case Intrinsics::kStringEquals:
2079 SimplifyStringEquals(instruction);
2080 break;
2081 case Intrinsics::kSystemArrayCopy:
2082 SimplifySystemArrayCopy(instruction);
2083 break;
2084 case Intrinsics::kIntegerRotateRight:
2085 SimplifyRotate(instruction, /* is_left */ false, Primitive::kPrimInt);
2086 break;
2087 case Intrinsics::kLongRotateRight:
2088 SimplifyRotate(instruction, /* is_left */ false, Primitive::kPrimLong);
2089 break;
2090 case Intrinsics::kIntegerRotateLeft:
2091 SimplifyRotate(instruction, /* is_left */ true, Primitive::kPrimInt);
2092 break;
2093 case Intrinsics::kLongRotateLeft:
2094 SimplifyRotate(instruction, /* is_left */ true, Primitive::kPrimLong);
2095 break;
2096 case Intrinsics::kIntegerCompare:
2097 SimplifyCompare(instruction, /* is_signum */ false, Primitive::kPrimInt);
2098 break;
2099 case Intrinsics::kLongCompare:
2100 SimplifyCompare(instruction, /* is_signum */ false, Primitive::kPrimLong);
2101 break;
2102 case Intrinsics::kIntegerSignum:
2103 SimplifyCompare(instruction, /* is_signum */ true, Primitive::kPrimInt);
2104 break;
2105 case Intrinsics::kLongSignum:
2106 SimplifyCompare(instruction, /* is_signum */ true, Primitive::kPrimLong);
2107 break;
2108 case Intrinsics::kFloatIsNaN:
2109 case Intrinsics::kDoubleIsNaN:
2110 SimplifyIsNaN(instruction);
2111 break;
2112 case Intrinsics::kFloatFloatToIntBits:
2113 case Intrinsics::kDoubleDoubleToLongBits:
2114 SimplifyFP2Int(instruction);
2115 break;
2116 case Intrinsics::kStringCharAt:
2117 SimplifyStringCharAt(instruction);
2118 break;
2119 case Intrinsics::kStringIsEmpty:
2120 case Intrinsics::kStringLength:
2121 SimplifyStringIsEmptyOrLength(instruction);
2122 break;
2123 case Intrinsics::kStringStringIndexOf:
2124 case Intrinsics::kStringStringIndexOfAfter:
2125 SimplifyNPEOnArgN(instruction, 1); // 0th has own NullCheck
2126 break;
2127 case Intrinsics::kStringBufferAppend:
2128 case Intrinsics::kStringBuilderAppend:
2129 SimplifyReturnThis(instruction);
2130 break;
2131 case Intrinsics::kStringBufferToString:
2132 case Intrinsics::kStringBuilderToString:
2133 SimplifyAllocationIntrinsic(instruction);
2134 break;
2135 case Intrinsics::kUnsafeLoadFence:
2136 SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2137 break;
2138 case Intrinsics::kUnsafeStoreFence:
2139 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2140 break;
2141 case Intrinsics::kUnsafeFullFence:
2142 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2143 break;
2144 default:
2145 break;
2146 }
2147 }
2148
VisitDeoptimize(HDeoptimize * deoptimize)2149 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
2150 HInstruction* cond = deoptimize->InputAt(0);
2151 if (cond->IsConstant()) {
2152 if (cond->AsIntConstant()->IsFalse()) {
2153 // Never deopt: instruction can be removed.
2154 if (deoptimize->GuardsAnInput()) {
2155 deoptimize->ReplaceWith(deoptimize->GuardedInput());
2156 }
2157 deoptimize->GetBlock()->RemoveInstruction(deoptimize);
2158 } else {
2159 // Always deopt.
2160 }
2161 }
2162 }
2163
2164 // Replace code looking like
2165 // OP y, x, const1
2166 // OP z, y, const2
2167 // with
2168 // OP z, x, const3
2169 // where OP is both an associative and a commutative operation.
TryHandleAssociativeAndCommutativeOperation(HBinaryOperation * instruction)2170 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
2171 HBinaryOperation* instruction) {
2172 DCHECK(instruction->IsCommutative());
2173
2174 if (!Primitive::IsIntegralType(instruction->GetType())) {
2175 return false;
2176 }
2177
2178 HInstruction* left = instruction->GetLeft();
2179 HInstruction* right = instruction->GetRight();
2180 // Variable names as described above.
