1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "libcore_util_CharsetUtils.h"
18
19 #include <string.h>
20
21 #include "jni_internal.h"
22 #include "mirror/string-inl.h"
23 #include "mirror/string.h"
24 #include "native_util.h"
25 #include "nativehelper/ScopedPrimitiveArray.h"
26 #include "nativehelper/jni_macros.h"
27 #include "scoped_fast_native_object_access-inl.h"
28 #include "unicode/utf16.h"
29
30
31 namespace art {
32
33 /**
34 * Approximates java.lang.UnsafeByteSequence so we don't have to pay the cost of calling back into
35 * Java when converting a char[] to a UTF-8 byte[]. This lets us have UTF-8 conversions slightly
36 * faster than ICU for large char[]s without paying for the NIO overhead with small char[]s.
37 *
38 * We could avoid this by keeping the UTF-8 bytes on the native heap until we're done and only
39 * creating a byte[] on the Java heap when we know how big it needs to be, but one shouldn't lie
40 * to the garbage collector (nor hide potentially large allocations from it).
41 *
42 * Because a call to append might require an allocation, it might fail. Callers should always
43 * check the return value of append.
44 */
45 class NativeUnsafeByteSequence {
46 public:
NativeUnsafeByteSequence(JNIEnv * env)47 explicit NativeUnsafeByteSequence(JNIEnv* env)
48 : mEnv(env), mJavaArray(nullptr), mRawArray(nullptr), mSize(-1), mOffset(0) {
49 }
50
~NativeUnsafeByteSequence()51 ~NativeUnsafeByteSequence() {
52 // Release our pointer to the raw array, copying changes back to the Java heap.
53 if (mRawArray != nullptr) {
54 mEnv->ReleaseByteArrayElements(mJavaArray, mRawArray, 0);
55 }
56 }
57
append(jbyte b)58 bool append(jbyte b) {
59 if (mOffset == mSize && !resize(mSize * 2)) {
60 return false;
61 }
62 mRawArray[mOffset++] = b;
63 return true;
64 }
65
resize(int newSize)66 bool resize(int newSize) {
67 if (newSize == mSize) {
68 return true;
69 }
70
71 // Allocate a new array.
72 jbyteArray newJavaArray = mEnv->NewByteArray(newSize);
73 if (newJavaArray == nullptr) {
74 return false;
75 }
76 jbyte* newRawArray = mEnv->GetByteArrayElements(newJavaArray, nullptr);
77 if (newRawArray == nullptr) {
78 return false;
79 }
80
81 // Copy data out of the old array and then let go of it.
82 // Note that we may be trimming the array.
83 if (mRawArray != nullptr) {
84 memcpy(newRawArray, mRawArray, mOffset);
85 mEnv->ReleaseByteArrayElements(mJavaArray, mRawArray, JNI_ABORT);
86 mEnv->DeleteLocalRef(mJavaArray);
87 }
88
89 // Point ourselves at the new array.
90 mJavaArray = newJavaArray;
91 mRawArray = newRawArray;
92 mSize = newSize;
93 return true;
94 }
95
toByteArray()96 jbyteArray toByteArray() {
97 // Trim any unused space, if necessary.
98 bool okay = resize(mOffset);
99 return okay ? mJavaArray : nullptr;
100 }
101
102 private:
103 JNIEnv* mEnv;
104 jbyteArray mJavaArray;
105 jbyte* mRawArray;
106 jint mSize;
107 jint mOffset;
108
109 // Disallow copy and assignment.
110 NativeUnsafeByteSequence(const NativeUnsafeByteSequence&);
111 void operator=(const NativeUnsafeByteSequence&);
112 };
113
CharsetUtils_asciiBytesToChars(JNIEnv * env,jclass,jbyteArray javaBytes,jint offset,jint length,jcharArray javaChars)114 static void CharsetUtils_asciiBytesToChars(JNIEnv* env, jclass, jbyteArray javaBytes, jint offset,
115 jint length, jcharArray javaChars) {
116 ScopedByteArrayRO bytes(env, javaBytes);
117 if (bytes.get() == nullptr) {
118 return;
119 }
120 ScopedCharArrayRW chars(env, javaChars);
121 if (chars.get() == nullptr) {
122 return;
123 }
124
125 const jbyte* src = &bytes[offset];
126 jchar* dst = &chars[0];
127 static const jchar REPLACEMENT_CHAR = 0xfffd;
128 for (int i = length - 1; i >= 0; --i) {
129 jchar ch = static_cast<jchar>(*src++ & 0xff);
130 *dst++ = (ch <= 0x7f) ? ch : REPLACEMENT_CHAR;
131 }
132 }
133
CharsetUtils_isoLatin1BytesToChars(JNIEnv * env,jclass,jbyteArray javaBytes,jint offset,jint length,jcharArray javaChars)134 static void CharsetUtils_isoLatin1BytesToChars(JNIEnv* env, jclass, jbyteArray javaBytes,
135 jint offset, jint length, jcharArray javaChars) {
136 ScopedByteArrayRO bytes(env, javaBytes);
137 if (bytes.get() == nullptr) {
138 return;
139 }
140 ScopedCharArrayRW chars(env, javaChars);
141 if (chars.get() == nullptr) {
142 return;
143 }
144
145 const jbyte* src = &bytes[offset];
146 jchar* dst = &chars[0];
147 for (int i = length - 1; i >= 0; --i) {
148 *dst++ = static_cast<jchar>(*src++ & 0xff);
149 }
150 }
151
152 /**
153 * Translates the given characters to US-ASCII or ISO-8859-1 bytes, using the fact that
154 * Unicode code points between U+0000 and U+007f inclusive are identical to US-ASCII, while
155 * U+0000 to U+00ff inclusive are identical to ISO-8859-1.
