• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Implementation notes:
6 //
7 // We need to remove a piece from the ELF shared library.  However, we also
8 // want to avoid fixing DWARF cfi data and relative relocation addresses.
9 // So after packing we shift offets and starting address of the RX segment
10 // while preserving code/data vaddrs location.
11 // This requires some fixups for symtab/hash/gnu_hash dynamic section addresses.
12 
13 #include "elf_file.h"
14 
15 #include <stdlib.h>
16 #include <sys/types.h>
17 #include <unistd.h>
18 #include <algorithm>
19 #include <string>
20 #include <vector>
21 
22 #include "debug.h"
23 #include "elf_traits.h"
24 #include "libelf.h"
25 #include "packer.h"
26 
27 namespace relocation_packer {
28 
29 // Out-of-band dynamic tags used to indicate the offset and size of the
30 // android packed relocations section.
31 static constexpr int32_t DT_ANDROID_REL = DT_LOOS + 2;
32 static constexpr int32_t DT_ANDROID_RELSZ = DT_LOOS + 3;
33 
34 static constexpr int32_t DT_ANDROID_RELA = DT_LOOS + 4;
35 static constexpr int32_t DT_ANDROID_RELASZ = DT_LOOS + 5;
36 
37 static constexpr uint32_t SHT_ANDROID_REL = SHT_LOOS + 1;
38 static constexpr uint32_t SHT_ANDROID_RELA = SHT_LOOS + 2;
39 
40 static const size_t kPageSize = 4096;
41 
42 // Alignment to preserve, in bytes.  This must be at least as large as the
43 // largest d_align and sh_addralign values found in the loaded file.
44 // Out of caution for RELRO page alignment, we preserve to a complete target
45 // page.  See http://www.airs.com/blog/archives/189.
46 static const size_t kPreserveAlignment = kPageSize;
47 
48 // Get section data.  Checks that the section has exactly one data entry,
49 // so that the section size and the data size are the same.  True in
50 // practice for all sections we resize when packing or unpacking.  Done
51 // by ensuring that a call to elf_getdata(section, data) returns NULL as
52 // the next data entry.
GetSectionData(Elf_Scn * section)53 static Elf_Data* GetSectionData(Elf_Scn* section) {
54   Elf_Data* data = elf_getdata(section, NULL);
55   CHECK(data && elf_getdata(section, data) == NULL);
56   return data;
57 }
58 
59 // Rewrite section data.  Allocates new data and makes it the data element's
60 // buffer.  Relies on program exit to free allocated data.
RewriteSectionData(Elf_Scn * section,const void * section_data,size_t size)61 static void RewriteSectionData(Elf_Scn* section,
62                                const void* section_data,
63                                size_t size) {
64   Elf_Data* data = GetSectionData(section);
65   CHECK(size == data->d_size);
66   uint8_t* area = new uint8_t[size];
67   memcpy(area, section_data, size);
68   data->d_buf = area;
69 }
70 
71 // Verbose ELF header logging.
72 template <typename Ehdr>
VerboseLogElfHeader(const Ehdr * elf_header)73 static void VerboseLogElfHeader(const Ehdr* elf_header) {
74   VLOG(1) << "e_phoff = " << elf_header->e_phoff;
75   VLOG(1) << "e_shoff = " << elf_header->e_shoff;
76   VLOG(1) << "e_ehsize = " << elf_header->e_ehsize;
77   VLOG(1) << "e_phentsize = " << elf_header->e_phentsize;
78   VLOG(1) << "e_phnum = " << elf_header->e_phnum;
79   VLOG(1) << "e_shnum = " << elf_header->e_shnum;
80   VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx;
81 }
82 
83 // Verbose ELF program header logging.
84 template <typename Phdr>
VerboseLogProgramHeader(size_t program_header_index,const Phdr * program_header)85 static void VerboseLogProgramHeader(size_t program_header_index,
86                              const Phdr* program_header) {
87   std::string type;
88   switch (program_header->p_type) {
89     case PT_NULL: type = "NULL"; break;
90     case PT_LOAD: type = "LOAD"; break;
91     case PT_DYNAMIC: type = "DYNAMIC"; break;
92     case PT_INTERP: type = "INTERP"; break;
93     case PT_PHDR: type = "PHDR"; break;
94     case PT_GNU_RELRO: type = "GNU_RELRO"; break;
95     case PT_GNU_STACK: type = "GNU_STACK"; break;
96     case PT_ARM_EXIDX: type = "EXIDX"; break;
97     default: type = "(OTHER)"; break;
98   }
99   VLOG(1) << "phdr[" << program_header_index << "] : " << type;
100   VLOG(1) << "  p_offset = " << program_header->p_offset;
101   VLOG(1) << "  p_vaddr = " << program_header->p_vaddr;
102   VLOG(1) << "  p_paddr = " << program_header->p_paddr;
103   VLOG(1) << "  p_filesz = " << program_header->p_filesz;
104   VLOG(1) << "  p_memsz = " << program_header->p_memsz;
105   VLOG(1) << "  p_flags = " << program_header->p_flags;
106   VLOG(1) << "  p_align = " << program_header->p_align;
107 }
108 
109 // Verbose ELF section header logging.
