• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "assembler_mips.h"
18 
19 #include "base/bit_utils.h"
20 #include "base/casts.h"
21 #include "entrypoints/quick/quick_entrypoints.h"
22 #include "entrypoints/quick/quick_entrypoints_enum.h"
23 #include "memory_region.h"
24 #include "thread.h"
25 
26 namespace art {
27 namespace mips {
28 
29 static_assert(static_cast<size_t>(kMipsPointerSize) == kMipsWordSize,
30               "Unexpected Mips pointer size.");
31 static_assert(kMipsPointerSize == PointerSize::k32, "Unexpected Mips pointer size.");
32 
33 
operator <<(std::ostream & os,const DRegister & rhs)34 std::ostream& operator<<(std::ostream& os, const DRegister& rhs) {
35   if (rhs >= D0 && rhs < kNumberOfDRegisters) {
36     os << "d" << static_cast<int>(rhs);
37   } else {
38     os << "DRegister[" << static_cast<int>(rhs) << "]";
39   }
40   return os;
41 }
42 
DelaySlot()43 MipsAssembler::DelaySlot::DelaySlot()
44     : instruction_(0),
45       gpr_outs_mask_(0),
46       gpr_ins_mask_(0),
47       fpr_outs_mask_(0),
48       fpr_ins_mask_(0),
49       cc_outs_mask_(0),
50       cc_ins_mask_(0) {}
51 
DsFsmInstr(uint32_t instruction,uint32_t gpr_outs_mask,uint32_t gpr_ins_mask,uint32_t fpr_outs_mask,uint32_t fpr_ins_mask,uint32_t cc_outs_mask,uint32_t cc_ins_mask)52 void MipsAssembler::DsFsmInstr(uint32_t instruction,
53                                uint32_t gpr_outs_mask,
54                                uint32_t gpr_ins_mask,
55                                uint32_t fpr_outs_mask,
56                                uint32_t fpr_ins_mask,
57                                uint32_t cc_outs_mask,
58                                uint32_t cc_ins_mask) {
59   if (!reordering_) {
60     CHECK_EQ(ds_fsm_state_, kExpectingLabel);
61     CHECK_EQ(delay_slot_.instruction_, 0u);
62     return;
63   }
64   switch (ds_fsm_state_) {
65     case kExpectingLabel:
66       break;
67     case kExpectingInstruction:
68       CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
69       // If the last instruction is not suitable for delay slots, drop
70       // the PC of the label preceding it so that no unconditional branch
71       // uses this instruction to fill its delay slot.
72       if (instruction == 0) {
73         DsFsmDropLabel();  // Sets ds_fsm_state_ = kExpectingLabel.
74       } else {
75         // Otherwise wait for another instruction or label before we can
76         // commit the label PC. The label PC will be dropped if instead
77         // of another instruction or label there's a call from the code
78         // generator to CodePosition() to record the buffer size.
79         // Instructions after which the buffer size is recorded cannot
80         // be moved into delay slots or anywhere else because they may
81         // trigger signals and the signal handlers expect these signals
82         // to be coming from the instructions immediately preceding the
83         // recorded buffer locations.
84         ds_fsm_state_ = kExpectingCommit;
85       }
86       break;
87     case kExpectingCommit:
88       CHECK_EQ(ds_fsm_target_pc_ + 2 * sizeof(uint32_t), buffer_.Size());
89       DsFsmCommitLabel();  // Sets ds_fsm_state_ = kExpectingLabel.
90       break;
91   }
92   delay_slot_.instruction_ = instruction;
93   delay_slot_.gpr_outs_mask_ = gpr_outs_mask & ~1u;  // Ignore register ZERO.
94   delay_slot_.gpr_ins_mask_ = gpr_ins_mask & ~1u;  // Ignore register ZERO.
95   delay_slot_.fpr_outs_mask_ = fpr_outs_mask;
96   delay_slot_.fpr_ins_mask_ = fpr_ins_mask;
97   delay_slot_.cc_outs_mask_ = cc_outs_mask;
98   delay_slot_.cc_ins_mask_ = cc_ins_mask;
99 }
100 
DsFsmLabel()101 void MipsAssembler::DsFsmLabel() {
102   if (!reordering_) {
103     CHECK_EQ(ds_fsm_state_, kExpectingLabel);
104     CHECK_EQ(delay_slot_.instruction_, 0u);
105     return;
106   }
107   switch (ds_fsm_state_) {
108     case kExpectingLabel:
109       ds_fsm_target_pc_ = buffer_.Size();
110       ds_fsm_state_ = kExpectingInstruction;
111       break;
112     case kExpectingInstruction:
113       // Allow consecutive labels.
114       CHECK_EQ(ds_fsm_target_pc_, buffer_.Size());
115       break;
116     case kExpectingCommit:
117       CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
118       DsFsmCommitLabel();
119       ds_fsm_target_pc_ = buffer_.Size();
120       ds_fsm_state_ = kExpectingInstruction;
121       break;
122   }
123   // We cannot move instructions into delay slots across labels.
124   delay_slot_.instruction_ = 0;
125 }
126 
DsFsmCommitLabel()127 void MipsAssembler::DsFsmCommitLabel() {
128   if (ds_fsm_state_ == kExpectingCommit) {
129     ds_fsm_target_pcs_.emplace_back(ds_fsm_target_pc_);
130   }
131   ds_fsm_state_ = kExpectingLabel;
132 }
133 
DsFsmDropLabel()134 void MipsAssembler::DsFsmDropLabel() {
135   ds_fsm_state_ = kExpectingLabel;
136 }
137 
SetReorder(bool enable)138 bool MipsAssembler::SetReorder(bool enable) {
139   bool last_state = reordering_;
140   if (last_state != enable) {
141     DsFsmCommitLabel();
142     DsFsmInstrNop(0);
143   }
144   reordering_ = enable;
145   return last_state;
146 }
147 
CodePosition()148 size_t MipsAssembler::CodePosition() {
149   // The last instruction cannot be used in a delay slot, do not commit
150   // the label before it (if any) and clear the delay slot.
151   DsFsmDropLabel();
152   DsFsmInstrNop(0);
153   size_t size = buffer_.Size();
154   // In theory we can get the following sequence:
155   //   label1:
156   //     instr
157   //   label2: # label1 gets committed when label2 is seen
158   //     CodePosition() call
159   // and we need to uncommit label1.
160   if (ds_fsm_target_pcs_.size() != 0 && ds_fsm_target_pcs_.back() + sizeof(uint32_t) == size) {
161     ds_fsm_target_pcs_.pop_back();
162   }
163   return size;
164 }
165 
DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED)166 void MipsAssembler::DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED) {
167   DsFsmInstr(0, 0, 0, 0, 0, 0, 0);
168 }
169 
DsFsmInstrRrr(uint32_t instruction,Register out,Register in1,Register in2)170 void MipsAssembler::DsFsmInstrRrr(uint32_t instruction, Register out, Register in1, Register in2) {
171   DsFsmInstr(instruction, (1u << out), (1u << in1) | (1u << in2), 0, 0, 0, 0);
172 }
173 
DsFsmInstrRrrr(uint32_t instruction,Register in1_out,Register in2,Register in3)174 void MipsAssembler::DsFsmInstrRrrr(uint32_t instruction,
175                                    Register in1_out,
176                                    Register in2,
177                                    Register in3) {
178   DsFsmInstr(instruction, (1u << in1_out), (1u << in1_out) | (1u << in2) | (1u << in3), 0, 0, 0, 0);
179 }
180 
DsFsmInstrFff(uint32_t instruction,FRegister out,FRegister in1,FRegister in2)181 void MipsAssembler::DsFsmInstrFff(uint32_t instruction,
182                                   FRegister out,
183                                   FRegister in1,
184                                   FRegister in2) {
185   DsFsmInstr(instruction, 0, 0, (1u << out), (1u << in1) | (1u << in2), 0, 0);
186 }
187 
DsFsmInstrFfff(uint32_t instruction,FRegister in1_out,FRegister in2,FRegister in3)188 void MipsAssembler::DsFsmInstrFfff(uint32_t instruction,
189                                    FRegister in1_out,
190                                    FRegister in2,
191                                    FRegister in3) {
192   DsFsmInstr(instruction, 0, 0, (1u << in1_out), (1u << in1_out) | (1u << in2) | (1u << in3), 0, 0);
193 }
194 
DsFsmInstrFffr(uint32_t instruction,FRegister in1_out,FRegister in2,Register in3)195 void MipsAssembler::DsFsmInstrFffr(uint32_t instruction,
196                                    FRegister in1_out,
197                                    FRegister in2,
198                                    Register in3) {
199   DsFsmInstr(instruction, 0, (1u << in3), (1u << in1_out), (1u << in1_out) | (1u << in2), 0, 0);
200 }
201 
DsFsmInstrRf(uint32_t instruction,Register out,FRegister in)202 void MipsAssembler::DsFsmInstrRf(uint32_t instruction, Register out, FRegister in) {
203   DsFsmInstr(instruction, (1u << out), 0, 0, (1u << in), 0, 0);
204 }
205 
DsFsmInstrFr(uint32_t instruction,FRegister out,Register in)206 void MipsAssembler::DsFsmInstrFr(uint32_t instruction, FRegister out, Register in) {
207   DsFsmInstr(instruction, 0, (1u << in), (1u << out), 0, 0, 0);
208 }
209 
DsFsmInstrFR(uint32_t instruction,FRegister in1,Register in2)210 void MipsAssembler::DsFsmInstrFR(uint32_t instruction, FRegister in1, Register in2) {
211   DsFsmInstr(instruction, 0, (1u << in2), 0, (1u << in1), 0, 0);
212 }
213 
DsFsmInstrCff(uint32_t instruction,int cc_out,FRegister in1,FRegister in2)214 void MipsAssembler::DsFsmInstrCff(uint32_t instruction, int cc_out, FRegister in1, FRegister in2) {
215   DsFsmInstr(instruction, 0, 0, 0, (1u << in1) | (1u << in2), (1 << cc_out), 0);
216 }
217 
DsFsmInstrRrrc(uint32_t instruction,Register in1_out,Register in2,int cc_in)218 void MipsAssembler::DsFsmInstrRrrc(uint32_t instruction,
219                                    Register in1_out,
220                                    Register in2,
221                                    int cc_in) {
222   DsFsmInstr(instruction, (1u << in1_out), (1u << in1_out) | (1u << in2), 0, 0, 0, (1 << cc_in));
223 }
224 
DsFsmInstrFffc(uint32_t instruction,FRegister in1_out,FRegister in2,int cc_in)225 void MipsAssembler::DsFsmInstrFffc(uint32_t instruction,
226                                    FRegister in1_out,
227                                    FRegister in2,
228                                    int cc_in) {
229   DsFsmInstr(instruction, 0, 0, (1u << in1_out), (1u << in1_out) | (1u << in2), 0, (1 << cc_in));
230 }
231 
FinalizeCode()232 void MipsAssembler::FinalizeCode() {
233   for (auto& exception_block : exception_blocks_) {
234     EmitExceptionPoll(&exception_block);
235   }
236   // Commit the last branch target label (if any) and disable instruction reordering.
237   DsFsmCommitLabel();
238   SetReorder(false);
239   EmitLiterals();
240   ReserveJumpTableSpace();
241   PromoteBranches();
242 }
243 
FinalizeInstructions(const MemoryRegion & region)244 void MipsAssembler::FinalizeInstructions(const MemoryRegion& region) {
245   size_t number_of_delayed_adjust_pcs = cfi().NumberOfDelayedAdvancePCs();
246   EmitBranches();
247   EmitJumpTables();
248   Assembler::FinalizeInstructions(region);
249   PatchCFI(number_of_delayed_adjust_pcs);
250 }
251 
PatchCFI(size_t number_of_delayed_adjust_pcs)252 void MipsAssembler::PatchCFI(size_t number_of_delayed_adjust_pcs) {
253   if (cfi().NumberOfDelayedAdvancePCs() == 0u) {
254     DCHECK_EQ(number_of_delayed_adjust_pcs, 0u);
255     return;
256   }
257 
258   typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC;
259   const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC();
260   const std::vector<uint8_t>& old_stream = data.first;
261   const std::vector<DelayedAdvancePC>& advances = data.second;
262 
263   // PCs recorded before EmitBranches() need to be adjusted.
264   // PCs recorded during EmitBranches() are already adjusted.
265   // Both ranges are separately sorted but they may overlap.
266   if (kIsDebugBuild) {
267     auto cmp = [](const DelayedAdvancePC& lhs, const DelayedAdvancePC& rhs) {
268       return lhs.pc < rhs.pc;
269     };
270     CHECK(std::is_sorted(advances.begin(), advances.begin() + number_of_delayed_adjust_pcs, cmp));
271     CHECK(std::is_sorted(advances.begin() + number_of_delayed_adjust_pcs, advances.end(), cmp));
272   }
273 
274   // Append initial CFI data if any.
275   size_t size = advances.size();
276   DCHECK_NE(size, 0u);
277   cfi().AppendRawData(old_stream, 0u, advances[0].stream_pos);
278   // Emit PC adjustments interleaved with the old CFI stream.
279   size_t adjust_pos = 0u;
280   size_t late_emit_pos = number_of_delayed_adjust_pcs;
281   while (adjust_pos != number_of_delayed_adjust_pcs || late_emit_pos != size) {
282     size_t adjusted_pc = (adjust_pos != number_of_delayed_adjust_pcs)
283         ? GetAdjustedPosition(advances[adjust_pos].pc)
284         : static_cast<size_t>(-1);
285     size_t late_emit_pc = (late_emit_pos != size)
286         ? advances[late_emit_pos].pc
287         : static_cast<size_t>(-1);
288     size_t advance_pc = std::min(adjusted_pc, late_emit_pc);
289     DCHECK_NE(advance_pc, static_cast<size_t>(-1));
290     size_t entry = (adjusted_pc <= late_emit_pc) ? adjust_pos : late_emit_pos;
291     if (adjusted_pc <= late_emit_pc) {
292       ++adjust_pos;
293     } else {
294       ++late_emit_pos;
295     }
296     cfi().AdvancePC(advance_pc);
297     size_t end_pos = (entry + 1u == size) ? old_stream.size() : advances[entry + 1u].stream_pos;
298     cfi().AppendRawData(old_stream, advances[entry].stream_pos, end_pos);
299   }
300 }
301 
EmitBranches()302 void MipsAssembler::EmitBranches() {
303   CHECK(!overwriting_);
304   CHECK(!reordering_);
305   // Now that everything has its final position in the buffer (the branches have
306   // been promoted), adjust the target label PCs.
307   for (size_t cnt = ds_fsm_target_pcs_.size(), i = 0; i < cnt; i++) {
308     ds_fsm_target_pcs_[i] = GetAdjustedPosition(ds_fsm_target_pcs_[i]);
309   }
310   // Switch from appending instructions at the end of the buffer to overwriting
311   // existing instructions (branch placeholders) in the buffer.
312   overwriting_ = true;
313   for (auto& branch : branches_) {
314     EmitBranch(&branch);
315   }
316   overwriting_ = false;
317 }
318 
Emit(uint32_t value)319 void MipsAssembler::Emit(uint32_t value) {
320   if (overwriting_) {
321     // Branches to labels are emitted into their placeholders here.
322     buffer_.Store<uint32_t>(overwrite_location_, value);
323     overwrite_location_ += sizeof(uint32_t);
324   } else {
325     // Other instructions are simply appended at the end here.
326     AssemblerBuffer::EnsureCapacity ensured(&buffer_);
327     buffer_.Emit<uint32_t>(value);
328   }
329 }
330 
EmitR(int opcode,Register rs,Register rt,Register rd,int shamt,int funct)331 uint32_t MipsAssembler::EmitR(int opcode,
332                               Register rs,
333                               Register rt,
334                               Register rd,
335                               int shamt,
336                               int funct) {
337   CHECK_NE(rs, kNoRegister);
338   CHECK_NE(rt, kNoRegister);
339   CHECK_NE(rd, kNoRegister);
340   uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
341                       static_cast<uint32_t>(rs) << kRsShift |
342                       static_cast<uint32_t>(rt) << kRtShift |
343                       static_cast<uint32_t>(rd) << kRdShift |
344                       shamt << kShamtShift |
345                       funct;
346   Emit(encoding);
347   return encoding;
348 }
349 
EmitI(int opcode,Register rs,Register rt,uint16_t imm)350 uint32_t MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) {
351   CHECK_NE(rs, kNoRegister);
352   CHECK_NE(rt, kNoRegister);
353   uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
354                       static_cast<uint32_t>(rs) << kRsShift |
355                       static_cast<uint32_t>(rt) << kRtShift |
356                       imm;
357   Emit(encoding);
358   return encoding;
359 }
360 
EmitI21(int opcode,Register rs,uint32_t imm21)361 uint32_t MipsAssembler::EmitI21(int opcode, Register rs, uint32_t imm21) {
362   CHECK_NE(rs, kNoRegister);
363   CHECK(IsUint<21>(imm21)) << imm21;
364   uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
365                       static_cast<uint32_t>(rs) << kRsShift |
366                       imm21;
367   Emit(encoding);
368   return encoding;
369 }
370 
EmitI26(int opcode,uint32_t imm26)371 uint32_t MipsAssembler::EmitI26(int opcode, uint32_t imm26) {
372   CHECK(IsUint<26>(imm26)) << imm26;
373   uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26;
374   Emit(encoding);
375   return encoding;
376 }
377 
EmitFR(int opcode,int fmt,FRegister ft,FRegister fs,FRegister fd,int funct)378 uint32_t MipsAssembler::EmitFR(int opcode,
379                                int fmt,
380                                FRegister ft,
381                                FRegister fs,
382                                FRegister fd,
383                                int funct) {
384   CHECK_NE(ft, kNoFRegister);
385   CHECK_NE(fs, kNoFRegister);
386   CHECK_NE(fd, kNoFRegister);
387   uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
388                       fmt << kFmtShift |
389                       static_cast<uint32_t>(ft) << kFtShift |
390                       static_cast<uint32_t>(fs) << kFsShift |
391                       static_cast<uint32_t>(fd) << kFdShift |
392                       funct;
393   Emit(encoding);
394   return encoding;
395 }
396 
EmitFI(int opcode,int fmt,FRegister ft,uint16_t imm)397 uint32_t MipsAssembler::EmitFI(int opcode, int fmt, FRegister ft, uint16_t imm) {
398   CHECK_NE(ft, kNoFRegister);
399   uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
400                       fmt << kFmtShift |
401                       static_cast<uint32_t>(ft) << kFtShift |
402                       imm;
403   Emit(encoding);
404   return encoding;
405 }
406 
EmitMsa3R(int operation,int df,VectorRegister wt,VectorRegister ws,VectorRegister wd,int minor_opcode)407 uint32_t MipsAssembler::EmitMsa3R(int operation,
408                                   int df,
409                                   VectorRegister wt,
410                                   VectorRegister ws,
411                                   VectorRegister wd,
412                                   int minor_opcode) {
413   CHECK_NE(wt, kNoVectorRegister);
414   CHECK_NE(ws, kNoVectorRegister);
415   CHECK_NE(wd, kNoVectorRegister);
416   uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
417                       operation << kMsaOperationShift |
418                       df << kDfShift |
419                       static_cast<uint32_t>(wt) << kWtShift |
420                       static_cast<uint32_t>(ws) << kWsShift |
421                       static_cast<uint32_t>(wd) << kWdShift |
422                       minor_opcode;
423   Emit(encoding);
424   return encoding;
425 }
426 
EmitMsaBIT(int operation,int df_m,VectorRegister ws,VectorRegister wd,int minor_opcode)427 uint32_t MipsAssembler::EmitMsaBIT(int operation,
428                                    int df_m,
429                                    VectorRegister ws,
430                                    VectorRegister wd,
431                                    int minor_opcode) {
432   CHECK_NE(ws, kNoVectorRegister);
433   CHECK_NE(wd, kNoVectorRegister);
434   uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
435                       operation << kMsaOperationShift |
436                       df_m << kDfMShift |
437                       static_cast<uint32_t>(ws) << kWsShift |
438                       static_cast<uint32_t>(wd) << kWdShift |
439                       minor_opcode;
440   Emit(encoding);
441   return encoding;
442 }
443 
EmitMsaELM(int operation,int df_n,VectorRegister ws,VectorRegister wd,int minor_opcode)444 uint32_t MipsAssembler::EmitMsaELM(int operation,
445                                    int df_n,
446                                    VectorRegister ws,
447                                    VectorRegister wd,
448                                    int minor_opcode) {
449   CHECK_NE(ws, kNoVectorRegister);
450   CHECK_NE(wd, kNoVectorRegister);
451   uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
452                       operation << kMsaELMOperationShift |
453                       df_n << kDfNShift |
454                       static_cast<uint32_t>(ws) << kWsShift |
455                       static_cast<uint32_t>(wd) << kWdShift |
456                       minor_opcode;
457   Emit(encoding);
458   return encoding;
459 }
460 
EmitMsaMI10(int s10,Register rs,VectorRegister wd,int minor_opcode,int df)461 uint32_t MipsAssembler::EmitMsaMI10(int s10,
462                                     Register rs,
463                                     VectorRegister wd,
464                                     int minor_opcode,
465                                     int df) {
466   CHECK_NE(rs, kNoRegister);
467   CHECK_NE(wd, kNoVectorRegister);
468   CHECK(IsUint<10>(s10)) << s10;
469   uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
470                       s10 << kS10Shift |
471                       static_cast<uint32_t>(rs) << kWsShift |
472                       static_cast<uint32_t>(wd) << kWdShift |
473                       minor_opcode << kS10MinorShift |
474                       df;
475   Emit(encoding);
476   return encoding;
477 }
478 
EmitMsaI10(int operation,int df,int i10,VectorRegister wd,int minor_opcode)479 uint32_t MipsAssembler::EmitMsaI10(int operation,
480                                    int df,
481                                    int i10,
482                                    VectorRegister wd,
483                                    int minor_opcode) {
484   CHECK_NE(wd, kNoVectorRegister);
485   CHECK(IsUint<10>(i10)) << i10;
486   uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
487                       operation << kMsaOperationShift |
488                       df << kDfShift |
489                       i10 << kI10Shift |
490                       static_cast<uint32_t>(wd) << kWdShift |
491                       minor_opcode;
492   Emit(encoding);
493   return encoding;
494 }
495 
EmitMsa2R(int operation,int df,VectorRegister ws,VectorRegister wd,int minor_opcode)496 uint32_t MipsAssembler::EmitMsa2R(int operation,
497                                   int df,
498                                   VectorRegister ws,
499                                   VectorRegister wd,
500                                   int minor_opcode) {
501   CHECK_NE(ws, kNoVectorRegister);
502   CHECK_NE(wd, kNoVectorRegister);
503   uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
504                       operation << kMsa2ROperationShift |
505                       df << kDf2RShift |
506                       static_cast<uint32_t>(ws) << kWsShift |
507                       static_cast<uint32_t>(wd) << kWdShift |
508                       minor_opcode;
509   Emit(encoding);
510   return encoding;
511 }
512 
EmitMsa2RF(int operation,int df,VectorRegister ws,VectorRegister wd,int minor_opcode)513 uint32_t MipsAssembler::EmitMsa2RF(int operation,
514                                    int df,
515                                    VectorRegister ws,
516                                    VectorRegister wd,
517                                    int minor_opcode) {
518   CHECK_NE(ws, kNoVectorRegister);
519   CHECK_NE(wd, kNoVectorRegister);
520   uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
521                       operation << kMsa2RFOperationShift |
522                       df << kDf2RShift |
523                       static_cast<uint32_t>(ws) << kWsShift |
524                       static_cast<uint32_t>(wd) << kWdShift |
525                       minor_opcode;
526   Emit(encoding);
527   return encoding;
528 }
529 
Addu(Register rd,Register rs,Register rt)530 void MipsAssembler::Addu(Register rd, Register rs, Register rt) {
531   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x21), rd, rs, rt);
532 }
533 
Addiu(Register rt,Register rs,uint16_t imm16)534 void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) {
535   DsFsmInstrRrr(EmitI(0x9, rs, rt, imm16), rt, rs, rs);
536 }
537 
Subu(Register rd,Register rs,Register rt)538 void MipsAssembler::Subu(Register rd, Register rs, Register rt) {
539   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x23), rd, rs, rt);
540 }
541 
MultR2(Register rs,Register rt)542 void MipsAssembler::MultR2(Register rs, Register rt) {
543   CHECK(!IsR6());
544   DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x18), ZERO, rs, rt);
545 }
546 
MultuR2(Register rs,Register rt)547 void MipsAssembler::MultuR2(Register rs, Register rt) {
548   CHECK(!IsR6());
549   DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x19), ZERO, rs, rt);
550 }
551 
DivR2(Register rs,Register rt)552 void MipsAssembler::DivR2(Register rs, Register rt) {
553   CHECK(!IsR6());
554   DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1a), ZERO, rs, rt);
555 }
556 
DivuR2(Register rs,Register rt)557 void MipsAssembler::DivuR2(Register rs, Register rt) {
558   CHECK(!IsR6());
559   DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1b), ZERO, rs, rt);
560 }
561 
MulR2(Register rd,Register rs,Register rt)562 void MipsAssembler::MulR2(Register rd, Register rs, Register rt) {
563   CHECK(!IsR6());
564   DsFsmInstrRrr(EmitR(0x1c, rs, rt, rd, 0, 2), rd, rs, rt);
565 }
566 
DivR2(Register rd,Register rs,Register rt)567 void MipsAssembler::DivR2(Register rd, Register rs, Register rt) {
568   CHECK(!IsR6());
569   DivR2(rs, rt);
570   Mflo(rd);
571 }
572 
ModR2(Register rd,Register rs,Register rt)573 void MipsAssembler::ModR2(Register rd, Register rs, Register rt) {
574   CHECK(!IsR6());
575   DivR2(rs, rt);
576   Mfhi(rd);
577 }
578 
DivuR2(Register rd,Register rs,Register rt)579 void MipsAssembler::DivuR2(Register rd, Register rs, Register rt) {
580   CHECK(!IsR6());
581   DivuR2(rs, rt);
582   Mflo(rd);
583 }
584 
ModuR2(Register rd,Register rs,Register rt)585 void MipsAssembler::ModuR2(Register rd, Register rs, Register rt) {
586   CHECK(!IsR6());
587   DivuR2(rs, rt);
588   Mfhi(rd);
589 }
590 
MulR6(Register rd,Register rs,Register rt)591 void MipsAssembler::MulR6(Register rd, Register rs, Register rt) {
592   CHECK(IsR6());
593   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 2, 0x18), rd, rs, rt);
594 }
595 
MuhR6(Register rd,Register rs,Register rt)596 void MipsAssembler::MuhR6(Register rd, Register rs, Register rt) {
597   CHECK(IsR6());
598   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x18), rd, rs, rt);
599 }
600 
MuhuR6(Register rd,Register rs,Register rt)601 void MipsAssembler::MuhuR6(Register rd, Register rs, Register rt) {
602   CHECK(IsR6());
603   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x19), rd, rs, rt);
604 }
605 
DivR6(Register rd,Register rs,Register rt)606 void MipsAssembler::DivR6(Register rd, Register rs, Register rt) {
607   CHECK(IsR6());
608   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 2, 0x1a), rd, rs, rt);
609 }
610 
ModR6(Register rd,Register rs,Register rt)611 void MipsAssembler::ModR6(Register rd, Register rs, Register rt) {
612   CHECK(IsR6());
613   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x1a), rd, rs, rt);
614 }
615 
DivuR6(Register rd,Register rs,Register rt)616 void MipsAssembler::DivuR6(Register rd, Register rs, Register rt) {
617   CHECK(IsR6());
618   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 2, 0x1b), rd, rs, rt);
619 }
620 
ModuR6(Register rd,Register rs,Register rt)621 void MipsAssembler::ModuR6(Register rd, Register rs, Register rt) {
622   CHECK(IsR6());
623   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x1b), rd, rs, rt);
624 }
625 
And(Register rd,Register rs,Register rt)626 void MipsAssembler::And(Register rd, Register rs, Register rt) {
627   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x24), rd, rs, rt);
628 }
629 
Andi(Register rt,Register rs,uint16_t imm16)630 void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) {
631   DsFsmInstrRrr(EmitI(0xc, rs, rt, imm16), rt, rs, rs);
632 }
633 
Or(Register rd,Register rs,Register rt)634 void MipsAssembler::Or(Register rd, Register rs, Register rt) {
635   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x25), rd, rs, rt);
636 }
637 
Ori(Register rt,Register rs,uint16_t imm16)638 void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) {
639   DsFsmInstrRrr(EmitI(0xd, rs, rt, imm16), rt, rs, rs);
640 }
641 
Xor(Register rd,Register rs,Register rt)642 void MipsAssembler::Xor(Register rd, Register rs, Register rt) {
643   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x26), rd, rs, rt);
644 }
645 
Xori(Register rt,Register rs,uint16_t imm16)646 void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) {
647   DsFsmInstrRrr(EmitI(0xe, rs, rt, imm16), rt, rs, rs);
648 }
649 
Nor(Register rd,Register rs,Register rt)650 void MipsAssembler::Nor(Register rd, Register rs, Register rt) {
651   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x27), rd, rs, rt);
652 }
653 
Movz(Register rd,Register rs,Register rt)654 void MipsAssembler::Movz(Register rd, Register rs, Register rt) {
655   CHECK(!IsR6());
656   DsFsmInstrRrrr(EmitR(0, rs, rt, rd, 0, 0x0A), rd, rs, rt);
657 }
658 
Movn(Register rd,Register rs,Register rt)659 void MipsAssembler::Movn(Register rd, Register rs, Register rt) {
660   CHECK(!IsR6());
661   DsFsmInstrRrrr(EmitR(0, rs, rt, rd, 0, 0x0B), rd, rs, rt);
662 }
663 
Seleqz(Register rd,Register rs,Register rt)664 void MipsAssembler::Seleqz(Register rd, Register rs, Register rt) {
665   CHECK(IsR6());
666   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x35), rd, rs, rt);
667 }
668 
Selnez(Register rd,Register rs,Register rt)669 void MipsAssembler::Selnez(Register rd, Register rs, Register rt) {
670   CHECK(IsR6());
671   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x37), rd, rs, rt);
672 }
673 
ClzR6(Register rd,Register rs)674 void MipsAssembler::ClzR6(Register rd, Register rs) {
675   CHECK(IsR6());
676   DsFsmInstrRrr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x10), rd, rs, rs);
677 }
678 
ClzR2(Register rd,Register rs)679 void MipsAssembler::ClzR2(Register rd, Register rs) {
680   CHECK(!IsR6());
681   DsFsmInstrRrr(EmitR(0x1C, rs, rd, rd, 0, 0x20), rd, rs, rs);
682 }
683 
CloR6(Register rd,Register rs)684 void MipsAssembler::CloR6(Register rd, Register rs) {
685   CHECK(IsR6());
686   DsFsmInstrRrr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x11), rd, rs, rs);
687 }
688 
CloR2(Register rd,Register rs)689 void MipsAssembler::CloR2(Register rd, Register rs) {
690   CHECK(!IsR6());
691   DsFsmInstrRrr(EmitR(0x1C, rs, rd, rd, 0, 0x21), rd, rs, rs);
692 }
693 
Seb(Register rd,Register rt)694 void MipsAssembler::Seb(Register rd, Register rt) {
695   DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x10, 0x20), rd, rt, rt);
696 }
697 
Seh(Register rd,Register rt)698 void MipsAssembler::Seh(Register rd, Register rt) {
699   DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x18, 0x20), rd, rt, rt);
700 }
701 
Wsbh(Register rd,Register rt)702 void MipsAssembler::Wsbh(Register rd, Register rt) {
703   DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 2, 0x20), rd, rt, rt);
704 }
705 
Bitswap(Register rd,Register rt)706 void MipsAssembler::Bitswap(Register rd, Register rt) {
707   CHECK(IsR6());
708   DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x0, 0x20), rd, rt, rt);
709 }
710 
Sll(Register rd,Register rt,int shamt)711 void MipsAssembler::Sll(Register rd, Register rt, int shamt) {
712   CHECK(IsUint<5>(shamt)) << shamt;
713   DsFsmInstrRrr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x00), rd, rt, rt);
714 }
715 
Srl(Register rd,Register rt,int shamt)716 void MipsAssembler::Srl(Register rd, Register rt, int shamt) {
717   CHECK(IsUint<5>(shamt)) << shamt;
718   DsFsmInstrRrr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x02), rd, rt, rt);
719 }
720 
Rotr(Register rd,Register rt,int shamt)721 void MipsAssembler::Rotr(Register rd, Register rt, int shamt) {
722   CHECK(IsUint<5>(shamt)) << shamt;
723   DsFsmInstrRrr(EmitR(0, static_cast<Register>(1), rt, rd, shamt, 0x02), rd, rt, rt);
724 }
725 
Sra(Register rd,Register rt,int shamt)726 void MipsAssembler::Sra(Register rd, Register rt, int shamt) {
727   CHECK(IsUint<5>(shamt)) << shamt;
728   DsFsmInstrRrr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x03), rd, rt, rt);
729 }
730 
Sllv(Register rd,Register rt,Register rs)731 void MipsAssembler::Sllv(Register rd, Register rt, Register rs) {
732   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x04), rd, rs, rt);
733 }
734 
Srlv(Register rd,Register rt,Register rs)735 void MipsAssembler::Srlv(Register rd, Register rt, Register rs) {
736   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x06), rd, rs, rt);
737 }
738 
Rotrv(Register rd,Register rt,Register rs)739 void MipsAssembler::Rotrv(Register rd, Register rt, Register rs) {
740   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 1, 0x06), rd, rs, rt);
741 }
742 
Srav(Register rd,Register rt,Register rs)743 void MipsAssembler::Srav(Register rd, Register rt, Register rs) {
744   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x07), rd, rs, rt);
745 }
746 
Ext(Register rd,Register rt,int pos,int size)747 void MipsAssembler::Ext(Register rd, Register rt, int pos, int size) {
748   CHECK(IsUint<5>(pos)) << pos;
749   CHECK(0 < size && size <= 32) << size;
750   CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
751   DsFsmInstrRrr(EmitR(0x1f, rt, rd, static_cast<Register>(size - 1), pos, 0x00), rd, rt, rt);
752 }
753 
Ins(Register rd,Register rt,int pos,int size)754 void MipsAssembler::Ins(Register rd, Register rt, int pos, int size) {
755   CHECK(IsUint<5>(pos)) << pos;
756   CHECK(0 < size && size <= 32) << size;
757   CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
758   DsFsmInstrRrr(EmitR(0x1f, rt, rd, static_cast<Register>(pos + size - 1), pos, 0x04), rd, rd, rt);
759 }
760 
Lsa(Register rd,Register rs,Register rt,int saPlusOne)761 void MipsAssembler::Lsa(Register rd, Register rs, Register rt, int saPlusOne) {
762   CHECK(IsR6() || HasMsa());
763   CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne;
764   int sa = saPlusOne - 1;
765   DsFsmInstrRrr(EmitR(0x0, rs, rt, rd, sa, 0x05), rd, rs, rt);
766 }
767 
ShiftAndAdd(Register dst,Register src_idx,Register src_base,int shamt,Register tmp)768 void MipsAssembler::ShiftAndAdd(Register dst,
769                                 Register src_idx,
770                                 Register src_base,
771                                 int shamt,
772                                 Register tmp) {
773   CHECK(0 <= shamt && shamt <= 4) << shamt;
774   CHECK_NE(src_base, tmp);
775   if (shamt == TIMES_1) {
776     // Catch the special case where the shift amount is zero (0).
