• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "runtime.h"
18 
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25 
26 #include <signal.h>
27 #include <sys/syscall.h>
28 #include "base/memory_tool.h"
29 #if defined(__APPLE__)
30 #include <crt_externs.h>  // for _NSGetEnviron
31 #endif
32 
33 #include <cstdio>
34 #include <cstdlib>
35 #include <limits>
36 #include <memory_representation.h>
37 #include <vector>
38 #include <fcntl.h>
39 
40 #include "android-base/strings.h"
41 
42 #include "aot_class_linker.h"
43 #include "arch/arm/quick_method_frame_info_arm.h"
44 #include "arch/arm/registers_arm.h"
45 #include "arch/arm64/quick_method_frame_info_arm64.h"
46 #include "arch/arm64/registers_arm64.h"
47 #include "arch/instruction_set_features.h"
48 #include "arch/mips/quick_method_frame_info_mips.h"
49 #include "arch/mips/registers_mips.h"
50 #include "arch/mips64/quick_method_frame_info_mips64.h"
51 #include "arch/mips64/registers_mips64.h"
52 #include "arch/x86/quick_method_frame_info_x86.h"
53 #include "arch/x86/registers_x86.h"
54 #include "arch/x86_64/quick_method_frame_info_x86_64.h"
55 #include "arch/x86_64/registers_x86_64.h"
56 #include "art_field-inl.h"
57 #include "art_method-inl.h"
58 #include "asm_support.h"
59 #include "asm_support_check.h"
60 #include "atomic.h"
61 #include "base/arena_allocator.h"
62 #include "base/dumpable.h"
63 #include "base/enums.h"
64 #include "base/stl_util.h"
65 #include "base/systrace.h"
66 #include "base/unix_file/fd_file.h"
67 #include "class_linker-inl.h"
68 #include "compiler_callbacks.h"
69 #include "debugger.h"
70 #include "elf_file.h"
71 #include "entrypoints/runtime_asm_entrypoints.h"
72 #include "experimental_flags.h"
73 #include "fault_handler.h"
74 #include "gc/accounting/card_table-inl.h"
75 #include "gc/heap.h"
76 #include "gc/scoped_gc_critical_section.h"
77 #include "gc/space/image_space.h"
78 #include "gc/space/space-inl.h"
79 #include "gc/system_weak.h"
80 #include "handle_scope-inl.h"
81 #include "image-inl.h"
82 #include "instrumentation.h"
83 #include "intern_table.h"
84 #include "interpreter/interpreter.h"
85 #include "java_vm_ext.h"
86 #include "jit/jit.h"
87 #include "jit/jit_code_cache.h"
88 #include "jit/profile_saver.h"
89 #include "jni_internal.h"
90 #include "linear_alloc.h"
91 #include "mirror/array.h"
92 #include "mirror/class-inl.h"
93 #include "mirror/class_ext.h"
94 #include "mirror/class_loader.h"
95 #include "mirror/emulated_stack_frame.h"
96 #include "mirror/field.h"
97 #include "mirror/method.h"
98 #include "mirror/method_handle_impl.h"
99 #include "mirror/method_handles_lookup.h"
100 #include "mirror/method_type.h"
101 #include "mirror/stack_trace_element.h"
102 #include "mirror/throwable.h"
103 #include "monitor.h"
104 #include "native/dalvik_system_DexFile.h"
105 #include "native/dalvik_system_VMDebug.h"
106 #include "native/dalvik_system_VMRuntime.h"
107 #include "native/dalvik_system_VMStack.h"
108 #include "native/dalvik_system_ZygoteHooks.h"
109 #include "native/java_lang_Class.h"
110 #include "native/java_lang_Object.h"
111 #include "native/java_lang_String.h"
112 #include "native/java_lang_StringFactory.h"
113 #include "native/java_lang_System.h"
114 #include "native/java_lang_Thread.h"
115 #include "native/java_lang_Throwable.h"
116 #include "native/java_lang_VMClassLoader.h"
117 #include "native/java_lang_Void.h"
118 #include "native/java_lang_invoke_MethodHandleImpl.h"
119 #include "native/java_lang_ref_FinalizerReference.h"
120 #include "native/java_lang_ref_Reference.h"
121 #include "native/java_lang_reflect_Array.h"
122 #include "native/java_lang_reflect_Constructor.h"
123 #include "native/java_lang_reflect_Executable.h"
124 #include "native/java_lang_reflect_Field.h"
125 #include "native/java_lang_reflect_Method.h"
126 #include "native/java_lang_reflect_Parameter.h"
127 #include "native/java_lang_reflect_Proxy.h"
128 #include "native/java_util_concurrent_atomic_AtomicLong.h"
129 #include "native/libcore_util_CharsetUtils.h"
130 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
131 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
132 #include "native/sun_misc_Unsafe.h"
133 #include "native_bridge_art_interface.h"
134 #include "native_stack_dump.h"
135 #include "nativehelper/JniConstants.h"
136 #include "nativehelper/ScopedLocalRef.h"
137 #include "oat_file.h"
138 #include "oat_file_manager.h"
139 #include "object_callbacks.h"
140 #include "os.h"
141 #include "parsed_options.h"
142 #include "quick/quick_method_frame_info.h"
143 #include "reflection.h"
144 #include "runtime_callbacks.h"
145 #include "runtime_options.h"
146 #include "scoped_thread_state_change-inl.h"
147 #include "sigchain.h"
148 #include "signal_catcher.h"
149 #include "signal_set.h"
150 #include "thread.h"
151 #include "thread_list.h"
152 #include "ti/agent.h"
153 #include "trace.h"
154 #include "transaction.h"
155 #include "utils.h"
156 #include "vdex_file.h"
157 #include "verifier/method_verifier.h"
158 #include "well_known_classes.h"
159 
160 #ifdef ART_TARGET_ANDROID
161 #include <android/set_abort_message.h>
162 #endif
163 
164 namespace art {
165 
166 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
167 static constexpr bool kEnableJavaStackTraceHandler = false;
168 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
169 // linking.
170 static constexpr double kLowMemoryMinLoadFactor = 0.5;
171 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
172 static constexpr double kNormalMinLoadFactor = 0.4;
173 static constexpr double kNormalMaxLoadFactor = 0.7;
174 
175 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
176 // barrier config.
177 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
178 
179 Runtime* Runtime::instance_ = nullptr;
180 
181 struct TraceConfig {
182   Trace::TraceMode trace_mode;
183   Trace::TraceOutputMode trace_output_mode;
184   std::string trace_file;
185   size_t trace_file_size;
186 };
187 
188 namespace {
189 #ifdef __APPLE__
GetEnviron()190 inline char** GetEnviron() {
191   // When Google Test is built as a framework on MacOS X, the environ variable
192   // is unavailable. Apple's documentation (man environ) recommends using
193   // _NSGetEnviron() instead.
194   return *_NSGetEnviron();
195 }
196 #else
197 // Some POSIX platforms expect you to declare environ. extern "C" makes
198 // it reside in the global namespace.
199 extern "C" char** environ;
200 inline char** GetEnviron() { return environ; }
201 #endif
202 }  // namespace
203 
Runtime()204 Runtime::Runtime()
205     : resolution_method_(nullptr),
206       imt_conflict_method_(nullptr),
207       imt_unimplemented_method_(nullptr),
208       instruction_set_(kNone),
209       compiler_callbacks_(nullptr),
210       is_zygote_(false),
211       must_relocate_(false),
212       is_concurrent_gc_enabled_(true),
213       is_explicit_gc_disabled_(false),
214       dex2oat_enabled_(true),
215       image_dex2oat_enabled_(true),
216       default_stack_size_(0),
217       heap_(nullptr),
218       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
219       monitor_list_(nullptr),
220       monitor_pool_(nullptr),
221       thread_list_(nullptr),
222       intern_table_(nullptr),
223       class_linker_(nullptr),
224       signal_catcher_(nullptr),
225       use_tombstoned_traces_(false),
226       java_vm_(nullptr),
227       fault_message_lock_("Fault message lock"),
228       fault_message_(""),
229       threads_being_born_(0),
230       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
231       shutting_down_(false),
232       shutting_down_started_(false),
233       started_(false),
234       finished_starting_(false),
235       vfprintf_(nullptr),
236       exit_(nullptr),
237       abort_(nullptr),
238       stats_enabled_(false),
239       is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
240       instrumentation_(),
241       main_thread_group_(nullptr),
242       system_thread_group_(nullptr),
243       system_class_loader_(nullptr),
244       dump_gc_performance_on_shutdown_(false),
245       preinitialization_transaction_(nullptr),
246       verify_(verifier::VerifyMode::kNone),
247       allow_dex_file_fallback_(true),
248       target_sdk_version_(0),
249       implicit_null_checks_(false),
250       implicit_so_checks_(false),
251       implicit_suspend_checks_(false),
252       no_sig_chain_(false),
253       force_native_bridge_(false),
254       is_native_bridge_loaded_(false),
255       is_native_debuggable_(false),
256       is_java_debuggable_(false),
257       zygote_max_failed_boots_(0),
258       experimental_flags_(ExperimentalFlags::kNone),
259       oat_file_manager_(nullptr),
260       is_low_memory_mode_(false),
261       safe_mode_(false),
262       dump_native_stack_on_sig_quit_(true),
263       pruned_dalvik_cache_(false),
264       // Initially assume we perceive jank in case the process state is never updated.
265       process_state_(kProcessStateJankPerceptible),
266       zygote_no_threads_(false) {
267   static_assert(Runtime::kCalleeSaveSize ==
268                     static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
269 
270   CheckAsmSupportOffsetsAndSizes();
271   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
272   interpreter::CheckInterpreterAsmConstants();
273   callbacks_.reset(new RuntimeCallbacks());
274   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
275     deoptimization_counts_[i] = 0u;
276   }
277 }
278 
~Runtime()279 Runtime::~Runtime() {
280   ScopedTrace trace("Runtime shutdown");
281   if (is_native_bridge_loaded_) {
282     UnloadNativeBridge();
283   }
284 
285   Thread* self = Thread::Current();
286   const bool attach_shutdown_thread = self == nullptr;
287   if (attach_shutdown_thread) {
288     CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false));
289     self = Thread::Current();
290   } else {
291     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
292   }
293 
294   if (dump_gc_performance_on_shutdown_) {
295     // This can't be called from the Heap destructor below because it
296     // could call RosAlloc::InspectAll() which needs the thread_list
297     // to be still alive.