110 template <typename Shdr>
VerboseLogSectionHeader(const std::string & section_name,const Shdr * section_header)111 static void VerboseLogSectionHeader(const std::string& section_name,
112                              const Shdr* section_header) {
113   VLOG(1) << "section " << section_name;
114   VLOG(1) << "  sh_addr = " << section_header->sh_addr;
115   VLOG(1) << "  sh_offset = " << section_header->sh_offset;
116   VLOG(1) << "  sh_size = " << section_header->sh_size;
117   VLOG(1) << "  sh_entsize = " << section_header->sh_entsize;
118   VLOG(1) << "  sh_addralign = " << section_header->sh_addralign;
119 }
120 
121 // Verbose ELF section data logging.
VerboseLogSectionData(const Elf_Data * data)122 static void VerboseLogSectionData(const Elf_Data* data) {
123   VLOG(1) << "  data";
124   VLOG(1) << "    d_buf = " << data->d_buf;
125   VLOG(1) << "    d_off = " << data->d_off;
126   VLOG(1) << "    d_size = " << data->d_size;
127   VLOG(1) << "    d_align = " << data->d_align;
128 }
129 
130 // Load the complete ELF file into a memory image in libelf, and identify
131 // the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or
132 // .android.rela.dyn sections.  No-op if the ELF file has already been loaded.
133 template <typename ELF>
Load()134 bool ElfFile<ELF>::Load() {
135   if (elf_)
136     return true;
137 
138   Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL);
139   CHECK(elf);
140 
141   if (elf_kind(elf) != ELF_K_ELF) {
142     LOG(ERROR) << "File not in ELF format";
143     return false;
144   }
145 
146   auto elf_header = ELF::getehdr(elf);
147   if (!elf_header) {
148     LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno());
149     return false;
150   }
151 
152   if (elf_header->e_type != ET_DYN) {
153     LOG(ERROR) << "ELF file is not a shared object";
154     return false;
155   }
156 
157   // Require that our endianness matches that of the target, and that both
158   // are little-endian.  Safe for all current build/target combinations.
159   const int endian = elf_header->e_ident[EI_DATA];
160   CHECK(endian == ELFDATA2LSB);
161   CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
162 
163   const int file_class = elf_header->e_ident[EI_CLASS];
164   VLOG(1) << "endian = " << endian << ", file class = " << file_class;
165   VerboseLogElfHeader(elf_header);
166 
167   auto elf_program_header = ELF::getphdr(elf);
168   CHECK(elf_program_header != nullptr);
169 
170   const typename ELF::Phdr* dynamic_program_header = NULL;
171   for (size_t i = 0; i < elf_header->e_phnum; ++i) {
172     auto program_header = &elf_program_header[i];
173     VerboseLogProgramHeader(i, program_header);
174 
175     if (program_header->p_type == PT_DYNAMIC) {
176       CHECK(dynamic_program_header == NULL);
177       dynamic_program_header = program_header;
178     }
179   }
180   CHECK(dynamic_program_header != nullptr);
181 
182   size_t string_index;
183   elf_getshdrstrndx(elf, &string_index);
184 
185   // Notes of the dynamic relocations, packed relocations, and .dynamic
186   // sections.  Found while iterating sections, and later stored in class
187   // attributes.
188   Elf_Scn* found_relocations_section = nullptr;
189   Elf_Scn* found_dynamic_section = nullptr;
190 
191   // Notes of relocation section types seen.  We require one or the other of
192   // these; both is unsupported.
193   bool has_rel_relocations = false;
194   bool has_rela_relocations = false;
195   bool has_android_relocations = false;
196 
197   Elf_Scn* section = NULL;
198   while ((section = elf_nextscn(elf, section)) != nullptr) {
199     auto section_header = ELF::getshdr(section);
200     std::string name = elf_strptr(elf, string_index, section_header->sh_name);
201     VerboseLogSectionHeader(name, section_header);
202 
203     // Note relocation section types.
204     if (section_header->sh_type == SHT_REL || section_header->sh_type == SHT_ANDROID_REL) {
205       has_rel_relocations = true;
206     }
207     if (section_header->sh_type == SHT_RELA || section_header->sh_type == SHT_ANDROID_RELA) {
208       has_rela_relocations = true;
209     }
210 
211     // Note special sections as we encounter them.
212     if ((name == ".rel.dyn" || name == ".rela.dyn") &&
213         section_header->sh_size > 0) {
214       found_relocations_section = section;
215 
216       // Note if relocation section is already packed
217       has_android_relocations =
218           section_header->sh_type == SHT_ANDROID_REL ||
219           section_header->sh_type == SHT_ANDROID_RELA;
220     }
221 
222     if (section_header->sh_offset == dynamic_program_header->p_offset) {
223       found_dynamic_section = section;
224     }
225 
226     // Ensure we preserve alignment, repeated later for the data block(s).
227     CHECK(section_header->sh_addralign <= kPreserveAlignment);
228 
229     Elf_Data* data = NULL;
230     while ((data = elf_getdata(section, data)) != NULL) {
231       CHECK(data->d_align <= kPreserveAlignment);
232       VerboseLogSectionData(data);
233     }
234   }
235 
236   // Loading failed if we did not find the required special sections.
237   if (!found_dynamic_section) {
238     LOG(ERROR) << "Missing .dynamic section";
239     return false;
240   }
241 
242   if (found_relocations_section != nullptr) {
243     // Loading failed if we could not identify the relocations type.