777     Addu(dst, src_base, src_idx);
778   } else if (IsR6() || HasMsa()) {
779     Lsa(dst, src_idx, src_base, shamt);
780   } else {
781     Sll(tmp, src_idx, shamt);
782     Addu(dst, src_base, tmp);
783   }
784 }
785 
Lb(Register rt,Register rs,uint16_t imm16)786 void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) {
787   DsFsmInstrRrr(EmitI(0x20, rs, rt, imm16), rt, rs, rs);
788 }
789 
Lh(Register rt,Register rs,uint16_t imm16)790 void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) {
791   DsFsmInstrRrr(EmitI(0x21, rs, rt, imm16), rt, rs, rs);
792 }
793 
Lw(Register rt,Register rs,uint16_t imm16)794 void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) {
795   DsFsmInstrRrr(EmitI(0x23, rs, rt, imm16), rt, rs, rs);
796 }
797 
Lwl(Register rt,Register rs,uint16_t imm16)798 void MipsAssembler::Lwl(Register rt, Register rs, uint16_t imm16) {
799   CHECK(!IsR6());
800   DsFsmInstrRrr(EmitI(0x22, rs, rt, imm16), rt, rt, rs);
801 }
802 
Lwr(Register rt,Register rs,uint16_t imm16)803 void MipsAssembler::Lwr(Register rt, Register rs, uint16_t imm16) {
804   CHECK(!IsR6());
805   DsFsmInstrRrr(EmitI(0x26, rs, rt, imm16), rt, rt, rs);
806 }
807 
Lbu(Register rt,Register rs,uint16_t imm16)808 void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) {
809   DsFsmInstrRrr(EmitI(0x24, rs, rt, imm16), rt, rs, rs);
810 }
811 
Lhu(Register rt,Register rs,uint16_t imm16)812 void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) {
813   DsFsmInstrRrr(EmitI(0x25, rs, rt, imm16), rt, rs, rs);
814 }
815 
Lwpc(Register rs,uint32_t imm19)816 void MipsAssembler::Lwpc(Register rs, uint32_t imm19) {
817   CHECK(IsR6());
818   CHECK(IsUint<19>(imm19)) << imm19;
819   DsFsmInstrNop(EmitI21(0x3B, rs, (0x01 << 19) | imm19));
820 }
821 
Lui(Register rt,uint16_t imm16)822 void MipsAssembler::Lui(Register rt, uint16_t imm16) {
823   DsFsmInstrRrr(EmitI(0xf, static_cast<Register>(0), rt, imm16), rt, ZERO, ZERO);
824 }
825 
Aui(Register rt,Register rs,uint16_t imm16)826 void MipsAssembler::Aui(Register rt, Register rs, uint16_t imm16) {
827   CHECK(IsR6());
828   DsFsmInstrRrr(EmitI(0xf, rs, rt, imm16), rt, rt, rs);
829 }
830 
Sync(uint32_t stype)831 void MipsAssembler::Sync(uint32_t stype) {
832   DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, stype & 0x1f, 0xf));
833 }
834 
Mfhi(Register rd)835 void MipsAssembler::Mfhi(Register rd) {
836   CHECK(!IsR6());
837   DsFsmInstrRrr(EmitR(0, ZERO, ZERO, rd, 0, 0x10), rd, ZERO, ZERO);
838 }
839 
Mflo(Register rd)840 void MipsAssembler::Mflo(Register rd) {
841   CHECK(!IsR6());
842   DsFsmInstrRrr(EmitR(0, ZERO, ZERO, rd, 0, 0x12), rd, ZERO, ZERO);
843 }
844 
Sb(Register rt,Register rs,uint16_t imm16)845 void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) {
846   DsFsmInstrRrr(EmitI(0x28, rs, rt, imm16), ZERO, rt, rs);
847 }
848 
Sh(Register rt,Register rs,uint16_t imm16)849 void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) {
850   DsFsmInstrRrr(EmitI(0x29, rs, rt, imm16), ZERO, rt, rs);
851 }
852 
Sw(Register rt,Register rs,uint16_t imm16)853 void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) {
854   DsFsmInstrRrr(EmitI(0x2b, rs, rt, imm16), ZERO, rt, rs);
855 }
856 
Swl(Register rt,Register rs,uint16_t imm16)857 void MipsAssembler::Swl(Register rt, Register rs, uint16_t imm16) {
858   CHECK(!IsR6());
859   DsFsmInstrRrr(EmitI(0x2a, rs, rt, imm16), ZERO, rt, rs);
860 }
861 
Swr(Register rt,Register rs,uint16_t imm16)862 void MipsAssembler::Swr(Register rt, Register rs, uint16_t imm16) {
863   CHECK(!IsR6());
864   DsFsmInstrRrr(EmitI(0x2e, rs, rt, imm16), ZERO, rt, rs);
865 }
866 
LlR2(Register rt,Register base,int16_t imm16)867 void MipsAssembler::LlR2(Register rt, Register base, int16_t imm16) {
868   CHECK(!IsR6());
869   DsFsmInstrRrr(EmitI(0x30, base, rt, imm16), rt, base, base);
870 }
871 
ScR2(Register rt,Register base,int16_t imm16)872 void MipsAssembler::ScR2(Register rt, Register base, int16_t imm16) {
873   CHECK(!IsR6());
874   DsFsmInstrRrr(EmitI(0x38, base, rt, imm16), rt, rt, base);
875 }
876 
LlR6(Register rt,Register base,int16_t imm9)877 void MipsAssembler::LlR6(Register rt, Register base, int16_t imm9) {
878   CHECK(IsR6());
879   CHECK(IsInt<9>(imm9));
880   DsFsmInstrRrr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x36), rt, base, base);
881 }
882 
ScR6(Register rt,Register base,int16_t imm9)883 void MipsAssembler::ScR6(Register rt, Register base, int16_t imm9) {
884   CHECK(IsR6());
885   CHECK(IsInt<9>(imm9));
886   DsFsmInstrRrr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x26), rt, rt, base);
887 }
888 
Slt(Register rd,Register rs,Register rt)889 void MipsAssembler::Slt(Register rd, Register rs, Register rt) {
890   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x2a), rd, rs, rt);
891 }
892 
Sltu(Register rd,Register rs,Register rt)893 void MipsAssembler::Sltu(Register rd, Register rs, Register rt) {
894   DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x2b), rd, rs, rt);
895 }
896 
Slti(Register rt,Register rs,uint16_t imm16)897 void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) {
898   DsFsmInstrRrr(EmitI(0xa, rs, rt, imm16), rt, rs, rs);
899 }
900 
Sltiu(Register rt,Register rs,uint16_t imm16)901 void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) {
902   DsFsmInstrRrr(EmitI(0xb, rs, rt, imm16), rt, rs, rs);
903 }
904 
B(uint16_t imm16)905 void MipsAssembler::B(uint16_t imm16) {
906   DsFsmInstrNop(EmitI(0x4, static_cast<Register>(0), static_cast<Register>(0), imm16));
907 }
908 
Bal(uint16_t imm16)909 void MipsAssembler::Bal(uint16_t imm16) {
910   DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x11), imm16));
911 }
912 
Beq(Register rs,Register rt,uint16_t imm16)913 void MipsAssembler::Beq(Register rs, Register rt, uint16_t imm16) {
914   DsFsmInstrNop(EmitI(0x4, rs, rt, imm16));
915 }
916 
Bne(Register rs,Register rt,uint16_t imm16)917 void MipsAssembler::Bne(Register rs, Register rt, uint16_t imm16) {
918   DsFsmInstrNop(EmitI(0x5, rs, rt, imm16));
919 }
920 
Beqz(Register rt,uint16_t imm16)921 void MipsAssembler::Beqz(Register rt, uint16_t imm16) {
922   Beq(ZERO, rt, imm16);
923 }
924 
Bnez(Register rt,uint16_t imm16)925 void MipsAssembler::Bnez(Register rt, uint16_t imm16) {
926   Bne(ZERO, rt, imm16);
927 }
928 
Bltz(Register rt,uint16_t imm16)929 void MipsAssembler::Bltz(Register rt, uint16_t imm16) {
930   DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0), imm16));
931 }
932 
Bgez(Register rt,uint16_t imm16)933 void MipsAssembler::Bgez(Register rt, uint16_t imm16) {
934   DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0x1), imm16));
935 }
936 
Blez(Register rt,uint16_t imm16)937 void MipsAssembler::Blez(Register rt, uint16_t imm16) {
938   DsFsmInstrNop(EmitI(0x6, rt, static_cast<Register>(0), imm16));
939 }
940 
Bgtz(Register rt,uint16_t imm16)941 void MipsAssembler::Bgtz(Register rt, uint16_t imm16) {
942   DsFsmInstrNop(EmitI(0x7, rt, static_cast<Register>(0), imm16));
943 }
944 
Bc1f(uint16_t imm16)945 void MipsAssembler::Bc1f(uint16_t imm16) {
946   Bc1f(0, imm16);
947 }
948 
Bc1f(int cc,uint16_t imm16)949 void MipsAssembler::Bc1f(int cc, uint16_t imm16) {
950   CHECK(!IsR6());
951   CHECK(IsUint<3>(cc)) << cc;
952   DsFsmInstrNop(EmitI(0x11, static_cast<Register>(0x8), static_cast<Register>(cc << 2), imm16));
953 }
954 
Bc1t(uint16_t imm16)955 void MipsAssembler::Bc1t(uint16_t imm16) {
956   Bc1t(0, imm16);
957 }
958 
Bc1t(int cc,uint16_t imm16)959 void MipsAssembler::Bc1t(int cc, uint16_t imm16) {
960   CHECK(!IsR6());
961   CHECK(IsUint<3>(cc)) << cc;
962   DsFsmInstrNop(EmitI(0x11,
963                       static_cast<Register>(0x8),
964                       static_cast<Register>((cc << 2) | 1),
965                       imm16));
966 }
967 
J(uint32_t addr26)968 void MipsAssembler::J(uint32_t addr26) {
969   DsFsmInstrNop(EmitI26(0x2, addr26));
970 }
971 
Jal(uint32_t addr26)972 void MipsAssembler::Jal(uint32_t addr26) {
973   DsFsmInstrNop(EmitI26(0x3, addr26));
974 }
975 
Jalr(Register rd,Register rs)976 void MipsAssembler::Jalr(Register rd, Register rs) {
977   uint32_t last_instruction = delay_slot_.instruction_;
978   bool exchange = (last_instruction != 0 &&
979       (delay_slot_.gpr_outs_mask_ & (1u << rs)) == 0 &&
980       ((delay_slot_.gpr_ins_mask_ | delay_slot_.gpr_outs_mask_) & (1u << rd)) == 0);
981   if (exchange) {
982     // The last instruction cannot be used in a different delay slot,
983     // do not commit the label before it (if any).
984     DsFsmDropLabel();
985   }
986   DsFsmInstrNop(EmitR(0, rs, static_cast<Register>(0), rd, 0, 0x09));
987   if (exchange) {
988     // Exchange the last two instructions in the assembler buffer.
989     size_t size = buffer_.Size();
990     CHECK_GE(size, 2 * sizeof(uint32_t));
991     size_t pos1 = size - 2 * sizeof(uint32_t);
992     size_t pos2 = size - sizeof(uint32_t);
993     uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
994     uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
995     CHECK_EQ(instr1, last_instruction);
996     buffer_.Store<uint32_t>(pos1, instr2);
997     buffer_.Store<uint32_t>(pos2, instr1);
998   } else if (reordering_) {
999     Nop();
1000   }
1001 }
1002 
Jalr(Register rs)1003 void MipsAssembler::Jalr(Register rs) {
1004   Jalr(RA, rs);
1005 }
1006 
Jr(Register rs)1007 void MipsAssembler::Jr(Register rs) {
1008   Jalr(ZERO, rs);
1009 }
1010 
Nal()1011 void MipsAssembler::Nal() {
1012   DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x10), 0));
1013 }
1014 
Auipc(Register rs,uint16_t imm16)1015 void MipsAssembler::Auipc(Register rs, uint16_t imm16) {
1016   CHECK(IsR6());
1017   DsFsmInstrNop(EmitI(0x3B, rs, static_cast<Register>(0x1E), imm16));
1018 }
1019 
Addiupc(Register rs,uint32_t imm19)1020 void MipsAssembler::Addiupc(Register rs, uint32_t imm19) {
1021   CHECK(IsR6());
1022   CHECK(IsUint<19>(imm19)) << imm19;
1023   DsFsmInstrNop(EmitI21(0x3B, rs, imm19));
1024 }
1025 
Bc(uint32_t imm26)1026 void MipsAssembler::Bc(uint32_t imm26) {
1027   CHECK(IsR6());
1028   DsFsmInstrNop(EmitI26(0x32, imm26));
1029 }
1030 
Balc(uint32_t imm26)1031 void MipsAssembler::Balc(uint32_t imm26) {
1032   CHECK(IsR6());
1033   DsFsmInstrNop(EmitI26(0x3A, imm26));
1034 }
1035 
Jic(Register rt,uint16_t imm16)1036 void MipsAssembler::Jic(Register rt, uint16_t imm16) {
1037   CHECK(IsR6());
1038   DsFsmInstrNop(EmitI(0x36, static_cast<Register>(0), rt, imm16));
1039 }
1040 
Jialc(Register rt,uint16_t imm16)1041 void MipsAssembler::Jialc(Register rt, uint16_t imm16) {
1042   CHECK(IsR6());
1043   DsFsmInstrNop(EmitI(0x3E, static_cast<Register>(0), rt, imm16));
1044 }
1045 
Bltc(Register rs,Register rt,uint16_t imm16)1046 void MipsAssembler::Bltc(Register rs, Register rt, uint16_t imm16) {
1047   CHECK(IsR6());
1048   CHECK_NE(rs, ZERO);
1049   CHECK_NE(rt, ZERO);
1050   CHECK_NE(rs, rt);
1051   DsFsmInstrNop(EmitI(0x17, rs, rt, imm16));
1052 }
1053 
Bltzc(Register rt,uint16_t imm16)1054 void MipsAssembler::Bltzc(Register rt, uint16_t imm16) {
1055   CHECK(IsR6());
1056   CHECK_NE(rt, ZERO);
1057   DsFsmInstrNop(EmitI(0x17, rt, rt, imm16));
1058 }
1059 
Bgtzc(Register rt,uint16_t imm16)1060 void MipsAssembler::Bgtzc(Register rt, uint16_t imm16) {
1061   CHECK(IsR6());
1062   CHECK_NE(rt, ZERO);
1063   DsFsmInstrNop(EmitI(0x17, static_cast<Register>(0), rt, imm16));
1064 }
1065 
Bgec(Register rs,Register rt,uint16_t imm16)1066 void MipsAssembler::Bgec(Register rs, Register rt, uint16_t imm16) {
1067   CHECK(IsR6());
1068   CHECK_NE(rs, ZERO);
1069   CHECK_NE(rt, ZERO);
1070   CHECK_NE(rs, rt);
1071   DsFsmInstrNop(EmitI(0x16, rs, rt, imm16));
1072 }
1073 
Bgezc(Register rt,uint16_t imm16)1074 void MipsAssembler::Bgezc(Register rt, uint16_t imm16) {
1075   CHECK(IsR6());
1076   CHECK_NE(rt, ZERO);
1077   DsFsmInstrNop(EmitI(0x16, rt, rt, imm16));
1078 }
1079 
Blezc(Register rt,uint16_t imm16)1080 void MipsAssembler::Blezc(Register rt, uint16_t imm16) {
1081   CHECK(IsR6());
1082   CHECK_NE(rt, ZERO);
1083   DsFsmInstrNop(EmitI(0x16, static_cast<Register>(0), rt, imm16));
1084 }
1085 
Bltuc(Register rs,Register rt,uint16_t imm16)1086 void MipsAssembler::Bltuc(Register rs, Register rt, uint16_t imm16) {
1087   CHECK(IsR6());
1088   CHECK_NE(rs, ZERO);
1089   CHECK_NE(rt, ZERO);
1090   CHECK_NE(rs, rt);
1091   DsFsmInstrNop(EmitI(0x7, rs, rt, imm16));
1092 }
1093 
Bgeuc(Register rs,Register rt,uint16_t imm16)1094 void MipsAssembler::Bgeuc(Register rs, Register rt, uint16_t imm16) {
1095   CHECK(IsR6());
1096   CHECK_NE(rs, ZERO);
1097   CHECK_NE(rt, ZERO);
1098   CHECK_NE(rs, rt);
1099   DsFsmInstrNop(EmitI(0x6, rs, rt, imm16));
1100 }
1101 
Beqc(Register rs,Register rt,uint16_t imm16)1102 void MipsAssembler::Beqc(Register rs, Register rt, uint16_t imm16) {
1103   CHECK(IsR6());
1104   CHECK_NE(rs, ZERO);
1105   CHECK_NE(rt, ZERO);
1106   CHECK_NE(rs, rt);
1107   DsFsmInstrNop(EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16));
1108 }
1109 
Bnec(Register rs,Register rt,uint16_t imm16)1110 void MipsAssembler::Bnec(Register rs, Register rt, uint16_t imm16) {
1111   CHECK(IsR6());
1112   CHECK_NE(rs, ZERO);
1113   CHECK_NE(rt, ZERO);
1114   CHECK_NE(rs, rt);
1115   DsFsmInstrNop(EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16));
1116 }
1117 
Beqzc(Register rs,uint32_t imm21)1118 void MipsAssembler::Beqzc(Register rs, uint32_t imm21) {
1119   CHECK(IsR6());
1120   CHECK_NE(rs, ZERO);
1121   DsFsmInstrNop(EmitI21(0x36, rs, imm21));
1122 }
1123 
Bnezc(Register rs,uint32_t imm21)1124 void MipsAssembler::Bnezc(Register rs, uint32_t imm21) {
1125   CHECK(IsR6());
1126   CHECK_NE(rs, ZERO);
1127   DsFsmInstrNop(EmitI21(0x3E, rs, imm21));
1128 }
1129 
Bc1eqz(FRegister ft,uint16_t imm16)1130 void MipsAssembler::Bc1eqz(FRegister ft, uint16_t imm16) {
1131   CHECK(IsR6());
1132   DsFsmInstrNop(EmitFI(0x11, 0x9, ft, imm16));
1133 }
1134 
Bc1nez(FRegister ft,uint16_t imm16)1135 void MipsAssembler::Bc1nez(FRegister ft, uint16_t imm16) {
1136   CHECK(IsR6());
1137   DsFsmInstrNop(EmitFI(0x11, 0xD, ft, imm16));
1138 }
1139 
EmitBcondR2(BranchCondition cond,Register rs,Register rt,uint16_t imm16)1140 void MipsAssembler::EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16) {
1141   switch (cond) {
1142     case kCondLTZ:
1143       CHECK_EQ(rt, ZERO);
1144       Bltz(rs, imm16);
1145       break;
1146     case kCondGEZ:
1147       CHECK_EQ(rt, ZERO);
1148       Bgez(rs, imm16);
1149       break;
1150     case kCondLEZ:
1151       CHECK_EQ(rt, ZERO);
1152       Blez(rs, imm16);
1153       break;
1154     case kCondGTZ:
1155       CHECK_EQ(rt, ZERO);
1156       Bgtz(rs, imm16);
1157       break;
1158     case kCondEQ:
1159       Beq(rs, rt, imm16);
1160       break;
1161     case kCondNE:
1162       Bne(rs, rt, imm16);
1163       break;
1164     case kCondEQZ:
1165       CHECK_EQ(rt, ZERO);
1166       Beqz(rs, imm16);
1167       break;
1168     case kCondNEZ:
1169       CHECK_EQ(rt, ZERO);
1170       Bnez(rs, imm16);
1171       break;
1172     case kCondF:
1173       CHECK_EQ(rt, ZERO);
1174       Bc1f(static_cast<int>(rs), imm16);
1175       break;
1176     case kCondT:
1177       CHECK_EQ(rt, ZERO);
1178       Bc1t(static_cast<int>(rs), imm16);
1179       break;
1180     case kCondLT:
1181     case kCondGE:
1182     case kCondLE:
1183     case kCondGT:
1184     case kCondLTU:
1185     case kCondGEU:
1186     case kUncond:
1187       // We don't support synthetic R2 branches (preceded with slt[u]) at this level
1188       // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
1189       LOG(FATAL) << "Unexpected branch condition " << cond;
1190       UNREACHABLE();
1191   }
1192 }
1193 
EmitBcondR6(BranchCondition cond,Register rs,Register rt,uint32_t imm16_21)1194 void MipsAssembler::EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21) {
1195   switch (cond) {
1196     case kCondLT:
1197       Bltc(rs, rt, imm16_21);
1198       break;
1199     case kCondGE:
1200       Bgec(rs, rt, imm16_21);
1201       break;
1202     case kCondLE:
1203       Bgec(rt, rs, imm16_21);
1204       break;
1205     case kCondGT:
1206       Bltc(rt, rs, imm16_21);
1207       break;
1208     case kCondLTZ:
1209       CHECK_EQ(rt, ZERO);
1210       Bltzc(rs, imm16_21);
1211       break;
1212     case kCondGEZ:
1213       CHECK_EQ(rt, ZERO);
1214       Bgezc(rs, imm16_21);
1215       break;
1216     case kCondLEZ:
1217       CHECK_EQ(rt, ZERO);
1218       Blezc(rs, imm16_21);
1219       break;
1220     case kCondGTZ:
1221       CHECK_EQ(rt, ZERO);
1222       Bgtzc(rs, imm16_21);
1223       break;
1224     case kCondEQ:
1225       Beqc(rs, rt, imm16_21);
1226       break;
1227     case kCondNE:
1228       Bnec(rs, rt, imm16_21);
1229       break;
1230     case kCondEQZ:
1231       CHECK_EQ(rt, ZERO);
1232       Beqzc(rs, imm16_21);
1233       break;
1234     case kCondNEZ:
1235       CHECK_EQ(rt, ZERO);
1236       Bnezc(rs, imm16_21);
1237       break;
1238     case kCondLTU:
1239       Bltuc(rs, rt, imm16_21);
1240       break;
1241     case kCondGEU:
1242       Bgeuc(rs, rt, imm16_21);
1243       break;
1244     case kCondF:
1245       CHECK_EQ(rt, ZERO);
1246       Bc1eqz(static_cast<FRegister>(rs), imm16_21);
1247       break;
1248     case kCondT:
1249       CHECK_EQ(rt, ZERO);
1250       Bc1nez(static_cast<FRegister>(rs), imm16_21);
1251       break;
1252     case kUncond:
1253       LOG(FATAL) << "Unexpected branch condition " << cond;
1254       UNREACHABLE();
1255   }
1256 }
1257 
AddS(FRegister fd,FRegister fs,FRegister ft)1258 void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) {
1259   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x0), fd, fs, ft);
1260 }
1261 
SubS(FRegister fd,FRegister fs,FRegister ft)1262 void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) {
1263   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x1), fd, fs, ft);
1264 }
1265 
MulS(FRegister fd,FRegister fs,FRegister ft)1266 void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) {
1267   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x2), fd, fs, ft);
1268 }
1269 
DivS(FRegister fd,FRegister fs,FRegister ft)1270 void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) {
1271   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x3), fd, fs, ft);
1272 }
1273 
AddD(FRegister fd,FRegister fs,FRegister ft)1274 void MipsAssembler::AddD(FRegister fd, FRegister fs, FRegister ft) {
1275   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x0), fd, fs, ft);
1276 }
1277 
SubD(FRegister fd,FRegister fs,FRegister ft)1278 void MipsAssembler::SubD(FRegister fd, FRegister fs, FRegister ft) {
1279   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x1), fd, fs, ft);
1280 }
1281 
MulD(FRegister fd,FRegister fs,FRegister ft)1282 void MipsAssembler::MulD(FRegister fd, FRegister fs, FRegister ft) {
1283   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x2), fd, fs, ft);
1284 }
1285 
DivD(FRegister fd,FRegister fs,FRegister ft)1286 void MipsAssembler::DivD(FRegister fd, FRegister fs, FRegister ft) {
1287   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x3), fd, fs, ft);
1288 }
1289 
SqrtS(FRegister fd,FRegister fs)1290 void MipsAssembler::SqrtS(FRegister fd, FRegister fs) {
1291   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x4), fd, fs, fs);
1292 }
1293 
SqrtD(FRegister fd,FRegister fs)1294 void MipsAssembler::SqrtD(FRegister fd, FRegister fs) {
1295   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x4), fd, fs, fs);
1296 }
1297 
AbsS(FRegister fd,FRegister fs)1298 void MipsAssembler::AbsS(FRegister fd, FRegister fs) {
1299   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x5), fd, fs, fs);
1300 }
1301 
AbsD(FRegister fd,FRegister fs)1302 void MipsAssembler::AbsD(FRegister fd, FRegister fs) {
1303   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x5), fd, fs, fs);
1304 }
1305 
MovS(FRegister fd,FRegister fs)1306 void MipsAssembler::MovS(FRegister fd, FRegister fs) {
1307   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x6), fd, fs, fs);
1308 }
1309 
MovD(FRegister fd,FRegister fs)1310 void MipsAssembler::MovD(FRegister fd, FRegister fs) {
1311   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x6), fd, fs, fs);
1312 }
1313 
NegS(FRegister fd,FRegister fs)1314 void MipsAssembler::NegS(FRegister fd, FRegister fs) {
1315   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x7), fd, fs, fs);
1316 }
1317 
NegD(FRegister fd,FRegister fs)1318 void MipsAssembler::NegD(FRegister fd, FRegister fs) {
1319   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x7), fd, fs, fs);
1320 }
1321 
CunS(FRegister fs,FRegister ft)1322 void MipsAssembler::CunS(FRegister fs, FRegister ft) {
1323   CunS(0, fs, ft);
1324 }
1325 
CunS(int cc,FRegister fs,FRegister ft)1326 void MipsAssembler::CunS(int cc, FRegister fs, FRegister ft) {
1327   CHECK(!IsR6());
1328   CHECK(IsUint<3>(cc)) << cc;
1329   DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x31), cc, fs, ft);
1330 }
1331 
CeqS(FRegister fs,FRegister ft)1332 void MipsAssembler::CeqS(FRegister fs, FRegister ft) {
1333   CeqS(0, fs, ft);
