1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Implementation notes:
6 //
7 // We need to remove a piece from the ELF shared library. However, we also
8 // want to avoid fixing DWARF cfi data and relative relocation addresses.
9 // So after packing we shift offets and starting address of the RX segment
10 // while preserving code/data vaddrs location.
11 // This requires some fixups for symtab/hash/gnu_hash dynamic section addresses.
12
13 #include "elf_file.h"
14
15 #include <stdlib.h>
16 #include <sys/types.h>
17 #include <unistd.h>
18 #include <algorithm>
19 #include <string>
20 #include <vector>
21
22 #include "debug.h"
23 #include "elf_traits.h"
24 #include "libelf.h"
25 #include "packer.h"
26
27 namespace relocation_packer {
28
29 // Out-of-band dynamic tags used to indicate the offset and size of the
30 // android packed relocations section.
31 static constexpr int32_t DT_ANDROID_REL = DT_LOOS + 2;
32 static constexpr int32_t DT_ANDROID_RELSZ = DT_LOOS + 3;
33
34 static constexpr int32_t DT_ANDROID_RELA = DT_LOOS + 4;
35 static constexpr int32_t DT_ANDROID_RELASZ = DT_LOOS + 5;
36
37 static constexpr uint32_t SHT_ANDROID_REL = SHT_LOOS + 1;
38 static constexpr uint32_t SHT_ANDROID_RELA = SHT_LOOS + 2;
39
40 static const size_t kPageSize = 4096;
41
42 // Alignment to preserve, in bytes. This must be at least as large as the
43 // largest d_align and sh_addralign values found in the loaded file.
44 // Out of caution for RELRO page alignment, we preserve to a complete target
45 // page. See http://www.airs.com/blog/archives/189.
46 static const size_t kPreserveAlignment = kPageSize;
47
48 // Get section data. Checks that the section has exactly one data entry,
49 // so that the section size and the data size are the same. True in
50 // practice for all sections we resize when packing or unpacking. Done
51 // by ensuring that a call to elf_getdata(section, data) returns NULL as
52 // the next data entry.
GetSectionData(Elf_Scn * section)53 static Elf_Data* GetSectionData(Elf_Scn* section) {
54 Elf_Data* data = elf_getdata(section, NULL);
55 CHECK(data && elf_getdata(section, data) == NULL);
56 return data;
57 }
58
59 // Rewrite section data. Allocates new data and makes it the data element's
60 // buffer. Relies on program exit to free allocated data.
RewriteSectionData(Elf_Scn * section,const void * section_data,size_t size)61 static void RewriteSectionData(Elf_Scn* section,
62 const void* section_data,
63 size_t size) {
64 Elf_Data* data = GetSectionData(section);
65 CHECK(size == data->d_size);
66 uint8_t* area = new uint8_t[size];
67 memcpy(area, section_data, size);
68 data->d_buf = area;
69 }
70
71 // Verbose ELF header logging.
72 template <typename Ehdr>
VerboseLogElfHeader(const Ehdr * elf_header)73 static void VerboseLogElfHeader(const Ehdr* elf_header) {
74 VLOG(1) << "e_phoff = " << elf_header->e_phoff;
75 VLOG(1) << "e_shoff = " << elf_header->e_shoff;
76 VLOG(1) << "e_ehsize = " << elf_header->e_ehsize;
77 VLOG(1) << "e_phentsize = " << elf_header->e_phentsize;
78 VLOG(1) << "e_phnum = " << elf_header->e_phnum;
79 VLOG(1) << "e_shnum = " << elf_header->e_shnum;
80 VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx;
81 }
82
83 // Verbose ELF program header logging.
84 template <typename Phdr>
VerboseLogProgramHeader(size_t program_header_index,const Phdr * program_header)85 static void VerboseLogProgramHeader(size_t program_header_index,
86 const Phdr* program_header) {
87 std::string type;
88 switch (program_header->p_type) {
89 case PT_NULL: type = "NULL"; break;
90 case PT_LOAD: type = "LOAD"; break;
91 case PT_DYNAMIC: type = "DYNAMIC"; break;
92 case PT_INTERP: type = "INTERP"; break;
93 case PT_PHDR: type = "PHDR"; break;
94 case PT_GNU_RELRO: type = "GNU_RELRO"; break;
95 case PT_GNU_STACK: type = "GNU_STACK"; break;
96 case PT_ARM_EXIDX: type = "EXIDX"; break;
97 default: type = "(OTHER)"; break;
98 }
99 VLOG(1) << "phdr[" << program_header_index << "] : " << type;
100 VLOG(1) << " p_offset = " << program_header->p_offset;
101 VLOG(1) << " p_vaddr = " << program_header->p_vaddr;
102 VLOG(1) << " p_paddr = " << program_header->p_paddr;
103 VLOG(1) << " p_filesz = " << program_header->p_filesz;
104 VLOG(1) << " p_memsz = " << program_header->p_memsz;
105 VLOG(1) << " p_flags = " << program_header->p_flags;
106 VLOG(1) << " p_align = " << program_header->p_align;
107 }
108
109 // Verbose ELF section header logging.
110 template <typename Shdr>
VerboseLogSectionHeader(const std::string & section_name,const Shdr * section_header)111 static void VerboseLogSectionHeader(const std::string& section_name,
112 const Shdr* section_header) {
113 VLOG(1) << "section " << section_name;
114 VLOG(1) << " sh_addr = " << section_header->sh_addr;
115 VLOG(1) << " sh_offset = " << section_header->sh_offset;
116 VLOG(1) << " sh_size = " << section_header->sh_size;
117 VLOG(1) << " sh_entsize = " << section_header->sh_entsize;
118 VLOG(1) << " sh_addralign = " << section_header->sh_addralign;
119 }
120
121 // Verbose ELF section data logging.