244     if (!has_rel_relocations && !has_rela_relocations) {
245       LOG(ERROR) << "No relocations sections found";
246       return false;
247     }
248     if (has_rel_relocations && has_rela_relocations) {
249       LOG(ERROR) << "Multiple relocations sections with different types found, "
250                  << "not currently supported";
251       return false;
252     }
253   }
254 
255   elf_ = elf;
256   relocations_section_ = found_relocations_section;
257   dynamic_section_ = found_dynamic_section;
258   relocations_type_ = has_rel_relocations ? REL : RELA;
259   has_android_relocations_ = has_android_relocations;
260   return true;
261 }
262 
263 // Helper for ResizeSection().  Adjust the main ELF header for the hole.
264 template <typename ELF>
AdjustElfHeaderForHole(typename ELF::Ehdr * elf_header,typename ELF::Off hole_start,ssize_t hole_size)265 static void AdjustElfHeaderForHole(typename ELF::Ehdr* elf_header,
266                                    typename ELF::Off hole_start,
267                                    ssize_t hole_size) {
268   if (elf_header->e_phoff > hole_start) {
269     elf_header->e_phoff += hole_size;
270     VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff;
271   }
272   if (elf_header->e_shoff > hole_start) {
273     elf_header->e_shoff += hole_size;
274     VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff;
275   }
276 }
277 
278 // Helper for ResizeSection().  Adjust all section headers for the hole.
279 template <typename ELF>
AdjustSectionHeadersForHole(Elf * elf,typename ELF::Off hole_start,ssize_t hole_size)280 static void AdjustSectionHeadersForHole(Elf* elf,
281                                         typename ELF::Off hole_start,
282                                         ssize_t hole_size) {
283   size_t string_index;
284   elf_getshdrstrndx(elf, &string_index);
285 
286   Elf_Scn* section = NULL;
287   while ((section = elf_nextscn(elf, section)) != NULL) {
288     auto section_header = ELF::getshdr(section);
289     std::string name = elf_strptr(elf, string_index, section_header->sh_name);
290 
291     if (section_header->sh_offset > hole_start) {
292       section_header->sh_offset += hole_size;
293       VLOG(1) << "section " << name
294               << " sh_offset adjusted to " << section_header->sh_offset;
295     } else {
296       section_header->sh_addr -= hole_size;
297       VLOG(1) << "section " << name
298               << " sh_addr adjusted to " << section_header->sh_addr;
299     }
300   }
301 }
302 
303 // Helpers for ResizeSection().  On packing, reduce p_align for LOAD segments
304 // to 4kb if larger.  On unpacking, restore p_align for LOAD segments if
305 // packing reduced it to 4kb.  Return true if p_align was changed.
306 template <typename ELF>
ClampLoadSegmentAlignment(typename ELF::Phdr * program_header)307 static bool ClampLoadSegmentAlignment(typename ELF::Phdr* program_header) {
308   CHECK(program_header->p_type == PT_LOAD);
309 
310   // If large, reduce p_align for a LOAD segment to page size on packing.
311   if (program_header->p_align > kPageSize) {
312     program_header->p_align = kPageSize;
313     return true;
314   }
315   return false;
316 }
317 
318 template <typename ELF>
RestoreLoadSegmentAlignment(typename ELF::Phdr * program_headers,size_t count,typename ELF::Phdr * program_header)319 static bool RestoreLoadSegmentAlignment(typename ELF::Phdr* program_headers,
320                                         size_t count,
321                                         typename ELF::Phdr* program_header) {
322   CHECK(program_header->p_type == PT_LOAD);
323 
324   // If p_align was reduced on packing, restore it to its previous value
325   // on unpacking.  We do this by searching for a different LOAD segment
326   // and setting p_align to that of the other LOAD segment found.
327   //
328   // Relies on the following observations:
329   //   - a packable ELF executable has more than one LOAD segment;
330   //   - before packing all LOAD segments have the same p_align;
331   //   - on packing we reduce only one LOAD segment's p_align.
332   if (program_header->p_align == kPageSize) {
333     for (size_t i = 0; i < count; ++i) {
334       typename ELF::Phdr* other_header = &program_headers[i];
335       if (other_header->p_type == PT_LOAD && other_header != program_header) {
336         program_header->p_align = other_header->p_align;
337         return true;
338       }
339     }
340     LOG(WARNING) << "Cannot find a LOAD segment from which to restore p_align";
341   }
342   return false;
343 }
344 
345 template <typename ELF>
AdjustLoadSegmentAlignment(typename ELF::Phdr * program_headers,size_t count,typename ELF::Phdr * program_header,ssize_t hole_size)346 static bool AdjustLoadSegmentAlignment(typename ELF::Phdr* program_headers,
347                                        size_t count,
348                                        typename ELF::Phdr* program_header,
349                                        ssize_t hole_size) {
350   CHECK(program_header->p_type == PT_LOAD);
351 
352   bool status = false;
353   if (hole_size < 0) {
354     status = ClampLoadSegmentAlignment<ELF>(program_header);
355   } else if (hole_size > 0) {
356     status = RestoreLoadSegmentAlignment<ELF>(program_headers,
357                                               count,
358                                               program_header);
359   }
360   return status;
361 }
362 
363 // Helper for ResizeSection().  Adjust the offsets of any program headers
364 // that have offsets currently beyond the hole start, and adjust the
365 // virtual and physical addrs (and perhaps alignment) of the others.