1334 }
1335 
CeqS(int cc,FRegister fs,FRegister ft)1336 void MipsAssembler::CeqS(int cc, FRegister fs, FRegister ft) {
1337   CHECK(!IsR6());
1338   CHECK(IsUint<3>(cc)) << cc;
1339   DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x32), cc, fs, ft);
1340 }
1341 
CueqS(FRegister fs,FRegister ft)1342 void MipsAssembler::CueqS(FRegister fs, FRegister ft) {
1343   CueqS(0, fs, ft);
1344 }
1345 
CueqS(int cc,FRegister fs,FRegister ft)1346 void MipsAssembler::CueqS(int cc, FRegister fs, FRegister ft) {
1347   CHECK(!IsR6());
1348   CHECK(IsUint<3>(cc)) << cc;
1349   DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x33), cc, fs, ft);
1350 }
1351 
ColtS(FRegister fs,FRegister ft)1352 void MipsAssembler::ColtS(FRegister fs, FRegister ft) {
1353   ColtS(0, fs, ft);
1354 }
1355 
ColtS(int cc,FRegister fs,FRegister ft)1356 void MipsAssembler::ColtS(int cc, FRegister fs, FRegister ft) {
1357   CHECK(!IsR6());
1358   CHECK(IsUint<3>(cc)) << cc;
1359   DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x34), cc, fs, ft);
1360 }
1361 
CultS(FRegister fs,FRegister ft)1362 void MipsAssembler::CultS(FRegister fs, FRegister ft) {
1363   CultS(0, fs, ft);
1364 }
1365 
CultS(int cc,FRegister fs,FRegister ft)1366 void MipsAssembler::CultS(int cc, FRegister fs, FRegister ft) {
1367   CHECK(!IsR6());
1368   CHECK(IsUint<3>(cc)) << cc;
1369   DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x35), cc, fs, ft);
1370 }
1371 
ColeS(FRegister fs,FRegister ft)1372 void MipsAssembler::ColeS(FRegister fs, FRegister ft) {
1373   ColeS(0, fs, ft);
1374 }
1375 
ColeS(int cc,FRegister fs,FRegister ft)1376 void MipsAssembler::ColeS(int cc, FRegister fs, FRegister ft) {
1377   CHECK(!IsR6());
1378   CHECK(IsUint<3>(cc)) << cc;
1379   DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x36), cc, fs, ft);
1380 }
1381 
CuleS(FRegister fs,FRegister ft)1382 void MipsAssembler::CuleS(FRegister fs, FRegister ft) {
1383   CuleS(0, fs, ft);
1384 }
1385 
CuleS(int cc,FRegister fs,FRegister ft)1386 void MipsAssembler::CuleS(int cc, FRegister fs, FRegister ft) {
1387   CHECK(!IsR6());
1388   CHECK(IsUint<3>(cc)) << cc;
1389   DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x37), cc, fs, ft);
1390 }
1391 
CunD(FRegister fs,FRegister ft)1392 void MipsAssembler::CunD(FRegister fs, FRegister ft) {
1393   CunD(0, fs, ft);
1394 }
1395 
CunD(int cc,FRegister fs,FRegister ft)1396 void MipsAssembler::CunD(int cc, FRegister fs, FRegister ft) {
1397   CHECK(!IsR6());
1398   CHECK(IsUint<3>(cc)) << cc;
1399   DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x31), cc, fs, ft);
1400 }
1401 
CeqD(FRegister fs,FRegister ft)1402 void MipsAssembler::CeqD(FRegister fs, FRegister ft) {
1403   CeqD(0, fs, ft);
1404 }
1405 
CeqD(int cc,FRegister fs,FRegister ft)1406 void MipsAssembler::CeqD(int cc, FRegister fs, FRegister ft) {
1407   CHECK(!IsR6());
1408   CHECK(IsUint<3>(cc)) << cc;
1409   DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x32), cc, fs, ft);
1410 }
1411 
CueqD(FRegister fs,FRegister ft)1412 void MipsAssembler::CueqD(FRegister fs, FRegister ft) {
1413   CueqD(0, fs, ft);
1414 }
1415 
CueqD(int cc,FRegister fs,FRegister ft)1416 void MipsAssembler::CueqD(int cc, FRegister fs, FRegister ft) {
1417   CHECK(!IsR6());
1418   CHECK(IsUint<3>(cc)) << cc;
1419   DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x33), cc, fs, ft);
1420 }
1421 
ColtD(FRegister fs,FRegister ft)1422 void MipsAssembler::ColtD(FRegister fs, FRegister ft) {
1423   ColtD(0, fs, ft);
1424 }
1425 
ColtD(int cc,FRegister fs,FRegister ft)1426 void MipsAssembler::ColtD(int cc, FRegister fs, FRegister ft) {
1427   CHECK(!IsR6());
1428   CHECK(IsUint<3>(cc)) << cc;
1429   DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x34), cc, fs, ft);
1430 }
1431 
CultD(FRegister fs,FRegister ft)1432 void MipsAssembler::CultD(FRegister fs, FRegister ft) {
1433   CultD(0, fs, ft);
1434 }
1435 
CultD(int cc,FRegister fs,FRegister ft)1436 void MipsAssembler::CultD(int cc, FRegister fs, FRegister ft) {
1437   CHECK(!IsR6());
1438   CHECK(IsUint<3>(cc)) << cc;
1439   DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x35), cc, fs, ft);
1440 }
1441 
ColeD(FRegister fs,FRegister ft)1442 void MipsAssembler::ColeD(FRegister fs, FRegister ft) {
1443   ColeD(0, fs, ft);
1444 }
1445 
ColeD(int cc,FRegister fs,FRegister ft)1446 void MipsAssembler::ColeD(int cc, FRegister fs, FRegister ft) {
1447   CHECK(!IsR6());
1448   CHECK(IsUint<3>(cc)) << cc;
1449   DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x36), cc, fs, ft);
1450 }
1451 
CuleD(FRegister fs,FRegister ft)1452 void MipsAssembler::CuleD(FRegister fs, FRegister ft) {
1453   CuleD(0, fs, ft);
1454 }
1455 
CuleD(int cc,FRegister fs,FRegister ft)1456 void MipsAssembler::CuleD(int cc, FRegister fs, FRegister ft) {
1457   CHECK(!IsR6());
1458   CHECK(IsUint<3>(cc)) << cc;
1459   DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x37), cc, fs, ft);
1460 }
1461 
CmpUnS(FRegister fd,FRegister fs,FRegister ft)1462 void MipsAssembler::CmpUnS(FRegister fd, FRegister fs, FRegister ft) {
1463   CHECK(IsR6());
1464   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x01), fd, fs, ft);
1465 }
1466 
CmpEqS(FRegister fd,FRegister fs,FRegister ft)1467 void MipsAssembler::CmpEqS(FRegister fd, FRegister fs, FRegister ft) {
1468   CHECK(IsR6());
1469   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x02), fd, fs, ft);
1470 }
1471 
CmpUeqS(FRegister fd,FRegister fs,FRegister ft)1472 void MipsAssembler::CmpUeqS(FRegister fd, FRegister fs, FRegister ft) {
1473   CHECK(IsR6());
1474   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x03), fd, fs, ft);
1475 }
1476 
CmpLtS(FRegister fd,FRegister fs,FRegister ft)1477 void MipsAssembler::CmpLtS(FRegister fd, FRegister fs, FRegister ft) {
1478   CHECK(IsR6());
1479   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x04), fd, fs, ft);
1480 }
1481 
CmpUltS(FRegister fd,FRegister fs,FRegister ft)1482 void MipsAssembler::CmpUltS(FRegister fd, FRegister fs, FRegister ft) {
1483   CHECK(IsR6());
1484   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x05), fd, fs, ft);
1485 }
1486 
CmpLeS(FRegister fd,FRegister fs,FRegister ft)1487 void MipsAssembler::CmpLeS(FRegister fd, FRegister fs, FRegister ft) {
1488   CHECK(IsR6());
1489   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x06), fd, fs, ft);
1490 }
1491 
CmpUleS(FRegister fd,FRegister fs,FRegister ft)1492 void MipsAssembler::CmpUleS(FRegister fd, FRegister fs, FRegister ft) {
1493   CHECK(IsR6());
1494   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x07), fd, fs, ft);
1495 }
1496 
CmpOrS(FRegister fd,FRegister fs,FRegister ft)1497 void MipsAssembler::CmpOrS(FRegister fd, FRegister fs, FRegister ft) {
1498   CHECK(IsR6());
1499   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x11), fd, fs, ft);
1500 }
1501 
CmpUneS(FRegister fd,FRegister fs,FRegister ft)1502 void MipsAssembler::CmpUneS(FRegister fd, FRegister fs, FRegister ft) {
1503   CHECK(IsR6());
1504   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x12), fd, fs, ft);
1505 }
1506 
CmpNeS(FRegister fd,FRegister fs,FRegister ft)1507 void MipsAssembler::CmpNeS(FRegister fd, FRegister fs, FRegister ft) {
1508   CHECK(IsR6());
1509   DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x13), fd, fs, ft);
1510 }
1511 
CmpUnD(FRegister fd,FRegister fs,FRegister ft)1512 void MipsAssembler::CmpUnD(FRegister fd, FRegister fs, FRegister ft) {
1513   CHECK(IsR6());
1514   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x01), fd, fs, ft);
1515 }
1516 
CmpEqD(FRegister fd,FRegister fs,FRegister ft)1517 void MipsAssembler::CmpEqD(FRegister fd, FRegister fs, FRegister ft) {
1518   CHECK(IsR6());
1519   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x02), fd, fs, ft);
1520 }
1521 
CmpUeqD(FRegister fd,FRegister fs,FRegister ft)1522 void MipsAssembler::CmpUeqD(FRegister fd, FRegister fs, FRegister ft) {
1523   CHECK(IsR6());
1524   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x03), fd, fs, ft);
1525 }
1526 
CmpLtD(FRegister fd,FRegister fs,FRegister ft)1527 void MipsAssembler::CmpLtD(FRegister fd, FRegister fs, FRegister ft) {
1528   CHECK(IsR6());
1529   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x04), fd, fs, ft);
1530 }
1531 
CmpUltD(FRegister fd,FRegister fs,FRegister ft)1532 void MipsAssembler::CmpUltD(FRegister fd, FRegister fs, FRegister ft) {
1533   CHECK(IsR6());
1534   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x05), fd, fs, ft);
1535 }
1536 
CmpLeD(FRegister fd,FRegister fs,FRegister ft)1537 void MipsAssembler::CmpLeD(FRegister fd, FRegister fs, FRegister ft) {
1538   CHECK(IsR6());
1539   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x06), fd, fs, ft);
1540 }
1541 
CmpUleD(FRegister fd,FRegister fs,FRegister ft)1542 void MipsAssembler::CmpUleD(FRegister fd, FRegister fs, FRegister ft) {
1543   CHECK(IsR6());
1544   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x07), fd, fs, ft);
1545 }
1546 
CmpOrD(FRegister fd,FRegister fs,FRegister ft)1547 void MipsAssembler::CmpOrD(FRegister fd, FRegister fs, FRegister ft) {
1548   CHECK(IsR6());
1549   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x11), fd, fs, ft);
1550 }
1551 
CmpUneD(FRegister fd,FRegister fs,FRegister ft)1552 void MipsAssembler::CmpUneD(FRegister fd, FRegister fs, FRegister ft) {
1553   CHECK(IsR6());
1554   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x12), fd, fs, ft);
1555 }
1556 
CmpNeD(FRegister fd,FRegister fs,FRegister ft)1557 void MipsAssembler::CmpNeD(FRegister fd, FRegister fs, FRegister ft) {
1558   CHECK(IsR6());
1559   DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x13), fd, fs, ft);
1560 }
1561 
Movf(Register rd,Register rs,int cc)1562 void MipsAssembler::Movf(Register rd, Register rs, int cc) {
1563   CHECK(!IsR6());
1564   CHECK(IsUint<3>(cc)) << cc;
1565   DsFsmInstrRrrc(EmitR(0, rs, static_cast<Register>(cc << 2), rd, 0, 0x01), rd, rs, cc);
1566 }
1567 
Movt(Register rd,Register rs,int cc)1568 void MipsAssembler::Movt(Register rd, Register rs, int cc) {
1569   CHECK(!IsR6());
1570   CHECK(IsUint<3>(cc)) << cc;
1571   DsFsmInstrRrrc(EmitR(0, rs, static_cast<Register>((cc << 2) | 1), rd, 0, 0x01), rd, rs, cc);
1572 }
1573 
MovfS(FRegister fd,FRegister fs,int cc)1574 void MipsAssembler::MovfS(FRegister fd, FRegister fs, int cc) {
1575   CHECK(!IsR6());
1576   CHECK(IsUint<3>(cc)) << cc;
1577   DsFsmInstrFffc(EmitFR(0x11, 0x10, static_cast<FRegister>(cc << 2), fs, fd, 0x11), fd, fs, cc);
1578 }
1579 
MovfD(FRegister fd,FRegister fs,int cc)1580 void MipsAssembler::MovfD(FRegister fd, FRegister fs, int cc) {
1581   CHECK(!IsR6());
1582   CHECK(IsUint<3>(cc)) << cc;
1583   DsFsmInstrFffc(EmitFR(0x11, 0x11, static_cast<FRegister>(cc << 2), fs, fd, 0x11), fd, fs, cc);
1584 }
1585 
MovtS(FRegister fd,FRegister fs,int cc)1586 void MipsAssembler::MovtS(FRegister fd, FRegister fs, int cc) {
1587   CHECK(!IsR6());
1588   CHECK(IsUint<3>(cc)) << cc;
1589   DsFsmInstrFffc(EmitFR(0x11, 0x10, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11),
1590                  fd,
1591                  fs,
1592                  cc);
1593 }
1594 
MovtD(FRegister fd,FRegister fs,int cc)1595 void MipsAssembler::MovtD(FRegister fd, FRegister fs, int cc) {
1596   CHECK(!IsR6());
1597   CHECK(IsUint<3>(cc)) << cc;
1598   DsFsmInstrFffc(EmitFR(0x11, 0x11, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11),
1599                  fd,
1600                  fs,
1601                  cc);
1602 }
1603 
MovzS(FRegister fd,FRegister fs,Register rt)1604 void MipsAssembler::MovzS(FRegister fd, FRegister fs, Register rt) {
1605   CHECK(!IsR6());
1606   DsFsmInstrFffr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x12), fd, fs, rt);
1607 }
1608 
MovzD(FRegister fd,FRegister fs,Register rt)1609 void MipsAssembler::MovzD(FRegister fd, FRegister fs, Register rt) {
1610   CHECK(!IsR6());
1611   DsFsmInstrFffr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x12), fd, fs, rt);
1612 }
1613 
MovnS(FRegister fd,FRegister fs,Register rt)1614 void MipsAssembler::MovnS(FRegister fd, FRegister fs, Register rt) {
1615   CHECK(!IsR6());
1616   DsFsmInstrFffr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x13), fd, fs, rt);
1617 }
1618 
MovnD(FRegister fd,FRegister fs,Register rt)1619 void MipsAssembler::MovnD(FRegister fd, FRegister fs, Register rt) {
1620   CHECK(!IsR6());
1621   DsFsmInstrFffr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x13), fd, fs, rt);
1622 }
1623 
SelS(FRegister fd,FRegister fs,FRegister ft)1624 void MipsAssembler::SelS(FRegister fd, FRegister fs, FRegister ft) {
1625   CHECK(IsR6());
1626   DsFsmInstrFfff(EmitFR(0x11, 0x10, ft, fs, fd, 0x10), fd, fs, ft);
1627 }
1628 
SelD(FRegister fd,FRegister fs,FRegister ft)1629 void MipsAssembler::SelD(FRegister fd, FRegister fs, FRegister ft) {
1630   CHECK(IsR6());
1631   DsFsmInstrFfff(EmitFR(0x11, 0x11, ft, fs, fd, 0x10), fd, fs, ft);
1632 }
1633 
SeleqzS(FRegister fd,FRegister fs,FRegister ft)1634 void MipsAssembler::SeleqzS(FRegister fd, FRegister fs, FRegister ft) {
1635   CHECK(IsR6());
1636   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x14), fd, fs, ft);
1637 }
1638 
SeleqzD(FRegister fd,FRegister fs,FRegister ft)1639 void MipsAssembler::SeleqzD(FRegister fd, FRegister fs, FRegister ft) {
1640   CHECK(IsR6());
1641   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x14), fd, fs, ft);
1642 }
1643 
SelnezS(FRegister fd,FRegister fs,FRegister ft)1644 void MipsAssembler::SelnezS(FRegister fd, FRegister fs, FRegister ft) {
1645   CHECK(IsR6());
1646   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x17), fd, fs, ft);
1647 }
1648 
SelnezD(FRegister fd,FRegister fs,FRegister ft)1649 void MipsAssembler::SelnezD(FRegister fd, FRegister fs, FRegister ft) {
1650   CHECK(IsR6());
1651   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x17), fd, fs, ft);
1652 }
1653 
ClassS(FRegister fd,FRegister fs)1654 void MipsAssembler::ClassS(FRegister fd, FRegister fs) {
1655   CHECK(IsR6());
1656   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x1b), fd, fs, fs);
1657 }
1658 
ClassD(FRegister fd,FRegister fs)1659 void MipsAssembler::ClassD(FRegister fd, FRegister fs) {
1660   CHECK(IsR6());
1661   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x1b), fd, fs, fs);
1662 }
1663 
MinS(FRegister fd,FRegister fs,FRegister ft)1664 void MipsAssembler::MinS(FRegister fd, FRegister fs, FRegister ft) {
1665   CHECK(IsR6());
1666   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x1c), fd, fs, ft);
1667 }
1668 
MinD(FRegister fd,FRegister fs,FRegister ft)1669 void MipsAssembler::MinD(FRegister fd, FRegister fs, FRegister ft) {
1670   CHECK(IsR6());
1671   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x1c), fd, fs, ft);
1672 }
1673 
MaxS(FRegister fd,FRegister fs,FRegister ft)1674 void MipsAssembler::MaxS(FRegister fd, FRegister fs, FRegister ft) {
1675   CHECK(IsR6());
1676   DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x1e), fd, fs, ft);
1677 }
1678 
MaxD(FRegister fd,FRegister fs,FRegister ft)1679 void MipsAssembler::MaxD(FRegister fd, FRegister fs, FRegister ft) {
1680   CHECK(IsR6());
1681   DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x1e), fd, fs, ft);
1682 }
1683 
TruncLS(FRegister fd,FRegister fs)1684 void MipsAssembler::TruncLS(FRegister fd, FRegister fs) {
1685   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x09), fd, fs, fs);
1686 }
1687 
TruncLD(FRegister fd,FRegister fs)1688 void MipsAssembler::TruncLD(FRegister fd, FRegister fs) {
1689   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x09), fd, fs, fs);
1690 }
1691 
TruncWS(FRegister fd,FRegister fs)1692 void MipsAssembler::TruncWS(FRegister fd, FRegister fs) {
1693   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x0D), fd, fs, fs);
1694 }
1695 
TruncWD(FRegister fd,FRegister fs)1696 void MipsAssembler::TruncWD(FRegister fd, FRegister fs) {
1697   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x0D), fd, fs, fs);
1698 }
1699 
Cvtsw(FRegister fd,FRegister fs)1700 void MipsAssembler::Cvtsw(FRegister fd, FRegister fs) {
1701   DsFsmInstrFff(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x20), fd, fs, fs);
1702 }
1703 
Cvtdw(FRegister fd,FRegister fs)1704 void MipsAssembler::Cvtdw(FRegister fd, FRegister fs) {
1705   DsFsmInstrFff(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x21), fd, fs, fs);
1706 }
1707 
Cvtsd(FRegister fd,FRegister fs)1708 void MipsAssembler::Cvtsd(FRegister fd, FRegister fs) {
1709   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x20), fd, fs, fs);
1710 }
1711 
Cvtds(FRegister fd,FRegister fs)1712 void MipsAssembler::Cvtds(FRegister fd, FRegister fs) {
1713   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x21), fd, fs, fs);
1714 }
1715 
Cvtsl(FRegister fd,FRegister fs)1716 void MipsAssembler::Cvtsl(FRegister fd, FRegister fs) {
1717   DsFsmInstrFff(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x20), fd, fs, fs);
1718 }
1719 
Cvtdl(FRegister fd,FRegister fs)1720 void MipsAssembler::Cvtdl(FRegister fd, FRegister fs) {
1721   DsFsmInstrFff(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x21), fd, fs, fs);
1722 }
1723 
FloorWS(FRegister fd,FRegister fs)1724 void MipsAssembler::FloorWS(FRegister fd, FRegister fs) {
1725   DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0xf), fd, fs, fs);
1726 }
1727 
FloorWD(FRegister fd,FRegister fs)1728 void MipsAssembler::FloorWD(FRegister fd, FRegister fs) {
1729   DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0xf), fd, fs, fs);
1730 }
1731 
Mfc1(Register rt,FRegister fs)1732 void MipsAssembler::Mfc1(Register rt, FRegister fs) {
1733   DsFsmInstrRf(EmitFR(0x11, 0x00, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1734                rt,
1735                fs);
1736 }
1737 
Mtc1(Register rt,FRegister fs)1738 void MipsAssembler::Mtc1(Register rt, FRegister fs) {
1739   DsFsmInstrFr(EmitFR(0x11, 0x04, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1740                fs,
1741                rt);
1742 }
1743 
Mfhc1(Register rt,FRegister fs)1744 void MipsAssembler::Mfhc1(Register rt, FRegister fs) {
1745   DsFsmInstrRf(EmitFR(0x11, 0x03, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1746                rt,
1747                fs);
1748 }
1749 
Mthc1(Register rt,FRegister fs)1750 void MipsAssembler::Mthc1(Register rt, FRegister fs) {
1751   DsFsmInstrFr(EmitFR(0x11, 0x07, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1752                fs,
1753                rt);
1754 }
1755 
MoveFromFpuHigh(Register rt,FRegister fs)1756 void MipsAssembler::MoveFromFpuHigh(Register rt, FRegister fs) {
1757   if (Is32BitFPU()) {
1758     CHECK_EQ(fs % 2, 0) << fs;
1759     Mfc1(rt, static_cast<FRegister>(fs + 1));
1760   } else {
1761     Mfhc1(rt, fs);
1762   }
1763 }
1764 
MoveToFpuHigh(Register rt,FRegister fs)1765 void MipsAssembler::MoveToFpuHigh(Register rt, FRegister fs) {
1766   if (Is32BitFPU()) {
1767     CHECK_EQ(fs % 2, 0) << fs;
1768     Mtc1(rt, static_cast<FRegister>(fs + 1));
1769   } else {
1770     Mthc1(rt, fs);
1771   }
1772 }
1773 
Lwc1(FRegister ft,Register rs,uint16_t imm16)1774 void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) {
1775   DsFsmInstrFr(EmitI(0x31, rs, static_cast<Register>(ft), imm16), ft, rs);
1776 }
1777 
Ldc1(FRegister ft,Register rs,uint16_t imm16)1778 void MipsAssembler::Ldc1(FRegister ft, Register rs, uint16_t imm16) {
1779   DsFsmInstrFr(EmitI(0x35, rs, static_cast<Register>(ft), imm16), ft, rs);
1780 }
1781 
Swc1(FRegister ft,Register rs,uint16_t imm16)1782 void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) {
1783   DsFsmInstrFR(EmitI(0x39, rs, static_cast<Register>(ft), imm16), ft, rs);
1784 }
1785 
Sdc1(FRegister ft,Register rs,uint16_t imm16)1786 void MipsAssembler::Sdc1(FRegister ft, Register rs, uint16_t imm16) {
1787   DsFsmInstrFR(EmitI(0x3d, rs, static_cast<Register>(ft), imm16), ft, rs);
1788 }
1789 
Break()1790 void MipsAssembler::Break() {
1791   DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, 0, 0xD));
1792 }
1793 
Nop()1794 void MipsAssembler::Nop() {
1795   DsFsmInstrNop(EmitR(0x0, ZERO, ZERO, ZERO, 0, 0x0));
1796 }
1797 
NopIfNoReordering()1798 void MipsAssembler::NopIfNoReordering() {
1799   if (!reordering_) {
1800     Nop();
1801   }
1802 }
1803 
Move(Register rd,Register rs)1804 void MipsAssembler::Move(Register rd, Register rs) {
1805   Or(rd, rs, ZERO);
1806 }
1807 
Clear(Register rd)1808 void MipsAssembler::Clear(Register rd) {
1809   Move(rd, ZERO);
1810 }
1811 
Not(Register rd,Register rs)1812 void MipsAssembler::Not(Register rd, Register rs) {
1813   Nor(rd, rs, ZERO);
1814 }
1815 
Push(Register rs)1816 void MipsAssembler::Push(Register rs) {
1817   IncreaseFrameSize(kMipsWordSize);
1818   Sw(rs, SP, 0);
1819 }
1820 
Pop(Register rd)1821 void MipsAssembler::Pop(Register rd) {
1822   Lw(rd, SP, 0);
1823   DecreaseFrameSize(kMipsWordSize);
1824 }
1825 
PopAndReturn(Register rd,Register rt)1826 void MipsAssembler::PopAndReturn(Register rd, Register rt) {
1827   bool reordering = SetReorder(false);