298     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
299   }
300 
301   if (jit_ != nullptr) {
302     // Stop the profile saver thread before marking the runtime as shutting down.
303     // The saver will try to dump the profiles before being sopped and that
304     // requires holding the mutator lock.
305     jit_->StopProfileSaver();
306   }
307 
308   {
309     ScopedTrace trace2("Wait for shutdown cond");
310     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
311     shutting_down_started_ = true;
312     while (threads_being_born_ > 0) {
313       shutdown_cond_->Wait(self);
314     }
315     shutting_down_ = true;
316   }
317   // Shutdown and wait for the daemons.
318   CHECK(self != nullptr);
319   if (IsFinishedStarting()) {
320     ScopedTrace trace2("Waiting for Daemons");
321     self->ClearException();
322     self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
323                                             WellKnownClasses::java_lang_Daemons_stop);
324   }
325 
326   Trace::Shutdown();
327 
328   // Report death. Clients me require a working thread, still, so do it before GC completes and
329   // all non-daemon threads are done.
330   {
331     ScopedObjectAccess soa(self);
332     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
333   }
334 
335   if (attach_shutdown_thread) {
336     DetachCurrentThread();
337     self = nullptr;
338   }
339 
340   // Make sure to let the GC complete if it is running.
341   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
342   heap_->DeleteThreadPool();
343   if (jit_ != nullptr) {
344     ScopedTrace trace2("Delete jit");
345     VLOG(jit) << "Deleting jit thread pool";
346     // Delete thread pool before the thread list since we don't want to wait forever on the
347     // JIT compiler threads.
348     jit_->DeleteThreadPool();
349   }
350 
351   // Make sure our internal threads are dead before we start tearing down things they're using.
352   Dbg::StopJdwp();
353   delete signal_catcher_;
354 
355   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
356   {
357     ScopedTrace trace2("Delete thread list");
358     thread_list_->ShutDown();
359   }
360 
361   // TODO Maybe do some locking.
362   for (auto& agent : agents_) {
363     agent.Unload();
364   }
365 
366   // TODO Maybe do some locking
367   for (auto& plugin : plugins_) {
368     plugin.Unload();
369   }
370 
371   // Finally delete the thread list.
372   delete thread_list_;
373 
374   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
375   // accessing the instrumentation when we delete it.
376   if (jit_ != nullptr) {
377     VLOG(jit) << "Deleting jit";
378     jit_.reset(nullptr);
379   }
380 
381   // Shutdown the fault manager if it was initialized.
382   fault_manager.Shutdown();
383 
384   ScopedTrace trace2("Delete state");
385   delete monitor_list_;
386   delete monitor_pool_;
387   delete class_linker_;
388   delete heap_;
389   delete intern_table_;
390   delete oat_file_manager_;
391   Thread::Shutdown();
392   QuasiAtomic::Shutdown();
393   verifier::MethodVerifier::Shutdown();
394 
395   // Destroy allocators before shutting down the MemMap because they may use it.
396   java_vm_.reset();
397   linear_alloc_.reset();
398   low_4gb_arena_pool_.reset();
399   arena_pool_.reset();
400   jit_arena_pool_.reset();
401   protected_fault_page_.reset();
402   MemMap::Shutdown();
403 
404   // TODO: acquire a static mutex on Runtime to avoid racing.
405   CHECK(instance_ == nullptr || instance_ == this);
406   instance_ = nullptr;
407 }
408 
409 struct AbortState {
Dumpart::AbortState410   void Dump(std::ostream& os) const {
411     if (gAborting > 1) {
412       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
413       DumpRecursiveAbort(os);
414       return;
415     }
416     gAborting++;
417     os << "Runtime aborting...\n";
418     if (Runtime::Current() == nullptr) {
419       os << "(Runtime does not yet exist!)\n";
420       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
421       return;
422     }
423     Thread* self = Thread::Current();
424 
425     // Dump all threads first and then the aborting thread. While this is counter the logical flow,
426     // it improves the chance of relevant data surviving in the Android logs.
427 
428     DumpAllThreads(os, self);
429 
430     if (self == nullptr) {
431       os << "(Aborting thread was not attached to runtime!)\n";
432       DumpKernelStack(os, GetTid(), "  kernel: ", false);
433       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
434     } else {
435       os << "Aborting thread:\n";
436       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
437         DumpThread(os, self);
438       } else {
439         if (Locks::mutator_lock_->SharedTryLock(self)) {
440           DumpThread(os, self);
441           Locks::mutator_lock_->SharedUnlock(self);
442         }
443       }
444     }
445   }
446 
447   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState448   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
449     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
450     self->Dump(os);
451     if (self->IsExceptionPending()) {
452       mirror::Throwable* exception = self->GetException();
453       os << "Pending exception " << exception->Dump();
454     }
455   }
456 
DumpAllThreadsart::AbortState457   void DumpAllThreads(std::ostream& os, Thread* self) const {
458     Runtime* runtime = Runtime::Current();
459     if (runtime != nullptr) {
460       ThreadList* thread_list = runtime->GetThreadList();
461       if (thread_list != nullptr) {
462         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
463         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
464         if (!tll_already_held || !ml_already_held) {
465           os << "Dumping all threads without appropriate locks held:"
466               << (!tll_already_held ? " thread list lock" : "")
467               << (!ml_already_held ? " mutator lock" : "")
468               << "\n";
469         }
470         os << "All threads:\n";
471         thread_list->Dump(os);
472       }
473     }
474   }
475 
476   // For recursive aborts.
DumpRecursiveAbortart::AbortState477   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
478     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
479     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
480     // die.
481     // Note: as we're using a global counter for the recursive abort detection, there is a potential
482     //       race here and it is not OK to just print when the counter is "2" (one from
483     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
484     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
485     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
486       gAborting++;
487       DumpNativeStack(os, GetTid());
488     }
489   }
490 };
491 
Abort(const char * msg)492 void Runtime::Abort(const char* msg) {
493   auto old_value = gAborting.fetch_add(1);  // set before taking any locks
494 
495 #ifdef ART_TARGET_ANDROID
496   if (old_value == 0) {
497     // Only set the first abort message.
498     android_set_abort_message(msg);
499   }
500 #else
501   UNUSED(old_value);
502 #endif
503 
504 #ifdef ART_TARGET_ANDROID
505   android_set_abort_message(msg);
506 #endif
507 
508   // Ensure that we don't have multiple threads trying to abort at once,
509   // which would result in significantly worse diagnostics.
510   MutexLock mu(Thread::Current(), *Locks::abort_lock_);
511 
512   // Get any pending output out of the way.
513   fflush(nullptr);
514 
515   // Many people have difficulty distinguish aborts from crashes,
516   // so be explicit.
517   // Note: use cerr on the host to print log lines immediately, so we get at least some output
518   //       in case of recursive aborts. We lose annotation with the source file and line number
519   //       here, which is a minor issue. The same is significantly more complicated on device,
520   //       which is why we ignore the issue there.
521   AbortState state;
522   if (kIsTargetBuild) {
523     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
524   } else {
525     std::cerr << Dumpable<AbortState>(state);
526   }
527 
528   // Sometimes we dump long messages, and the Android abort message only retains the first line.
529   // In those cases, just log the message again, to avoid logcat limits.
530   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
531     LOG(FATAL_WITHOUT_ABORT) << msg;
532   }
533 
534   // Call the abort hook if we have one.
535   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
536     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
537     Runtime::Current()->abort_();
538     // notreached
539     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
540   }
541 
542 #if defined(__GLIBC__)
543   // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
544   // which POSIX defines in terms of raise(3), which POSIX defines in terms
545   // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
546   // libpthread, which means the stacks we dump would be useless. Calling
547   // tgkill(2) directly avoids that.
548   syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
549   // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
550   // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
551   exit(1);
552 #else
553   abort();
554 #endif
555   // notreached
556 }
557 
PreZygoteFork()558 void Runtime::PreZygoteFork() {
559   heap_->PreZygoteFork();
560 }
561 
CallExitHook(jint status)562 void Runtime::CallExitHook(jint status) {
563   if (exit_ != nullptr) {
564     ScopedThreadStateChange tsc(Thread::Current(), kNative);
565     exit_(status);
566     LOG(WARNING) << "Exit hook returned instead of exiting!";
567   }
568 }
569 
SweepSystemWeaks(IsMarkedVisitor * visitor)570 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
571   GetInternTable()->SweepInternTableWeaks(visitor);
572   GetMonitorList()->SweepMonitorList(visitor);
573   GetJavaVM()->SweepJniWeakGlobals(visitor);
574   GetHeap()->SweepAllocationRecords(visitor);
575   if (GetJit() != nullptr) {
576     // Visit JIT literal tables. Objects in these tables are classes and strings
577     // and only classes can be affected by class unloading. The strings always
578     // stay alive as they are strongly interned.
579     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
580     // from mutators. See b/32167580.
581     GetJit()->GetCodeCache()->SweepRootTables(visitor);
582   }
583 
584   // All other generic system-weak holders.
585   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
586     holder->Sweep(visitor);
587   }
588 }
589 
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)590 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
591                            bool ignore_unrecognized,
592                            RuntimeArgumentMap* runtime_options) {
593   InitLogging(/* argv */ nullptr, Abort);  // Calls Locks::Init() as a side effect.
594   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
595   if (!parsed) {
596     LOG(ERROR) << "Failed to parse options";
597     return false;
598   }
599   return true;
600 }
601 
602 // Callback to check whether it is safe to call Abort (e.g., to use a call to
603 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
604 // properly initialized, and has not shut down.
IsSafeToCallAbort()605 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
606   Runtime* runtime = Runtime::Current();
607   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
608 }
609 
Create(RuntimeArgumentMap && runtime_options)610 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
611   // TODO: acquire a static mutex on Runtime to avoid racing.