366 template <typename ELF>
AdjustProgramHeaderFields(typename ELF::Phdr * program_headers,size_t count,typename ELF::Off hole_start,ssize_t hole_size)367 static void AdjustProgramHeaderFields(typename ELF::Phdr* program_headers,
368                                       size_t count,
369                                       typename ELF::Off hole_start,
370                                       ssize_t hole_size) {
371   int alignment_changes = 0;
372   for (size_t i = 0; i < count; ++i) {
373     typename ELF::Phdr* program_header = &program_headers[i];
374 
375     // Do not adjust PT_GNU_STACK - it confuses gdb and results
376     // in incorrect unwinding if the executable is stripped after
377     // packing.
378     if (program_header->p_type == PT_GNU_STACK) {
379       continue;
380     }
381 
382     if (program_header->p_offset > hole_start) {
383       // The hole start is past this segment, so adjust offset.
384       program_header->p_offset += hole_size;
385       VLOG(1) << "phdr[" << i
386               << "] p_offset adjusted to "<< program_header->p_offset;
387     } else {
388       program_header->p_vaddr -= hole_size;
389       program_header->p_paddr -= hole_size;
390 
391       // If packing, clamp LOAD segment alignment to 4kb to prevent strip
392       // from adjusting it unnecessarily if run on a packed file.  If
393       // unpacking, attempt to restore a reduced alignment to its previous
394       // value.  Ensure that we do this on at most one LOAD segment.
395       if (program_header->p_type == PT_LOAD) {
396         alignment_changes += AdjustLoadSegmentAlignment<ELF>(program_headers,
397                                                              count,
398                                                              program_header,
399                                                              hole_size);
400         LOG_IF(FATAL, alignment_changes > 1)
401             << "Changed p_align on more than one LOAD segment";
402       }
403 
404       VLOG(1) << "phdr[" << i
405               << "] p_vaddr adjusted to "<< program_header->p_vaddr
406               << "; p_paddr adjusted to "<< program_header->p_paddr
407               << "; p_align adjusted to "<< program_header->p_align;
408     }
409   }
410 }
411 
412 // Helper for ResizeSection().  Find the first loadable segment in the
413 // file.  We expect it to map from file offset zero.
414 template <typename ELF>
FindLoadSegmentForHole(typename ELF::Phdr * program_headers,size_t count,typename ELF::Off hole_start)415 static typename ELF::Phdr* FindLoadSegmentForHole(typename ELF::Phdr* program_headers,
416                                                   size_t count,
417                                                   typename ELF::Off hole_start) {
418   for (size_t i = 0; i < count; ++i) {
419     typename ELF::Phdr* program_header = &program_headers[i];
420 
421     if (program_header->p_type == PT_LOAD &&
422         program_header->p_offset <= hole_start &&
423         (program_header->p_offset + program_header->p_filesz) >= hole_start ) {
424       return program_header;
425     }
426   }
427   LOG(FATAL) << "Cannot locate a LOAD segment with hole_start=0x" << std::hex << hole_start;
428   NOTREACHED();
429 
430   return nullptr;
431 }
432 
433 // Helper for ResizeSection().  Rewrite program headers.
434 template <typename ELF>
RewriteProgramHeadersForHole(Elf * elf,typename ELF::Off hole_start,ssize_t hole_size)435 static void RewriteProgramHeadersForHole(Elf* elf,
436                                          typename ELF::Off hole_start,
437                                          ssize_t hole_size) {
438   const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
439   CHECK(elf_header);
440 
441   typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
442   CHECK(elf_program_header);
443 
444   const size_t program_header_count = elf_header->e_phnum;
445 
446   // Locate the segment that we can overwrite to form the new LOAD entry,
447   // and the segment that we are going to split into two parts.
448   typename ELF::Phdr* target_load_header =
449       FindLoadSegmentForHole<ELF>(elf_program_header, program_header_count, hole_start);
450 
451   VLOG(1) << "phdr[" << target_load_header - elf_program_header << "] adjust";
452   // Adjust PT_LOAD program header memsz and filesz
453   target_load_header->p_filesz += hole_size;
454   target_load_header->p_memsz += hole_size;
455 
456   // Adjust the offsets and p_vaddrs
457   AdjustProgramHeaderFields<ELF>(elf_program_header,
458                                  program_header_count,
459                                  hole_start,
460                                  hole_size);
461 }
462 
463 // Helper for ResizeSection().  Locate and return the dynamic section.
464 template <typename ELF>
GetDynamicSection(Elf * elf)465 static Elf_Scn* GetDynamicSection(Elf* elf) {
466   const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
467   CHECK(elf_header);
468 
469   const typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
470   CHECK(elf_program_header);
471 
472   // Find the program header that describes the dynamic section.
473   const typename ELF::Phdr* dynamic_program_header = NULL;
474   for (size_t i = 0; i < elf_header->e_phnum; ++i) {
475     const typename ELF::Phdr* program_header = &elf_program_header[i];
476 
477     if (program_header->p_type == PT_DYNAMIC) {
478       dynamic_program_header = program_header;
479     }
480   }
481   CHECK(dynamic_program_header);
482 
483   // Now find the section with the same offset as this program header.
484   Elf_Scn* dynamic_section = NULL;
485   Elf_Scn* section = NULL;
486   while ((section = elf_nextscn(elf, section)) != NULL) {
487     typename ELF::Shdr* section_header = ELF::getshdr(section);
488 
489     if (section_header->sh_offset == dynamic_program_header->p_offset) {
490       dynamic_section = section;
491     }
492   }
493   CHECK(dynamic_section != NULL);
494 
495   return dynamic_section;
496 }
497 
498 // Helper for ResizeSection().  Adjust the .dynamic section for the hole.