1828   Lw(rd, SP, 0);
1829   Jr(rt);
1830   DecreaseFrameSize(kMipsWordSize);  // Single instruction in delay slot.
1831   SetReorder(reordering);
1832 }
1833 
AndV(VectorRegister wd,VectorRegister ws,VectorRegister wt)1834 void MipsAssembler::AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1835   CHECK(HasMsa());
1836   DsFsmInstrFff(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1e),
1837                 static_cast<FRegister>(wd),
1838                 static_cast<FRegister>(ws),
1839                 static_cast<FRegister>(wt));
1840 }
1841 
OrV(VectorRegister wd,VectorRegister ws,VectorRegister wt)1842 void MipsAssembler::OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1843   CHECK(HasMsa());
1844   DsFsmInstrFff(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1e),
1845                 static_cast<FRegister>(wd),
1846                 static_cast<FRegister>(ws),
1847                 static_cast<FRegister>(wt));
1848 }
1849 
NorV(VectorRegister wd,VectorRegister ws,VectorRegister wt)1850 void MipsAssembler::NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1851   CHECK(HasMsa());
1852   DsFsmInstrFff(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1e),
1853                 static_cast<FRegister>(wd),
1854                 static_cast<FRegister>(ws),
1855                 static_cast<FRegister>(wt));
1856 }
1857 
XorV(VectorRegister wd,VectorRegister ws,VectorRegister wt)1858 void MipsAssembler::XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1859   CHECK(HasMsa());
1860   DsFsmInstrFff(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1e),
1861                 static_cast<FRegister>(wd),
1862                 static_cast<FRegister>(ws),
1863                 static_cast<FRegister>(wt));
1864 }
1865 
AddvB(VectorRegister wd,VectorRegister ws,VectorRegister wt)1866 void MipsAssembler::AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1867   CHECK(HasMsa());
1868   DsFsmInstrFff(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xe),
1869                 static_cast<FRegister>(wd),
1870                 static_cast<FRegister>(ws),
1871                 static_cast<FRegister>(wt));
1872 }
1873 
AddvH(VectorRegister wd,VectorRegister ws,VectorRegister wt)1874 void MipsAssembler::AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1875   CHECK(HasMsa());
1876   DsFsmInstrFff(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xe),
1877                 static_cast<FRegister>(wd),
1878                 static_cast<FRegister>(ws),
1879                 static_cast<FRegister>(wt));
1880 }
1881 
AddvW(VectorRegister wd,VectorRegister ws,VectorRegister wt)1882 void MipsAssembler::AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1883   CHECK(HasMsa());
1884   DsFsmInstrFff(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xe),
1885                 static_cast<FRegister>(wd),
1886                 static_cast<FRegister>(ws),
1887                 static_cast<FRegister>(wt));
1888 }
1889 
AddvD(VectorRegister wd,VectorRegister ws,VectorRegister wt)1890 void MipsAssembler::AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1891   CHECK(HasMsa());
1892   DsFsmInstrFff(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xe),
1893                 static_cast<FRegister>(wd),
1894                 static_cast<FRegister>(ws),
1895                 static_cast<FRegister>(wt));
1896 }
1897 
SubvB(VectorRegister wd,VectorRegister ws,VectorRegister wt)1898 void MipsAssembler::SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1899   CHECK(HasMsa());
1900   DsFsmInstrFff(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xe),
1901                 static_cast<FRegister>(wd),
1902                 static_cast<FRegister>(ws),
1903                 static_cast<FRegister>(wt));
1904 }
1905 
SubvH(VectorRegister wd,VectorRegister ws,VectorRegister wt)1906 void MipsAssembler::SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1907   CHECK(HasMsa());
1908   DsFsmInstrFff(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xe),
1909                 static_cast<FRegister>(wd),
1910                 static_cast<FRegister>(ws),
1911                 static_cast<FRegister>(wt));
1912 }
1913 
SubvW(VectorRegister wd,VectorRegister ws,VectorRegister wt)1914 void MipsAssembler::SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1915   CHECK(HasMsa());
1916   DsFsmInstrFff(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xe),
1917                 static_cast<FRegister>(wd),
1918                 static_cast<FRegister>(ws),
1919                 static_cast<FRegister>(wt));
1920 }
1921 
SubvD(VectorRegister wd,VectorRegister ws,VectorRegister wt)1922 void MipsAssembler::SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1923   CHECK(HasMsa());
1924   DsFsmInstrFff(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xe),
1925                 static_cast<FRegister>(wd),
1926                 static_cast<FRegister>(ws),
1927                 static_cast<FRegister>(wt));
1928 }
1929 
MulvB(VectorRegister wd,VectorRegister ws,VectorRegister wt)1930 void MipsAssembler::MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1931   CHECK(HasMsa());
1932   DsFsmInstrFff(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x12),
1933                 static_cast<FRegister>(wd),
1934                 static_cast<FRegister>(ws),
1935                 static_cast<FRegister>(wt));
1936 }
1937 
MulvH(VectorRegister wd,VectorRegister ws,VectorRegister wt)1938 void MipsAssembler::MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1939   CHECK(HasMsa());
1940   DsFsmInstrFff(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x12),
1941                 static_cast<FRegister>(wd),
1942                 static_cast<FRegister>(ws),
1943                 static_cast<FRegister>(wt));
1944 }
1945 
MulvW(VectorRegister wd,VectorRegister ws,VectorRegister wt)1946 void MipsAssembler::MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1947   CHECK(HasMsa());
1948   DsFsmInstrFff(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x12),
1949                 static_cast<FRegister>(wd),
1950                 static_cast<FRegister>(ws),
1951                 static_cast<FRegister>(wt));
1952 }
1953 
MulvD(VectorRegister wd,VectorRegister ws,VectorRegister wt)1954 void MipsAssembler::MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1955   CHECK(HasMsa());
1956   DsFsmInstrFff(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x12),
1957                 static_cast<FRegister>(wd),
1958                 static_cast<FRegister>(ws),
1959                 static_cast<FRegister>(wt));
1960 }
1961 
Div_sB(VectorRegister wd,VectorRegister ws,VectorRegister wt)1962 void MipsAssembler::Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1963   CHECK(HasMsa());
1964   DsFsmInstrFff(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x12),
1965                 static_cast<FRegister>(wd),
1966                 static_cast<FRegister>(ws),
1967                 static_cast<FRegister>(wt));
1968 }
1969 
Div_sH(VectorRegister wd,VectorRegister ws,VectorRegister wt)1970 void MipsAssembler::Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1971   CHECK(HasMsa());
1972   DsFsmInstrFff(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x12),
1973                 static_cast<FRegister>(wd),
1974                 static_cast<FRegister>(ws),
1975                 static_cast<FRegister>(wt));
1976 }
1977 
Div_sW(VectorRegister wd,VectorRegister ws,VectorRegister wt)1978 void MipsAssembler::Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1979   CHECK(HasMsa());
1980   DsFsmInstrFff(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x12),
1981                 static_cast<FRegister>(wd),
1982                 static_cast<FRegister>(ws),
1983                 static_cast<FRegister>(wt));
1984 }
1985 
Div_sD(VectorRegister wd,VectorRegister ws,VectorRegister wt)1986 void MipsAssembler::Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1987   CHECK(HasMsa());
1988   DsFsmInstrFff(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x12),
1989                 static_cast<FRegister>(wd),
1990                 static_cast<FRegister>(ws),
1991                 static_cast<FRegister>(wt));
1992 }
1993 
Div_uB(VectorRegister wd,VectorRegister ws,VectorRegister wt)1994 void MipsAssembler::Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
1995   CHECK(HasMsa());
1996   DsFsmInstrFff(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x12),
1997                 static_cast<FRegister>(wd),
1998                 static_cast<FRegister>(ws),
1999                 static_cast<FRegister>(wt));
2000 }
2001 
Div_uH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2002 void MipsAssembler::Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2003   CHECK(HasMsa());
2004   DsFsmInstrFff(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x12),
2005                 static_cast<FRegister>(wd),
2006                 static_cast<FRegister>(ws),
2007                 static_cast<FRegister>(wt));
2008 }
2009 
Div_uW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2010 void MipsAssembler::Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2011   CHECK(HasMsa());
2012   DsFsmInstrFff(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x12),
2013                 static_cast<FRegister>(wd),
2014                 static_cast<FRegister>(ws),
2015                 static_cast<FRegister>(wt));
2016 }
2017 
Div_uD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2018 void MipsAssembler::Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2019   CHECK(HasMsa());
2020   DsFsmInstrFff(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x12),
2021                 static_cast<FRegister>(wd),
2022                 static_cast<FRegister>(ws),
2023                 static_cast<FRegister>(wt));
2024 }
2025 
Mod_sB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2026 void MipsAssembler::Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2027   CHECK(HasMsa());
2028   DsFsmInstrFff(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x12),
2029                 static_cast<FRegister>(wd),
2030                 static_cast<FRegister>(ws),
2031                 static_cast<FRegister>(wt));
2032 }
2033 
Mod_sH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2034 void MipsAssembler::Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2035   CHECK(HasMsa());
2036   DsFsmInstrFff(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x12),
2037                 static_cast<FRegister>(wd),
2038                 static_cast<FRegister>(ws),
2039                 static_cast<FRegister>(wt));
2040 }
2041 
Mod_sW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2042 void MipsAssembler::Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2043   CHECK(HasMsa());
2044   DsFsmInstrFff(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x12),
2045                 static_cast<FRegister>(wd),
2046                 static_cast<FRegister>(ws),
2047                 static_cast<FRegister>(wt));
2048 }
2049 
Mod_sD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2050 void MipsAssembler::Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2051   CHECK(HasMsa());
2052   DsFsmInstrFff(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x12),
2053                 static_cast<FRegister>(wd),
2054                 static_cast<FRegister>(ws),
2055                 static_cast<FRegister>(wt));
2056 }
2057 
Mod_uB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2058 void MipsAssembler::Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2059   CHECK(HasMsa());
2060   DsFsmInstrFff(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x12),
2061                 static_cast<FRegister>(wd),
2062                 static_cast<FRegister>(ws),
2063                 static_cast<FRegister>(wt));
2064 }
2065 
Mod_uH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2066 void MipsAssembler::Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2067   CHECK(HasMsa());
2068   DsFsmInstrFff(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x12),
2069                 static_cast<FRegister>(wd),
2070                 static_cast<FRegister>(ws),
2071                 static_cast<FRegister>(wt));
2072 }
2073 
Mod_uW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2074 void MipsAssembler::Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2075   CHECK(HasMsa());
2076   DsFsmInstrFff(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x12),
2077                 static_cast<FRegister>(wd),
2078                 static_cast<FRegister>(ws),
2079                 static_cast<FRegister>(wt));
2080 }
2081 
Mod_uD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2082 void MipsAssembler::Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2083   CHECK(HasMsa());
2084   DsFsmInstrFff(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x12),
2085                 static_cast<FRegister>(wd),
2086                 static_cast<FRegister>(ws),
2087                 static_cast<FRegister>(wt));
2088 }
2089 
Add_aB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2090 void MipsAssembler::Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2091   CHECK(HasMsa());
2092   DsFsmInstrFff(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x10),
2093                 static_cast<FRegister>(wd),
2094                 static_cast<FRegister>(ws),
2095                 static_cast<FRegister>(wt));
2096 }
2097 
Add_aH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2098 void MipsAssembler::Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2099   CHECK(HasMsa());
2100   DsFsmInstrFff(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x10),
2101                 static_cast<FRegister>(wd),
2102                 static_cast<FRegister>(ws),
2103                 static_cast<FRegister>(wt));
2104 }
2105 
Add_aW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2106 void MipsAssembler::Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2107   CHECK(HasMsa());
2108   DsFsmInstrFff(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x10),
2109                 static_cast<FRegister>(wd),
2110                 static_cast<FRegister>(ws),
2111                 static_cast<FRegister>(wt));
2112 }
2113 
Add_aD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2114 void MipsAssembler::Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2115   CHECK(HasMsa());
2116   DsFsmInstrFff(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x10),
2117                 static_cast<FRegister>(wd),
2118                 static_cast<FRegister>(ws),
2119                 static_cast<FRegister>(wt));
2120 }
2121 
Ave_sB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2122 void MipsAssembler::Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2123   CHECK(HasMsa());
2124   DsFsmInstrFff(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x10),
2125                 static_cast<FRegister>(wd),
2126                 static_cast<FRegister>(ws),
2127                 static_cast<FRegister>(wt));
2128 }
2129 
Ave_sH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2130 void MipsAssembler::Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2131   CHECK(HasMsa());
2132   DsFsmInstrFff(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x10),
2133                 static_cast<FRegister>(wd),
2134                 static_cast<FRegister>(ws),
2135                 static_cast<FRegister>(wt));
2136 }
2137 
Ave_sW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2138 void MipsAssembler::Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2139   CHECK(HasMsa());
2140   DsFsmInstrFff(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x10),
2141                 static_cast<FRegister>(wd),
2142                 static_cast<FRegister>(ws),
2143                 static_cast<FRegister>(wt));
2144 }
2145 
Ave_sD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2146 void MipsAssembler::Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2147   CHECK(HasMsa());
2148   DsFsmInstrFff(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x10),
2149                 static_cast<FRegister>(wd),
2150                 static_cast<FRegister>(ws),
2151                 static_cast<FRegister>(wt));
2152 }
2153 
Ave_uB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2154 void MipsAssembler::Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2155   CHECK(HasMsa());
2156   DsFsmInstrFff(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x10),
2157                 static_cast<FRegister>(wd),
2158                 static_cast<FRegister>(ws),
2159                 static_cast<FRegister>(wt));
2160 }
2161 
Ave_uH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2162 void MipsAssembler::Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2163   CHECK(HasMsa());
2164   DsFsmInstrFff(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x10),
2165                 static_cast<FRegister>(wd),
2166                 static_cast<FRegister>(ws),
2167                 static_cast<FRegister>(wt));
2168 }
2169 
Ave_uW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2170 void MipsAssembler::Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2171   CHECK(HasMsa());
2172   DsFsmInstrFff(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x10),
2173                 static_cast<FRegister>(wd),
2174                 static_cast<FRegister>(ws),
2175                 static_cast<FRegister>(wt));
2176 }
2177 
Ave_uD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2178 void MipsAssembler::Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2179   CHECK(HasMsa());
2180   DsFsmInstrFff(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x10),
2181                 static_cast<FRegister>(wd),
2182                 static_cast<FRegister>(ws),
2183                 static_cast<FRegister>(wt));
2184 }
2185 
Aver_sB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2186 void MipsAssembler::Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2187   CHECK(HasMsa());
2188   DsFsmInstrFff(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x10),
2189                 static_cast<FRegister>(wd),
2190                 static_cast<FRegister>(ws),
2191                 static_cast<FRegister>(wt));
2192 }
2193 
Aver_sH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2194 void MipsAssembler::Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2195   CHECK(HasMsa());
2196   DsFsmInstrFff(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x10),
2197                 static_cast<FRegister>(wd),
2198                 static_cast<FRegister>(ws),
2199                 static_cast<FRegister>(wt));
2200 }
2201 
Aver_sW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2202 void MipsAssembler::Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2203   CHECK(HasMsa());
2204   DsFsmInstrFff(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x10),
2205                 static_cast<FRegister>(wd),
2206                 static_cast<FRegister>(ws),
2207                 static_cast<FRegister>(wt));
2208 }
2209 
Aver_sD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2210 void MipsAssembler::Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2211   CHECK(HasMsa());
2212   DsFsmInstrFff(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x10),
2213                 static_cast<FRegister>(wd),
2214                 static_cast<FRegister>(ws),
2215                 static_cast<FRegister>(wt));
2216 }
2217 
Aver_uB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2218 void MipsAssembler::Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2219   CHECK(HasMsa());
2220   DsFsmInstrFff(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x10),
2221                 static_cast<FRegister>(wd),
2222                 static_cast<FRegister>(ws),
2223                 static_cast<FRegister>(wt));
2224 }
2225 
Aver_uH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2226 void MipsAssembler::Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2227   CHECK(HasMsa());
2228   DsFsmInstrFff(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x10),
2229                 static_cast<FRegister>(wd),
2230                 static_cast<FRegister>(ws),
2231                 static_cast<FRegister>(wt));
2232 }
2233 
Aver_uW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2234 void MipsAssembler::Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2235   CHECK(HasMsa());
2236   DsFsmInstrFff(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x10),
2237                 static_cast<FRegister>(wd),
2238                 static_cast<FRegister>(ws),
2239                 static_cast<FRegister>(wt));
2240 }
2241 
Aver_uD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2242 void MipsAssembler::Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2243   CHECK(HasMsa());
2244   DsFsmInstrFff(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x10),
2245                 static_cast<FRegister>(wd),
2246                 static_cast<FRegister>(ws),
2247                 static_cast<FRegister>(wt));
2248 }
2249 
Max_sB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2250 void MipsAssembler::Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2251   CHECK(HasMsa());
2252   DsFsmInstrFff(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xe),
2253                 static_cast<FRegister>(wd),
2254                 static_cast<FRegister>(ws),
2255                 static_cast<FRegister>(wt));
2256 }
2257 
Max_sH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2258 void MipsAssembler::Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2259   CHECK(HasMsa());
2260   DsFsmInstrFff(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xe),
2261                 static_cast<FRegister>(wd),
2262                 static_cast<FRegister>(ws),
2263                 static_cast<FRegister>(wt));
2264 }
2265 
Max_sW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2266 void MipsAssembler::Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2267   CHECK(HasMsa());
2268   DsFsmInstrFff(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xe),
2269                 static_cast<FRegister>(wd),
2270                 static_cast<FRegister>(ws),
2271                 static_cast<FRegister>(wt));
2272 }
2273 
Max_sD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2274 void MipsAssembler::Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2275   CHECK(HasMsa());
2276   DsFsmInstrFff(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xe),
2277                 static_cast<FRegister>(wd),
2278                 static_cast<FRegister>(ws),
2279                 static_cast<FRegister>(wt));
2280 }
2281 
Max_uB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2282 void MipsAssembler::Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2283   CHECK(HasMsa());
2284   DsFsmInstrFff(EmitMsa3R(0x3, 0x0, wt, ws, wd, 0xe),
2285                 static_cast<FRegister>(wd),
2286                 static_cast<FRegister>(ws),
2287                 static_cast<FRegister>(wt));
2288 }
2289 
Max_uH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2290 void MipsAssembler::Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2291   CHECK(HasMsa());
2292   DsFsmInstrFff(EmitMsa3R(0x3, 0x1, wt, ws, wd, 0xe),
2293                 static_cast<FRegister>(wd),
2294                 static_cast<FRegister>(ws),
2295                 static_cast<FRegister>(wt));
2296 }
2297 
Max_uW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2298 void MipsAssembler::Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2299   CHECK(HasMsa());
2300   DsFsmInstrFff(EmitMsa3R(0x3, 0x2, wt, ws, wd, 0xe),
2301                 static_cast<FRegister>(wd),
2302                 static_cast<FRegister>(ws),
2303                 static_cast<FRegister>(wt));
2304 }
2305 
Max_uD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2306 void MipsAssembler::Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2307   CHECK(HasMsa());
2308   DsFsmInstrFff(EmitMsa3R(0x3, 0x3, wt, ws, wd, 0xe),
2309                 static_cast<FRegister>(wd),
2310                 static_cast<FRegister>(ws),
2311                 static_cast<FRegister>(wt));
2312 }
2313 
Min_sB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2314 void MipsAssembler::Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2315   CHECK(HasMsa());
2316   DsFsmInstrFff(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0xe),
2317                 static_cast<FRegister>(wd),
2318                 static_cast<FRegister>(ws),
2319                 static_cast<FRegister>(wt));
2320 }
2321 
Min_sH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2322 void MipsAssembler::Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2323   CHECK(HasMsa());
2324   DsFsmInstrFff(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0xe),
2325                 static_cast<FRegister>(wd),
2326                 static_cast<FRegister>(ws),
2327                 static_cast<FRegister>(wt));
2328 }
2329 
Min_sW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2330 void MipsAssembler::Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2331   CHECK(HasMsa());
2332   DsFsmInstrFff(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0xe),
2333                 static_cast<FRegister>(wd),
2334                 static_cast<FRegister>(ws),
2335                 static_cast<FRegister>(wt));
2336 }
2337 
Min_sD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2338 void MipsAssembler::Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2339   CHECK(HasMsa());
2340   DsFsmInstrFff(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0xe),
2341                 static_cast<FRegister>(wd),
2342                 static_cast<FRegister>(ws),
2343                 static_cast<FRegister>(wt));
2344 }
2345 
Min_uB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2346 void MipsAssembler::Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2347   CHECK(HasMsa());
2348   DsFsmInstrFff(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0xe),
2349                 static_cast<FRegister>(wd),
2350                 static_cast<FRegister>(ws),
2351                 static_cast<FRegister>(wt));
2352 }
2353 
Min_uH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2354 void MipsAssembler::Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2355   CHECK(HasMsa());
2356   DsFsmInstrFff(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0xe),
2357                 static_cast<FRegister>(wd),
2358                 static_cast<FRegister>(ws),
2359                 static_cast<FRegister>(wt));
2360 }
2361 
Min_uW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2362 void MipsAssembler::Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2363   CHECK(HasMsa());
2364   DsFsmInstrFff(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0xe),
2365                 static_cast<FRegister>(wd),
2366                 static_cast<FRegister>(ws),
2367                 static_cast<FRegister>(wt));
2368 }
2369 
Min_uD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2370 void MipsAssembler::Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2371   CHECK(HasMsa());
2372   DsFsmInstrFff(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0xe),
2373                 static_cast<FRegister>(wd),
2374                 static_cast<FRegister>(ws),
2375                 static_cast<FRegister>(wt));
2376 }
2377 
FaddW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2378 void MipsAssembler::FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2379   CHECK(HasMsa());
2380   DsFsmInstrFff(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1b),
2381                 static_cast<FRegister>(wd),
2382                 static_cast<FRegister>(ws),
2383                 static_cast<FRegister>(wt));
2384 }
2385 
FaddD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2386 void MipsAssembler::FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2387   CHECK(HasMsa());
2388   DsFsmInstrFff(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1b),
2389                 static_cast<FRegister>(wd),
2390                 static_cast<FRegister>(ws),
2391                 static_cast<FRegister>(wt));
2392 }
2393 
FsubW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2394 void MipsAssembler::FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2395   CHECK(HasMsa());
2396   DsFsmInstrFff(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1b),
2397                 static_cast<FRegister>(wd),
2398                 static_cast<FRegister>(ws),
2399                 static_cast<FRegister>(wt));
2400 }
2401 
FsubD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2402 void MipsAssembler::FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2403   CHECK(HasMsa());
2404   DsFsmInstrFff(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1b),
2405                 static_cast<FRegister>(wd),
2406                 static_cast<FRegister>(ws),
2407                 static_cast<FRegister>(wt));
2408 }
2409 
FmulW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2410 void MipsAssembler::FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2411   CHECK(HasMsa());
2412   DsFsmInstrFff(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x1b),
2413                 static_cast<FRegister>(wd),
2414                 static_cast<FRegister>(ws),
2415                 static_cast<FRegister>(wt));
2416 }
2417 
FmulD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2418 void MipsAssembler::FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2419   CHECK(HasMsa());
2420   DsFsmInstrFff(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x1b),
2421                 static_cast<FRegister>(wd),
2422                 static_cast<FRegister>(ws),
2423                 static_cast<FRegister>(wt));
2424 }
2425 
FdivW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2426 void MipsAssembler::FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2427   CHECK(HasMsa());
2428   DsFsmInstrFff(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x1b),
2429                 static_cast<FRegister>(wd),
2430                 static_cast<FRegister>(ws),
2431                 static_cast<FRegister>(wt));
2432 }
2433 
FdivD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2434 void MipsAssembler::FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2435   CHECK(HasMsa());
2436   DsFsmInstrFff(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x1b),
2437                 static_cast<FRegister>(wd),
2438                 static_cast<FRegister>(ws),
2439                 static_cast<FRegister>(wt));
2440 }
2441 
FmaxW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2442 void MipsAssembler::FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2443   CHECK(HasMsa());
2444   DsFsmInstrFff(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x1b),
2445                 static_cast<FRegister>(wd),
2446                 static_cast<FRegister>(ws),
2447                 static_cast<FRegister>(wt));
2448 }
2449 
FmaxD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2450 void MipsAssembler::FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2451   CHECK(HasMsa());
2452   DsFsmInstrFff(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x1b),
2453                 static_cast<FRegister>(wd),
2454                 static_cast<FRegister>(ws),
2455                 static_cast<FRegister>(wt));