612   if (Runtime::instance_ != nullptr) {
613     return false;
614   }
615   instance_ = new Runtime;
616   Locks::SetClientCallback(IsSafeToCallAbort);
617   if (!instance_->Init(std::move(runtime_options))) {
618     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
619     // leak memory, instead. Fix the destructor. b/19100793.
620     // delete instance_;
621     instance_ = nullptr;
622     return false;
623   }
624   return true;
625 }
626 
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)627 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
628   RuntimeArgumentMap runtime_options;
629   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
630       Create(std::move(runtime_options));
631 }
632 
CreateSystemClassLoader(Runtime * runtime)633 static jobject CreateSystemClassLoader(Runtime* runtime) {
634   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
635     return nullptr;
636   }
637 
638   ScopedObjectAccess soa(Thread::Current());
639   ClassLinker* cl = Runtime::Current()->GetClassLinker();
640   auto pointer_size = cl->GetImagePointerSize();
641 
642   StackHandleScope<2> hs(soa.Self());
643   Handle<mirror::Class> class_loader_class(
644       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
645   CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
646 
647   ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
648       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
649   CHECK(getSystemClassLoader != nullptr);
650   CHECK(getSystemClassLoader->IsStatic());
651 
652   JValue result = InvokeWithJValues(soa,
653                                     nullptr,
654                                     jni::EncodeArtMethod(getSystemClassLoader),
655                                     nullptr);
656   JNIEnv* env = soa.Self()->GetJniEnv();
657   ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
658   CHECK(system_class_loader.get() != nullptr);
659 
660   soa.Self()->SetClassLoaderOverride(system_class_loader.get());
661 
662   Handle<mirror::Class> thread_class(
663       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
664   CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
665 
666   ArtField* contextClassLoader =
667       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
668   CHECK(contextClassLoader != nullptr);
669 
670   // We can't run in a transaction yet.
671   contextClassLoader->SetObject<false>(
672       soa.Self()->GetPeer(),
673       soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
674 
675   return env->NewGlobalRef(system_class_loader.get());
676 }
677 
GetPatchoatExecutable() const678 std::string Runtime::GetPatchoatExecutable() const {
679   if (!patchoat_executable_.empty()) {
680     return patchoat_executable_;
681   }
682   std::string patchoat_executable(GetAndroidRoot());
683   patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
684   return patchoat_executable;
685 }
686 
GetCompilerExecutable() const687 std::string Runtime::GetCompilerExecutable() const {
688   if (!compiler_executable_.empty()) {
689     return compiler_executable_;
690   }
691   std::string compiler_executable(GetAndroidRoot());
692   compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
693   return compiler_executable;
694 }
695 
Start()696 bool Runtime::Start() {
697   VLOG(startup) << "Runtime::Start entering";
698 
699   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
700 
701   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
702   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
703 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
704   if (kIsDebugBuild) {
705     CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
706   }
707 #endif
708 
709   // Restore main thread state to kNative as expected by native code.
710   Thread* self = Thread::Current();
711 
712   self->TransitionFromRunnableToSuspended(kNative);
713 
714   started_ = true;
715 
716   if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
717     ScopedObjectAccess soa(self);
718     StackHandleScope<2> hs(soa.Self());
719 
720     auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
721     auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
722 
723     class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
724     // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
725     class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
726   }
727 
728   // InitNativeMethods needs to be after started_ so that the classes
729   // it touches will have methods linked to the oat file if necessary.
730   {
731     ScopedTrace trace2("InitNativeMethods");
732     InitNativeMethods();
733   }
734 
735   // Initialize well known thread group values that may be accessed threads while attaching.
736   InitThreadGroups(self);
737 
738   Thread::FinishStartup();
739 
740   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
741   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
742   // ThreadGroup to exist.
743   //
744   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
745   // recoding profiles. Maybe we should consider changing the name to be more clear it's
746   // not only about compiling. b/28295073.
747   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
748     std::string error_msg;
749     if (!IsZygote()) {
750     // If we are the zygote then we need to wait until after forking to create the code cache
751     // due to SELinux restrictions on r/w/x memory regions.
752       CreateJit();
753     } else if (jit_options_->UseJitCompilation()) {
754       if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
755         // Try to load compiler pre zygote to reduce PSS. b/27744947
756         LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
757       }
758     }
759   }
760 
761   // Send the start phase event. We have to wait till here as this is when the main thread peer
762   // has just been generated, important root clinits have been run and JNI is completely functional.
763   {
764     ScopedObjectAccess soa(self);
765     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
766   }
767 
768   system_class_loader_ = CreateSystemClassLoader(this);
769 
770   if (!is_zygote_) {
771     if (is_native_bridge_loaded_) {
772       PreInitializeNativeBridge(".");
773     }
774     NativeBridgeAction action = force_native_bridge_
775         ? NativeBridgeAction::kInitialize
776         : NativeBridgeAction::kUnload;
777     InitNonZygoteOrPostFork(self->GetJniEnv(),
778                             /* is_system_server */ false,
779                             action,
780                             GetInstructionSetString(kRuntimeISA));
781   }
782 
783   // Send the initialized phase event. Send it before starting daemons, as otherwise
784   // sending thread events becomes complicated.
785   {
786     ScopedObjectAccess soa(self);
787     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
788   }
789 
790   StartDaemonThreads();
791 
792   {
793     ScopedObjectAccess soa(self);
794     self->GetJniEnv()->locals.AssertEmpty();
795   }
796 
797   VLOG(startup) << "Runtime::Start exiting";
798   finished_starting_ = true;
799 
800   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
801     ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
802     Trace::Start(trace_config_->trace_file.c_str(),
803                  -1,
804                  static_cast<int>(trace_config_->trace_file_size),
805                  0,
806                  trace_config_->trace_output_mode,
807                  trace_config_->trace_mode,
808                  0);
809   }
810 
811   return true;
812 }
813 
EndThreadBirth()814 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
815   DCHECK_GT(threads_being_born_, 0U);
816   threads_being_born_--;
817   if (shutting_down_started_ && threads_being_born_ == 0) {
818     shutdown_cond_->Broadcast(Thread::Current());
819   }
820 }
821 
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,NativeBridgeAction action,const char * isa)822 void Runtime::InitNonZygoteOrPostFork(
823     JNIEnv* env, bool is_system_server, NativeBridgeAction action, const char* isa) {
824   is_zygote_ = false;
825 
826   if (is_native_bridge_loaded_) {
827     switch (action) {
828       case NativeBridgeAction::kUnload:
829         UnloadNativeBridge();
830         is_native_bridge_loaded_ = false;
831         break;
832 
833       case NativeBridgeAction::kInitialize:
834         InitializeNativeBridge(env, isa);
835         break;
836     }
837   }
838 
839   // Create the thread pools.
840   heap_->CreateThreadPool();
841   // Reset the gc performance data at zygote fork so that the GCs
842   // before fork aren't attributed to an app.
843   heap_->ResetGcPerformanceInfo();
844 
845   // We may want to collect profiling samples for system server, but we never want to JIT there.
846   if ((!is_system_server || !jit_options_->UseJitCompilation()) &&
847       !safe_mode_ &&
848       (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
849       jit_ == nullptr) {
850     // Note that when running ART standalone (not zygote, nor zygote fork),
851     // the jit may have already been created.
852     CreateJit();
853   }
854 
855   StartSignalCatcher();
856 
857   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
858   // this will pause the runtime, so we probably want this to come last.
859   Dbg::StartJdwp();
860 }
861 
StartSignalCatcher()862 void Runtime::StartSignalCatcher() {
863   if (!is_zygote_) {
864     signal_catcher_ = new SignalCatcher(stack_trace_file_, use_tombstoned_traces_);
865   }
866 }
867 
IsShuttingDown(Thread * self)868 bool Runtime::IsShuttingDown(Thread* self) {
869   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
870   return IsShuttingDownLocked();
871 }
872 
StartDaemonThreads()873 void Runtime::StartDaemonThreads() {
874   ScopedTrace trace(__FUNCTION__);
875   VLOG(startup) << "Runtime::StartDaemonThreads entering";
876 
877   Thread* self = Thread::Current();
878 
879   // Must be in the kNative state for calling native methods.
880   CHECK_EQ(self->GetState(), kNative);
881 
882   JNIEnv* env = self->GetJniEnv();
883   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
884                             WellKnownClasses::java_lang_Daemons_start);
885   if (env->ExceptionCheck()) {
886     env->ExceptionDescribe();
887     LOG(FATAL) << "Error starting java.lang.Daemons";
888   }
889 
890   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
891 }
892 
893 // Attempts to open dex files from image(s). Given the image location, try to find the oat file
894 // and open it to get the stored dex file. If the image is the first for a multi-image boot
895 // classpath, go on and also open the other images.
OpenDexFilesFromImage(const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files,size_t * failures)896 static bool OpenDexFilesFromImage(const std::string& image_location,
897                                   std::vector<std::unique_ptr<const DexFile>>* dex_files,
898                                   size_t* failures) {
899   DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
900 
901   // Use a work-list approach, so that we can easily reuse the opening code.
902   std::vector<std::string> image_locations;
903   image_locations.push_back(image_location);
904 
905   for (size_t index = 0; index < image_locations.size(); ++index) {
906     std::string system_filename;
907     bool has_system = false;
908     std::string cache_filename_unused;
909     bool dalvik_cache_exists_unused;
910     bool has_cache_unused;
911     bool is_global_cache_unused;
912     bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
913                                                                 kRuntimeISA,
914                                                                 &system_filename,
915                                                                 &has_system,
916                                                                 &cache_filename_unused,
917                                                                 &dalvik_cache_exists_unused,
918                                                                 &has_cache_unused,
919                                                                 &is_global_cache_unused);
920 
921     if (!found_image || !has_system) {
922       return false;
923     }
924 
925     // We are falling back to non-executable use of the oat file because patching failed, presumably
926     // due to lack of space.
927     std::string vdex_filename =
928         ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
929     std::string oat_filename =
930         ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
931     std::string oat_location =
932         ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
933     // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
934     //       that here.