499 template <typename ELF>
AdjustDynamicSectionForHole(Elf_Scn * dynamic_section,typename ELF::Off hole_start,ssize_t hole_size,relocations_type_t relocations_type)500 void ElfFile<ELF>::AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
501                                                typename ELF::Off hole_start,
502                                                ssize_t hole_size,
503                                                relocations_type_t relocations_type) {
504   CHECK(relocations_type != NONE);
505   Elf_Data* data = GetSectionData(dynamic_section);
506 
507   auto dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
508   std::vector<typename ELF::Dyn> dynamics(
509       dynamic_base,
510       dynamic_base + data->d_size / sizeof(dynamics[0]));
511 
512   if (hole_size > 0) { // expanding
513     hole_start += hole_size;
514   }
515 
516   for (size_t i = 0; i < dynamics.size(); ++i) {
517     typename ELF::Dyn* dynamic = &dynamics[i];
518     const typename ELF::Sword tag = dynamic->d_tag;
519 
520     // Any tags that hold offsets are adjustment candidates.
521     const bool is_adjustable = (tag == DT_PLTGOT ||
522                                 tag == DT_HASH ||
523                                 tag == DT_GNU_HASH ||
524                                 tag == DT_STRTAB ||
525                                 tag == DT_SYMTAB ||
526                                 tag == DT_RELA ||
527                                 tag == DT_INIT ||
528                                 tag == DT_FINI ||
529                                 tag == DT_REL ||
530                                 tag == DT_JMPREL ||
531                                 tag == DT_INIT_ARRAY ||
532                                 tag == DT_FINI_ARRAY ||
533                                 tag == DT_VERSYM ||
534                                 tag == DT_VERNEED ||
535                                 tag == DT_VERDEF ||
536                                 tag == DT_ANDROID_REL||
537                                 tag == DT_ANDROID_RELA);
538 
539     if (is_adjustable && dynamic->d_un.d_ptr <= hole_start) {
540       dynamic->d_un.d_ptr -= hole_size;
541       VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
542               << " d_ptr adjusted to " << dynamic->d_un.d_ptr;
543     }
544 
545     // DT_RELSZ or DT_RELASZ indicate the overall size of relocations.
546     // Only one will be present.  Adjust by hole size.
547     if (tag == DT_RELSZ || tag == DT_RELASZ || tag == DT_ANDROID_RELSZ || tag == DT_ANDROID_RELASZ) {
548       dynamic->d_un.d_val += hole_size;
549       VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
550               << " d_val adjusted to " << dynamic->d_un.d_val;
551     }
552 
553     // Special case: DT_MIPS_RLD_MAP_REL stores the difference between dynamic
554     // entry address and the address of the _r_debug (used by GDB)
555     // since the dynamic section and target address are on the
556     // different sides of the hole it needs to be adjusted accordingly
557     if (tag == DT_MIPS_RLD_MAP_REL) {
558       dynamic->d_un.d_val += hole_size;
559       VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
560               << " d_val adjusted to " << dynamic->d_un.d_val;
561     }
562 
563     // Ignore DT_RELCOUNT and DT_RELACOUNT: (1) nobody uses them and
564     // technically (2) the relative relocation count is not changed.
565 
566     // DT_RELENT and DT_RELAENT don't change, ignore them as well.
567   }
568 
569   void* section_data = &dynamics[0];
570   size_t bytes = dynamics.size() * sizeof(dynamics[0]);
571   RewriteSectionData(dynamic_section, section_data, bytes);
572 }
573 
574 // Resize a section.  If the new size is larger than the current size, open
575 // up a hole by increasing file offsets that come after the hole.  If smaller
576 // than the current size, remove the hole by decreasing those offsets.
577 template <typename ELF>
ResizeSection(Elf * elf,Elf_Scn * section,size_t new_size,typename ELF::Word new_sh_type,relocations_type_t relocations_type)578 void ElfFile<ELF>::ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size,
579                                  typename ELF::Word new_sh_type,
580                                  relocations_type_t relocations_type) {
581 
582   size_t string_index;
583   elf_getshdrstrndx(elf, &string_index);
584   auto section_header = ELF::getshdr(section);
585   std::string name = elf_strptr(elf, string_index, section_header->sh_name);
586 
587   if (section_header->sh_size == new_size) {
588     return;
589   }
590 
591   // Require that the section size and the data size are the same.  True
592   // in practice for all sections we resize when packing or unpacking.
593   Elf_Data* data = GetSectionData(section);
594   CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
595 
596   // Require that the section is not zero-length (that is, has allocated
597   // data that we can validly expand).
598   CHECK(data->d_size && data->d_buf);
599 
600   const auto hole_start = section_header->sh_offset;
601   const ssize_t hole_size = new_size - data->d_size;
602 
603   VLOG_IF(1, (hole_size > 0)) << "expand section (" << name << ") size: " <<
604       data->d_size << " -> " << (data->d_size + hole_size);
605   VLOG_IF(1, (hole_size < 0)) << "shrink section (" << name << ") size: " <<
606       data->d_size << " -> " << (data->d_size + hole_size);
607 
608   // libelf overrides sh_entsize for known sh_types, so it does not matter what we set
609   // for SHT_REL/SHT_RELA.
610   typename ELF::Xword new_entsize =
611       (new_sh_type == SHT_ANDROID_REL || new_sh_type == SHT_ANDROID_RELA) ? 1 : 0;
612 
613   VLOG(1) << "Update section (" << name << ") entry size: " <<
614       section_header->sh_entsize << " -> " << new_entsize;
615 
616   // Resize the data and the section header.