2456 }
2457 
FminW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2458 void MipsAssembler::FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2459   CHECK(HasMsa());
2460   DsFsmInstrFff(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x1b),
2461                 static_cast<FRegister>(wd),
2462                 static_cast<FRegister>(ws),
2463                 static_cast<FRegister>(wt));
2464 }
2465 
FminD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2466 void MipsAssembler::FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2467   CHECK(HasMsa());
2468   DsFsmInstrFff(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x1b),
2469                 static_cast<FRegister>(wd),
2470                 static_cast<FRegister>(ws),
2471                 static_cast<FRegister>(wt));
2472 }
2473 
Ffint_sW(VectorRegister wd,VectorRegister ws)2474 void MipsAssembler::Ffint_sW(VectorRegister wd, VectorRegister ws) {
2475   CHECK(HasMsa());
2476   DsFsmInstrFff(EmitMsa2RF(0x19e, 0x0, ws, wd, 0x1e),
2477                 static_cast<FRegister>(wd),
2478                 static_cast<FRegister>(ws),
2479                 static_cast<FRegister>(ws));
2480 }
2481 
Ffint_sD(VectorRegister wd,VectorRegister ws)2482 void MipsAssembler::Ffint_sD(VectorRegister wd, VectorRegister ws) {
2483   CHECK(HasMsa());
2484   DsFsmInstrFff(EmitMsa2RF(0x19e, 0x1, ws, wd, 0x1e),
2485                 static_cast<FRegister>(wd),
2486                 static_cast<FRegister>(ws),
2487                 static_cast<FRegister>(ws));
2488 }
2489 
Ftint_sW(VectorRegister wd,VectorRegister ws)2490 void MipsAssembler::Ftint_sW(VectorRegister wd, VectorRegister ws) {
2491   CHECK(HasMsa());
2492   DsFsmInstrFff(EmitMsa2RF(0x19c, 0x0, ws, wd, 0x1e),
2493                 static_cast<FRegister>(wd),
2494                 static_cast<FRegister>(ws),
2495                 static_cast<FRegister>(ws));
2496 }
2497 
Ftint_sD(VectorRegister wd,VectorRegister ws)2498 void MipsAssembler::Ftint_sD(VectorRegister wd, VectorRegister ws) {
2499   CHECK(HasMsa());
2500   DsFsmInstrFff(EmitMsa2RF(0x19c, 0x1, ws, wd, 0x1e),
2501                 static_cast<FRegister>(wd),
2502                 static_cast<FRegister>(ws),
2503                 static_cast<FRegister>(ws));
2504 }
2505 
SllB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2506 void MipsAssembler::SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2507   CHECK(HasMsa());
2508   DsFsmInstrFff(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xd),
2509                 static_cast<FRegister>(wd),
2510                 static_cast<FRegister>(ws),
2511                 static_cast<FRegister>(wt));
2512 }
2513 
SllH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2514 void MipsAssembler::SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2515   CHECK(HasMsa());
2516   DsFsmInstrFff(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xd),
2517                 static_cast<FRegister>(wd),
2518                 static_cast<FRegister>(ws),
2519                 static_cast<FRegister>(wt));
2520 }
2521 
SllW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2522 void MipsAssembler::SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2523   CHECK(HasMsa());
2524   DsFsmInstrFff(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xd),
2525                 static_cast<FRegister>(wd),
2526                 static_cast<FRegister>(ws),
2527                 static_cast<FRegister>(wt));
2528 }
2529 
SllD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2530 void MipsAssembler::SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2531   CHECK(HasMsa());
2532   DsFsmInstrFff(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xd),
2533                 static_cast<FRegister>(wd),
2534                 static_cast<FRegister>(ws),
2535                 static_cast<FRegister>(wt));
2536 }
2537 
SraB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2538 void MipsAssembler::SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2539   CHECK(HasMsa());
2540   DsFsmInstrFff(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xd),
2541                 static_cast<FRegister>(wd),
2542                 static_cast<FRegister>(ws),
2543                 static_cast<FRegister>(wt));
2544 }
2545 
SraH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2546 void MipsAssembler::SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2547   CHECK(HasMsa());
2548   DsFsmInstrFff(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xd),
2549                 static_cast<FRegister>(wd),
2550                 static_cast<FRegister>(ws),
2551                 static_cast<FRegister>(wt));
2552 }
2553 
SraW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2554 void MipsAssembler::SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2555   CHECK(HasMsa());
2556   DsFsmInstrFff(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xd),
2557                 static_cast<FRegister>(wd),
2558                 static_cast<FRegister>(ws),
2559                 static_cast<FRegister>(wt));
2560 }
2561 
SraD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2562 void MipsAssembler::SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2563   CHECK(HasMsa());
2564   DsFsmInstrFff(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xd),
2565                 static_cast<FRegister>(wd),
2566                 static_cast<FRegister>(ws),
2567                 static_cast<FRegister>(wt));
2568 }
2569 
SrlB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2570 void MipsAssembler::SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2571   CHECK(HasMsa());
2572   DsFsmInstrFff(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xd),
2573                 static_cast<FRegister>(wd),
2574                 static_cast<FRegister>(ws),
2575                 static_cast<FRegister>(wt));
2576 }
2577 
SrlH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2578 void MipsAssembler::SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2579   CHECK(HasMsa());
2580   DsFsmInstrFff(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xd),
2581                 static_cast<FRegister>(wd),
2582                 static_cast<FRegister>(ws),
2583                 static_cast<FRegister>(wt));
2584 }
2585 
SrlW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2586 void MipsAssembler::SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2587   CHECK(HasMsa());
2588   DsFsmInstrFff(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xd),
2589                 static_cast<FRegister>(wd),
2590                 static_cast<FRegister>(ws),
2591                 static_cast<FRegister>(wt));
2592 }
2593 
SrlD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2594 void MipsAssembler::SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2595   CHECK(HasMsa());
2596   DsFsmInstrFff(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xd),
2597                 static_cast<FRegister>(wd),
2598                 static_cast<FRegister>(ws),
2599                 static_cast<FRegister>(wt));
2600 }
2601 
SlliB(VectorRegister wd,VectorRegister ws,int shamt3)2602 void MipsAssembler::SlliB(VectorRegister wd, VectorRegister ws, int shamt3) {
2603   CHECK(HasMsa());
2604   CHECK(IsUint<3>(shamt3)) << shamt3;
2605   DsFsmInstrFff(EmitMsaBIT(0x0, shamt3 | kMsaDfMByteMask, ws, wd, 0x9),
2606                 static_cast<FRegister>(wd),
2607                 static_cast<FRegister>(ws),
2608                 static_cast<FRegister>(ws));
2609 }
2610 
SlliH(VectorRegister wd,VectorRegister ws,int shamt4)2611 void MipsAssembler::SlliH(VectorRegister wd, VectorRegister ws, int shamt4) {
2612   CHECK(HasMsa());
2613   CHECK(IsUint<4>(shamt4)) << shamt4;
2614   DsFsmInstrFff(EmitMsaBIT(0x0, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9),
2615                 static_cast<FRegister>(wd),
2616                 static_cast<FRegister>(ws),
2617                 static_cast<FRegister>(ws));
2618 }
2619 
SlliW(VectorRegister wd,VectorRegister ws,int shamt5)2620 void MipsAssembler::SlliW(VectorRegister wd, VectorRegister ws, int shamt5) {
2621   CHECK(HasMsa());
2622   CHECK(IsUint<5>(shamt5)) << shamt5;
2623   DsFsmInstrFff(EmitMsaBIT(0x0, shamt5 | kMsaDfMWordMask, ws, wd, 0x9),
2624                 static_cast<FRegister>(wd),
2625                 static_cast<FRegister>(ws),
2626                 static_cast<FRegister>(ws));
2627 }
2628 
SlliD(VectorRegister wd,VectorRegister ws,int shamt6)2629 void MipsAssembler::SlliD(VectorRegister wd, VectorRegister ws, int shamt6) {
2630   CHECK(HasMsa());
2631   CHECK(IsUint<6>(shamt6)) << shamt6;
2632   DsFsmInstrFff(EmitMsaBIT(0x0, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9),
2633                 static_cast<FRegister>(wd),
2634                 static_cast<FRegister>(ws),
2635                 static_cast<FRegister>(ws));
2636 }
2637 
SraiB(VectorRegister wd,VectorRegister ws,int shamt3)2638 void MipsAssembler::SraiB(VectorRegister wd, VectorRegister ws, int shamt3) {
2639   CHECK(HasMsa());
2640   CHECK(IsUint<3>(shamt3)) << shamt3;
2641   DsFsmInstrFff(EmitMsaBIT(0x1, shamt3 | kMsaDfMByteMask, ws, wd, 0x9),
2642                 static_cast<FRegister>(wd),
2643                 static_cast<FRegister>(ws),
2644                 static_cast<FRegister>(ws));
2645 }
2646 
SraiH(VectorRegister wd,VectorRegister ws,int shamt4)2647 void MipsAssembler::SraiH(VectorRegister wd, VectorRegister ws, int shamt4) {
2648   CHECK(HasMsa());
2649   CHECK(IsUint<4>(shamt4)) << shamt4;
2650   DsFsmInstrFff(EmitMsaBIT(0x1, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9),
2651                 static_cast<FRegister>(wd),
2652                 static_cast<FRegister>(ws),
2653                 static_cast<FRegister>(ws));
2654 }
2655 
SraiW(VectorRegister wd,VectorRegister ws,int shamt5)2656 void MipsAssembler::SraiW(VectorRegister wd, VectorRegister ws, int shamt5) {
2657   CHECK(HasMsa());
2658   CHECK(IsUint<5>(shamt5)) << shamt5;
2659   DsFsmInstrFff(EmitMsaBIT(0x1, shamt5 | kMsaDfMWordMask, ws, wd, 0x9),
2660                 static_cast<FRegister>(wd),
2661                 static_cast<FRegister>(ws),
2662                 static_cast<FRegister>(ws));
2663 }
2664 
SraiD(VectorRegister wd,VectorRegister ws,int shamt6)2665 void MipsAssembler::SraiD(VectorRegister wd, VectorRegister ws, int shamt6) {
2666   CHECK(HasMsa());
2667   CHECK(IsUint<6>(shamt6)) << shamt6;
2668   DsFsmInstrFff(EmitMsaBIT(0x1, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9),
2669                 static_cast<FRegister>(wd),
2670                 static_cast<FRegister>(ws),
2671                 static_cast<FRegister>(ws));
2672 }
2673 
SrliB(VectorRegister wd,VectorRegister ws,int shamt3)2674 void MipsAssembler::SrliB(VectorRegister wd, VectorRegister ws, int shamt3) {
2675   CHECK(HasMsa());
2676   CHECK(IsUint<3>(shamt3)) << shamt3;
2677   DsFsmInstrFff(EmitMsaBIT(0x2, shamt3 | kMsaDfMByteMask, ws, wd, 0x9),
2678                 static_cast<FRegister>(wd),
2679                 static_cast<FRegister>(ws),
2680                 static_cast<FRegister>(ws));
2681 }
2682 
SrliH(VectorRegister wd,VectorRegister ws,int shamt4)2683 void MipsAssembler::SrliH(VectorRegister wd, VectorRegister ws, int shamt4) {
2684   CHECK(HasMsa());
2685   CHECK(IsUint<4>(shamt4)) << shamt4;
2686   DsFsmInstrFff(EmitMsaBIT(0x2, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9),
2687                 static_cast<FRegister>(wd),
2688                 static_cast<FRegister>(ws),
2689                 static_cast<FRegister>(ws));
2690 }
2691 
SrliW(VectorRegister wd,VectorRegister ws,int shamt5)2692 void MipsAssembler::SrliW(VectorRegister wd, VectorRegister ws, int shamt5) {
2693   CHECK(HasMsa());
2694   CHECK(IsUint<5>(shamt5)) << shamt5;
2695   DsFsmInstrFff(EmitMsaBIT(0x2, shamt5 | kMsaDfMWordMask, ws, wd, 0x9),
2696                 static_cast<FRegister>(wd),
2697                 static_cast<FRegister>(ws),
2698                 static_cast<FRegister>(ws));
2699 }
2700 
SrliD(VectorRegister wd,VectorRegister ws,int shamt6)2701 void MipsAssembler::SrliD(VectorRegister wd, VectorRegister ws, int shamt6) {
2702   CHECK(HasMsa());
2703   CHECK(IsUint<6>(shamt6)) << shamt6;
2704   DsFsmInstrFff(EmitMsaBIT(0x2, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9),
2705                 static_cast<FRegister>(wd),
2706                 static_cast<FRegister>(ws),
2707                 static_cast<FRegister>(ws));
2708 }
2709 
MoveV(VectorRegister wd,VectorRegister ws)2710 void MipsAssembler::MoveV(VectorRegister wd, VectorRegister ws) {
2711   CHECK(HasMsa());
2712   DsFsmInstrFff(EmitMsaBIT(0x1, 0x3e, ws, wd, 0x19),
2713                 static_cast<FRegister>(wd),
2714                 static_cast<FRegister>(ws),
2715                 static_cast<FRegister>(ws));
2716 }
2717 
SplatiB(VectorRegister wd,VectorRegister ws,int n4)2718 void MipsAssembler::SplatiB(VectorRegister wd, VectorRegister ws, int n4) {
2719   CHECK(HasMsa());
2720   CHECK(IsUint<4>(n4)) << n4;
2721   DsFsmInstrFff(EmitMsaELM(0x1, n4 | kMsaDfNByteMask, ws, wd, 0x19),
2722                 static_cast<FRegister>(wd),
2723                 static_cast<FRegister>(ws),
2724                 static_cast<FRegister>(ws));
2725 }
2726 
SplatiH(VectorRegister wd,VectorRegister ws,int n3)2727 void MipsAssembler::SplatiH(VectorRegister wd, VectorRegister ws, int n3) {
2728   CHECK(HasMsa());
2729   CHECK(IsUint<3>(n3)) << n3;
2730   DsFsmInstrFff(EmitMsaELM(0x1, n3 | kMsaDfNHalfwordMask, ws, wd, 0x19),
2731                 static_cast<FRegister>(wd),
2732                 static_cast<FRegister>(ws),
2733                 static_cast<FRegister>(ws));
2734 }
2735 
SplatiW(VectorRegister wd,VectorRegister ws,int n2)2736 void MipsAssembler::SplatiW(VectorRegister wd, VectorRegister ws, int n2) {
2737   CHECK(HasMsa());
2738   CHECK(IsUint<2>(n2)) << n2;
2739   DsFsmInstrFff(EmitMsaELM(0x1, n2 | kMsaDfNWordMask, ws, wd, 0x19),
2740                 static_cast<FRegister>(wd),
2741                 static_cast<FRegister>(ws),
2742                 static_cast<FRegister>(ws));
2743 }
2744 
SplatiD(VectorRegister wd,VectorRegister ws,int n1)2745 void MipsAssembler::SplatiD(VectorRegister wd, VectorRegister ws, int n1) {
2746   CHECK(HasMsa());
2747   CHECK(IsUint<1>(n1)) << n1;
2748   DsFsmInstrFff(EmitMsaELM(0x1, n1 | kMsaDfNDoublewordMask, ws, wd, 0x19),
2749                 static_cast<FRegister>(wd),
2750                 static_cast<FRegister>(ws),
2751                 static_cast<FRegister>(ws));
2752 }
2753 
FillB(VectorRegister wd,Register rs)2754 void MipsAssembler::FillB(VectorRegister wd, Register rs) {
2755   CHECK(HasMsa());
2756   DsFsmInstrFr(EmitMsa2R(0xc0, 0x0, static_cast<VectorRegister>(rs), wd, 0x1e),
2757                static_cast<FRegister>(wd),
2758                rs);
2759 }
2760 
FillH(VectorRegister wd,Register rs)2761 void MipsAssembler::FillH(VectorRegister wd, Register rs) {
2762   CHECK(HasMsa());
2763   DsFsmInstrFr(EmitMsa2R(0xc0, 0x1, static_cast<VectorRegister>(rs), wd, 0x1e),
2764                static_cast<FRegister>(wd),
2765                rs);
2766 }
2767 
FillW(VectorRegister wd,Register rs)2768 void MipsAssembler::FillW(VectorRegister wd, Register rs) {
2769   CHECK(HasMsa());
2770   DsFsmInstrFr(EmitMsa2R(0xc0, 0x2, static_cast<VectorRegister>(rs), wd, 0x1e),
2771                static_cast<FRegister>(wd),
2772                rs);
2773 }
2774 
LdiB(VectorRegister wd,int imm8)2775 void MipsAssembler::LdiB(VectorRegister wd, int imm8) {
2776   CHECK(HasMsa());
2777   CHECK(IsInt<8>(imm8)) << imm8;
2778   DsFsmInstrFr(EmitMsaI10(0x6, 0x0, imm8 & kMsaS10Mask, wd, 0x7),
2779                static_cast<FRegister>(wd),
2780                ZERO);
2781 }
2782 
LdiH(VectorRegister wd,int imm10)2783 void MipsAssembler::LdiH(VectorRegister wd, int imm10) {
2784   CHECK(HasMsa());
2785   CHECK(IsInt<10>(imm10)) << imm10;
2786   DsFsmInstrFr(EmitMsaI10(0x6, 0x1, imm10 & kMsaS10Mask, wd, 0x7),
2787                static_cast<FRegister>(wd),
2788                ZERO);
2789 }
2790 
LdiW(VectorRegister wd,int imm10)2791 void MipsAssembler::LdiW(VectorRegister wd, int imm10) {
2792   CHECK(HasMsa());
2793   CHECK(IsInt<10>(imm10)) << imm10;
2794   DsFsmInstrFr(EmitMsaI10(0x6, 0x2, imm10 & kMsaS10Mask, wd, 0x7),
2795                static_cast<FRegister>(wd),
2796                ZERO);
2797 }
2798 
LdiD(VectorRegister wd,int imm10)2799 void MipsAssembler::LdiD(VectorRegister wd, int imm10) {
2800   CHECK(HasMsa());
2801   CHECK(IsInt<10>(imm10)) << imm10;
2802   DsFsmInstrFr(EmitMsaI10(0x6, 0x3, imm10 & kMsaS10Mask, wd, 0x7),
2803                static_cast<FRegister>(wd),
2804                ZERO);
2805 }
2806 
LdB(VectorRegister wd,Register rs,int offset)2807 void MipsAssembler::LdB(VectorRegister wd, Register rs, int offset) {
2808   CHECK(HasMsa());
2809   CHECK(IsInt<10>(offset)) << offset;
2810   DsFsmInstrFr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x8, 0x0),
2811                static_cast<FRegister>(wd),
2812                rs);
2813 }
2814 
LdH(VectorRegister wd,Register rs,int offset)2815 void MipsAssembler::LdH(VectorRegister wd, Register rs, int offset) {
2816   CHECK(HasMsa());
2817   CHECK(IsInt<11>(offset)) << offset;
2818   CHECK_ALIGNED(offset, kMipsHalfwordSize);
2819   DsFsmInstrFr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x8, 0x1),
2820                static_cast<FRegister>(wd),
2821                rs);
2822 }
2823 
LdW(VectorRegister wd,Register rs,int offset)2824 void MipsAssembler::LdW(VectorRegister wd, Register rs, int offset) {
2825   CHECK(HasMsa());
2826   CHECK(IsInt<12>(offset)) << offset;
2827   CHECK_ALIGNED(offset, kMipsWordSize);
2828   DsFsmInstrFr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x8, 0x2),
2829                static_cast<FRegister>(wd),
2830                rs);
2831 }
2832 
LdD(VectorRegister wd,Register rs,int offset)2833 void MipsAssembler::LdD(VectorRegister wd, Register rs, int offset) {
2834   CHECK(HasMsa());
2835   CHECK(IsInt<13>(offset)) << offset;
2836   CHECK_ALIGNED(offset, kMipsDoublewordSize);
2837   DsFsmInstrFr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x8, 0x3),
2838                static_cast<FRegister>(wd),
2839                rs);
2840 }
2841 
StB(VectorRegister wd,Register rs,int offset)2842 void MipsAssembler::StB(VectorRegister wd, Register rs, int offset) {
2843   CHECK(HasMsa());
2844   CHECK(IsInt<10>(offset)) << offset;
2845   DsFsmInstrFR(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x9, 0x0), static_cast<FRegister>(wd), rs);
2846 }
2847 
StH(VectorRegister wd,Register rs,int offset)2848 void MipsAssembler::StH(VectorRegister wd, Register rs, int offset) {
2849   CHECK(HasMsa());
2850   CHECK(IsInt<11>(offset)) << offset;
2851   CHECK_ALIGNED(offset, kMipsHalfwordSize);
2852   DsFsmInstrFR(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x9, 0x1),
2853                static_cast<FRegister>(wd),
2854                rs);
2855 }
2856 
StW(VectorRegister wd,Register rs,int offset)2857 void MipsAssembler::StW(VectorRegister wd, Register rs, int offset) {
2858   CHECK(HasMsa());
2859   CHECK(IsInt<12>(offset)) << offset;
2860   CHECK_ALIGNED(offset, kMipsWordSize);
2861   DsFsmInstrFR(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x9, 0x2),
2862                static_cast<FRegister>(wd),
2863                rs);
2864 }
2865 
StD(VectorRegister wd,Register rs,int offset)2866 void MipsAssembler::StD(VectorRegister wd, Register rs, int offset) {
2867   CHECK(HasMsa());
2868   CHECK(IsInt<13>(offset)) << offset;
2869   CHECK_ALIGNED(offset, kMipsDoublewordSize);
2870   DsFsmInstrFR(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x9, 0x3),
2871                static_cast<FRegister>(wd),
2872                rs);
2873 }
2874 
IlvrB(VectorRegister wd,VectorRegister ws,VectorRegister wt)2875 void MipsAssembler::IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2876   CHECK(HasMsa());
2877   DsFsmInstrFff(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x14),
2878                 static_cast<FRegister>(wd),
2879                 static_cast<FRegister>(ws),
2880                 static_cast<FRegister>(wt));
2881 }
2882 
IlvrH(VectorRegister wd,VectorRegister ws,VectorRegister wt)2883 void MipsAssembler::IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2884   CHECK(HasMsa());
2885   DsFsmInstrFff(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x14),
2886                 static_cast<FRegister>(wd),
2887                 static_cast<FRegister>(ws),
2888                 static_cast<FRegister>(wt));
2889 }
2890 
IlvrW(VectorRegister wd,VectorRegister ws,VectorRegister wt)2891 void MipsAssembler::IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2892   CHECK(HasMsa());
2893   DsFsmInstrFff(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x14),
2894                 static_cast<FRegister>(wd),
2895                 static_cast<FRegister>(ws),
2896                 static_cast<FRegister>(wt));
2897 }
2898 
IlvrD(VectorRegister wd,VectorRegister ws,VectorRegister wt)2899 void MipsAssembler::IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
2900   CHECK(HasMsa());
2901   DsFsmInstrFff(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x14),
2902                 static_cast<FRegister>(wd),
2903                 static_cast<FRegister>(ws),
2904                 static_cast<FRegister>(wt));
2905 }
2906 
ReplicateFPToVectorRegister(VectorRegister dst,FRegister src,bool is_double)2907 void MipsAssembler::ReplicateFPToVectorRegister(VectorRegister dst,
2908                                                 FRegister src,
2909                                                 bool is_double) {
2910   // Float or double in FPU register Fx can be considered as 0th element in vector register Wx.
2911   if (is_double) {
2912     SplatiD(dst, static_cast<VectorRegister>(src), 0);
2913   } else {
2914     SplatiW(dst, static_cast<VectorRegister>(src), 0);
2915   }
2916 }
2917 
LoadConst32(Register rd,int32_t value)2918 void MipsAssembler::LoadConst32(Register rd, int32_t value) {
2919   if (IsUint<16>(value)) {
2920     // Use OR with (unsigned) immediate to encode 16b unsigned int.
2921     Ori(rd, ZERO, value);
2922   } else if (IsInt<16>(value)) {
2923     // Use ADD with (signed) immediate to encode 16b signed int.
2924     Addiu(rd, ZERO, value);
2925   } else {
2926     Lui(rd, High16Bits(value));
2927     if (value & 0xFFFF)
2928       Ori(rd, rd, Low16Bits(value));
2929   }
2930 }
2931 
LoadConst64(Register reg_hi,Register reg_lo,int64_t value)2932 void MipsAssembler::LoadConst64(Register reg_hi, Register reg_lo, int64_t value) {
2933   uint32_t low = Low32Bits(value);
2934   uint32_t high = High32Bits(value);
2935   LoadConst32(reg_lo, low);
2936   if (high != low) {
2937     LoadConst32(reg_hi, high);
2938   } else {
2939     Move(reg_hi, reg_lo);
2940   }
2941 }
2942 
LoadSConst32(FRegister r,int32_t value,Register temp)2943 void MipsAssembler::LoadSConst32(FRegister r, int32_t value, Register temp) {
2944   if (value == 0) {
2945     temp = ZERO;
2946   } else {
2947     LoadConst32(temp, value);
2948   }
2949   Mtc1(temp, r);
2950 }
2951 
LoadDConst64(FRegister rd,int64_t value,Register temp)2952 void MipsAssembler::LoadDConst64(FRegister rd, int64_t value, Register temp) {
2953   uint32_t low = Low32Bits(value);
2954   uint32_t high = High32Bits(value);
2955   if (low == 0) {
2956     Mtc1(ZERO, rd);
2957   } else {
2958     LoadConst32(temp, low);
2959     Mtc1(temp, rd);
2960   }
2961   if (high == 0) {
2962     MoveToFpuHigh(ZERO, rd);
2963   } else {
2964     LoadConst32(temp, high);
2965     MoveToFpuHigh(temp, rd);
2966   }
2967 }
2968 
Addiu32(Register rt,Register rs,int32_t value,Register temp)2969 void MipsAssembler::Addiu32(Register rt, Register rs, int32_t value, Register temp) {
2970   CHECK_NE(rs, temp);  // Must not overwrite the register `rs` while loading `value`.
2971   if (IsInt<16>(value)) {
2972     Addiu(rt, rs, value);
2973   } else if (IsR6()) {
2974     int16_t high = High16Bits(value);
2975     int16_t low = Low16Bits(value);
2976     high += (low < 0) ? 1 : 0;  // Account for sign extension in addiu.
2977     if (low != 0) {
2978       Aui(temp, rs, high);
2979       Addiu(rt, temp, low);
2980     } else {
2981       Aui(rt, rs, high);
2982     }
2983   } else {
2984     // Do not load the whole 32-bit `value` if it can be represented as
2985     // a sum of two 16-bit signed values. This can save an instruction.
2986     constexpr int32_t kMinValueForSimpleAdjustment = std::numeric_limits<int16_t>::min() * 2;
2987     constexpr int32_t kMaxValueForSimpleAdjustment = std::numeric_limits<int16_t>::max() * 2;
2988     if (0 <= value && value <= kMaxValueForSimpleAdjustment) {
2989       Addiu(temp, rs, kMaxValueForSimpleAdjustment / 2);
2990       Addiu(rt, temp, value - kMaxValueForSimpleAdjustment / 2);
2991     } else if (kMinValueForSimpleAdjustment <= value && value < 0) {
2992       Addiu(temp, rs, kMinValueForSimpleAdjustment / 2);
2993       Addiu(rt, temp, value - kMinValueForSimpleAdjustment / 2);
2994     } else {
2995       // Now that all shorter options have been exhausted, load the full 32-bit value.
2996       LoadConst32(temp, value);
2997       Addu(rt, rs, temp);
2998     }
2999   }
3000 }
3001 
InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size,MipsAssembler::Branch::Type short_type,MipsAssembler::Branch::Type long_type)3002 void MipsAssembler::Branch::InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size,
3003                                             MipsAssembler::Branch::Type short_type,
3004                                             MipsAssembler::Branch::Type long_type) {
3005   type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type;
3006 }
3007 
InitializeType(Type initial_type,bool is_r6)3008 void MipsAssembler::Branch::InitializeType(Type initial_type, bool is_r6) {
3009   OffsetBits offset_size = GetOffsetSizeNeeded(location_, target_);
3010   if (is_r6) {
3011     // R6
3012     switch (initial_type) {
3013       case kLabel:
3014         CHECK(!IsResolved());
3015         type_ = kR6Label;
3016         break;
3017       case kLiteral:
3018         CHECK(!IsResolved());
3019         type_ = kR6Literal;
3020         break;
3021       case kCall:
3022         InitShortOrLong(offset_size, kR6Call, kR6LongCall);
3023         break;
3024       case kCondBranch:
3025         switch (condition_) {
3026           case kUncond:
3027             InitShortOrLong(offset_size, kR6UncondBranch, kR6LongUncondBranch);
3028             break;
3029           case kCondEQZ:
3030           case kCondNEZ:
3031             // Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions.
3032             type_ = (offset_size <= kOffset23) ? kR6CondBranch : kR6LongCondBranch;
3033             break;
3034           default:
3035             InitShortOrLong(offset_size, kR6CondBranch, kR6LongCondBranch);
3036             break;
3037         }
3038         break;
3039       default:
3040         LOG(FATAL) << "Unexpected branch type " << initial_type;
3041         UNREACHABLE();
3042     }
3043   } else {
3044     // R2
3045     switch (initial_type) {
3046       case kLabel:
3047         CHECK(!IsResolved());
3048         type_ = kLabel;
3049         break;
3050       case kLiteral:
3051         CHECK(!IsResolved());
3052         type_ = kLiteral;
3053         break;
3054       case kCall:
3055         InitShortOrLong(offset_size, kCall, kLongCall);
3056         break;
3057       case kCondBranch:
3058         switch (condition_) {
3059           case kUncond:
3060             InitShortOrLong(offset_size, kUncondBranch, kLongUncondBranch);
3061             break;
3062           default:
3063             InitShortOrLong(offset_size, kCondBranch, kLongCondBranch);
3064             break;
3065         }
3066         break;
3067       default:
3068         LOG(FATAL) << "Unexpected branch type " << initial_type;
3069         UNREACHABLE();
3070     }
3071   }
3072   old_type_ = type_;
3073 }
3074 
IsNop(BranchCondition condition,Register lhs,Register rhs)3075 bool MipsAssembler::Branch::IsNop(BranchCondition condition, Register lhs, Register rhs) {
3076   switch (condition) {
3077     case kCondLT:
3078     case kCondGT:
3079     case kCondNE:
3080     case kCondLTU:
3081       return lhs == rhs;
3082     default:
3083       return false;
3084   }
3085 }
3086 
IsUncond(BranchCondition condition,Register lhs,Register rhs)3087 bool MipsAssembler::Branch::IsUncond(BranchCondition condition, Register lhs, Register rhs) {
3088   switch (condition) {
3089     case kUncond:
3090       return true;
3091     case kCondGE:
3092     case kCondLE:
3093     case kCondEQ:
3094     case kCondGEU:
3095       return lhs == rhs;
3096     default:
3097       return false;
3098   }
3099 }
3100 
Branch(bool is_r6,uint32_t location,uint32_t target,bool is_call)3101 MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call)
3102     : old_location_(location),
3103       location_(location),
3104       target_(target),
3105       lhs_reg_(0),
3106       rhs_reg_(0),
3107       condition_(kUncond),
3108       delayed_instruction_(kUnfilledDelaySlot) {
3109   InitializeType((is_call ? kCall : kCondBranch), is_r6);
3110 }
3111 
Branch(bool is_r6,uint32_t location,uint32_t target,MipsAssembler::BranchCondition condition,Register lhs_reg,Register rhs_reg)3112 MipsAssembler::Branch::Branch(bool is_r6,
3113                               uint32_t location,
3114                               uint32_t target,
3115                               MipsAssembler::BranchCondition condition,
3116                               Register lhs_reg,
3117                               Register rhs_reg)
3118     : old_location_(location),
3119       location_(location),
3120       target_(target),
3121       lhs_reg_(lhs_reg),
3122       rhs_reg_(rhs_reg),
3123       condition_(condition),
3124       delayed_instruction_(kUnfilledDelaySlot) {
3125   CHECK_NE(condition, kUncond);
3126   switch (condition) {
3127     case kCondLT:
3128     case kCondGE:
3129     case kCondLE:
3130     case kCondGT:
3131     case kCondLTU:
3132     case kCondGEU:
3133       // We don't support synthetic R2 branches (preceded with slt[u]) at this level
3134       // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
3135       // We leave this up to the caller.
3136       CHECK(is_r6);
3137       FALLTHROUGH_INTENDED;
3138     case kCondEQ:
3139     case kCondNE:
3140       // Require registers other than 0 not only for R6, but also for R2 to catch errors.
3141       // To compare with 0, use dedicated kCond*Z conditions.
3142       CHECK_NE(lhs_reg, ZERO);
3143       CHECK_NE(rhs_reg, ZERO);
3144       break;
3145     case kCondLTZ:
3146     case kCondGEZ:
3147     case kCondLEZ:
3148     case kCondGTZ:
3149     case kCondEQZ:
3150     case kCondNEZ:
3151       // Require registers other than 0 not only for R6, but also for R2 to catch errors.
3152       CHECK_NE(lhs_reg, ZERO);
3153       CHECK_EQ(rhs_reg, ZERO);
3154       break;
3155     case kCondF:
3156     case kCondT:
3157       CHECK_EQ(rhs_reg, ZERO);
3158       break;
3159     case kUncond:
3160       UNREACHABLE();
3161   }
3162   CHECK(!IsNop(condition, lhs_reg, rhs_reg));
3163   if (IsUncond(condition, lhs_reg, rhs_reg)) {
3164     // Branch condition is always true, make the branch unconditional.