935     if (android::base::EndsWith(oat_location, ".jar")) {
936       oat_location.replace(oat_location.length() - 3, 3, "oat");
937     }
938     std::string error_msg;
939 
940     std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
941                                                        false /* writable */,
942                                                        false /* low_4gb */,
943                                                        false, /* unquicken */
944                                                        &error_msg));
945     if (vdex_file.get() == nullptr) {
946       return false;
947     }
948 
949     std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
950     if (file.get() == nullptr) {
951       return false;
952     }
953     std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
954                                                     false /* writable */,
955                                                     false /* program_header_only */,
956                                                     false /* low_4gb */,
957                                                     &error_msg));
958     if (elf_file.get() == nullptr) {
959       return false;
960     }
961     std::unique_ptr<const OatFile> oat_file(
962         OatFile::OpenWithElfFile(elf_file.release(),
963                                  vdex_file.release(),
964                                  oat_location,
965                                  nullptr,
966                                  &error_msg));
967     if (oat_file == nullptr) {
968       LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
969       return false;
970     }
971 
972     for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
973       if (oat_dex_file == nullptr) {
974         *failures += 1;
975         continue;
976       }
977       std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
978       if (dex_file.get() == nullptr) {
979         *failures += 1;
980       } else {
981         dex_files->push_back(std::move(dex_file));
982       }
983     }
984 
985     if (index == 0) {
986       // First file. See if this is a multi-image environment, and if so, enqueue the other images.
987       const OatHeader& boot_oat_header = oat_file->GetOatHeader();
988       const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
989       if (boot_cp != nullptr) {
990         gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
991                                                           boot_cp,
992                                                           &image_locations);
993       }
994     }
995 
996     Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
997   }
998   return true;
999 }
1000 
1001 
OpenDexFiles(const std::vector<std::string> & dex_filenames,const std::vector<std::string> & dex_locations,const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files)1002 static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
1003                            const std::vector<std::string>& dex_locations,
1004                            const std::string& image_location,
1005                            std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1006   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1007   size_t failure_count = 0;
1008   if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
1009     return failure_count;
1010   }
1011   failure_count = 0;
1012   for (size_t i = 0; i < dex_filenames.size(); i++) {
1013     const char* dex_filename = dex_filenames[i].c_str();
1014     const char* dex_location = dex_locations[i].c_str();
1015     static constexpr bool kVerifyChecksum = true;
1016     std::string error_msg;
1017     if (!OS::FileExists(dex_filename)) {
1018       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1019       continue;
1020     }
1021     if (!DexFile::Open(dex_filename, dex_location, kVerifyChecksum, &error_msg, dex_files)) {
1022       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
1023       ++failure_count;
1024     }
1025   }
1026   return failure_count;
1027 }
1028 
SetSentinel(mirror::Object * sentinel)1029 void Runtime::SetSentinel(mirror::Object* sentinel) {
1030   CHECK(sentinel_.Read() == nullptr);
1031   CHECK(sentinel != nullptr);
1032   CHECK(!heap_->IsMovableObject(sentinel));
1033   sentinel_ = GcRoot<mirror::Object>(sentinel);
1034 }
1035 
Init(RuntimeArgumentMap && runtime_options_in)1036 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1037   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1038   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1039   env_snapshot_.TakeSnapshot();
1040 
1041   RuntimeArgumentMap runtime_options(std::move(runtime_options_in));
1042   ScopedTrace trace(__FUNCTION__);
1043   CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
1044 
1045   MemMap::Init();
1046 
1047   // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1048   // If we cannot reserve it, log a warning.
1049   // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1050   //       is out-of-the-way enough that it should not collide with boot image mapping.
1051   // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1052   //       leading to logspam.
1053   {
1054     constexpr uintptr_t kSentinelAddr =
1055         RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1056     protected_fault_page_.reset(MemMap::MapAnonymous("Sentinel fault page",
1057                                                      reinterpret_cast<uint8_t*>(kSentinelAddr),
1058                                                      kPageSize,
1059                                                      PROT_NONE,
1060                                                      /* low_4g */ true,
1061                                                      /* reuse */ false,
1062                                                      /* error_msg */ nullptr));
1063     if (protected_fault_page_ == nullptr) {
1064       LOG(WARNING) << "Could not reserve sentinel fault page";
1065     } else if (reinterpret_cast<uintptr_t>(protected_fault_page_->Begin()) != kSentinelAddr) {
1066       LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1067       protected_fault_page_.reset();
1068     }
1069   }
1070 
1071   using Opt = RuntimeArgumentMap;
1072   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1073 
1074   QuasiAtomic::Startup();
1075 
1076   oat_file_manager_ = new OatFileManager;
1077 
1078   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1079   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1080                 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1081 
1082   boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1083   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1084   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1085 
1086   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1087   patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
1088   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1089   is_zygote_ = runtime_options.Exists(Opt::Zygote);
1090   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1091   dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
1092   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1093   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1094 
1095   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1096   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1097   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1098 
1099   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1100   use_tombstoned_traces_ = runtime_options.GetOrDefault(Opt::UseTombstonedTraces);
1101 #if !defined(ART_TARGET_ANDROID)
1102   CHECK(!use_tombstoned_traces_)
1103       << "-Xusetombstonedtraces is only supported in an Android environment";
1104 #endif
1105   stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
1106 
1107   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1108   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1109   for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
1110     if (option.starts_with("--debuggable")) {
1111       SetJavaDebuggable(true);
1112       break;
1113     }
1114   }
1115   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1116   image_location_ = runtime_options.GetOrDefault(Opt::Image);
1117 
1118   max_spins_before_thin_lock_inflation_ =
1119       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1120 
1121   monitor_list_ = new MonitorList;
1122   monitor_pool_ = MonitorPool::Create();
1123   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1124   intern_table_ = new InternTable;
1125 
1126   verify_ = runtime_options.GetOrDefault(Opt::Verify);
1127   allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
1128 
1129   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1130   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1131 
1132   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1133 
1134   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1135 
1136   if (runtime_options.GetOrDefault(Opt::Interpret)) {
1137     GetInstrumentation()->ForceInterpretOnly();
1138   }
1139 
1140   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1141   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1142   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1143   madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
1144 
1145   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1146   agents_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1147   // TODO Add back in -agentlib
1148   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1149   //   agents_.push_back(lib);
1150   // }
1151 
1152   float foreground_heap_growth_multiplier;
1153   if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1154     // If low memory mode, use 1.0 as the multiplier by default.
1155     foreground_heap_growth_multiplier = 1.0f;
1156   } else {
1157     foreground_heap_growth_multiplier =
1158         runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
1159             kExtraDefaultHeapGrowthMultiplier;
1160   }
1161   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1162   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1163                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1164                        runtime_options.GetOrDefault(Opt::HeapMinFree),
1165                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
1166                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1167                        foreground_heap_growth_multiplier,
1168                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1169                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1170                        runtime_options.GetOrDefault(Opt::Image),
1171                        runtime_options.GetOrDefault(Opt::ImageInstructionSet),
1172                        // Override the collector type to CC if the read barrier config.
1173                        kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1174                        kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1175                                        : runtime_options.GetOrDefault(Opt::BackgroundGc),
1176                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1177                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1178                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1179                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
1180                        runtime_options.Exists(Opt::LowMemoryMode),
1181                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1182                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1183                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
1184                        runtime_options.GetOrDefault(Opt::UseTLAB),
1185                        xgc_option.verify_pre_gc_heap_,
1186                        xgc_option.verify_pre_sweeping_heap_,
1187                        xgc_option.verify_post_gc_heap_,
1188                        xgc_option.verify_pre_gc_rosalloc_,
1189                        xgc_option.verify_pre_sweeping_rosalloc_,
1190                        xgc_option.verify_post_gc_rosalloc_,
1191                        xgc_option.gcstress_,
1192                        xgc_option.measure_,
1193                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1194                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
1195 
1196   if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
1197     LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
1198     return false;
1199   }
1200 
1201   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1202 
1203   if (runtime_options.Exists(Opt::JdwpOptions)) {
1204     Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions));
1205   }
1206   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1207   callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
1208 
1209   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1210   if (IsAotCompiler()) {
1211     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1212     // this case.
1213     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1214     // null and we don't create the jit.
1215     jit_options_->SetUseJitCompilation(false);
1216     jit_options_->SetSaveProfilingInfo(false);
1217   }
1218 
1219   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1220   // can't be trimmed as easily.
1221   const bool use_malloc = IsAotCompiler();
1222   arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
1223   jit_arena_pool_.reset(
1224       new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
1225 
1226   if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1227     // 4gb, no malloc. Explanation in header.
1228     low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
1229   }
1230   linear_alloc_.reset(CreateLinearAlloc());
1231 
1232   BlockSignals();
1233   InitPlatformSignalHandlers();
1234 
1235   // Change the implicit checks flags based on runtime architecture.
1236   switch (kRuntimeISA) {
1237     case kArm:
1238     case kThumb2:
1239     case kX86:
1240     case kArm64:
1241     case kX86_64:
1242     case kMips:
1243     case kMips64:
1244       implicit_null_checks_ = true;
1245       // Installing stack protection does not play well with valgrind.
1246       implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
1247       break;
1248     default:
1249       // Keep the defaults.
1250       break;
1251   }
1252 
1253   if (!no_sig_chain_) {
1254     // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1255     if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1256       fault_manager.Init();
1257 
1258       // These need to be in a specific order.  The null point check handler must be
1259       // after the suspend check and stack overflow check handlers.
1260       //
1261       // Note: the instances attach themselves to the fault manager and are handled by it. The manager
1262       //       will delete the instance on Shutdown().
1263       if (implicit_suspend_checks_) {
1264         new SuspensionHandler(&fault_manager);
1265       }
1266 
1267       if (implicit_so_checks_) {
1268         new StackOverflowHandler(&fault_manager);
1269       }
1270 
1271       if (implicit_null_checks_) {
1272         new NullPointerHandler(&fault_manager);
1273       }
1274 
1275       if (kEnableJavaStackTraceHandler) {
1276         new JavaStackTraceHandler(&fault_manager);
1277       }
1278     }
1279   }
1280 
1281   std::string error_msg;
1282   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1283   if (java_vm_.get() == nullptr) {
1284     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1285     return false;
1286   }
1287 
1288   // Add the JniEnv handler.
1289   // TODO Refactor this stuff.