617   data->d_size += hole_size;
618   section_header->sh_size += hole_size;
619   section_header->sh_entsize = new_entsize;
620   section_header->sh_type = new_sh_type;
621 
622   // Add the hole size to all offsets in the ELF file that are after the
623   // start of the hole.  If the hole size is positive we are expanding the
624   // section to create a new hole; if negative, we are closing up a hole.
625 
626   // Start with the main ELF header.
627   typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
628   AdjustElfHeaderForHole<ELF>(elf_header, hole_start, hole_size);
629 
630   // Adjust all section headers.
631   AdjustSectionHeadersForHole<ELF>(elf, hole_start, hole_size);
632 
633   // Rewrite the program headers to either split or coalesce segments,
634   // and adjust dynamic entries to match.
635   RewriteProgramHeadersForHole<ELF>(elf, hole_start, hole_size);
636 
637   Elf_Scn* dynamic_section = GetDynamicSection<ELF>(elf);
638   AdjustDynamicSectionForHole(dynamic_section, hole_start, hole_size, relocations_type);
639 }
640 
641 // Find the first slot in a dynamics array with the given tag.  The array
642 // always ends with a free (unused) element, and which we exclude from the
643 // search.  Returns dynamics->size() if not found.
644 template <typename ELF>
FindDynamicEntry(typename ELF::Sword tag,std::vector<typename ELF::Dyn> * dynamics)645 static size_t FindDynamicEntry(typename ELF::Sword tag,
646                                std::vector<typename ELF::Dyn>* dynamics) {
647   // Loop until the penultimate entry.  We exclude the end sentinel.
648   for (size_t i = 0; i < dynamics->size() - 1; ++i) {
649     if (dynamics->at(i).d_tag == tag) {
650       return i;
651     }
652   }
653 
654   // The tag was not found.
655   return dynamics->size();
656 }
657 
658 // Replace dynamic entry.
659 template <typename ELF>
ReplaceDynamicEntry(typename ELF::Sword tag,const typename ELF::Dyn & dyn,std::vector<typename ELF::Dyn> * dynamics)660 static void ReplaceDynamicEntry(typename ELF::Sword tag,
661                                 const typename ELF::Dyn& dyn,
662                                 std::vector<typename ELF::Dyn>* dynamics) {
663   const size_t slot = FindDynamicEntry<ELF>(tag, dynamics);
664   if (slot == dynamics->size()) {
665     LOG(FATAL) << "Dynamic slot is not found for tag=" << tag;
666   }
667 
668   // Replace this entry with the one supplied.
669   dynamics->at(slot) = dyn;
670   VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag;
671 }
672 
673 // Remove relative entries from dynamic relocations and write as packed
674 // data into android packed relocations.
675 template <typename ELF>
PackRelocations()676 bool ElfFile<ELF>::PackRelocations() {
677   // Load the ELF file into libelf.
678   if (!Load()) {
679     LOG(ERROR) << "Failed to load as ELF";
680     return false;
681   }
682 
683   if (relocations_section_ == nullptr) {
684     // There is nothing to do
685     return true;
686   }
687 
688   // Retrieve the current dynamic relocations section data.
689   Elf_Data* data = GetSectionData(relocations_section_);
690   // we always pack rela, because packed format is pretty much the same
691   std::vector<typename ELF::Rela> relocations;
692 
693   if (relocations_type_ == REL) {
694     // Convert data to a vector of relocations.
695     const typename ELF::Rel* relocations_base = reinterpret_cast<typename ELF::Rel*>(data->d_buf);
696     ConvertRelArrayToRelaVector(relocations_base,
697         data->d_size / sizeof(typename ELF::Rel), &relocations);
698     VLOG(1) << "Relocations   : REL";
699   } else if (relocations_type_ == RELA) {
700     // Convert data to a vector of relocations with addends.
701     const typename ELF::Rela* relocations_base = reinterpret_cast<typename ELF::Rela*>(data->d_buf);
702     relocations = std::vector<typename ELF::Rela>(
703         relocations_base,
704         relocations_base + data->d_size / sizeof(relocations[0]));
705 
706     VLOG(1) << "Relocations   : RELA";
707   } else {
708     NOTREACHED();
709   }
710 
711   return PackTypedRelocations(&relocations);
712 }
713 
714 // Helper for PackRelocations().  Rel type is one of ELF::Rel or ELF::Rela.
715 template <typename ELF>
PackTypedRelocations(std::vector<typename ELF::Rela> * relocations)716 bool ElfFile<ELF>::PackTypedRelocations(std::vector<typename ELF::Rela>* relocations) {
717   typedef typename ELF::Rela Rela;
718 
719   if (has_android_relocations_) {
720     LOG(INFO) << "Relocation table is already packed";
721     return true;
722   }
723 
724   // If no relocations then we have nothing packable.  Perhaps
725   // the shared object has already been packed?
726   if (relocations->empty()) {
727     LOG(ERROR) << "No relocations found";
728     return false;
729   }
730 
731   const size_t rel_size =
732       relocations_type_ == RELA ? sizeof(typename ELF::Rela) : sizeof(typename ELF::Rel);
733   const size_t initial_bytes = relocations->size() * rel_size;
734 
735   VLOG(1) << "Unpacked                   : " << initial_bytes << " bytes";
736   std::vector<uint8_t> packed;
737   RelocationPacker<ELF> packer;
738 
739   // Pack relocations: dry run to estimate memory savings.