2181 HConstant* const2;
2182 HBinaryOperation* y;
2183
2184 if (instruction->InstructionTypeEquals(left) && right->IsConstant()) {
2185 const2 = right->AsConstant();
2186 y = left->AsBinaryOperation();
2187 } else if (left->IsConstant() && instruction->InstructionTypeEquals(right)) {
2188 const2 = left->AsConstant();
2189 y = right->AsBinaryOperation();
2190 } else {
2191 // The node does not match the pattern.
2192 return false;
2193 }
2194
2195 // If `y` has more than one use, we do not perform the optimization
2196 // because it might increase code size (e.g. if the new constant is
2197 // no longer encodable as an immediate operand in the target ISA).
2198 if (!y->HasOnlyOneNonEnvironmentUse()) {
2199 return false;
2200 }
2201
2202 // GetConstantRight() can return both left and right constants
2203 // for commutative operations.
2204 HConstant* const1 = y->GetConstantRight();
2205 if (const1 == nullptr) {
2206 return false;
2207 }
2208
2209 instruction->ReplaceInput(const1, 0);
2210 instruction->ReplaceInput(const2, 1);
2211 HConstant* const3 = instruction->TryStaticEvaluation();
2212 DCHECK(const3 != nullptr);
2213 instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
2214 instruction->ReplaceInput(const3, 1);
2215 RecordSimplification();
2216 return true;
2217 }
2218
AsAddOrSub(HInstruction * binop)2219 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
2220 return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
2221 }
2222
2223 // Helper function that performs addition statically, considering the result type.
ComputeAddition(Primitive::Type type,int64_t x,int64_t y)2224 static int64_t ComputeAddition(Primitive::Type type, int64_t x, int64_t y) {
2225 // Use the Compute() method for consistency with TryStaticEvaluation().
2226 if (type == Primitive::kPrimInt) {
2227 return HAdd::Compute<int32_t>(x, y);
2228 } else {
2229 DCHECK_EQ(type, Primitive::kPrimLong);
2230 return HAdd::Compute<int64_t>(x, y);
2231 }
2232 }
2233
2234 // Helper function that handles the child classes of HConstant
2235 // and returns an integer with the appropriate sign.
GetValue(HConstant * constant,bool is_negated)2236 static int64_t GetValue(HConstant* constant, bool is_negated) {
2237 int64_t ret = Int64FromConstant(constant);
2238 return is_negated ? -ret : ret;
2239 }
2240
2241 // Replace code looking like
2242 // OP1 y, x, const1
2243 // OP2 z, y, const2
2244 // with
2245 // OP3 z, x, const3
2246 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
TrySubtractionChainSimplification(HBinaryOperation * instruction)2247 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
2248 HBinaryOperation* instruction) {
2249 DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
2250
2251 Primitive::Type type = instruction->GetType();
2252 if (!Primitive::IsIntegralType(type)) {
2253 return false;
2254 }
2255
2256 HInstruction* left = instruction->GetLeft();
2257 HInstruction* right = instruction->GetRight();
2258 // Variable names as described above.
2259 HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
2260 if (const2 == nullptr) {
2261 return false;
2262 }
2263
2264 HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
2265 ? left->AsBinaryOperation()
2266 : AsAddOrSub(right);
2267 // If y has more than one use, we do not perform the optimization because
2268 // it might increase code size (e.g. if the new constant is no longer
2269 // encodable as an immediate operand in the target ISA).
2270 if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
2271 return false;
2272 }
2273
2274 left = y->GetLeft();
2275 HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
2276 if (const1 == nullptr) {
2277 return false;
2278 }
2279
2280 HInstruction* x = (const1 == left) ? y->GetRight() : left;
2281 // If both inputs are constants, let the constant folding pass deal with it.
2282 if (x->IsConstant()) {
2283 return false;
2284 }
2285
2286 bool is_const2_negated = (const2 == right) && instruction->IsSub();
2287 int64_t const2_val = GetValue(const2, is_const2_negated);
2288 bool is_y_negated = (y == right) && instruction->IsSub();
2289 right = y->GetRight();
2290 bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
2291 int64_t const1_val = GetValue(const1, is_const1_negated);
2292 bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
2293 int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
2294 HBasicBlock* block = instruction->GetBlock();
2295 HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
2296 ArenaAllocator* arena = instruction->GetArena();
2297 HInstruction* z;
2298
2299 if (is_x_negated) {
2300 z = new (arena) HSub(type, const3, x, instruction->GetDexPc());
2301 } else {
2302 z = new (arena) HAdd(type, x, const3, instruction->GetDexPc());
2303 }
2304
2305 block->ReplaceAndRemoveInstructionWith(instruction, z);
2306 RecordSimplification();
2307 return true;
2308 }
2309
2310 } // namespace art
2311