1290   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1291 
1292   Thread::Startup();
1293 
1294   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1295   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1296   // thread, we do not get a java peer.
1297   Thread* self = Thread::Attach("main", false, nullptr, false);
1298   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1299   CHECK(self != nullptr);
1300 
1301   self->SetCanCallIntoJava(!IsAotCompiler());
1302 
1303   // Set us to runnable so tools using a runtime can allocate and GC by default
1304   self->TransitionFromSuspendedToRunnable();
1305 
1306   // Now we're attached, we can take the heap locks and validate the heap.
1307   GetHeap()->EnableObjectValidation();
1308 
1309   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1310   if (UNLIKELY(IsAotCompiler())) {
1311     class_linker_ = new AotClassLinker(intern_table_);
1312   } else {
1313     class_linker_ = new ClassLinker(intern_table_);
1314   }
1315   if (GetHeap()->HasBootImageSpace()) {
1316     bool result = class_linker_->InitFromBootImage(&error_msg);
1317     if (!result) {
1318       LOG(ERROR) << "Could not initialize from image: " << error_msg;
1319       return false;
1320     }
1321     if (kIsDebugBuild) {
1322       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1323         image_space->VerifyImageAllocations();
1324       }
1325     }
1326     if (boot_class_path_string_.empty()) {
1327       // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
1328       const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
1329       std::vector<std::string> dex_locations;
1330       dex_locations.reserve(boot_class_path.size());
1331       for (const DexFile* dex_file : boot_class_path) {
1332         dex_locations.push_back(dex_file->GetLocation());
1333       }
1334       boot_class_path_string_ = android::base::Join(dex_locations, ':');
1335     }
1336     {
1337       ScopedTrace trace2("AddImageStringsToTable");
1338       GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
1339     }
1340     if (IsJavaDebuggable()) {
1341       // Now that we have loaded the boot image, deoptimize its methods if we are running
1342       // debuggable, as the code may have been compiled non-debuggable.
1343       DeoptimizeBootImage();
1344     }
1345   } else {
1346     std::vector<std::string> dex_filenames;
1347     Split(boot_class_path_string_, ':', &dex_filenames);
1348 
1349     std::vector<std::string> dex_locations;
1350     if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
1351       dex_locations = dex_filenames;
1352     } else {
1353       dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
1354       CHECK_EQ(dex_filenames.size(), dex_locations.size());
1355     }
1356 
1357     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1358     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1359       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1360     } else {
1361       OpenDexFiles(dex_filenames,
1362                    dex_locations,
1363                    runtime_options.GetOrDefault(Opt::Image),
1364                    &boot_class_path);
1365     }
1366     instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
1367     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1368       LOG(ERROR) << "Could not initialize without image: " << error_msg;
1369       return false;
1370     }
1371 
1372     // TODO: Should we move the following to InitWithoutImage?
1373     SetInstructionSet(instruction_set_);
1374     for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1375       CalleeSaveType type = CalleeSaveType(i);
1376       if (!HasCalleeSaveMethod(type)) {
1377         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1378       }
1379     }
1380   }
1381 
1382   CHECK(class_linker_ != nullptr);
1383 
1384   verifier::MethodVerifier::Init();
1385 
1386   if (runtime_options.Exists(Opt::MethodTrace)) {
1387     trace_config_.reset(new TraceConfig());
1388     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1389     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1390     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1391     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1392         Trace::TraceOutputMode::kStreaming :
1393         Trace::TraceOutputMode::kFile;
1394   }
1395 
1396   // TODO: move this to just be an Trace::Start argument
1397   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1398 
1399   // Pre-allocate an OutOfMemoryError for the double-OOME case.
1400   self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
1401                           "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1402                           "no stack trace available");
1403   pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
1404   self->ClearException();
1405 
1406   // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1407   // ahead of checking the application's class loader.
1408   self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
1409                           "Class not found using the boot class loader; no stack trace available");
1410   pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
1411   self->ClearException();
1412 
1413   // Runtime initialization is largely done now.
1414   // We load plugins first since that can modify the runtime state slightly.
1415   // Load all plugins
1416   for (auto& plugin : plugins_) {
1417     std::string err;
1418     if (!plugin.Load(&err)) {
1419       LOG(FATAL) << plugin << " failed to load: " << err;
1420     }
1421   }
1422 
1423   // Look for a native bridge.
1424   //
1425   // The intended flow here is, in the case of a running system:
1426   //
1427   // Runtime::Init() (zygote):
1428   //   LoadNativeBridge -> dlopen from cmd line parameter.
1429   //  |
1430   //  V
1431   // Runtime::Start() (zygote):
1432   //   No-op wrt native bridge.
1433   //  |
1434   //  | start app
1435   //  V
1436   // DidForkFromZygote(action)
1437   //   action = kUnload -> dlclose native bridge.
1438   //   action = kInitialize -> initialize library
1439   //
1440   //
1441   // The intended flow here is, in the case of a simple dalvikvm call:
1442   //
1443   // Runtime::Init():
1444   //   LoadNativeBridge -> dlopen from cmd line parameter.
1445   //  |
1446   //  V
1447   // Runtime::Start():
1448   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1449   //   No-op wrt native bridge.
1450   {
1451     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1452     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1453   }
1454 
1455   // Startup agents
1456   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1457   for (auto& agent : agents_) {
1458     // TODO Check err
1459     int res = 0;
1460     std::string err = "";
1461     ti::Agent::LoadError result = agent.Load(&res, &err);
1462     if (result == ti::Agent::kInitializationError) {
1463       LOG(FATAL) << "Unable to initialize agent!";
1464     } else if (result != ti::Agent::kNoError) {
1465       LOG(ERROR) << "Unable to load an agent: " << err;
1466     }
1467   }
1468   {
1469     ScopedObjectAccess soa(self);
1470     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1471   }
1472 
1473   VLOG(startup) << "Runtime::Init exiting";
1474 
1475   return true;
1476 }
1477 
EnsureJvmtiPlugin(Runtime * runtime,std::vector<Plugin> * plugins,std::string * error_msg)1478 static bool EnsureJvmtiPlugin(Runtime* runtime,
1479                               std::vector<Plugin>* plugins,
1480                               std::string* error_msg) {
1481   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
1482 
1483   // Is the plugin already loaded?
1484   for (const Plugin& p : *plugins) {
1485     if (p.GetLibrary() == plugin_name) {
1486       return true;
1487     }
1488   }
1489 
1490   // Is the process debuggable? Otherwise, do not attempt to load the plugin.
1491   if (!runtime->IsJavaDebuggable()) {
1492     *error_msg = "Process is not debuggable.";
1493     return false;
1494   }
1495 
1496   Plugin new_plugin = Plugin::Create(plugin_name);
1497 
1498   if (!new_plugin.Load(error_msg)) {
1499     return false;
1500   }
1501 
1502   plugins->push_back(std::move(new_plugin));
1503   return true;
1504 }
1505 
1506 // Attach a new agent and add it to the list of runtime agents
1507 //
1508 // TODO: once we decide on the threading model for agents,
1509 //   revisit this and make sure we're doing this on the right thread
1510 //   (and we synchronize access to any shared data structures like "agents_")
1511 //
AttachAgent(const std::string & agent_arg)1512 void Runtime::AttachAgent(const std::string& agent_arg) {
1513   std::string error_msg;
1514   if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
1515     LOG(WARNING) << "Could not load plugin: " << error_msg;
1516     ScopedObjectAccess soa(Thread::Current());
1517     ThrowIOException("%s", error_msg.c_str());
1518     return;
1519   }
1520 
1521   ti::Agent agent(agent_arg);
1522 
1523   int res = 0;
1524   ti::Agent::LoadError result = agent.Attach(&res, &error_msg);
1525 
1526   if (result == ti::Agent::kNoError) {
1527     agents_.push_back(std::move(agent));
1528   } else {
1529     LOG(WARNING) << "Agent attach failed (result=" << result << ") : " << error_msg;
1530     ScopedObjectAccess soa(Thread::Current());
1531     ThrowIOException("%s", error_msg.c_str());
1532   }
1533 }
1534 
InitNativeMethods()1535 void Runtime::InitNativeMethods() {
1536   VLOG(startup) << "Runtime::InitNativeMethods entering";
1537   Thread* self = Thread::Current();
1538   JNIEnv* env = self->GetJniEnv();
1539 
1540   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
1541   CHECK_EQ(self->GetState(), kNative);
1542 
1543   // First set up JniConstants, which is used by both the runtime's built-in native
1544   // methods and libcore.
1545   JniConstants::init(env);
1546 
1547   // Then set up the native methods provided by the runtime itself.
1548   RegisterRuntimeNativeMethods(env);
1549 
1550   // Initialize classes used in JNI. The initialization requires runtime native
1551   // methods to be loaded first.
1552   WellKnownClasses::Init(env);
1553 
1554   // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
1555   // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
1556   // libcore can't because it's the library that implements System.loadLibrary!
1557   {
1558     std::string error_msg;
1559     if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, nullptr, &error_msg)) {
1560       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
1561     }
1562   }
1563   {
1564     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
1565                                                 ? "libopenjdkd.so"
1566                                                 : "libopenjdk.so";
1567     std::string error_msg;
1568     if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, nullptr, &error_msg)) {
1569       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
1570     }
1571   }
1572 
1573   // Initialize well known classes that may invoke runtime native methods.