3165     condition_ = kUncond;
3166   }
3167   InitializeType(kCondBranch, is_r6);
3168 }
3169 
Branch(bool is_r6,uint32_t location,Register dest_reg,Register base_reg,Type label_or_literal_type)3170 MipsAssembler::Branch::Branch(bool is_r6,
3171                               uint32_t location,
3172                               Register dest_reg,
3173                               Register base_reg,
3174                               Type label_or_literal_type)
3175     : old_location_(location),
3176       location_(location),
3177       target_(kUnresolved),
3178       lhs_reg_(dest_reg),
3179       rhs_reg_(base_reg),
3180       condition_(kUncond),
3181       delayed_instruction_(kUnfilledDelaySlot) {
3182   CHECK_NE(dest_reg, ZERO);
3183   if (is_r6) {
3184     CHECK_EQ(base_reg, ZERO);
3185   } else {
3186     CHECK_NE(base_reg, ZERO);
3187   }
3188   InitializeType(label_or_literal_type, is_r6);
3189 }
3190 
OppositeCondition(MipsAssembler::BranchCondition cond)3191 MipsAssembler::BranchCondition MipsAssembler::Branch::OppositeCondition(
3192     MipsAssembler::BranchCondition cond) {
3193   switch (cond) {
3194     case kCondLT:
3195       return kCondGE;
3196     case kCondGE:
3197       return kCondLT;
3198     case kCondLE:
3199       return kCondGT;
3200     case kCondGT:
3201       return kCondLE;
3202     case kCondLTZ:
3203       return kCondGEZ;
3204     case kCondGEZ:
3205       return kCondLTZ;
3206     case kCondLEZ:
3207       return kCondGTZ;
3208     case kCondGTZ:
3209       return kCondLEZ;
3210     case kCondEQ:
3211       return kCondNE;
3212     case kCondNE:
3213       return kCondEQ;
3214     case kCondEQZ:
3215       return kCondNEZ;
3216     case kCondNEZ:
3217       return kCondEQZ;
3218     case kCondLTU:
3219       return kCondGEU;
3220     case kCondGEU:
3221       return kCondLTU;
3222     case kCondF:
3223       return kCondT;
3224     case kCondT:
3225       return kCondF;
3226     case kUncond:
3227       LOG(FATAL) << "Unexpected branch condition " << cond;
3228   }
3229   UNREACHABLE();
3230 }
3231 
GetType() const3232 MipsAssembler::Branch::Type MipsAssembler::Branch::GetType() const {
3233   return type_;
3234 }
3235 
GetCondition() const3236 MipsAssembler::BranchCondition MipsAssembler::Branch::GetCondition() const {
3237   return condition_;
3238 }
3239 
GetLeftRegister() const3240 Register MipsAssembler::Branch::GetLeftRegister() const {
3241   return static_cast<Register>(lhs_reg_);
3242 }
3243 
GetRightRegister() const3244 Register MipsAssembler::Branch::GetRightRegister() const {
3245   return static_cast<Register>(rhs_reg_);
3246 }
3247 
GetTarget() const3248 uint32_t MipsAssembler::Branch::GetTarget() const {
3249   return target_;
3250 }
3251 
GetLocation() const3252 uint32_t MipsAssembler::Branch::GetLocation() const {
3253   return location_;
3254 }
3255 
GetOldLocation() const3256 uint32_t MipsAssembler::Branch::GetOldLocation() const {
3257   return old_location_;
3258 }
3259 
GetPrecedingInstructionLength(Type type) const3260 uint32_t MipsAssembler::Branch::GetPrecedingInstructionLength(Type type) const {
3261   // Short branches with delay slots always consist of two instructions, the branch
3262   // and the delay slot, irrespective of whether the delay slot is filled with a
3263   // useful instruction or not.
3264   // Long composite branches may have a length longer by one instruction than
3265   // specified in branch_info_[].length. This happens when an instruction is taken
3266   // to fill the short branch delay slot, but the branch eventually becomes long
3267   // and formally has no delay slot to fill. This instruction is placed at the
3268   // beginning of the long composite branch and this needs to be accounted for in
3269   // the branch length and the location of the offset encoded in the branch.
3270   switch (type) {
3271     case kLongUncondBranch:
3272     case kLongCondBranch:
3273     case kLongCall:
3274     case kR6LongCondBranch:
3275       return (delayed_instruction_ != kUnfilledDelaySlot &&
3276           delayed_instruction_ != kUnfillableDelaySlot) ? 1 : 0;
3277     default:
3278       return 0;
3279   }
3280 }
3281 
GetPrecedingInstructionSize(Type type) const3282 uint32_t MipsAssembler::Branch::GetPrecedingInstructionSize(Type type) const {
3283   return GetPrecedingInstructionLength(type) * sizeof(uint32_t);
3284 }
3285 
GetLength() const3286 uint32_t MipsAssembler::Branch::GetLength() const {
3287   return GetPrecedingInstructionLength(type_) + branch_info_[type_].length;
3288 }
3289 
GetOldLength() const3290 uint32_t MipsAssembler::Branch::GetOldLength() const {
3291   return GetPrecedingInstructionLength(old_type_) + branch_info_[old_type_].length;
3292 }
3293 
GetSize() const3294 uint32_t MipsAssembler::Branch::GetSize() const {
3295   return GetLength() * sizeof(uint32_t);
3296 }
3297 
GetOldSize() const3298 uint32_t MipsAssembler::Branch::GetOldSize() const {
3299   return GetOldLength() * sizeof(uint32_t);
3300 }
3301 
GetEndLocation() const3302 uint32_t MipsAssembler::Branch::GetEndLocation() const {
3303   return GetLocation() + GetSize();
3304 }
3305 
GetOldEndLocation() const3306 uint32_t MipsAssembler::Branch::GetOldEndLocation() const {
3307   return GetOldLocation() + GetOldSize();
3308 }
3309 
IsLong() const3310 bool MipsAssembler::Branch::IsLong() const {
3311   switch (type_) {
3312     // R2 short branches.
3313     case kUncondBranch:
3314     case kCondBranch:
3315     case kCall:
3316     // R2 near label.
3317     case kLabel:
3318     // R2 near literal.
3319     case kLiteral:
3320     // R6 short branches.
3321     case kR6UncondBranch:
3322     case kR6CondBranch:
3323     case kR6Call:
3324     // R6 near label.
3325     case kR6Label:
3326     // R6 near literal.
3327     case kR6Literal:
3328       return false;
3329     // R2 long branches.
3330     case kLongUncondBranch:
3331     case kLongCondBranch:
3332     case kLongCall:
3333     // R2 far label.
3334     case kFarLabel:
3335     // R2 far literal.
3336     case kFarLiteral:
3337     // R6 long branches.
3338     case kR6LongUncondBranch:
3339     case kR6LongCondBranch:
3340     case kR6LongCall:
3341     // R6 far label.
3342     case kR6FarLabel:
3343     // R6 far literal.
3344     case kR6FarLiteral:
3345       return true;
3346   }
3347   UNREACHABLE();
3348 }
3349 
IsResolved() const3350 bool MipsAssembler::Branch::IsResolved() const {
3351   return target_ != kUnresolved;
3352 }
3353 
GetOffsetSize() const3354 MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSize() const {
3355   OffsetBits offset_size =
3356       (type_ == kR6CondBranch && (condition_ == kCondEQZ || condition_ == kCondNEZ))
3357           ? kOffset23
3358           : branch_info_[type_].offset_size;
3359   return offset_size;
3360 }
3361 
GetOffsetSizeNeeded(uint32_t location,uint32_t target)3362 MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSizeNeeded(uint32_t location,
3363                                                                              uint32_t target) {
3364   // For unresolved targets assume the shortest encoding
3365   // (later it will be made longer if needed).
3366   if (target == kUnresolved)
3367     return kOffset16;
3368   int64_t distance = static_cast<int64_t>(target) - location;
3369   // To simplify calculations in composite branches consisting of multiple instructions
3370   // bump up the distance by a value larger than the max byte size of a composite branch.
3371   distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize;
3372   if (IsInt<kOffset16>(distance))
3373     return kOffset16;
3374   else if (IsInt<kOffset18>(distance))
3375     return kOffset18;
3376   else if (IsInt<kOffset21>(distance))
3377     return kOffset21;
3378   else if (IsInt<kOffset23>(distance))
3379     return kOffset23;
3380   else if (IsInt<kOffset28>(distance))
3381     return kOffset28;
3382   return kOffset32;
3383 }
3384 
Resolve(uint32_t target)3385 void MipsAssembler::Branch::Resolve(uint32_t target) {
3386   target_ = target;
3387 }
3388 
Relocate(uint32_t expand_location,uint32_t delta)3389 void MipsAssembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) {
3390   if (location_ > expand_location) {
3391     location_ += delta;
3392   }
3393   if (!IsResolved()) {
3394     return;  // Don't know the target yet.
3395   }
3396   if (target_ > expand_location) {
3397     target_ += delta;
3398   }
3399 }
3400 
PromoteToLong()3401 void MipsAssembler::Branch::PromoteToLong() {
3402   switch (type_) {
3403     // R2 short branches.
3404     case kUncondBranch:
3405       type_ = kLongUncondBranch;
3406       break;
3407     case kCondBranch:
3408       type_ = kLongCondBranch;
3409       break;
3410     case kCall:
3411       type_ = kLongCall;
3412       break;
3413     // R2 near label.
3414     case kLabel:
3415       type_ = kFarLabel;
3416       break;
3417     // R2 near literal.
3418     case kLiteral:
3419       type_ = kFarLiteral;
3420       break;
3421     // R6 short branches.
3422     case kR6UncondBranch:
3423       type_ = kR6LongUncondBranch;
3424       break;
3425     case kR6CondBranch:
3426       type_ = kR6LongCondBranch;
3427       break;
3428     case kR6Call:
3429       type_ = kR6LongCall;
3430       break;
3431     // R6 near label.
3432     case kR6Label:
3433       type_ = kR6FarLabel;
3434       break;
3435     // R6 near literal.
3436     case kR6Literal:
3437       type_ = kR6FarLiteral;
3438       break;
3439     default:
3440       // Note: 'type_' is already long.
3441       break;
3442   }
3443   CHECK(IsLong());
3444 }
3445 
GetBranchLocationOrPcRelBase(const MipsAssembler::Branch * branch) const3446 uint32_t MipsAssembler::GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const {
3447   switch (branch->GetType()) {
3448     case Branch::kLabel:
3449     case Branch::kFarLabel:
3450     case Branch::kLiteral:
3451     case Branch::kFarLiteral:
3452       return GetLabelLocation(&pc_rel_base_label_);
3453     default:
3454       return branch->GetLocation();
3455   }
3456 }
3457 
PromoteIfNeeded(uint32_t location,uint32_t max_short_distance)3458 uint32_t MipsAssembler::Branch::PromoteIfNeeded(uint32_t location, uint32_t max_short_distance) {
3459   // `location` is either `GetLabelLocation(&pc_rel_base_label_)` for R2 labels/literals or
3460   // `this->GetLocation()` for everything else.
3461   // If the branch is still unresolved or already long, nothing to do.
3462   if (IsLong() || !IsResolved()) {
3463     return 0;
3464   }
3465   // Promote the short branch to long if the offset size is too small
3466   // to hold the distance between location and target_.
3467   if (GetOffsetSizeNeeded(location, target_) > GetOffsetSize()) {
3468     PromoteToLong();
3469     uint32_t old_size = GetOldSize();
3470     uint32_t new_size = GetSize();
3471     CHECK_GT(new_size, old_size);
3472     return new_size - old_size;
3473   }
3474   // The following logic is for debugging/testing purposes.
3475   // Promote some short branches to long when it's not really required.
3476   if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max())) {
3477     int64_t distance = static_cast<int64_t>(target_) - location;
3478     distance = (distance >= 0) ? distance : -distance;
3479     if (distance >= max_short_distance) {
3480       PromoteToLong();
3481       uint32_t old_size = GetOldSize();
3482       uint32_t new_size = GetSize();
3483       CHECK_GT(new_size, old_size);
3484       return new_size - old_size;
3485     }
3486   }
3487   return 0;
3488 }
3489 
GetOffsetLocation() const3490 uint32_t MipsAssembler::Branch::GetOffsetLocation() const {
3491   return location_ + GetPrecedingInstructionSize(type_) +
3492       branch_info_[type_].instr_offset * sizeof(uint32_t);
3493 }
3494 
GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch * branch) const3495 uint32_t MipsAssembler::GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const {
3496   switch (branch->GetType()) {
3497     case Branch::kLabel:
3498     case Branch::kFarLabel:
3499     case Branch::kLiteral:
3500     case Branch::kFarLiteral:
3501       return GetLabelLocation(&pc_rel_base_label_);
3502     default:
3503       return branch->GetOffsetLocation() +
3504           Branch::branch_info_[branch->GetType()].pc_org * sizeof(uint32_t);
3505   }
3506 }
3507 
GetOffset(uint32_t location) const3508 uint32_t MipsAssembler::Branch::GetOffset(uint32_t location) const {
3509   // `location` is either `GetLabelLocation(&pc_rel_base_label_)` for R2 labels/literals or
3510   // `this->GetOffsetLocation() + branch_info_[this->GetType()].pc_org * sizeof(uint32_t)`
3511   // for everything else.
3512   CHECK(IsResolved());
3513   uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize());
3514   // Calculate the byte distance between instructions and also account for
3515   // different PC-relative origins.
3516   uint32_t offset = target_ - location;
3517   // Prepare the offset for encoding into the instruction(s).
3518   offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift;
3519   return offset;
3520 }
3521 
GetBranch(uint32_t branch_id)3522 MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) {
3523   CHECK_LT(branch_id, branches_.size());
3524   return &branches_[branch_id];
3525 }
3526 
GetBranch(uint32_t branch_id) const3527 const MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) const {
3528   CHECK_LT(branch_id, branches_.size());
3529   return &branches_[branch_id];
3530 }
3531 
Bind(MipsLabel * label)3532 void MipsAssembler::Bind(MipsLabel* label) {
3533   CHECK(!label->IsBound());
3534   uint32_t bound_pc = buffer_.Size();
3535 
3536   // Make the delay slot FSM aware of the new label.
3537   DsFsmLabel();
3538 
3539   // Walk the list of branches referring to and preceding this label.
3540   // Store the previously unknown target addresses in them.
3541   while (label->IsLinked()) {
3542     uint32_t branch_id = label->Position();
3543     Branch* branch = GetBranch(branch_id);
3544     branch->Resolve(bound_pc);
3545 
3546     uint32_t branch_location = branch->GetLocation();
3547     // Extract the location of the previous branch in the list (walking the list backwards;
3548     // the previous branch ID was stored in the space reserved for this branch).
3549     uint32_t prev = buffer_.Load<uint32_t>(branch_location);
3550 
3551     // On to the previous branch in the list...
3552     label->position_ = prev;
3553   }
3554 
3555   // Now make the label object contain its own location (relative to the end of the preceding
3556   // branch, if any; it will be used by the branches referring to and following this label).
3557   label->prev_branch_id_plus_one_ = branches_.size();
3558   if (label->prev_branch_id_plus_one_) {
3559     uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
3560     const Branch* branch = GetBranch(branch_id);
3561     bound_pc -= branch->GetEndLocation();
3562   }
3563   label->BindTo(bound_pc);
3564 }
3565 
GetLabelLocation(const MipsLabel * label) const3566 uint32_t MipsAssembler::GetLabelLocation(const MipsLabel* label) const {
3567   CHECK(label->IsBound());
3568   uint32_t target = label->Position();
3569   if (label->prev_branch_id_plus_one_) {
3570     // Get label location based on the branch preceding it.
3571     uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
3572     const Branch* branch = GetBranch(branch_id);
3573     target += branch->GetEndLocation();
3574   }
3575   return target;
3576 }
3577 
GetAdjustedPosition(uint32_t old_position)3578 uint32_t MipsAssembler::GetAdjustedPosition(uint32_t old_position) {
3579   // We can reconstruct the adjustment by going through all the branches from the beginning
3580   // up to the old_position. Since we expect AdjustedPosition() to be called in a loop
3581   // with increasing old_position, we can use the data from last AdjustedPosition() to
3582   // continue where we left off and the whole loop should be O(m+n) where m is the number
3583   // of positions to adjust and n is the number of branches.
3584   if (old_position < last_old_position_) {
3585     last_position_adjustment_ = 0;
3586     last_old_position_ = 0;
3587     last_branch_id_ = 0;
3588   }
3589   while (last_branch_id_ != branches_.size()) {
3590     const Branch* branch = GetBranch(last_branch_id_);
3591     if (branch->GetLocation() >= old_position + last_position_adjustment_) {
3592       break;
3593     }
3594     last_position_adjustment_ += branch->GetSize() - branch->GetOldSize();
3595     ++last_branch_id_;
3596   }
3597   last_old_position_ = old_position;
3598   return old_position + last_position_adjustment_;
3599 }
3600 
BindPcRelBaseLabel()3601 void MipsAssembler::BindPcRelBaseLabel() {
3602   Bind(&pc_rel_base_label_);
3603 }
3604 
GetPcRelBaseLabelLocation() const3605 uint32_t MipsAssembler::GetPcRelBaseLabelLocation() const {
3606   return GetLabelLocation(&pc_rel_base_label_);
3607 }
3608 
FinalizeLabeledBranch(MipsLabel * label)3609 void MipsAssembler::FinalizeLabeledBranch(MipsLabel* label) {
3610   uint32_t length = branches_.back().GetLength();
3611   // Commit the last branch target label (if any).
3612   DsFsmCommitLabel();
3613   if (!label->IsBound()) {
3614     // Branch forward (to a following label), distance is unknown.
3615     // The first branch forward will contain 0, serving as the terminator of
3616     // the list of forward-reaching branches.
3617     Emit(label->position_);
3618     // Nothing for the delay slot (yet).
3619     DsFsmInstrNop(0);
3620     length--;
3621     // Now make the label object point to this branch
3622     // (this forms a linked list of branches preceding this label).
3623     uint32_t branch_id = branches_.size() - 1;
3624     label->LinkTo(branch_id);
3625   }
3626   // Reserve space for the branch.
3627   while (length--) {
3628     Nop();
3629   }
3630 }
3631 
CanHaveDelayedInstruction(const DelaySlot & delay_slot) const3632 bool MipsAssembler::Branch::CanHaveDelayedInstruction(const DelaySlot& delay_slot) const {
3633   if (delay_slot.instruction_ == 0) {
3634     // NOP or no instruction for the delay slot.
3635     return false;
3636   }
3637   switch (type_) {
3638     // R2 unconditional branches.
3639     case kUncondBranch:
3640     case kLongUncondBranch:
3641       // There are no register interdependencies.
3642       return true;
3643 
3644     // R2 calls.
3645     case kCall:
3646     case kLongCall:
3647       // Instructions depending on or modifying RA should not be moved into delay slots
3648       // of branches modifying RA.
3649       return ((delay_slot.gpr_ins_mask_ | delay_slot.gpr_outs_mask_) & (1u << RA)) == 0;
3650 
3651     // R2 conditional branches.
3652     case kCondBranch:
3653     case kLongCondBranch:
3654       switch (condition_) {
3655         // Branches with one GPR source.
3656         case kCondLTZ:
3657         case kCondGEZ:
3658         case kCondLEZ:
3659         case kCondGTZ:
3660         case kCondEQZ:
3661         case kCondNEZ:
3662           return (delay_slot.gpr_outs_mask_ & (1u << lhs_reg_)) == 0;
3663 
3664         // Branches with two GPR sources.
3665         case kCondEQ:
3666         case kCondNE:
3667           return (delay_slot.gpr_outs_mask_ & ((1u << lhs_reg_) | (1u << rhs_reg_))) == 0;
3668 
3669         // Branches with one FPU condition code source.
3670         case kCondF:
3671         case kCondT:
3672           return (delay_slot.cc_outs_mask_ & (1u << lhs_reg_)) == 0;
3673 
3674         default:
3675           // We don't support synthetic R2 branches (preceded with slt[u]) at this level
3676           // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
3677           LOG(FATAL) << "Unexpected branch condition " << condition_;
3678           UNREACHABLE();
3679       }
3680 
3681     // R6 unconditional branches.
3682     case kR6UncondBranch:
3683     case kR6LongUncondBranch:
3684     // R6 calls.
3685     case kR6Call:
3686     case kR6LongCall:
3687       // There are no delay slots.
3688       return false;
3689 
3690     // R6 conditional branches.
3691     case kR6CondBranch:
3692     case kR6LongCondBranch:
3693       switch (condition_) {
3694         // Branches with one FPU register source.
3695         case kCondF:
3696         case kCondT:
3697           return (delay_slot.fpr_outs_mask_ & (1u << lhs_reg_)) == 0;
3698         // Others have a forbidden slot instead of a delay slot.
3699         default:
3700           return false;
3701       }
3702 
3703     // Literals.
3704     default:
3705       LOG(FATAL) << "Unexpected branch type " << type_;
3706       UNREACHABLE();
3707   }
3708 }
3709 
GetDelayedInstruction() const3710 uint32_t MipsAssembler::Branch::GetDelayedInstruction() const {
3711   return delayed_instruction_;
3712 }
3713 
SetDelayedInstruction(uint32_t instruction)3714 void MipsAssembler::Branch::SetDelayedInstruction(uint32_t instruction) {
3715   CHECK_NE(instruction, kUnfilledDelaySlot);
3716   CHECK_EQ(delayed_instruction_, kUnfilledDelaySlot);
3717   delayed_instruction_ = instruction;
3718 }
3719 
DecrementLocations()3720 void MipsAssembler::Branch::DecrementLocations() {
3721   // We first create a branch object, which gets its type and locations initialized,
3722   // and then we check if the branch can actually have the preceding instruction moved
3723   // into its delay slot. If it can, the branch locations need to be decremented.
3724   //
3725   // We could make the check before creating the branch object and avoid the location
3726   // adjustment, but the check is cleaner when performed on an initialized branch
3727   // object.
3728   //
3729   // If the branch is backwards (to a previously bound label), reducing the locations
3730   // cannot cause a short branch to exceed its offset range because the offset reduces.
3731   // And this is not at all a problem for a long branch backwards.
3732   //
3733   // If the branch is forward (not linked to any label yet), reducing the locations
3734   // is harmless. The branch will be promoted to long if needed when the target is known.
3735   CHECK_EQ(location_, old_location_);
3736   CHECK_GE(old_location_, sizeof(uint32_t));
3737   old_location_ -= sizeof(uint32_t);
3738   location_ = old_location_;
3739 }
3740 
MoveInstructionToDelaySlot(Branch & branch)3741 void MipsAssembler::MoveInstructionToDelaySlot(Branch& branch) {
3742   if (branch.CanHaveDelayedInstruction(delay_slot_)) {
3743     // The last instruction cannot be used in a different delay slot,
3744     // do not commit the label before it (if any).
3745     DsFsmDropLabel();
3746     // Remove the last emitted instruction.
3747     size_t size = buffer_.Size();
3748     CHECK_GE(size, sizeof(uint32_t));
3749     size -= sizeof(uint32_t);
3750     CHECK_EQ(buffer_.Load<uint32_t>(size), delay_slot_.instruction_);
3751     buffer_.Resize(size);
3752     // Attach it to the branch and adjust the branch locations.
3753     branch.DecrementLocations();
3754     branch.SetDelayedInstruction(delay_slot_.instruction_);
3755   } else if (!reordering_ && branch.GetType() == Branch::kUncondBranch) {
3756     // If reordefing is disabled, prevent absorption of the target instruction.
3757     branch.SetDelayedInstruction(Branch::kUnfillableDelaySlot);
3758   }
3759 }
3760 
Buncond(MipsLabel * label)3761 void MipsAssembler::Buncond(MipsLabel* label) {
3762   uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
3763   branches_.emplace_back(IsR6(), buffer_.Size(), target, /* is_call */ false);
3764   MoveInstructionToDelaySlot(branches_.back());
3765   FinalizeLabeledBranch(label);
3766 }
3767 
Bcond(MipsLabel * label,BranchCondition condition,Register lhs,Register rhs)3768 void MipsAssembler::Bcond(MipsLabel* label, BranchCondition condition, Register lhs, Register rhs) {
3769   // If lhs = rhs, this can be a NOP.
3770   if (Branch::IsNop(condition, lhs, rhs)) {
3771     return;
3772   }
3773   uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
3774   branches_.emplace_back(IsR6(), buffer_.Size(), target, condition, lhs, rhs);
3775   MoveInstructionToDelaySlot(branches_.back());
3776   FinalizeLabeledBranch(label);
3777 }
3778 
Call(MipsLabel * label)3779 void MipsAssembler::Call(MipsLabel* label) {
3780   uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
3781   branches_.emplace_back(IsR6(), buffer_.Size(), target, /* is_call */ true);
3782   MoveInstructionToDelaySlot(branches_.back());
3783   FinalizeLabeledBranch(label);
3784 }
3785 
LoadLabelAddress(Register dest_reg,Register base_reg,MipsLabel * label)3786 void MipsAssembler::LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label) {
3787   // Label address loads are treated as pseudo branches since they require very similar handling.
3788   DCHECK(!label->IsBound());
3789   branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLabel);
3790   FinalizeLabeledBranch(label);
3791 }
3792 
NewLiteral(size_t size,const uint8_t * data)3793 Literal* MipsAssembler::NewLiteral(size_t size, const uint8_t* data) {
3794   DCHECK(size == 4u || size == 8u) << size;
3795   literals_.emplace_back(size, data);
3796   return &literals_.back();
3797 }
3798 
LoadLiteral(Register dest_reg,Register base_reg,Literal * literal)3799 void MipsAssembler::LoadLiteral(Register dest_reg, Register base_reg, Literal* literal) {
3800   // Literal loads are treated as pseudo branches since they require very similar handling.
3801   DCHECK_EQ(literal->GetSize(), 4u);
3802   MipsLabel* label = literal->GetLabel();
3803   DCHECK(!label->IsBound());
3804   branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLiteral);
3805   FinalizeLabeledBranch(label);
3806 }
3807 
CreateJumpTable(std::vector<MipsLabel * > && labels)3808 JumpTable* MipsAssembler::CreateJumpTable(std::vector<MipsLabel*>&& labels) {
3809   jump_tables_.emplace_back(std::move(labels));
3810   JumpTable* table = &jump_tables_.back();
3811   DCHECK(!table->GetLabel()->IsBound());
3812   return table;
3813 }
3814 
EmitLiterals()3815 void MipsAssembler::EmitLiterals() {
3816   if (!literals_.empty()) {
3817     // We don't support byte and half-word literals.
3818     // TODO: proper alignment for 64-bit literals when they're implemented.
3819     for (Literal& literal : literals_) {
3820       MipsLabel* label = literal.GetLabel();
3821       Bind(label);
3822       AssemblerBuffer::EnsureCapacity ensured(&buffer_);
3823       DCHECK(literal.GetSize() == 4u || literal.GetSize() == 8u);
3824       for (size_t i = 0, size = literal.GetSize(); i != size; ++i) {
3825         buffer_.Emit<uint8_t>(literal.GetData()[i]);
3826       }
3827     }
3828   }
3829 }
3830 
ReserveJumpTableSpace()3831 void MipsAssembler::ReserveJumpTableSpace() {
3832   if (!jump_tables_.empty()) {
3833     for (JumpTable& table : jump_tables_) {
3834       MipsLabel* label = table.GetLabel();
3835       Bind(label);
3836 
3837       // Bulk ensure capacity, as this may be large.
3838       size_t orig_size = buffer_.Size();
3839       size_t required_capacity = orig_size + table.GetSize();
3840       if (required_capacity > buffer_.Capacity()) {
3841         buffer_.ExtendCapacity(required_capacity);
3842       }
3843 #ifndef NDEBUG
3844       buffer_.has_ensured_capacity_ = true;
3845 #endif
3846 
3847       // Fill the space with dummy data as the data is not final
3848       // until the branches have been promoted. And we shouldn't
3849       // be moving uninitialized data during branch promotion.
3850       for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) {
3851         buffer_.Emit<uint32_t>(0x1abe1234u);
3852       }
3853 
3854 #ifndef NDEBUG
3855       buffer_.has_ensured_capacity_ = false;
3856 #endif
3857     }
3858   }
3859 }
3860 
EmitJumpTables()3861 void MipsAssembler::EmitJumpTables() {
3862   if (!jump_tables_.empty()) {
3863     CHECK(!overwriting_);
3864     // Switch from appending instructions at the end of the buffer to overwriting
3865     // existing instructions (here, jump tables) in the buffer.
3866     overwriting_ = true;
3867 
3868     for (JumpTable& table : jump_tables_) {
3869       MipsLabel* table_label = table.GetLabel();
3870       uint32_t start = GetLabelLocation(table_label);
3871       overwrite_location_ = start;
3872 
3873       for (MipsLabel* target : table.GetData()) {
3874         CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u);
3875         // The table will contain target addresses relative to the table start.
3876         uint32_t offset = GetLabelLocation(target) - start;
3877         Emit(offset);
3878       }
3879     }
3880 
3881     overwriting_ = false;
3882   }
3883 }
3884 
PromoteBranches()3885 void MipsAssembler::PromoteBranches() {
3886   // Promote short branches to long as necessary.