740   packer.PackRelocations(*relocations, &packed);
741   const size_t packed_bytes_estimate = packed.size() * sizeof(packed[0]);
742   VLOG(1) << "Packed         (no padding): " << packed_bytes_estimate << " bytes";
743 
744   if (packed.empty()) {
745     VLOG(1) << "Too few relocations to pack";
746     return true;
747   }
748 
749   // Pre-calculate the size of the hole we will close up when we rewrite
750   // dynamic relocations.  We have to adjust relocation addresses to
751   // account for this.
752   typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
753   ssize_t hole_size = initial_bytes - packed_bytes_estimate;
754 
755   // hole_size needs to be page_aligned.
756   hole_size -= hole_size % kPreserveAlignment;
757 
758   VLOG(1) << "Compaction                 : " << hole_size << " bytes";
759 
760   // Adjusting for alignment may have removed any packing benefit.
761   if (hole_size == 0) {
762     VLOG(1) << "Too few relocations to pack after alignment";
763     return true;
764   }
765 
766   if (hole_size <= 0) {
767     VLOG(1) << "Packing relocations saves no space";
768     return true;
769   }
770 
771   size_t data_padding_bytes = is_padding_relocations_ ?
772       initial_bytes - packed_bytes_estimate :
773       initial_bytes - hole_size - packed_bytes_estimate;
774 
775   // pad data
776   std::vector<uint8_t> padding(data_padding_bytes, 0);
777   packed.insert(packed.end(), padding.begin(), padding.end());
778 
779   const void* packed_data = &packed[0];
780 
781   // Run a loopback self-test as a check that packing is lossless.
782   std::vector<Rela> unpacked;
783   packer.UnpackRelocations(packed, &unpacked);
784   CHECK(unpacked.size() == relocations->size());
785   CHECK(!memcmp(&unpacked[0],
786                 &relocations->at(0),
787                 unpacked.size() * sizeof(unpacked[0])));
788 
789   // Rewrite the current dynamic relocations section with packed one then shrink it to size.
790   const size_t bytes = packed.size() * sizeof(packed[0]);
791   ResizeSection(elf_, relocations_section_, bytes,
792       relocations_type_ == REL ? SHT_ANDROID_REL : SHT_ANDROID_RELA, relocations_type_);
793   RewriteSectionData(relocations_section_, packed_data, bytes);
794 
795   // TODO (dimitry): fix string table and replace .rel.dyn/plt with .android.rel.dyn/plt
796 
797   // Rewrite .dynamic and rename relocation tags describing the packed android
798   // relocations.
799   Elf_Data* data = GetSectionData(dynamic_section_);
800   const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
801   std::vector<typename ELF::Dyn> dynamics(
802       dynamic_base,
803       dynamic_base + data->d_size / sizeof(dynamics[0]));
804   section_header = ELF::getshdr(relocations_section_);
805   {
806     typename ELF::Dyn dyn;
807     dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA;
808     dyn.d_un.d_ptr = section_header->sh_addr;
809     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_REL : DT_RELA, dyn, &dynamics);
810   }
811   {
812     typename ELF::Dyn dyn;
813     dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ;
814     dyn.d_un.d_val = section_header->sh_size;
815     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_RELSZ : DT_RELASZ, dyn, &dynamics);
816   }
817 
818   const void* dynamics_data = &dynamics[0];
819   const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
820   RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
821 
822   Flush();
823   return true;
824 }
825 
826 // Find packed relative relocations in the packed android relocations
827 // section, unpack them, and rewrite the dynamic relocations section to
828 // contain unpacked data.
829 template <typename ELF>
UnpackRelocations()830 bool ElfFile<ELF>::UnpackRelocations() {
831   // Load the ELF file into libelf.
832   if (!Load()) {
833     LOG(ERROR) << "Failed to load as ELF";
834     return false;
835   }
836 
837   if (relocations_section_ == nullptr) {
838     // There is nothing to do
839     return true;
840   }
841 
842   typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
843   // Retrieve the current packed android relocations section data.
844   Elf_Data* data = GetSectionData(relocations_section_);
845 
846   // Convert data to a vector of bytes.
847   const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
848   std::vector<uint8_t> packed(
849       packed_base,
850       packed_base + data->d_size / sizeof(packed[0]));
851 
852   if ((section_header->sh_type == SHT_ANDROID_RELA || section_header->sh_type == SHT_ANDROID_REL) &&
853       packed.size() > 3 &&
854       packed[0] == 'A' &&
855       packed[1] == 'P' &&
856       packed[2] == 'S' &&
857       packed[3] == '2') {
858     LOG(INFO) << "Relocations   : " << (relocations_type_ == REL ? "REL" : "RELA");
859   } else {
860     LOG(ERROR) << "Packed relocations not found (not packed?)";
861     return false;
862   }
863 
864   return UnpackTypedRelocations(packed);
865 }
866 
867 // Helper for UnpackRelocations().  Rel type is one of ELF::Rel or ELF::Rela.
868 template <typename ELF>
UnpackTypedRelocations(const std::vector<uint8_t> & packed)869 bool ElfFile<ELF>::UnpackTypedRelocations(const std::vector<uint8_t>& packed) {
870   // Unpack the data to re-materialize the relative relocations.