1574   WellKnownClasses::LateInit(env);
1575 
1576   VLOG(startup) << "Runtime::InitNativeMethods exiting";
1577 }
1578 
ReclaimArenaPoolMemory()1579 void Runtime::ReclaimArenaPoolMemory() {
1580   arena_pool_->LockReclaimMemory();
1581 }
1582 
InitThreadGroups(Thread * self)1583 void Runtime::InitThreadGroups(Thread* self) {
1584   JNIEnvExt* env = self->GetJniEnv();
1585   ScopedJniEnvLocalRefState env_state(env);
1586   main_thread_group_ =
1587       env->NewGlobalRef(env->GetStaticObjectField(
1588           WellKnownClasses::java_lang_ThreadGroup,
1589           WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
1590   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1591   system_thread_group_ =
1592       env->NewGlobalRef(env->GetStaticObjectField(
1593           WellKnownClasses::java_lang_ThreadGroup,
1594           WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
1595   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1596 }
1597 
GetMainThreadGroup() const1598 jobject Runtime::GetMainThreadGroup() const {
1599   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1600   return main_thread_group_;
1601 }
1602 
GetSystemThreadGroup() const1603 jobject Runtime::GetSystemThreadGroup() const {
1604   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1605   return system_thread_group_;
1606 }
1607 
GetSystemClassLoader() const1608 jobject Runtime::GetSystemClassLoader() const {
1609   CHECK(system_class_loader_ != nullptr || IsAotCompiler());
1610   return system_class_loader_;
1611 }
1612 
RegisterRuntimeNativeMethods(JNIEnv * env)1613 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
1614   register_dalvik_system_DexFile(env);
1615   register_dalvik_system_VMDebug(env);
1616   register_dalvik_system_VMRuntime(env);
1617   register_dalvik_system_VMStack(env);
1618   register_dalvik_system_ZygoteHooks(env);
1619   register_java_lang_Class(env);
1620   register_java_lang_Object(env);
1621   register_java_lang_invoke_MethodHandleImpl(env);
1622   register_java_lang_ref_FinalizerReference(env);
1623   register_java_lang_reflect_Array(env);
1624   register_java_lang_reflect_Constructor(env);
1625   register_java_lang_reflect_Executable(env);
1626   register_java_lang_reflect_Field(env);
1627   register_java_lang_reflect_Method(env);
1628   register_java_lang_reflect_Parameter(env);
1629   register_java_lang_reflect_Proxy(env);
1630   register_java_lang_ref_Reference(env);
1631   register_java_lang_String(env);
1632   register_java_lang_StringFactory(env);
1633   register_java_lang_System(env);
1634   register_java_lang_Thread(env);
1635   register_java_lang_Throwable(env);
1636   register_java_lang_VMClassLoader(env);
1637   register_java_lang_Void(env);
1638   register_java_util_concurrent_atomic_AtomicLong(env);
1639   register_libcore_util_CharsetUtils(env);
1640   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
1641   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
1642   register_sun_misc_Unsafe(env);
1643 }
1644 
operator <<(std::ostream & os,const DeoptimizationKind & kind)1645 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
1646   os << GetDeoptimizationKindName(kind);
1647   return os;
1648 }
1649 
DumpDeoptimizations(std::ostream & os)1650 void Runtime::DumpDeoptimizations(std::ostream& os) {
1651   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
1652     if (deoptimization_counts_[i] != 0) {
1653       os << "Number of "
1654          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
1655          << " deoptimizations: "
1656          << deoptimization_counts_[i]
1657          << "\n";
1658     }
1659   }
1660 }
1661 
DumpForSigQuit(std::ostream & os)1662 void Runtime::DumpForSigQuit(std::ostream& os) {
1663   GetClassLinker()->DumpForSigQuit(os);
1664   GetInternTable()->DumpForSigQuit(os);
1665   GetJavaVM()->DumpForSigQuit(os);
1666   GetHeap()->DumpForSigQuit(os);
1667   oat_file_manager_->DumpForSigQuit(os);
1668   if (GetJit() != nullptr) {
1669     GetJit()->DumpForSigQuit(os);
1670   } else {
1671     os << "Running non JIT\n";
1672   }
1673   DumpDeoptimizations(os);
1674   TrackedAllocators::Dump(os);
1675   os << "\n";
1676 
1677   thread_list_->DumpForSigQuit(os);
1678   BaseMutex::DumpAll(os);
1679 
1680   // Inform anyone else who is interested in SigQuit.
1681   {
1682     ScopedObjectAccess soa(Thread::Current());
1683     callbacks_->SigQuit();
1684   }
1685 }
1686 
DumpLockHolders(std::ostream & os)1687 void Runtime::DumpLockHolders(std::ostream& os) {
1688   uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
1689   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
1690   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
1691   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
1692   if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
1693     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
1694        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
1695        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
1696        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
1697   }
1698 }
1699 
SetStatsEnabled(bool new_state)1700 void Runtime::SetStatsEnabled(bool new_state) {
1701   Thread* self = Thread::Current();
1702   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
1703   if (new_state == true) {
1704     GetStats()->Clear(~0);
1705     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1706     self->GetStats()->Clear(~0);
1707     if (stats_enabled_ != new_state) {
1708       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
1709     }
1710   } else if (stats_enabled_ != new_state) {
1711     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
1712   }
1713   stats_enabled_ = new_state;
1714 }
1715 
ResetStats(int kinds)1716 void Runtime::ResetStats(int kinds) {
1717   GetStats()->Clear(kinds & 0xffff);
1718   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1719   Thread::Current()->GetStats()->Clear(kinds >> 16);
1720 }
1721 
GetStat(int kind)1722 int32_t Runtime::GetStat(int kind) {
1723   RuntimeStats* stats;
1724   if (kind < (1<<16)) {
1725     stats = GetStats();
1726   } else {
1727     stats = Thread::Current()->GetStats();
1728     kind >>= 16;
1729   }
1730   switch (kind) {
1731   case KIND_ALLOCATED_OBJECTS:
1732     return stats->allocated_objects;
1733   case KIND_ALLOCATED_BYTES:
1734     return stats->allocated_bytes;
1735   case KIND_FREED_OBJECTS:
1736     return stats->freed_objects;
1737   case KIND_FREED_BYTES:
1738     return stats->freed_bytes;
1739   case KIND_GC_INVOCATIONS:
1740     return stats->gc_for_alloc_count;
1741   case KIND_CLASS_INIT_COUNT:
1742     return stats->class_init_count;
1743   case KIND_CLASS_INIT_TIME:
1744     // Convert ns to us, reduce to 32 bits.
1745     return static_cast<int>(stats->class_init_time_ns / 1000);
1746   case KIND_EXT_ALLOCATED_OBJECTS:
1747   case KIND_EXT_ALLOCATED_BYTES:
1748   case KIND_EXT_FREED_OBJECTS:
1749   case KIND_EXT_FREED_BYTES:
1750     return 0;  // backward compatibility
1751   default:
1752     LOG(FATAL) << "Unknown statistic " << kind;
1753     return -1;  // unreachable
1754   }
1755 }
1756 
BlockSignals()1757 void Runtime::BlockSignals() {
1758   SignalSet signals;
1759   signals.Add(SIGPIPE);
1760   // SIGQUIT is used to dump the runtime's state (including stack traces).
1761   signals.Add(SIGQUIT);
1762   // SIGUSR1 is used to initiate a GC.
1763   signals.Add(SIGUSR1);
1764   signals.Block();
1765 }
1766 
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1767 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
1768                                   bool create_peer) {
1769   ScopedTrace trace(__FUNCTION__);
1770   return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr;
1771 }
1772 
DetachCurrentThread()1773 void Runtime::DetachCurrentThread() {
1774   ScopedTrace trace(__FUNCTION__);
1775   Thread* self = Thread::Current();
1776   if (self == nullptr) {
1777     LOG(FATAL) << "attempting to detach thread that is not attached";
1778   }
1779   if (self->HasManagedStack()) {
1780     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
1781   }
1782   thread_list_->Unregister(self);
1783 }
1784 
GetPreAllocatedOutOfMemoryError()1785 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
1786   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
1787   if (oome == nullptr) {
1788     LOG(ERROR) << "Failed to return pre-allocated OOME";
1789   }
1790   return oome;
1791 }
1792 
GetPreAllocatedNoClassDefFoundError()1793 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
1794   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
1795   if (ncdfe == nullptr) {
1796     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
1797   }
1798   return ncdfe;
1799 }
1800 
VisitConstantRoots(RootVisitor * visitor)1801 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
1802   // Visit the classes held as static in mirror classes, these can be visited concurrently and only
1803   // need to be visited once per GC since they never change.
1804   mirror::Class::VisitRoots(visitor);
1805   mirror::Constructor::VisitRoots(visitor);
1806   mirror::Reference::VisitRoots(visitor);
1807   mirror::Method::VisitRoots(visitor);
1808   mirror::StackTraceElement::VisitRoots(visitor);
1809   mirror::String::VisitRoots(visitor);
1810   mirror::Throwable::VisitRoots(visitor);
1811   mirror::Field::VisitRoots(visitor);
1812   mirror::MethodType::VisitRoots(visitor);
1813   mirror::MethodHandleImpl::VisitRoots(visitor);
1814   mirror::MethodHandlesLookup::VisitRoots(visitor);
1815   mirror::EmulatedStackFrame::VisitRoots(visitor);
1816   mirror::ClassExt::VisitRoots(visitor);
1817   mirror::CallSite::VisitRoots(visitor);
1818   // Visit all the primitive array types classes.
1819   mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor);   // BooleanArray
1820   mirror::PrimitiveArray<int8_t>::VisitRoots(visitor);    // ByteArray
1821   mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor);  // CharArray
1822   mirror::PrimitiveArray<double>::VisitRoots(visitor);    // DoubleArray
1823   mirror::PrimitiveArray<float>::VisitRoots(visitor);     // FloatArray
1824   mirror::PrimitiveArray<int32_t>::VisitRoots(visitor);   // IntArray
1825   mirror::PrimitiveArray<int64_t>::VisitRoots(visitor);   // LongArray
1826   mirror::PrimitiveArray<int16_t>::VisitRoots(visitor);   // ShortArray
1827   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
1828   // null.
1829   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
1830   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
1831   if (HasResolutionMethod()) {
1832     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
1833   }
1834   if (HasImtConflictMethod()) {
1835     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
1836   }
1837   if (imt_unimplemented_method_ != nullptr) {
1838     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
1839   }
1840   for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
1841     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
1842     if (m != nullptr) {
1843       m->VisitRoots(buffered_visitor, pointer_size);
1844     }
1845   }
1846 }
1847 
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)1848 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
1849   intern_table_->VisitRoots(visitor, flags);
1850   class_linker_->VisitRoots(visitor, flags);
1851   heap_->VisitAllocationRecords(visitor);
1852   if ((flags & kVisitRootFlagNewRoots) == 0) {
1853     // Guaranteed to have no new roots in the constant roots.