3887   bool changed;
3888   do {
3889     changed = false;
3890     for (auto& branch : branches_) {
3891       CHECK(branch.IsResolved());
3892       uint32_t base = GetBranchLocationOrPcRelBase(&branch);
3893       uint32_t delta = branch.PromoteIfNeeded(base);
3894       // If this branch has been promoted and needs to expand in size,
3895       // relocate all branches by the expansion size.
3896       if (delta) {
3897         changed = true;
3898         uint32_t expand_location = branch.GetLocation();
3899         for (auto& branch2 : branches_) {
3900           branch2.Relocate(expand_location, delta);
3901         }
3902       }
3903     }
3904   } while (changed);
3905 
3906   // Account for branch expansion by resizing the code buffer
3907   // and moving the code in it to its final location.
3908   size_t branch_count = branches_.size();
3909   if (branch_count > 0) {
3910     // Resize.
3911     Branch& last_branch = branches_[branch_count - 1];
3912     uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation();
3913     uint32_t old_size = buffer_.Size();
3914     buffer_.Resize(old_size + size_delta);
3915     // Move the code residing between branch placeholders.
3916     uint32_t end = old_size;
3917     for (size_t i = branch_count; i > 0; ) {
3918       Branch& branch = branches_[--i];
3919       CHECK_GE(end, branch.GetOldEndLocation());
3920       uint32_t size = end - branch.GetOldEndLocation();
3921       buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size);
3922       end = branch.GetOldLocation();
3923     }
3924   }
3925 }
3926 
3927 // Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
3928 const MipsAssembler::Branch::BranchInfo MipsAssembler::Branch::branch_info_[] = {
3929   // R2 short branches.
3930   {  2, 0, 1, MipsAssembler::Branch::kOffset18, 2 },  // kUncondBranch
3931   {  2, 0, 1, MipsAssembler::Branch::kOffset18, 2 },  // kCondBranch
3932   {  2, 0, 1, MipsAssembler::Branch::kOffset18, 2 },  // kCall
3933   // R2 near label.
3934   {  1, 0, 0, MipsAssembler::Branch::kOffset16, 0 },  // kLabel
3935   // R2 near literal.
3936   {  1, 0, 0, MipsAssembler::Branch::kOffset16, 0 },  // kLiteral
3937   // R2 long branches.
3938   {  9, 3, 1, MipsAssembler::Branch::kOffset32, 0 },  // kLongUncondBranch
3939   { 10, 4, 1, MipsAssembler::Branch::kOffset32, 0 },  // kLongCondBranch
3940   {  6, 1, 1, MipsAssembler::Branch::kOffset32, 0 },  // kLongCall
3941   // R2 far label.
3942   {  3, 0, 0, MipsAssembler::Branch::kOffset32, 0 },  // kFarLabel
3943   // R2 far literal.
3944   {  3, 0, 0, MipsAssembler::Branch::kOffset32, 0 },  // kFarLiteral
3945   // R6 short branches.
3946   {  1, 0, 1, MipsAssembler::Branch::kOffset28, 2 },  // kR6UncondBranch
3947   {  2, 0, 1, MipsAssembler::Branch::kOffset18, 2 },  // kR6CondBranch
3948                                                       // Exception: kOffset23 for beqzc/bnezc.
3949   {  1, 0, 1, MipsAssembler::Branch::kOffset28, 2 },  // kR6Call
3950   // R6 near label.
3951   {  1, 0, 0, MipsAssembler::Branch::kOffset21, 2 },  // kR6Label
3952   // R6 near literal.
3953   {  1, 0, 0, MipsAssembler::Branch::kOffset21, 2 },  // kR6Literal
3954   // R6 long branches.
3955   {  2, 0, 0, MipsAssembler::Branch::kOffset32, 0 },  // kR6LongUncondBranch
3956   {  3, 1, 0, MipsAssembler::Branch::kOffset32, 0 },  // kR6LongCondBranch
3957   {  2, 0, 0, MipsAssembler::Branch::kOffset32, 0 },  // kR6LongCall
3958   // R6 far label.
3959   {  2, 0, 0, MipsAssembler::Branch::kOffset32, 0 },  // kR6FarLabel
3960   // R6 far literal.
3961   {  2, 0, 0, MipsAssembler::Branch::kOffset32, 0 },  // kR6FarLiteral
3962 };
3963 
3964 // Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
EmitBranch(MipsAssembler::Branch * branch)3965 void MipsAssembler::EmitBranch(MipsAssembler::Branch* branch) {
3966   CHECK_EQ(overwriting_, true);
3967   overwrite_location_ = branch->GetLocation();
3968   uint32_t offset = branch->GetOffset(GetBranchOrPcRelBaseForEncoding(branch));
3969   BranchCondition condition = branch->GetCondition();
3970   Register lhs = branch->GetLeftRegister();
3971   Register rhs = branch->GetRightRegister();
3972   uint32_t delayed_instruction = branch->GetDelayedInstruction();
3973   switch (branch->GetType()) {
3974     // R2 short branches.
3975     case Branch::kUncondBranch:
3976       if (delayed_instruction == Branch::kUnfillableDelaySlot) {
3977         // The branch was created when reordering was disabled, do not absorb the target
3978         // instruction.
3979         delayed_instruction = 0;  // NOP.
3980       } else if (delayed_instruction == Branch::kUnfilledDelaySlot) {
3981         // Try to absorb the target instruction into the delay slot.
3982         delayed_instruction = 0;  // NOP.
3983         // Incrementing the signed 16-bit offset past the target instruction must not
3984         // cause overflow into the negative subrange, check for the max offset.
3985         if (offset != 0x7FFF) {
3986           uint32_t target = branch->GetTarget();
3987           if (std::binary_search(ds_fsm_target_pcs_.begin(), ds_fsm_target_pcs_.end(), target)) {
3988             delayed_instruction = buffer_.Load<uint32_t>(target);
3989             offset++;
3990           }
3991         }
3992       }
3993       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
3994       B(offset);
3995       Emit(delayed_instruction);
3996       break;
3997     case Branch::kCondBranch:
3998       DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
3999       if (delayed_instruction == Branch::kUnfilledDelaySlot) {
4000         delayed_instruction = 0;  // NOP.
4001       }
4002       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4003       EmitBcondR2(condition, lhs, rhs, offset);
4004       Emit(delayed_instruction);
4005       break;
4006     case Branch::kCall:
4007       DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
4008       if (delayed_instruction == Branch::kUnfilledDelaySlot) {
4009         delayed_instruction = 0;  // NOP.
4010       }
4011       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4012       Bal(offset);
4013       Emit(delayed_instruction);
4014       break;
4015 
4016     // R2 near label.
4017     case Branch::kLabel:
4018       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4019       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4020       Addiu(lhs, rhs, offset);
4021       break;
4022     // R2 near literal.
4023     case Branch::kLiteral:
4024       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4025       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4026       Lw(lhs, rhs, offset);
4027       break;
4028 
4029     // R2 long branches.
4030     case Branch::kLongUncondBranch:
4031       // To get the value of the PC register we need to use the NAL instruction.
4032       // NAL clobbers the RA register. However, RA must be preserved if the
4033       // method is compiled without the entry/exit sequences that would take care
4034       // of preserving RA (typically, leaf methods don't preserve RA explicitly).
4035       // So, we need to preserve RA in some temporary storage ourselves. The AT
4036       // register can't be used for this because we need it to load a constant
4037       // which will be added to the value that NAL stores in RA. And we can't
4038       // use T9 for this in the context of the JNI compiler, which uses it
4039       // as a scratch register (see InterproceduralScratchRegister()).
4040       // If we were to add a 32-bit constant to RA using two ADDIU instructions,
4041       // we'd also need to use the ROTR instruction, which requires no less than
4042       // MIPSR2.
4043       // Perhaps, we could use T8 or one of R2's multiplier/divider registers
4044       // (LO or HI) or even a floating-point register, but that doesn't seem
4045       // like a nice solution. We may want this to work on both R6 and pre-R6.
4046       // For now simply use the stack for RA. This should be OK since for the
4047       // vast majority of code a short PC-relative branch is sufficient.
4048       // TODO: can this be improved?
4049       // TODO: consider generation of a shorter sequence when we know that RA
4050       // is explicitly preserved by the method entry/exit code.
4051       if (delayed_instruction != Branch::kUnfilledDelaySlot &&
4052           delayed_instruction != Branch::kUnfillableDelaySlot) {
4053         Emit(delayed_instruction);
4054       }
4055       Push(RA);
4056       Nal();
4057       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4058       Lui(AT, High16Bits(offset));
4059       Ori(AT, AT, Low16Bits(offset));
4060       Addu(AT, AT, RA);
4061       Lw(RA, SP, 0);
4062       Jr(AT);
4063       DecreaseFrameSize(kMipsWordSize);
4064       break;
4065     case Branch::kLongCondBranch:
4066       // The comment on case 'Branch::kLongUncondBranch' applies here as well.
4067       DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
4068       if (delayed_instruction != Branch::kUnfilledDelaySlot) {
4069         Emit(delayed_instruction);
4070       }
4071       // Note: the opposite condition branch encodes 8 as the distance, which is equal to the
4072       // number of instructions skipped:
4073       // (PUSH(IncreaseFrameSize(ADDIU) + SW) + NAL + LUI + ORI + ADDU + LW + JR).
4074       EmitBcondR2(Branch::OppositeCondition(condition), lhs, rhs, 8);
4075       Push(RA);
4076       Nal();
4077       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4078       Lui(AT, High16Bits(offset));
4079       Ori(AT, AT, Low16Bits(offset));
4080       Addu(AT, AT, RA);
4081       Lw(RA, SP, 0);
4082       Jr(AT);
4083       DecreaseFrameSize(kMipsWordSize);
4084       break;
4085     case Branch::kLongCall:
4086       DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
4087       if (delayed_instruction != Branch::kUnfilledDelaySlot) {
4088         Emit(delayed_instruction);
4089       }
4090       Nal();
4091       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4092       Lui(AT, High16Bits(offset));
4093       Ori(AT, AT, Low16Bits(offset));
4094       Addu(AT, AT, RA);
4095       Jalr(AT);
4096       Nop();
4097       break;
4098 
4099     // R2 far label.
4100     case Branch::kFarLabel:
4101       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4102       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4103       Lui(AT, High16Bits(offset));
4104       Ori(AT, AT, Low16Bits(offset));
4105       Addu(lhs, AT, rhs);
4106       break;
4107     // R2 far literal.
4108     case Branch::kFarLiteral:
4109       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4110       offset += (offset & 0x8000) << 1;  // Account for sign extension in lw.
4111       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4112       Lui(AT, High16Bits(offset));
4113       Addu(AT, AT, rhs);
4114       Lw(lhs, AT, Low16Bits(offset));
4115       break;
4116 
4117     // R6 short branches.
4118     case Branch::kR6UncondBranch:
4119       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4120       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4121       Bc(offset);
4122       break;
4123     case Branch::kR6CondBranch:
4124       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4125       EmitBcondR6(condition, lhs, rhs, offset);
4126       DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
4127       if (delayed_instruction != Branch::kUnfilledDelaySlot) {
4128         Emit(delayed_instruction);
4129       } else {
4130         // TODO: improve by filling the forbidden slot (IFF this is
4131         // a forbidden and not a delay slot).
4132         Nop();
4133       }
4134       break;
4135     case Branch::kR6Call:
4136       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4137       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4138       Balc(offset);
4139       break;
4140 
4141     // R6 near label.
4142     case Branch::kR6Label:
4143       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4144       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4145       Addiupc(lhs, offset);
4146       break;
4147     // R6 near literal.
4148     case Branch::kR6Literal:
4149       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4150       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4151       Lwpc(lhs, offset);
4152       break;
4153 
4154     // R6 long branches.
4155     case Branch::kR6LongUncondBranch:
4156       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4157       offset += (offset & 0x8000) << 1;  // Account for sign extension in jic.
4158       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4159       Auipc(AT, High16Bits(offset));
4160       Jic(AT, Low16Bits(offset));
4161       break;
4162     case Branch::kR6LongCondBranch:
4163       DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
4164       if (delayed_instruction != Branch::kUnfilledDelaySlot) {
4165         Emit(delayed_instruction);
4166       }
4167       EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2);
4168       offset += (offset & 0x8000) << 1;  // Account for sign extension in jic.
4169       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4170       Auipc(AT, High16Bits(offset));
4171       Jic(AT, Low16Bits(offset));
4172       break;
4173     case Branch::kR6LongCall:
4174       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4175       offset += (offset & 0x8000) << 1;  // Account for sign extension in jialc.
4176       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4177       Auipc(AT, High16Bits(offset));
4178       Jialc(AT, Low16Bits(offset));
4179       break;
4180 
4181     // R6 far label.
4182     case Branch::kR6FarLabel:
4183       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4184       offset += (offset & 0x8000) << 1;  // Account for sign extension in addiu.
4185       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4186       Auipc(AT, High16Bits(offset));
4187       Addiu(lhs, AT, Low16Bits(offset));
4188       break;
4189     // R6 far literal.
4190     case Branch::kR6FarLiteral:
4191       DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
4192       offset += (offset & 0x8000) << 1;  // Account for sign extension in lw.
4193       CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
4194       Auipc(AT, High16Bits(offset));
4195       Lw(lhs, AT, Low16Bits(offset));
4196       break;
4197   }
4198   CHECK_EQ(overwrite_location_, branch->GetEndLocation());
4199   CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize));
4200 }
4201 
B(MipsLabel * label)4202 void MipsAssembler::B(MipsLabel* label) {
4203   Buncond(label);
4204 }
4205 
Bal(MipsLabel * label)4206 void MipsAssembler::Bal(MipsLabel* label) {
4207   Call(label);
4208 }
4209 
Beq(Register rs,Register rt,MipsLabel * label)4210 void MipsAssembler::Beq(Register rs, Register rt, MipsLabel* label) {
4211   Bcond(label, kCondEQ, rs, rt);
4212 }
4213 
Bne(Register rs,Register rt,MipsLabel * label)4214 void MipsAssembler::Bne(Register rs, Register rt, MipsLabel* label) {
4215   Bcond(label, kCondNE, rs, rt);
4216 }
4217 
Beqz(Register rt,MipsLabel * label)4218 void MipsAssembler::Beqz(Register rt, MipsLabel* label) {
4219   Bcond(label, kCondEQZ, rt);
4220 }
4221 
Bnez(Register rt,MipsLabel * label)4222 void MipsAssembler::Bnez(Register rt, MipsLabel* label) {
4223   Bcond(label, kCondNEZ, rt);
4224 }
4225 
Bltz(Register rt,MipsLabel * label)4226 void MipsAssembler::Bltz(Register rt, MipsLabel* label) {
4227   Bcond(label, kCondLTZ, rt);
4228 }
4229 
Bgez(Register rt,MipsLabel * label)4230 void MipsAssembler::Bgez(Register rt, MipsLabel* label) {
4231   Bcond(label, kCondGEZ, rt);
4232 }
4233 
Blez(Register rt,MipsLabel * label)4234 void MipsAssembler::Blez(Register rt, MipsLabel* label) {
4235   Bcond(label, kCondLEZ, rt);
4236 }
4237 
Bgtz(Register rt,MipsLabel * label)4238 void MipsAssembler::Bgtz(Register rt, MipsLabel* label) {
4239   Bcond(label, kCondGTZ, rt);
4240 }
4241 
CanExchangeWithSlt(Register rs,Register rt) const4242 bool MipsAssembler::CanExchangeWithSlt(Register rs, Register rt) const {
4243   // If the instruction modifies AT, `rs` or `rt`, it can't be exchanged with the slt[u]
4244   // instruction because either slt[u] depends on `rs` or `rt` or the following
4245   // conditional branch depends on AT set by slt[u].
4246   // Likewise, if the instruction depends on AT, it can't be exchanged with slt[u]
4247   // because slt[u] changes AT.
4248   return (delay_slot_.instruction_ != 0 &&
4249       (delay_slot_.gpr_outs_mask_ & ((1u << AT) | (1u << rs) | (1u << rt))) == 0 &&
4250       (delay_slot_.gpr_ins_mask_ & (1u << AT)) == 0);
4251 }
4252 
ExchangeWithSlt(const DelaySlot & forwarded_slot)4253 void MipsAssembler::ExchangeWithSlt(const DelaySlot& forwarded_slot) {
4254   // Exchange the last two instructions in the assembler buffer.
4255   size_t size = buffer_.Size();
4256   CHECK_GE(size, 2 * sizeof(uint32_t));
4257   size_t pos1 = size - 2 * sizeof(uint32_t);
4258   size_t pos2 = size - sizeof(uint32_t);
4259   uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
4260   uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
4261   CHECK_EQ(instr1, forwarded_slot.instruction_);
4262   CHECK_EQ(instr2, delay_slot_.instruction_);
4263   buffer_.Store<uint32_t>(pos1, instr2);
4264   buffer_.Store<uint32_t>(pos2, instr1);
4265   // Set the current delay slot information to that of the last instruction
4266   // in the buffer.
4267   delay_slot_ = forwarded_slot;
4268 }
4269 
GenerateSltForCondBranch(bool unsigned_slt,Register rs,Register rt)4270 void MipsAssembler::GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt) {
4271   // If possible, exchange the slt[u] instruction with the preceding instruction,
4272   // so it can fill the delay slot.
4273   DelaySlot forwarded_slot = delay_slot_;
4274   bool exchange = CanExchangeWithSlt(rs, rt);
4275   if (exchange) {
4276     // The last instruction cannot be used in a different delay slot,
4277     // do not commit the label before it (if any).
4278     DsFsmDropLabel();
4279   }
4280   if (unsigned_slt) {
4281     Sltu(AT, rs, rt);
4282   } else {
4283     Slt(AT, rs, rt);
4284   }
4285   if (exchange) {
4286     ExchangeWithSlt(forwarded_slot);
4287   }
4288 }
4289 
Blt(Register rs,Register rt,MipsLabel * label)4290 void MipsAssembler::Blt(Register rs, Register rt, MipsLabel* label) {
4291   if (IsR6()) {
4292     Bcond(label, kCondLT, rs, rt);
4293   } else if (!Branch::IsNop(kCondLT, rs, rt)) {
4294     // Synthesize the instruction (not available on R2).
4295     GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt);
4296     Bnez(AT, label);
4297   }
4298 }
4299 
Bge(Register rs,Register rt,MipsLabel * label)4300 void MipsAssembler::Bge(Register rs, Register rt, MipsLabel* label) {
4301   if (IsR6()) {
4302     Bcond(label, kCondGE, rs, rt);
4303   } else if (Branch::IsUncond(kCondGE, rs, rt)) {
4304     B(label);
4305   } else {
4306     // Synthesize the instruction (not available on R2).
4307     GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt);
4308     Beqz(AT, label);
4309   }
4310 }
4311 
Bltu(Register rs,Register rt,MipsLabel * label)4312 void MipsAssembler::Bltu(Register rs, Register rt, MipsLabel* label) {
4313   if (IsR6()) {
4314     Bcond(label, kCondLTU, rs, rt);
4315   } else if (!Branch::IsNop(kCondLTU, rs, rt)) {
4316     // Synthesize the instruction (not available on R2).
4317     GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt);
4318     Bnez(AT, label);
4319   }
4320 }
4321 
Bgeu(Register rs,Register rt,MipsLabel * label)4322 void MipsAssembler::Bgeu(Register rs, Register rt, MipsLabel* label) {
4323   if (IsR6()) {
4324     Bcond(label, kCondGEU, rs, rt);
4325   } else if (Branch::IsUncond(kCondGEU, rs, rt)) {
4326     B(label);
4327   } else {
4328     // Synthesize the instruction (not available on R2).
4329     GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt);
4330     Beqz(AT, label);
4331   }
4332 }
4333 
Bc1f(MipsLabel * label)4334 void MipsAssembler::Bc1f(MipsLabel* label) {
4335   Bc1f(0, label);
4336 }
4337 
Bc1f(int cc,MipsLabel * label)4338 void MipsAssembler::Bc1f(int cc, MipsLabel* label) {
4339   CHECK(IsUint<3>(cc)) << cc;
4340   Bcond(label, kCondF, static_cast<Register>(cc), ZERO);
4341 }
4342 
Bc1t(MipsLabel * label)4343 void MipsAssembler::Bc1t(MipsLabel* label) {
4344   Bc1t(0, label);
4345 }
4346 
Bc1t(int cc,MipsLabel * label)4347 void MipsAssembler::Bc1t(int cc, MipsLabel* label) {
4348   CHECK(IsUint<3>(cc)) << cc;
4349   Bcond(label, kCondT, static_cast<Register>(cc), ZERO);
4350 }
4351 
Bc1eqz(FRegister ft,MipsLabel * label)4352 void MipsAssembler::Bc1eqz(FRegister ft, MipsLabel* label) {
4353   Bcond(label, kCondF, static_cast<Register>(ft), ZERO);
4354 }
4355 
Bc1nez(FRegister ft,MipsLabel * label)4356 void MipsAssembler::Bc1nez(FRegister ft, MipsLabel* label) {
4357   Bcond(label, kCondT, static_cast<Register>(ft), ZERO);
4358 }
4359 
AdjustBaseAndOffset(Register & base,int32_t & offset,bool is_doubleword,bool is_float)4360 void MipsAssembler::AdjustBaseAndOffset(Register& base,
4361                                         int32_t& offset,
4362                                         bool is_doubleword,
4363                                         bool is_float) {
4364   // This method is used to adjust the base register and offset pair
4365   // for a load/store when the offset doesn't fit into int16_t.
4366   // It is assumed that `base + offset` is sufficiently aligned for memory
4367   // operands that are machine word in size or smaller. For doubleword-sized
4368   // operands it's assumed that `base` is a multiple of 8, while `offset`
4369   // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
4370   // and spilled variables on the stack accessed relative to the stack
4371   // pointer register).
4372   // We preserve the "alignment" of `offset` by adjusting it by a multiple of 8.
4373   CHECK_NE(base, AT);  // Must not overwrite the register `base` while loading `offset`.
4374 
4375   bool doubleword_aligned = IsAligned<kMipsDoublewordSize>(offset);
4376   bool two_accesses = is_doubleword && (!is_float || !doubleword_aligned);
4377 
4378   // IsInt<16> must be passed a signed value, hence the static cast below.
4379   if (IsInt<16>(offset) &&
4380       (!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)))) {
4381     // Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t.
4382     return;
4383   }
4384 
4385   // Remember the "(mis)alignment" of `offset`, it will be checked at the end.
4386   uint32_t misalignment = offset & (kMipsDoublewordSize - 1);
4387 
4388   // Do not load the whole 32-bit `offset` if it can be represented as
4389   // a sum of two 16-bit signed offsets. This can save an instruction or two.
4390   // To simplify matters, only do this for a symmetric range of offsets from
4391   // about -64KB to about +64KB, allowing further addition of 4 when accessing
4392   // 64-bit variables with two 32-bit accesses.
4393   constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8;  // Max int16_t that's a multiple of 8.
4394   constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment;
4395   if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
4396     Addiu(AT, base, kMinOffsetForSimpleAdjustment);
4397     offset -= kMinOffsetForSimpleAdjustment;
4398   } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
4399     Addiu(AT, base, -kMinOffsetForSimpleAdjustment);
4400     offset += kMinOffsetForSimpleAdjustment;
4401   } else if (IsR6()) {
4402     // On R6 take advantage of the aui instruction, e.g.:
4403     //   aui   AT, base, offset_high
4404     //   lw    reg_lo, offset_low(AT)
4405     //   lw    reg_hi, (offset_low+4)(AT)
4406     // or when offset_low+4 overflows int16_t:
4407     //   aui   AT, base, offset_high
4408     //   addiu AT, AT, 8
4409     //   lw    reg_lo, (offset_low-8)(AT)
4410     //   lw    reg_hi, (offset_low-4)(AT)
4411     int16_t offset_high = High16Bits(offset);
4412     int16_t offset_low = Low16Bits(offset);
4413     offset_high += (offset_low < 0) ? 1 : 0;  // Account for offset sign extension in load/store.
4414     Aui(AT, base, offset_high);
4415     if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low + kMipsWordSize))) {
4416       // Avoid overflow in the 16-bit offset of the load/store instruction when adding 4.
4417       Addiu(AT, AT, kMipsDoublewordSize);
4418       offset_low -= kMipsDoublewordSize;
4419     }
4420     offset = offset_low;
4421   } else {
4422     // Do not load the whole 32-bit `offset` if it can be represented as
4423     // a sum of three 16-bit signed offsets. This can save an instruction.
4424     // To simplify matters, only do this for a symmetric range of offsets from
4425     // about -96KB to about +96KB, allowing further addition of 4 when accessing
4426     // 64-bit variables with two 32-bit accesses.
4427     constexpr int32_t kMinOffsetForMediumAdjustment = 2 * kMinOffsetForSimpleAdjustment;
4428     constexpr int32_t kMaxOffsetForMediumAdjustment = 3 * kMinOffsetForSimpleAdjustment;
4429     if (0 <= offset && offset <= kMaxOffsetForMediumAdjustment) {
4430       Addiu(AT, base, kMinOffsetForMediumAdjustment / 2);
4431       Addiu(AT, AT, kMinOffsetForMediumAdjustment / 2);
4432       offset -= kMinOffsetForMediumAdjustment;
4433     } else if (-kMaxOffsetForMediumAdjustment <= offset && offset < 0) {
4434       Addiu(AT, base, -kMinOffsetForMediumAdjustment / 2);
4435       Addiu(AT, AT, -kMinOffsetForMediumAdjustment / 2);
4436       offset += kMinOffsetForMediumAdjustment;
4437     } else {
4438       // Now that all shorter options have been exhausted, load the full 32-bit offset.
4439       int32_t loaded_offset = RoundDown(offset, kMipsDoublewordSize);
4440       LoadConst32(AT, loaded_offset);
4441       Addu(AT, AT, base);
4442       offset -= loaded_offset;
4443     }
4444   }
4445   base = AT;
4446 
4447   CHECK(IsInt<16>(offset));
4448   if (two_accesses) {
4449     CHECK(IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)));
4450   }
4451   CHECK_EQ(misalignment, offset & (kMipsDoublewordSize - 1));
4452 }
4453 
AdjustBaseOffsetAndElementSizeShift(Register & base,int32_t & offset,int & element_size_shift)4454 void MipsAssembler::AdjustBaseOffsetAndElementSizeShift(Register& base,
4455                                                         int32_t& offset,
4456                                                         int& element_size_shift) {
4457   // This method is used to adjust the base register, offset and element_size_shift
4458   // for a vector load/store when the offset doesn't fit into allowed number of bits.
4459   // MSA ld.df and st.df instructions take signed offsets as arguments, but maximum
4460   // offset is dependant on the size of the data format df (10-bit offsets for ld.b,
4461   // 11-bit for ld.h, 12-bit for ld.w and 13-bit for ld.d).
4462   // If element_size_shift is non-negative at entry, it won't be changed, but offset
4463   // will be checked for appropriate alignment. If negative at entry, it will be
4464   // adjusted based on offset for maximum fit.
4465   // It's assumed that `base` is a multiple of 8.
4466   CHECK_NE(base, AT);  // Must not overwrite the register `base` while loading `offset`.
4467 
4468   if (element_size_shift >= 0) {
4469     CHECK_LE(element_size_shift, TIMES_8);
4470     CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
4471   } else if (IsAligned<kMipsDoublewordSize>(offset)) {
4472     element_size_shift = TIMES_8;
4473   } else if (IsAligned<kMipsWordSize>(offset)) {
4474     element_size_shift = TIMES_4;
4475   } else if (IsAligned<kMipsHalfwordSize>(offset)) {
4476     element_size_shift = TIMES_2;
4477   } else {
4478     element_size_shift = TIMES_1;
4479   }
4480 
4481   const int low_len = 10 + element_size_shift;  // How many low bits of `offset` ld.df/st.df
4482                                                 // will take.
4483   int16_t low = offset & ((1 << low_len) - 1);  // Isolate these bits.
4484   low -= (low & (1 << (low_len - 1))) << 1;     // Sign-extend these bits.
4485   if (low == offset) {
4486     return;  // `offset` fits into ld.df/st.df.
4487   }
4488 
4489   // First, see if `offset` can be represented as a sum of two or three signed offsets.
4490   // This can save an instruction or two.
4491 
4492   // Max int16_t that's a multiple of element size.
4493   const int32_t kMaxDeltaForSimpleAdjustment = 0x8000 - (1 << element_size_shift);
4494   // Max ld.df/st.df offset that's a multiple of element size.