871   const size_t packed_bytes = packed.size() * sizeof(packed[0]);
872   LOG(INFO) << "Packed           : " << packed_bytes << " bytes";
873   std::vector<typename ELF::Rela> unpacked_relocations;
874   RelocationPacker<ELF> packer;
875   packer.UnpackRelocations(packed, &unpacked_relocations);
876 
877   const size_t relocation_entry_size =
878       relocations_type_ == REL ? sizeof(typename ELF::Rel) : sizeof(typename ELF::Rela);
879   const size_t unpacked_bytes = unpacked_relocations.size() * relocation_entry_size;
880   LOG(INFO) << "Unpacked         : " << unpacked_bytes << " bytes";
881 
882   // Retrieve the current dynamic relocations section data.
883   Elf_Data* data = GetSectionData(relocations_section_);
884 
885   LOG(INFO) << "Relocations      : " << unpacked_relocations.size() << " entries";
886 
887   // If we found the same number of null relocation entries in the dynamic
888   // relocations section as we hold as unpacked relative relocations, then
889   // this is a padded file.
890 
891   const bool is_padded = packed_bytes == unpacked_bytes;
892 
893   // Unless padded, pre-apply relative relocations to account for the
894   // hole, and pre-adjust all relocation offsets accordingly.
895   typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
896 
897   if (!is_padded) {
898     LOG(INFO) << "Expansion     : " << unpacked_bytes - packed_bytes << " bytes";
899   }
900 
901   // Rewrite the current dynamic relocations section with unpacked version of
902   // relocations.
903   const void* section_data = nullptr;
904   std::vector<typename ELF::Rel> unpacked_rel_relocations;
905   if (relocations_type_ == RELA) {
906     section_data = &unpacked_relocations[0];
907   } else if (relocations_type_ == REL) {
908     ConvertRelaVectorToRelVector(unpacked_relocations, &unpacked_rel_relocations);
909     section_data = &unpacked_rel_relocations[0];
910   } else {
911     NOTREACHED();
912   }
913 
914   ResizeSection(elf_, relocations_section_, unpacked_bytes,
915       relocations_type_ == REL ? SHT_REL : SHT_RELA, relocations_type_);
916   RewriteSectionData(relocations_section_, section_data, unpacked_bytes);
917 
918   // Rewrite .dynamic to remove two tags describing packed android relocations.
919   data = GetSectionData(dynamic_section_);
920   const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
921   std::vector<typename ELF::Dyn> dynamics(
922       dynamic_base,
923       dynamic_base + data->d_size / sizeof(dynamics[0]));
924   {
925     typename ELF::Dyn dyn;
926     dyn.d_tag = relocations_type_ == REL ? DT_REL : DT_RELA;
927     dyn.d_un.d_ptr = section_header->sh_addr;
928     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA,
929         dyn, &dynamics);
930   }
931 
932   {
933     typename ELF::Dyn dyn;
934     dyn.d_tag = relocations_type_ == REL ? DT_RELSZ : DT_RELASZ;
935     dyn.d_un.d_val = section_header->sh_size;
936     ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ,
937         dyn, &dynamics);
938   }
939 
940   const void* dynamics_data = &dynamics[0];
941   const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
942   RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
943 
944   Flush();
945   return true;
946 }
947 
948 // Flush rewritten shared object file data.
949 template <typename ELF>
Flush()950 void ElfFile<ELF>::Flush() {
951   // Flag all ELF data held in memory as needing to be written back to the
952   // file, and tell libelf that we have controlled the file layout.
953   elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
954   elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
955 
956   // Write ELF data back to disk.
957   const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
958   if (file_bytes == -1) {
959     LOG(ERROR) << "elf_update failed: " << elf_errmsg(elf_errno());
960   }
961 
962   CHECK(file_bytes > 0);
963   VLOG(1) << "elf_update returned: " << file_bytes;
964 
965   // Clean up libelf, and truncate the output file to the number of bytes
966   // written by elf_update().
967   elf_end(elf_);
968   elf_ = NULL;
969   const int truncate = ftruncate(fd_, file_bytes);
970   CHECK(truncate == 0);
971 }
972 
973 template <typename ELF>
ConvertRelArrayToRelaVector(const typename ELF::Rel * rel_array,size_t rel_array_size,std::vector<typename ELF::Rela> * rela_vector)974 void ElfFile<ELF>::ConvertRelArrayToRelaVector(const typename ELF::Rel* rel_array,
975                                                size_t rel_array_size,
976                                                std::vector<typename ELF::Rela>* rela_vector) {
977   for (size_t i = 0; i<rel_array_size; ++i) {
978     typename ELF::Rela rela;
979     rela.r_offset = rel_array[i].r_offset;
980     rela.r_info = rel_array[i].r_info;
981     rela.r_addend = 0;
982     rela_vector->push_back(rela);
983   }
984 }
985 
986 template <typename ELF>
ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela> & rela_vector,std::vector<typename ELF::Rel> * rel_vector)987 void ElfFile<ELF>::ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela>& rela_vector,
988                                                 std::vector<typename ELF::Rel>* rel_vector) {
989   for (auto rela : rela_vector) {
990     typename ELF::Rel rel;
991     rel.r_offset = rela.r_offset;
992     rel.r_info = rela.r_info;
993     CHECK(rela.r_addend == 0);
994     rel_vector->push_back(rel);
995   }
996 }
997 
998 template class ElfFile<ELF32_traits>;
999 template class ElfFile<ELF64_traits>;
1000 
1001 }  // namespace relocation_packer
1002