1854     VisitConstantRoots(visitor);
1855   }
1856   Dbg::VisitRoots(visitor);
1857 }
1858 
VisitTransactionRoots(RootVisitor * visitor)1859 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
1860   if (preinitialization_transaction_ != nullptr) {
1861     preinitialization_transaction_->VisitRoots(visitor);
1862   }
1863 }
1864 
VisitNonThreadRoots(RootVisitor * visitor)1865 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
1866   java_vm_->VisitRoots(visitor);
1867   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1868   pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1869   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1870   verifier::MethodVerifier::VisitStaticRoots(visitor);
1871   VisitTransactionRoots(visitor);
1872 }
1873 
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)1874 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
1875   VisitThreadRoots(visitor, flags);
1876   VisitNonThreadRoots(visitor);
1877 }
1878 
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)1879 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
1880   thread_list_->VisitRoots(visitor, flags);
1881 }
1882 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)1883 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
1884   VisitNonConcurrentRoots(visitor, flags);
1885   VisitConcurrentRoots(visitor, flags);
1886 }
1887 
VisitImageRoots(RootVisitor * visitor)1888 void Runtime::VisitImageRoots(RootVisitor* visitor) {
1889   for (auto* space : GetHeap()->GetContinuousSpaces()) {
1890     if (space->IsImageSpace()) {
1891       auto* image_space = space->AsImageSpace();
1892       const auto& image_header = image_space->GetImageHeader();
1893       for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
1894         auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
1895         if (obj != nullptr) {
1896           auto* after_obj = obj;
1897           visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
1898           CHECK_EQ(after_obj, obj);
1899         }
1900       }
1901     }
1902   }
1903 }
1904 
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)1905 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
1906   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
1907   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
1908   const size_t method_size = ArtMethod::Size(image_pointer_size);
1909   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
1910       Thread::Current(),
1911       linear_alloc,
1912       1);
1913   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
1914   CHECK(method != nullptr);
1915   method->SetDexMethodIndex(DexFile::kDexNoIndex);
1916   CHECK(method->IsRuntimeMethod());
1917   return method;
1918 }
1919 
CreateImtConflictMethod(LinearAlloc * linear_alloc)1920 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
1921   ClassLinker* const class_linker = GetClassLinker();
1922   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
1923   // When compiling, the code pointer will get set later when the image is loaded.
1924   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1925   if (IsAotCompiler()) {
1926     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1927   } else {
1928     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
1929   }
1930   // Create empty conflict table.
1931   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
1932                               pointer_size);
1933   return method;
1934 }
1935 
SetImtConflictMethod(ArtMethod * method)1936 void Runtime::SetImtConflictMethod(ArtMethod* method) {
1937   CHECK(method != nullptr);
1938   CHECK(method->IsRuntimeMethod());
1939   imt_conflict_method_ = method;
1940 }
1941 
CreateResolutionMethod()1942 ArtMethod* Runtime::CreateResolutionMethod() {
1943   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
1944   // When compiling, the code pointer will get set later when the image is loaded.
1945   if (IsAotCompiler()) {
1946     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1947     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1948   } else {
1949     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
1950   }
1951   return method;
1952 }
1953 
CreateCalleeSaveMethod()1954 ArtMethod* Runtime::CreateCalleeSaveMethod() {
1955   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
1956   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1957   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1958   DCHECK_NE(instruction_set_, kNone);
1959   DCHECK(method->IsRuntimeMethod());
1960   return method;
1961 }
1962 
DisallowNewSystemWeaks()1963 void Runtime::DisallowNewSystemWeaks() {
1964   CHECK(!kUseReadBarrier);
1965   monitor_list_->DisallowNewMonitors();
1966   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
1967   java_vm_->DisallowNewWeakGlobals();
1968   heap_->DisallowNewAllocationRecords();
1969   if (GetJit() != nullptr) {
1970     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
1971   }
1972 
1973   // All other generic system-weak holders.
1974   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1975     holder->Disallow();
1976   }
1977 }
1978 
AllowNewSystemWeaks()1979 void Runtime::AllowNewSystemWeaks() {
1980   CHECK(!kUseReadBarrier);
1981   monitor_list_->AllowNewMonitors();
1982   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
1983   java_vm_->AllowNewWeakGlobals();
1984   heap_->AllowNewAllocationRecords();
1985   if (GetJit() != nullptr) {
1986     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
1987   }
1988 
1989   // All other generic system-weak holders.
1990   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1991     holder->Allow();
1992   }
1993 }
1994 
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)1995 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
1996   // This is used for the read barrier case that uses the thread-local
1997   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
1998   // (see ThreadList::RunCheckpoint).
1999   monitor_list_->BroadcastForNewMonitors();
2000   intern_table_->BroadcastForNewInterns();
2001   java_vm_->BroadcastForNewWeakGlobals();
2002   heap_->BroadcastForNewAllocationRecords();
2003   if (GetJit() != nullptr) {
2004     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2005   }
2006 
2007   // All other generic system-weak holders.
2008   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2009     holder->Broadcast(broadcast_for_checkpoint);
2010   }
2011 }
2012 
SetInstructionSet(InstructionSet instruction_set)2013 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2014   instruction_set_ = instruction_set;
2015   if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) {
2016     for (int i = 0; i != kCalleeSaveSize; ++i) {
2017       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2018       callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
2019     }
2020   } else if (instruction_set_ == kMips) {
2021     for (int i = 0; i != kCalleeSaveSize; ++i) {
2022       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2023       callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
2024     }
2025   } else if (instruction_set_ == kMips64) {
2026     for (int i = 0; i != kCalleeSaveSize; ++i) {
2027       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2028       callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
2029     }
2030   } else if (instruction_set_ == kX86) {
2031     for (int i = 0; i != kCalleeSaveSize; ++i) {
2032       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2033       callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
2034     }
2035   } else if (instruction_set_ == kX86_64) {
2036     for (int i = 0; i != kCalleeSaveSize; ++i) {
2037       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2038       callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
2039     }
2040   } else if (instruction_set_ == kArm64) {
2041     for (int i = 0; i != kCalleeSaveSize; ++i) {
2042       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2043       callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
2044     }
2045   } else {
2046     UNIMPLEMENTED(FATAL) << instruction_set_;
2047   }
2048 }
2049 
ClearInstructionSet()2050 void Runtime::ClearInstructionSet() {
2051   instruction_set_ = InstructionSet::kNone;
2052 }
2053 
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2054 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2055   DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2056   CHECK(method != nullptr);
2057   callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2058 }
2059 
ClearCalleeSaveMethods()2060 void Runtime::ClearCalleeSaveMethods() {
2061   for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2062     callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2063   }
2064 }
2065 
RegisterAppInfo(const std::vector<std::string> & code_paths,const std::string & profile_output_filename)2066 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
2067                               const std::string& profile_output_filename) {
2068   if (jit_.get() == nullptr) {
2069     // We are not JITing. Nothing to do.
2070     return;
2071   }
2072 
2073   VLOG(profiler) << "Register app with " << profile_output_filename
2074       << " " << android::base::Join(code_paths, ':');
2075 
2076   if (profile_output_filename.empty()) {
2077     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2078     return;
2079   }
2080   if (!FileExists(profile_output_filename)) {
2081     LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
2082     return;
2083   }
2084   if (code_paths.empty()) {
2085     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2086     return;
2087   }
2088 
2089   jit_->StartProfileSaver(profile_output_filename, code_paths);
2090 }
2091 
2092 // Transaction support.
EnterTransactionMode(Transaction * transaction)2093 void Runtime::EnterTransactionMode(Transaction* transaction) {
2094   DCHECK(IsAotCompiler());
2095   DCHECK(transaction != nullptr);
2096   DCHECK(!IsActiveTransaction());
2097   preinitialization_transaction_ = transaction;
2098 }
2099 
ExitTransactionMode()2100 void Runtime::ExitTransactionMode() {
2101   DCHECK(IsAotCompiler());
2102   DCHECK(IsActiveTransaction());
2103   preinitialization_transaction_ = nullptr;
2104 }
2105 
IsTransactionAborted() const2106 bool Runtime::IsTransactionAborted() const {
2107   if (!IsActiveTransaction()) {
2108     return false;
2109   } else {
2110     DCHECK(IsAotCompiler());
2111     return preinitialization_transaction_->IsAborted();
2112   }
2113 }
2114 
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2115 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2116   DCHECK(IsAotCompiler());
2117   DCHECK(IsActiveTransaction());
2118   // Throwing an exception may cause its class initialization. If we mark the transaction
2119   // aborted before that, we may warn with a false alarm. Throwing the exception before
2120   // marking the transaction aborted avoids that.