4495   const int32_t kMaxLoadStoreOffset = 0x1ff << element_size_shift;
4496   const int32_t kMaxOffsetForSimpleAdjustment = kMaxDeltaForSimpleAdjustment + kMaxLoadStoreOffset;
4497   const int32_t kMinOffsetForMediumAdjustment = 2 * kMaxDeltaForSimpleAdjustment;
4498   const int32_t kMaxOffsetForMediumAdjustment = kMinOffsetForMediumAdjustment + kMaxLoadStoreOffset;
4499 
4500   if (IsInt<16>(offset)) {
4501     Addiu(AT, base, offset);
4502     offset = 0;
4503   } else if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
4504     Addiu(AT, base, kMaxDeltaForSimpleAdjustment);
4505     offset -= kMaxDeltaForSimpleAdjustment;
4506   } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
4507     Addiu(AT, base, -kMaxDeltaForSimpleAdjustment);
4508     offset += kMaxDeltaForSimpleAdjustment;
4509   } else if (!IsR6() && 0 <= offset && offset <= kMaxOffsetForMediumAdjustment) {
4510     Addiu(AT, base, kMaxDeltaForSimpleAdjustment);
4511     if (offset <= kMinOffsetForMediumAdjustment) {
4512       Addiu(AT, AT, offset - kMaxDeltaForSimpleAdjustment);
4513       offset = 0;
4514     } else {
4515       Addiu(AT, AT, kMaxDeltaForSimpleAdjustment);
4516       offset -= kMinOffsetForMediumAdjustment;
4517     }
4518   } else if (!IsR6() && -kMaxOffsetForMediumAdjustment <= offset && offset < 0) {
4519     Addiu(AT, base, -kMaxDeltaForSimpleAdjustment);
4520     if (-kMinOffsetForMediumAdjustment <= offset) {
4521       Addiu(AT, AT, offset + kMaxDeltaForSimpleAdjustment);
4522       offset = 0;
4523     } else {
4524       Addiu(AT, AT, -kMaxDeltaForSimpleAdjustment);
4525       offset += kMinOffsetForMediumAdjustment;
4526     }
4527   } else {
4528     // 16-bit or smaller parts of `offset`:
4529     // |31  hi  16|15  mid  13-10|12-9  low  0|
4530     //
4531     // Instructions that supply each part as a signed integer addend:
4532     // |aui       |addiu         |ld.df/st.df |
4533     uint32_t tmp = static_cast<uint32_t>(offset) - low;  // Exclude `low` from the rest of `offset`
4534                                                          // (accounts for sign of `low`).
4535     tmp += (tmp & (UINT32_C(1) << 15)) << 1;  // Account for sign extension in addiu.
4536     int16_t mid = Low16Bits(tmp);
4537     int16_t hi = High16Bits(tmp);
4538     if (IsR6()) {
4539       Aui(AT, base, hi);
4540     } else {
4541       Lui(AT, hi);
4542       Addu(AT, AT, base);
4543     }
4544     if (mid != 0) {
4545       Addiu(AT, AT, mid);
4546     }
4547     offset = low;
4548   }
4549   base = AT;
4550   CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
4551   CHECK(IsInt<10>(offset >> element_size_shift));
4552 }
4553 
LoadFromOffset(LoadOperandType type,Register reg,Register base,int32_t offset)4554 void MipsAssembler::LoadFromOffset(LoadOperandType type,
4555                                    Register reg,
4556                                    Register base,
4557                                    int32_t offset) {
4558   LoadFromOffset<>(type, reg, base, offset);
4559 }
4560 
LoadSFromOffset(FRegister reg,Register base,int32_t offset)4561 void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) {
4562   LoadSFromOffset<>(reg, base, offset);
4563 }
4564 
LoadDFromOffset(FRegister reg,Register base,int32_t offset)4565 void MipsAssembler::LoadDFromOffset(FRegister reg, Register base, int32_t offset) {
4566   LoadDFromOffset<>(reg, base, offset);
4567 }
4568 
LoadQFromOffset(FRegister reg,Register base,int32_t offset)4569 void MipsAssembler::LoadQFromOffset(FRegister reg, Register base, int32_t offset) {
4570   LoadQFromOffset<>(reg, base, offset);
4571 }
4572 
EmitLoad(ManagedRegister m_dst,Register src_register,int32_t src_offset,size_t size)4573 void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset,
4574                              size_t size) {
4575   MipsManagedRegister dst = m_dst.AsMips();
4576   if (dst.IsNoRegister()) {
4577     CHECK_EQ(0u, size) << dst;
4578   } else if (dst.IsCoreRegister()) {
4579     CHECK_EQ(kMipsWordSize, size) << dst;
4580     LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset);
4581   } else if (dst.IsRegisterPair()) {
4582     CHECK_EQ(kMipsDoublewordSize, size) << dst;
4583     LoadFromOffset(kLoadDoubleword, dst.AsRegisterPairLow(), src_register, src_offset);
4584   } else if (dst.IsFRegister()) {
4585     if (size == kMipsWordSize) {
4586       LoadSFromOffset(dst.AsFRegister(), src_register, src_offset);
4587     } else {
4588       CHECK_EQ(kMipsDoublewordSize, size) << dst;
4589       LoadDFromOffset(dst.AsFRegister(), src_register, src_offset);
4590     }
4591   } else if (dst.IsDRegister()) {
4592     CHECK_EQ(kMipsDoublewordSize, size) << dst;
4593     LoadDFromOffset(dst.AsOverlappingDRegisterLow(), src_register, src_offset);
4594   }
4595 }
4596 
StoreToOffset(StoreOperandType type,Register reg,Register base,int32_t offset)4597 void MipsAssembler::StoreToOffset(StoreOperandType type,
4598                                   Register reg,
4599                                   Register base,
4600                                   int32_t offset) {
4601   StoreToOffset<>(type, reg, base, offset);
4602 }
4603 
StoreSToOffset(FRegister reg,Register base,int32_t offset)4604 void MipsAssembler::StoreSToOffset(FRegister reg, Register base, int32_t offset) {
4605   StoreSToOffset<>(reg, base, offset);
4606 }
4607 
StoreDToOffset(FRegister reg,Register base,int32_t offset)4608 void MipsAssembler::StoreDToOffset(FRegister reg, Register base, int32_t offset) {
4609   StoreDToOffset<>(reg, base, offset);
4610 }
4611 
StoreQToOffset(FRegister reg,Register base,int32_t offset)4612 void MipsAssembler::StoreQToOffset(FRegister reg, Register base, int32_t offset) {
4613   StoreQToOffset<>(reg, base, offset);
4614 }
4615 
DWARFReg(Register reg)4616 static dwarf::Reg DWARFReg(Register reg) {
4617   return dwarf::Reg::MipsCore(static_cast<int>(reg));
4618 }
4619 
4620 constexpr size_t kFramePointerSize = 4;
4621 
BuildFrame(size_t frame_size,ManagedRegister method_reg,ArrayRef<const ManagedRegister> callee_save_regs,const ManagedRegisterEntrySpills & entry_spills)4622 void MipsAssembler::BuildFrame(size_t frame_size,
4623                                ManagedRegister method_reg,
4624                                ArrayRef<const ManagedRegister> callee_save_regs,
4625                                const ManagedRegisterEntrySpills& entry_spills) {
4626   CHECK_ALIGNED(frame_size, kStackAlignment);
4627   DCHECK(!overwriting_);
4628 
4629   // Increase frame to required size.
4630   IncreaseFrameSize(frame_size);
4631 
4632   // Push callee saves and return address.
4633   int stack_offset = frame_size - kFramePointerSize;
4634   StoreToOffset(kStoreWord, RA, SP, stack_offset);
4635   cfi_.RelOffset(DWARFReg(RA), stack_offset);
4636   for (int i = callee_save_regs.size() - 1; i >= 0; --i) {
4637     stack_offset -= kFramePointerSize;
4638     Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
4639     StoreToOffset(kStoreWord, reg, SP, stack_offset);
4640     cfi_.RelOffset(DWARFReg(reg), stack_offset);
4641   }
4642 
4643   // Write out Method*.
4644   StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0);
4645 
4646   // Write out entry spills.
4647   int32_t offset = frame_size + kFramePointerSize;
4648   for (size_t i = 0; i < entry_spills.size(); ++i) {
4649     MipsManagedRegister reg = entry_spills.at(i).AsMips();
4650     if (reg.IsNoRegister()) {
4651       ManagedRegisterSpill spill = entry_spills.at(i);
4652       offset += spill.getSize();
4653     } else if (reg.IsCoreRegister()) {
4654       StoreToOffset(kStoreWord, reg.AsCoreRegister(), SP, offset);
4655       offset += kMipsWordSize;
4656     } else if (reg.IsFRegister()) {
4657       StoreSToOffset(reg.AsFRegister(), SP, offset);
4658       offset += kMipsWordSize;
4659     } else if (reg.IsDRegister()) {
4660       StoreDToOffset(reg.AsOverlappingDRegisterLow(), SP, offset);
4661       offset += kMipsDoublewordSize;
4662     }
4663   }
4664 }
4665 
RemoveFrame(size_t frame_size,ArrayRef<const ManagedRegister> callee_save_regs)4666 void MipsAssembler::RemoveFrame(size_t frame_size,
4667                                 ArrayRef<const ManagedRegister> callee_save_regs) {
4668   CHECK_ALIGNED(frame_size, kStackAlignment);
4669   DCHECK(!overwriting_);
4670   cfi_.RememberState();
4671 
4672   // Pop callee saves and return address.
4673   int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize;
4674   for (size_t i = 0; i < callee_save_regs.size(); ++i) {
4675     Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
4676     LoadFromOffset(kLoadWord, reg, SP, stack_offset);
4677     cfi_.Restore(DWARFReg(reg));
4678     stack_offset += kFramePointerSize;
4679   }
4680   LoadFromOffset(kLoadWord, RA, SP, stack_offset);
4681   cfi_.Restore(DWARFReg(RA));
4682 
4683   // Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
4684   bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
4685   bool reordering = SetReorder(false);
4686   if (exchange) {
4687     // Jump to the return address.
4688     Jr(RA);
4689     // Decrease frame to required size.
4690     DecreaseFrameSize(frame_size);  // Single instruction in delay slot.
4691   } else {
4692     // Decrease frame to required size.
4693     DecreaseFrameSize(frame_size);
4694     // Jump to the return address.
4695     Jr(RA);
4696     Nop();  // In delay slot.
4697   }
4698   SetReorder(reordering);
4699 
4700   // The CFI should be restored for any code that follows the exit block.
4701   cfi_.RestoreState();
4702   cfi_.DefCFAOffset(frame_size);
4703 }
4704 
IncreaseFrameSize(size_t adjust)4705 void MipsAssembler::IncreaseFrameSize(size_t adjust) {
4706   CHECK_ALIGNED(adjust, kFramePointerSize);
4707   Addiu32(SP, SP, -adjust);
4708   cfi_.AdjustCFAOffset(adjust);
4709   if (overwriting_) {
4710     cfi_.OverrideDelayedPC(overwrite_location_);
4711   }
4712 }
4713 
DecreaseFrameSize(size_t adjust)4714 void MipsAssembler::DecreaseFrameSize(size_t adjust) {
4715   CHECK_ALIGNED(adjust, kFramePointerSize);
4716   Addiu32(SP, SP, adjust);
4717   cfi_.AdjustCFAOffset(-adjust);
4718   if (overwriting_) {
4719     cfi_.OverrideDelayedPC(overwrite_location_);
4720   }
4721 }
4722 
Store(FrameOffset dest,ManagedRegister msrc,size_t size)4723 void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
4724   MipsManagedRegister src = msrc.AsMips();
4725   if (src.IsNoRegister()) {
4726     CHECK_EQ(0u, size);
4727   } else if (src.IsCoreRegister()) {
4728     CHECK_EQ(kMipsWordSize, size);
4729     StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
4730   } else if (src.IsRegisterPair()) {
4731     CHECK_EQ(kMipsDoublewordSize, size);
4732     StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value());
4733     StoreToOffset(kStoreWord, src.AsRegisterPairHigh(),
4734                   SP, dest.Int32Value() + kMipsWordSize);
4735   } else if (src.IsFRegister()) {
4736     if (size == kMipsWordSize) {
4737       StoreSToOffset(src.AsFRegister(), SP, dest.Int32Value());
4738     } else {
4739       CHECK_EQ(kMipsDoublewordSize, size);
4740       StoreDToOffset(src.AsFRegister(), SP, dest.Int32Value());
4741     }
4742   } else if (src.IsDRegister()) {
4743     CHECK_EQ(kMipsDoublewordSize, size);
4744     StoreDToOffset(src.AsOverlappingDRegisterLow(), SP, dest.Int32Value());
4745   }
4746 }
4747 
StoreRef(FrameOffset dest,ManagedRegister msrc)4748 void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
4749   MipsManagedRegister src = msrc.AsMips();
4750   CHECK(src.IsCoreRegister());
4751   StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
4752 }
4753 
StoreRawPtr(FrameOffset dest,ManagedRegister msrc)4754 void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
4755   MipsManagedRegister src = msrc.AsMips();
4756   CHECK(src.IsCoreRegister());
4757   StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
4758 }
4759 
StoreImmediateToFrame(FrameOffset dest,uint32_t imm,ManagedRegister mscratch)4760 void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
4761                                           ManagedRegister mscratch) {
4762   MipsManagedRegister scratch = mscratch.AsMips();
4763   CHECK(scratch.IsCoreRegister()) << scratch;
4764   LoadConst32(scratch.AsCoreRegister(), imm);
4765   StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
4766 }
4767 
StoreStackOffsetToThread(ThreadOffset32 thr_offs,FrameOffset fr_offs,ManagedRegister mscratch)4768 void MipsAssembler::StoreStackOffsetToThread(ThreadOffset32 thr_offs,
4769                                              FrameOffset fr_offs,
4770                                              ManagedRegister mscratch) {
4771   MipsManagedRegister scratch = mscratch.AsMips();
4772   CHECK(scratch.IsCoreRegister()) << scratch;
4773   Addiu32(scratch.AsCoreRegister(), SP, fr_offs.Int32Value());
4774   StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
4775                 S1, thr_offs.Int32Value());
4776 }
4777 
StoreStackPointerToThread(ThreadOffset32 thr_offs)4778 void MipsAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs) {
4779   StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value());
4780 }
4781 
StoreSpanning(FrameOffset dest,ManagedRegister msrc,FrameOffset in_off,ManagedRegister mscratch)4782 void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
4783                                   FrameOffset in_off, ManagedRegister mscratch) {
4784   MipsManagedRegister src = msrc.AsMips();
4785   MipsManagedRegister scratch = mscratch.AsMips();
4786   StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
4787   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value());
4788   StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
4789 }
4790 
Load(ManagedRegister mdest,FrameOffset src,size_t size)4791 void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
4792   return EmitLoad(mdest, SP, src.Int32Value(), size);
4793 }
4794 
LoadFromThread(ManagedRegister mdest,ThreadOffset32 src,size_t size)4795 void MipsAssembler::LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) {
4796   return EmitLoad(mdest, S1, src.Int32Value(), size);
4797 }
4798 
LoadRef(ManagedRegister mdest,FrameOffset src)4799 void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
4800   MipsManagedRegister dest = mdest.AsMips();
4801   CHECK(dest.IsCoreRegister());
4802   LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value());
4803 }
4804 
LoadRef(ManagedRegister mdest,ManagedRegister base,MemberOffset offs,bool unpoison_reference)4805 void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
4806                             bool unpoison_reference) {
4807   MipsManagedRegister dest = mdest.AsMips();
4808   CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
4809   LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
4810                  base.AsMips().AsCoreRegister(), offs.Int32Value());
4811   if (unpoison_reference) {
4812     MaybeUnpoisonHeapReference(dest.AsCoreRegister());
4813   }
4814 }
4815 
LoadRawPtr(ManagedRegister mdest,ManagedRegister base,Offset offs)4816 void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) {
4817   MipsManagedRegister dest = mdest.AsMips();
4818   CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
4819   LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
4820                  base.AsMips().AsCoreRegister(), offs.Int32Value());
4821 }
4822 
LoadRawPtrFromThread(ManagedRegister mdest,ThreadOffset32 offs)4823 void MipsAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) {
4824   MipsManagedRegister dest = mdest.AsMips();
4825   CHECK(dest.IsCoreRegister());
4826   LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value());
4827 }
4828 
SignExtend(ManagedRegister,size_t)4829 void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
4830   UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips";
4831 }
4832 
ZeroExtend(ManagedRegister,size_t)4833 void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
4834   UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips";
4835 }
4836 
Move(ManagedRegister mdest,ManagedRegister msrc,size_t size)4837 void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
4838   MipsManagedRegister dest = mdest.AsMips();
4839   MipsManagedRegister src = msrc.AsMips();
4840   if (!dest.Equals(src)) {
4841     if (dest.IsCoreRegister()) {
4842       CHECK(src.IsCoreRegister()) << src;
4843       Move(dest.AsCoreRegister(), src.AsCoreRegister());
4844     } else if (dest.IsFRegister()) {
4845       CHECK(src.IsFRegister()) << src;
4846       if (size == kMipsWordSize) {
4847         MovS(dest.AsFRegister(), src.AsFRegister());
4848       } else {
4849         CHECK_EQ(kMipsDoublewordSize, size);
4850         MovD(dest.AsFRegister(), src.AsFRegister());
4851       }
4852     } else if (dest.IsDRegister()) {
4853       CHECK(src.IsDRegister()) << src;
4854       MovD(dest.AsOverlappingDRegisterLow(), src.AsOverlappingDRegisterLow());
4855     } else {
4856       CHECK(dest.IsRegisterPair()) << dest;
4857       CHECK(src.IsRegisterPair()) << src;
4858       // Ensure that the first move doesn't clobber the input of the second.
4859       if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) {
4860         Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
4861         Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
4862       } else {
4863         Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
4864         Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
4865       }
4866     }
4867   }
4868 }
4869 
CopyRef(FrameOffset dest,FrameOffset src,ManagedRegister mscratch)4870 void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) {
4871   MipsManagedRegister scratch = mscratch.AsMips();
4872   CHECK(scratch.IsCoreRegister()) << scratch;
4873   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
4874   StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
4875 }
4876 
CopyRawPtrFromThread(FrameOffset fr_offs,ThreadOffset32 thr_offs,ManagedRegister mscratch)4877 void MipsAssembler::CopyRawPtrFromThread(FrameOffset fr_offs,
4878                                          ThreadOffset32 thr_offs,
4879                                          ManagedRegister mscratch) {
4880   MipsManagedRegister scratch = mscratch.AsMips();
4881   CHECK(scratch.IsCoreRegister()) << scratch;
4882   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
4883                  S1, thr_offs.Int32Value());
4884   StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
4885                 SP, fr_offs.Int32Value());
4886 }
4887 
CopyRawPtrToThread(ThreadOffset32 thr_offs,FrameOffset fr_offs,ManagedRegister mscratch)4888 void MipsAssembler::CopyRawPtrToThread(ThreadOffset32 thr_offs,
4889                                        FrameOffset fr_offs,
4890                                        ManagedRegister mscratch) {
4891   MipsManagedRegister scratch = mscratch.AsMips();
4892   CHECK(scratch.IsCoreRegister()) << scratch;
4893   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
4894                  SP, fr_offs.Int32Value());
4895   StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
4896                 S1, thr_offs.Int32Value());
4897 }
4898 
Copy(FrameOffset dest,FrameOffset src,ManagedRegister mscratch,size_t size)4899 void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) {
4900   MipsManagedRegister scratch = mscratch.AsMips();
4901   CHECK(scratch.IsCoreRegister()) << scratch;
4902   CHECK(size == kMipsWordSize || size == kMipsDoublewordSize) << size;
4903   if (size == kMipsWordSize) {
4904     LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
4905     StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
4906   } else if (size == kMipsDoublewordSize) {
4907     LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
4908     StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
4909     LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + kMipsWordSize);
4910     StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
4911   }
4912 }
4913 
Copy(FrameOffset dest,ManagedRegister src_base,Offset src_offset,ManagedRegister mscratch,size_t size)4914 void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
4915                          ManagedRegister mscratch, size_t size) {
4916   Register scratch = mscratch.AsMips().AsCoreRegister();
4917   CHECK_EQ(size, kMipsWordSize);
4918   LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value());
4919   StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value());
4920 }
4921 
Copy(ManagedRegister dest_base,Offset dest_offset,FrameOffset src,ManagedRegister mscratch,size_t size)4922 void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
4923                          ManagedRegister mscratch, size_t size) {
4924   Register scratch = mscratch.AsMips().AsCoreRegister();
4925   CHECK_EQ(size, kMipsWordSize);
4926   LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
4927   StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value());
4928 }
4929 
Copy(FrameOffset dest ATTRIBUTE_UNUSED,FrameOffset src_base ATTRIBUTE_UNUSED,Offset src_offset ATTRIBUTE_UNUSED,ManagedRegister mscratch ATTRIBUTE_UNUSED,size_t size ATTRIBUTE_UNUSED)4930 void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
4931                          FrameOffset src_base ATTRIBUTE_UNUSED,
4932                          Offset src_offset ATTRIBUTE_UNUSED,
4933                          ManagedRegister mscratch ATTRIBUTE_UNUSED,
4934                          size_t size ATTRIBUTE_UNUSED) {
4935   UNIMPLEMENTED(FATAL) << "no MIPS implementation";
4936 }
4937 
Copy(ManagedRegister dest,Offset dest_offset,ManagedRegister src,Offset src_offset,ManagedRegister mscratch,size_t size)4938 void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset,
4939                          ManagedRegister src, Offset src_offset,
4940                          ManagedRegister mscratch, size_t size) {
4941   CHECK_EQ(size, kMipsWordSize);
4942   Register scratch = mscratch.AsMips().AsCoreRegister();
4943   LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value());
4944   StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value());
4945 }
4946 
Copy(FrameOffset dest ATTRIBUTE_UNUSED,Offset dest_offset ATTRIBUTE_UNUSED,FrameOffset src ATTRIBUTE_UNUSED,Offset src_offset ATTRIBUTE_UNUSED,ManagedRegister mscratch ATTRIBUTE_UNUSED,size_t size ATTRIBUTE_UNUSED)4947 void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
4948                          Offset dest_offset ATTRIBUTE_UNUSED,
4949                          FrameOffset src ATTRIBUTE_UNUSED,
4950                          Offset src_offset ATTRIBUTE_UNUSED,
4951                          ManagedRegister mscratch ATTRIBUTE_UNUSED,
4952                          size_t size ATTRIBUTE_UNUSED) {
4953   UNIMPLEMENTED(FATAL) << "no MIPS implementation";
4954 }
4955 
MemoryBarrier(ManagedRegister)4956 void MipsAssembler::MemoryBarrier(ManagedRegister) {
4957   // TODO: sync?
4958   UNIMPLEMENTED(FATAL) << "no MIPS implementation";
4959 }
4960 
CreateHandleScopeEntry(ManagedRegister mout_reg,FrameOffset handle_scope_offset,ManagedRegister min_reg,bool null_allowed)4961 void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
4962                                            FrameOffset handle_scope_offset,
4963                                            ManagedRegister min_reg,
4964                                            bool null_allowed) {
4965   MipsManagedRegister out_reg = mout_reg.AsMips();
4966   MipsManagedRegister in_reg = min_reg.AsMips();
4967   CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg;
4968   CHECK(out_reg.IsCoreRegister()) << out_reg;
4969   if (null_allowed) {
4970     MipsLabel null_arg;
4971     // Null values get a handle scope entry value of 0.  Otherwise, the handle scope entry is
4972     // the address in the handle scope holding the reference.
4973     // E.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset).
4974     if (in_reg.IsNoRegister()) {
4975       LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
4976                      SP, handle_scope_offset.Int32Value());
4977       in_reg = out_reg;
4978     }
4979     if (!out_reg.Equals(in_reg)) {
4980       LoadConst32(out_reg.AsCoreRegister(), 0);
4981     }
4982     Beqz(in_reg.AsCoreRegister(), &null_arg);
4983     Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
4984     Bind(&null_arg);
4985   } else {
4986     Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
4987   }
4988 }
4989 
CreateHandleScopeEntry(FrameOffset out_off,FrameOffset handle_scope_offset,ManagedRegister mscratch,bool null_allowed)4990 void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off,
4991                                            FrameOffset handle_scope_offset,
4992                                            ManagedRegister mscratch,
4993                                            bool null_allowed) {
4994   MipsManagedRegister scratch = mscratch.AsMips();
4995   CHECK(scratch.IsCoreRegister()) << scratch;
4996   if (null_allowed) {
4997     MipsLabel null_arg;
4998     LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
4999     // Null values get a handle scope entry value of 0.  Otherwise, the handle scope entry is
5000     // the address in the handle scope holding the reference.
5001     // E.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset).
5002     Beqz(scratch.AsCoreRegister(), &null_arg);
5003     Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
5004     Bind(&null_arg);
5005   } else {
5006     Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
5007   }
5008   StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value());
5009 }
5010 
5011 // Given a handle scope entry, load the associated reference.
LoadReferenceFromHandleScope(ManagedRegister mout_reg,ManagedRegister min_reg)5012 void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
5013                                                  ManagedRegister min_reg) {
5014   MipsManagedRegister out_reg = mout_reg.AsMips();
5015   MipsManagedRegister in_reg = min_reg.AsMips();
5016   CHECK(out_reg.IsCoreRegister()) << out_reg;
5017   CHECK(in_reg.IsCoreRegister()) << in_reg;
5018   MipsLabel null_arg;
5019   if (!out_reg.Equals(in_reg)) {
5020     LoadConst32(out_reg.AsCoreRegister(), 0);
5021   }
5022   Beqz(in_reg.AsCoreRegister(), &null_arg);
5023   LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
5024                  in_reg.AsCoreRegister(), 0);
5025   Bind(&null_arg);
5026 }
5027 
VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED,bool could_be_null ATTRIBUTE_UNUSED)5028 void MipsAssembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED,
5029                                  bool could_be_null ATTRIBUTE_UNUSED) {
5030   // TODO: not validating references.
5031 }
5032 
VerifyObject(FrameOffset src ATTRIBUTE_UNUSED,bool could_be_null ATTRIBUTE_UNUSED)5033 void MipsAssembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED,
5034                                  bool could_be_null ATTRIBUTE_UNUSED) {
5035   // TODO: not validating references.
5036 }
5037 
Call(ManagedRegister mbase,Offset offset,ManagedRegister mscratch)5038 void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) {
5039   MipsManagedRegister base = mbase.AsMips();
5040   MipsManagedRegister scratch = mscratch.AsMips();
5041   CHECK(base.IsCoreRegister()) << base;
5042   CHECK(scratch.IsCoreRegister()) << scratch;
5043   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
5044                  base.AsCoreRegister(), offset.Int32Value());
5045   Jalr(scratch.AsCoreRegister());
5046   NopIfNoReordering();
5047   // TODO: place reference map on call.
5048 }
5049 
Call(FrameOffset base,Offset offset,ManagedRegister mscratch)5050 void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
5051   MipsManagedRegister scratch = mscratch.AsMips();
5052   CHECK(scratch.IsCoreRegister()) << scratch;
5053   // Call *(*(SP + base) + offset)
5054   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value());
5055   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
5056                  scratch.AsCoreRegister(), offset.Int32Value());
5057   Jalr(scratch.AsCoreRegister());
5058   NopIfNoReordering();
5059   // TODO: place reference map on call.
5060 }
5061 
CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED,ManagedRegister mscratch ATTRIBUTE_UNUSED)5062 void MipsAssembler::CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED,
5063                                    ManagedRegister mscratch ATTRIBUTE_UNUSED) {
5064   UNIMPLEMENTED(FATAL) << "no mips implementation";
5065 }
5066 
GetCurrentThread(ManagedRegister tr)5067 void MipsAssembler::GetCurrentThread(ManagedRegister tr) {
5068   Move(tr.AsMips().AsCoreRegister(), S1);
5069 }
5070 
GetCurrentThread(FrameOffset offset,ManagedRegister mscratch ATTRIBUTE_UNUSED)5071 void MipsAssembler::GetCurrentThread(FrameOffset offset,
5072                                      ManagedRegister mscratch ATTRIBUTE_UNUSED) {
5073   StoreToOffset(kStoreWord, S1, SP, offset.Int32Value());
5074 }
5075 
ExceptionPoll(ManagedRegister mscratch,size_t stack_adjust)5076 void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) {
5077   MipsManagedRegister scratch = mscratch.AsMips();
5078   exception_blocks_.emplace_back(scratch, stack_adjust);
5079   LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
5080                  S1, Thread::ExceptionOffset<kMipsPointerSize>().Int32Value());
5081   Bnez(scratch.AsCoreRegister(), exception_blocks_.back().Entry());
5082 }
5083 
EmitExceptionPoll(MipsExceptionSlowPath * exception)5084 void MipsAssembler::EmitExceptionPoll(MipsExceptionSlowPath* exception) {
5085   Bind(exception->Entry());
5086   if (exception->stack_adjust_ != 0) {  // Fix up the frame.
5087     DecreaseFrameSize(exception->stack_adjust_);
5088   }
5089   // Pass exception object as argument.
5090   // Don't care about preserving A0 as this call won't return.
5091   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
5092   Move(A0, exception->scratch_.AsCoreRegister());
5093   // Set up call to Thread::Current()->pDeliverException.
5094   LoadFromOffset(kLoadWord, T9, S1,
5095     QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, pDeliverException).Int32Value());
5096   Jr(T9);
5097   NopIfNoReordering();
5098 
5099   // Call never returns.
5100   Break();
5101 }
5102 
5103 }  // namespace mips
5104 }  // namespace art
5105