156 */
charsToBytes(JNIEnv * env,jstring java_string,jint offset,jint length,jchar maxValidChar)157 static jbyteArray charsToBytes(JNIEnv* env, jstring java_string, jint offset, jint length,
158 jchar maxValidChar) {
159 ScopedObjectAccess soa(env);
160 StackHandleScope<1> hs(soa.Self());
161 Handle<mirror::String> string(hs.NewHandle(soa.Decode<mirror::String>(java_string)));
162 if (string == nullptr) {
163 return nullptr;
164 }
165
166 jbyteArray javaBytes = env->NewByteArray(length);
167 ScopedByteArrayRW bytes(env, javaBytes);
168 if (bytes.get() == nullptr) {
169 return nullptr;
170 }
171
172 jbyte* dst = &bytes[0];
173 for (int i = 0; i < length; ++i) {
174 jchar ch = string->CharAt(offset + i);
175 if (ch > maxValidChar) {
176 ch = '?';
177 }
178 *dst++ = static_cast<jbyte>(ch);
179 }
180
181 return javaBytes;
182 }
183
CharsetUtils_toAsciiBytes(JNIEnv * env,jclass,jstring java_string,jint offset,jint length)184 static jbyteArray CharsetUtils_toAsciiBytes(JNIEnv* env, jclass, jstring java_string, jint offset,
185 jint length) {
186 return charsToBytes(env, java_string, offset, length, 0x7f);
187 }
188
CharsetUtils_toIsoLatin1Bytes(JNIEnv * env,jclass,jstring java_string,jint offset,jint length)189 static jbyteArray CharsetUtils_toIsoLatin1Bytes(JNIEnv* env, jclass, jstring java_string,
190 jint offset, jint length) {
191 return charsToBytes(env, java_string, offset, length, 0xff);
192 }
193
CharsetUtils_toUtf8Bytes(JNIEnv * env,jclass,jstring java_string,jint offset,jint length)194 static jbyteArray CharsetUtils_toUtf8Bytes(JNIEnv* env, jclass, jstring java_string, jint offset,
195 jint length) {
196 ScopedObjectAccess soa(env);
197 StackHandleScope<1> hs(soa.Self());
198 Handle<mirror::String> string(hs.NewHandle(soa.Decode<mirror::String>(java_string)));
199 if (string == nullptr) {
200 return nullptr;
201 }
202
203 NativeUnsafeByteSequence out(env);
204 if (!out.resize(length)) {
205 return nullptr;
206 }
207
208 const int end = offset + length;
209 for (int i = offset; i < end; ++i) {
210 jint ch = string->CharAt(i);
211 if (ch < 0x80) {
212 // One byte.
213 if (!out.append(ch)) {
214 return nullptr;
215 }
216 } else if (ch < 0x800) {
217 // Two bytes.
218 if (!out.append((ch >> 6) | 0xc0) || !out.append((ch & 0x3f) | 0x80)) {
219 return nullptr;
220 }
221 } else if (U16_IS_SURROGATE(ch)) {
222 // A supplementary character.
223 jchar high = static_cast<jchar>(ch);
224 jchar low = (i + 1 != end) ? string->CharAt(i + 1) : 0;
225 if (!U16_IS_SURROGATE_LEAD(high) || !U16_IS_SURROGATE_TRAIL(low)) {
226 if (!out.append('?')) {
227 return nullptr;
228 }
229 continue;
230 }
231 // Now we know we have a *valid* surrogate pair, we can consume the low surrogate.
232 ++i;
233 ch = U16_GET_SUPPLEMENTARY(high, low);
234 // Four bytes.
235 jbyte b1 = (ch >> 18) | 0xf0;
236 jbyte b2 = ((ch >> 12) & 0x3f) | 0x80;
237 jbyte b3 = ((ch >> 6) & 0x3f) | 0x80;
238 jbyte b4 = (ch & 0x3f) | 0x80;
239 if (!out.append(b1) || !out.append(b2) || !out.append(b3) || !out.append(b4)) {
240 return nullptr;
241 }
242 } else {
243 // Three bytes.
244 jbyte b1 = (ch >> 12) | 0xe0;
245 jbyte b2 = ((ch >> 6) & 0x3f) | 0x80;
246 jbyte b3 = (ch & 0x3f) | 0x80;
247 if (!out.append(b1) || !out.append(b2) || !out.append(b3)) {
248 return nullptr;
249 }
250 }
251 }
252 return out.toByteArray();
253 }
254
255 static JNINativeMethod gMethods[] = {
256 FAST_NATIVE_METHOD(CharsetUtils, asciiBytesToChars, "([BII[C)V"),
257 FAST_NATIVE_METHOD(CharsetUtils, isoLatin1BytesToChars, "([BII[C)V"),
258 FAST_NATIVE_METHOD(CharsetUtils, toAsciiBytes, "(Ljava/lang/String;II)[B"),
259 FAST_NATIVE_METHOD(CharsetUtils, toIsoLatin1Bytes, "(Ljava/lang/String;II)[B"),
260 FAST_NATIVE_METHOD(CharsetUtils, toUtf8Bytes, "(Ljava/lang/String;II)[B"),
261 };
262
register_libcore_util_CharsetUtils(JNIEnv * env)263 void register_libcore_util_CharsetUtils(JNIEnv* env) {
264 REGISTER_NATIVE_METHODS("libcore/util/CharsetUtils");
265 }
266
267 } // namespace art
268