2121   preinitialization_transaction_->ThrowAbortError(self, &abort_message);
2122   preinitialization_transaction_->Abort(abort_message);
2123 }
2124 
ThrowTransactionAbortError(Thread * self)2125 void Runtime::ThrowTransactionAbortError(Thread* self) {
2126   DCHECK(IsAotCompiler());
2127   DCHECK(IsActiveTransaction());
2128   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2129   preinitialization_transaction_->ThrowAbortError(self, nullptr);
2130 }
2131 
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile) const2132 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2133                                       uint8_t value, bool is_volatile) const {
2134   DCHECK(IsAotCompiler());
2135   DCHECK(IsActiveTransaction());
2136   preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2137 }
2138 
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile) const2139 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2140                                    int8_t value, bool is_volatile) const {
2141   DCHECK(IsAotCompiler());
2142   DCHECK(IsActiveTransaction());
2143   preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2144 }
2145 
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile) const2146 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2147                                    uint16_t value, bool is_volatile) const {
2148   DCHECK(IsAotCompiler());
2149   DCHECK(IsActiveTransaction());
2150   preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2151 }
2152 
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile) const2153 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2154                                     int16_t value, bool is_volatile) const {
2155   DCHECK(IsAotCompiler());
2156   DCHECK(IsActiveTransaction());
2157   preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2158 }
2159 
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile) const2160 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2161                                  uint32_t value, bool is_volatile) const {
2162   DCHECK(IsAotCompiler());
2163   DCHECK(IsActiveTransaction());
2164   preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile);
2165 }
2166 
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile) const2167 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2168                                  uint64_t value, bool is_volatile) const {
2169   DCHECK(IsAotCompiler());
2170   DCHECK(IsActiveTransaction());
2171   preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile);
2172 }
2173 
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile) const2174 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2175                                         MemberOffset field_offset,
2176                                         ObjPtr<mirror::Object> value,
2177                                         bool is_volatile) const {
2178   DCHECK(IsAotCompiler());
2179   DCHECK(IsActiveTransaction());
2180   preinitialization_transaction_->RecordWriteFieldReference(obj,
2181                                                             field_offset,
2182                                                             value.Ptr(),
2183                                                             is_volatile);
2184 }
2185 
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value) const2186 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2187   DCHECK(IsAotCompiler());
2188   DCHECK(IsActiveTransaction());
2189   preinitialization_transaction_->RecordWriteArray(array, index, value);
2190 }
2191 
RecordStrongStringInsertion(ObjPtr<mirror::String> s) const2192 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2193   DCHECK(IsAotCompiler());
2194   DCHECK(IsActiveTransaction());
2195   preinitialization_transaction_->RecordStrongStringInsertion(s);
2196 }
2197 
RecordWeakStringInsertion(ObjPtr<mirror::String> s) const2198 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2199   DCHECK(IsAotCompiler());
2200   DCHECK(IsActiveTransaction());
2201   preinitialization_transaction_->RecordWeakStringInsertion(s);
2202 }
2203 
RecordStrongStringRemoval(ObjPtr<mirror::String> s) const2204 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2205   DCHECK(IsAotCompiler());
2206   DCHECK(IsActiveTransaction());
2207   preinitialization_transaction_->RecordStrongStringRemoval(s);
2208 }
2209 
RecordWeakStringRemoval(ObjPtr<mirror::String> s) const2210 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2211   DCHECK(IsAotCompiler());
2212   DCHECK(IsActiveTransaction());
2213   preinitialization_transaction_->RecordWeakStringRemoval(s);
2214 }
2215 
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx) const2216 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2217                                   dex::StringIndex string_idx) const {
2218   DCHECK(IsAotCompiler());
2219   DCHECK(IsActiveTransaction());
2220   preinitialization_transaction_->RecordResolveString(dex_cache, string_idx);
2221 }
2222 
SetFaultMessage(const std::string & message)2223 void Runtime::SetFaultMessage(const std::string& message) {
2224   MutexLock mu(Thread::Current(), fault_message_lock_);
2225   fault_message_ = message;
2226 }
2227 
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2228 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2229     const {
2230   if (GetInstrumentation()->InterpretOnly()) {
2231     argv->push_back("--compiler-filter=quicken");
2232   }
2233 
2234   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2235   // architecture support, dex2oat may be compiled as a different instruction-set than that
2236   // currently being executed.
2237   std::string instruction_set("--instruction-set=");
2238   instruction_set += GetInstructionSetString(kRuntimeISA);
2239   argv->push_back(instruction_set);
2240 
2241   std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
2242   std::string feature_string("--instruction-set-features=");
2243   feature_string += features->GetFeatureString();
2244   argv->push_back(feature_string);
2245 }
2246 
CreateJit()2247 void Runtime::CreateJit() {
2248   CHECK(!IsAotCompiler());
2249   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2250     DCHECK(!jit_options_->UseJitCompilation());
2251   }
2252   std::string error_msg;
2253   jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
2254   if (jit_.get() == nullptr) {
2255     LOG(WARNING) << "Failed to create JIT " << error_msg;
2256     return;
2257   }
2258 
2259   // In case we have a profile path passed as a command line argument,
2260   // register the current class path for profiling now. Note that we cannot do
2261   // this before we create the JIT and having it here is the most convenient way.
2262   // This is used when testing profiles with dalvikvm command as there is no
2263   // framework to register the dex files for profiling.
2264   if (jit_options_->GetSaveProfilingInfo() &&
2265       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
2266     std::vector<std::string> dex_filenames;
2267     Split(class_path_string_, ':', &dex_filenames);
2268     RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
2269   }
2270 }
2271 
CanRelocate() const2272 bool Runtime::CanRelocate() const {
2273   return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
2274 }
2275 
IsCompilingBootImage() const2276 bool Runtime::IsCompilingBootImage() const {
2277   return IsCompiler() && compiler_callbacks_->IsBootImage();
2278 }
2279 
SetResolutionMethod(ArtMethod * method)2280 void Runtime::SetResolutionMethod(ArtMethod* method) {
2281   CHECK(method != nullptr);
2282   CHECK(method->IsRuntimeMethod()) << method;
2283   resolution_method_ = method;
2284 }
2285 
SetImtUnimplementedMethod(ArtMethod * method)2286 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2287   CHECK(method != nullptr);
2288   CHECK(method->IsRuntimeMethod());
2289   imt_unimplemented_method_ = method;
2290 }
2291 
FixupConflictTables()2292 void Runtime::FixupConflictTables() {
2293   // We can only do this after the class linker is created.
2294   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2295   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2296     imt_unimplemented_method_->SetImtConflictTable(
2297         ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2298         pointer_size);
2299   }
2300   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2301     imt_conflict_method_->SetImtConflictTable(
2302           ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2303           pointer_size);
2304   }
2305 }
2306 
IsVerificationEnabled() const2307 bool Runtime::IsVerificationEnabled() const {
2308   return verify_ == verifier::VerifyMode::kEnable ||
2309       verify_ == verifier::VerifyMode::kSoftFail;
2310 }
2311 
IsVerificationSoftFail() const2312 bool Runtime::IsVerificationSoftFail() const {
2313   return verify_ == verifier::VerifyMode::kSoftFail;
2314 }
2315 
IsAsyncDeoptimizeable(uintptr_t code) const2316 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2317   // We only support async deopt (ie the compiled code is not explicitly asking for
2318   // deopt, but something else like the debugger) in debuggable JIT code.
2319   // We could look at the oat file where `code` is being defined,
2320   // and check whether it's been compiled debuggable, but we decided to
2321   // only rely on the JIT for debuggable apps.
2322   return IsJavaDebuggable() &&
2323       GetJit() != nullptr &&
2324       GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
2325 }
2326 
CreateLinearAlloc()2327 LinearAlloc* Runtime::CreateLinearAlloc() {
2328   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2329   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2330   // when we have 64 bit ArtMethod pointers.
2331   return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2332       ? new LinearAlloc(low_4gb_arena_pool_.get())
2333       : new LinearAlloc(arena_pool_.get());
2334 }
2335 
GetHashTableMinLoadFactor() const2336 double Runtime::GetHashTableMinLoadFactor() const {
2337   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2338 }
2339 
GetHashTableMaxLoadFactor() const2340 double Runtime::GetHashTableMaxLoadFactor() const {
2341   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
2342 }
2343 
UpdateProcessState(ProcessState process_state)2344 void Runtime::UpdateProcessState(ProcessState process_state) {
2345   ProcessState old_process_state = process_state_;
2346   process_state_ = process_state;
2347   GetHeap()->UpdateProcessState(old_process_state, process_state);
2348 }
2349 
RegisterSensitiveThread() const2350 void Runtime::RegisterSensitiveThread() const {
2351   Thread::SetJitSensitiveThread();
2352 }
2353 
2354 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const2355 bool Runtime::UseJitCompilation() const {
2356   return (jit_ != nullptr) && jit_->UseJitCompilation();
2357 }
2358 
TakeSnapshot()2359 void Runtime::EnvSnapshot::TakeSnapshot() {
2360   char** env = GetEnviron();
2361   for (size_t i = 0; env[i] != nullptr; ++i) {
2362     name_value_pairs_.emplace_back(new std::string(env[i]));
2363   }
2364   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
2365   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
2366   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
2367   for (size_t i = 0; env[i] != nullptr; ++i) {
2368     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
2369   }
2370   c_env_vector_[name_value_pairs_.size()] = nullptr;
2371 }
2372 
GetSnapshot() const2373 char** Runtime::EnvSnapshot::GetSnapshot() const {
2374   return c_env_vector_.get();
2375 }
2376 
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2377 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2378   gc::ScopedGCCriticalSection gcs(Thread::Current(),
2379                                   gc::kGcCauseAddRemoveSystemWeakHolder,
2380                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
2381   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
2382   //       a critical section.
2383   system_weak_holders_.push_back(holder);
2384 }
2385 
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2386 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2387   gc::ScopedGCCriticalSection gcs(Thread::Current(),
2388                                   gc::kGcCauseAddRemoveSystemWeakHolder,
2389                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
2390   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
2391   if (it != system_weak_holders_.end()) {
2392     system_weak_holders_.erase(it);
2393   }
2394 }
2395 
GetRuntimeCallbacks()2396 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
2397   return callbacks_.get();
2398 }
2399 
2400 // Used to patch boot image method entry point to interpreter bridge.
2401 class UpdateEntryPointsClassVisitor : public ClassVisitor {
2402  public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)2403   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
2404       : instrumentation_(instrumentation) {}
2405 
operator ()(ObjPtr<mirror::Class> klass)2406   bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
2407     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2408     for (auto& m : klass->GetMethods(pointer_size)) {
2409       const void* code = m.GetEntryPointFromQuickCompiledCode();
2410       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
2411           !m.IsNative() &&
2412           !m.IsProxyMethod()) {
2413         instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2414       }
2415     }
2416     return true;
2417   }
2418 
2419  private:
2420   instrumentation::Instrumentation* const instrumentation_;
2421 };
2422 
SetJavaDebuggable(bool value)2423 void Runtime::SetJavaDebuggable(bool value) {
2424   is_java_debuggable_ = value;
2425   // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
2426 }
2427 
DeoptimizeBootImage()2428 void Runtime::DeoptimizeBootImage() {
2429   // If we've already started and we are setting this runtime to debuggable,
2430   // we patch entry points of methods in boot image to interpreter bridge, as
2431   // boot image code may be AOT compiled as not debuggable.
2432   if (!GetInstrumentation()->IsForcedInterpretOnly()) {
2433     ScopedObjectAccess soa(Thread::Current());
2434     UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
2435     GetClassLinker()->VisitClasses(&visitor);
2436   }
2437 }
2438 
2439 }  // namespace art
2440