VerboseLogSectionData(const Elf_Data * data)122 static void VerboseLogSectionData(const Elf_Data* data) {
123 VLOG(1) << " data";
124 VLOG(1) << " d_buf = " << data->d_buf;
125 VLOG(1) << " d_off = " << data->d_off;
126 VLOG(1) << " d_size = " << data->d_size;
127 VLOG(1) << " d_align = " << data->d_align;
128 }
129
130 // Load the complete ELF file into a memory image in libelf, and identify
131 // the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or
132 // .android.rela.dyn sections. No-op if the ELF file has already been loaded.
133 template <typename ELF>
Load()134 bool ElfFile<ELF>::Load() {
135 if (elf_)
136 return true;
137
138 Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL);
139 CHECK(elf);
140
141 if (elf_kind(elf) != ELF_K_ELF) {
142 LOG(ERROR) << "File not in ELF format";
143 return false;
144 }
145
146 auto elf_header = ELF::getehdr(elf);
147 if (!elf_header) {
148 LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno());
149 return false;
150 }
151
152 if (elf_header->e_type != ET_DYN) {
153 LOG(ERROR) << "ELF file is not a shared object";
154 return false;
155 }
156
157 // Require that our endianness matches that of the target, and that both
158 // are little-endian. Safe for all current build/target combinations.
159 const int endian = elf_header->e_ident[EI_DATA];
160 CHECK(endian == ELFDATA2LSB);
161 CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
162
163 const int file_class = elf_header->e_ident[EI_CLASS];
164 VLOG(1) << "endian = " << endian << ", file class = " << file_class;
165 VerboseLogElfHeader(elf_header);
166
167 auto elf_program_header = ELF::getphdr(elf);
168 CHECK(elf_program_header != nullptr);
169
170 const typename ELF::Phdr* dynamic_program_header = NULL;
171 for (size_t i = 0; i < elf_header->e_phnum; ++i) {
172 auto program_header = &elf_program_header[i];
173 VerboseLogProgramHeader(i, program_header);
174
175 if (program_header->p_type == PT_DYNAMIC) {
176 CHECK(dynamic_program_header == NULL);
177 dynamic_program_header = program_header;
178 }
179 }
180 CHECK(dynamic_program_header != nullptr);
181
182 size_t string_index;
183 elf_getshdrstrndx(elf, &string_index);
184
185 // Notes of the dynamic relocations, packed relocations, and .dynamic
186 // sections. Found while iterating sections, and later stored in class
187 // attributes.
188 Elf_Scn* found_relocations_section = nullptr;
189 Elf_Scn* found_dynamic_section = nullptr;
190
191 // Notes of relocation section types seen. We require one or the other of
192 // these; both is unsupported.
193 bool has_rel_relocations = false;
194 bool has_rela_relocations = false;
195 bool has_android_relocations = false;
196
197 Elf_Scn* section = NULL;
198 while ((section = elf_nextscn(elf, section)) != nullptr) {
199 auto section_header = ELF::getshdr(section);
200 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
201 VerboseLogSectionHeader(name, section_header);
202
203 // Note relocation section types.
204 if (section_header->sh_type == SHT_REL || section_header->sh_type == SHT_ANDROID_REL) {
205 has_rel_relocations = true;
206 }
207 if (section_header->sh_type == SHT_RELA || section_header->sh_type == SHT_ANDROID_RELA) {
208 has_rela_relocations = true;
209 }
210
211 // Note special sections as we encounter them.
212 if ((name == ".rel.dyn" || name == ".rela.dyn") &&
213 section_header->sh_size > 0) {
214 found_relocations_section = section;
215
216 // Note if relocation section is already packed
217 has_android_relocations =
218 section_header->sh_type == SHT_ANDROID_REL ||
219 section_header->sh_type == SHT_ANDROID_RELA;
220 }
221
222 if (section_header->sh_offset == dynamic_program_header->p_offset) {
223 found_dynamic_section = section;
224 }
225
226 // Ensure we preserve alignment, repeated later for the data block(s).
227 CHECK(section_header->sh_addralign <= kPreserveAlignment);
228
229 Elf_Data* data = NULL;
230 while ((data = elf_getdata(section, data)) != NULL) {
231 CHECK(data->d_align <= kPreserveAlignment);
232 VerboseLogSectionData(data);
233 }
234 }
235
236 // Loading failed if we did not find the required special sections.
237 if (!found_dynamic_section) {
238 LOG(ERROR) << "Missing .dynamic section";
239 return false;
240 }
241
242 if (found_relocations_section != nullptr) {
243 // Loading failed if we could not identify the relocations type.
244 if (!has_rel_relocations && !has_rela_relocations) {
245 LOG(ERROR) << "No relocations sections found";
246 return false;
247 }
248 if (has_rel_relocations && has_rela_relocations) {
249 LOG(ERROR) << "Multiple relocations sections with different types found, "
250 << "not currently supported";
251 return false;
252 }
253 }
254
255 elf_ = elf;
256 relocations_section_ = found_relocations_section;
257 dynamic_section_ = found_dynamic_section;
258 relocations_type_ = has_rel_relocations ? REL : RELA;
259 has_android_relocations_ = has_android_relocations;
260 return true;
261 }
262
263 // Helper for ResizeSection(). Adjust the main ELF header for the hole.
264 template <typename ELF>
AdjustElfHeaderForHole(typename ELF::Ehdr * elf_header,typename ELF::Off hole_start,ssize_t hole_size)265 static void AdjustElfHeaderForHole(typename ELF::Ehdr* elf_header,
266 typename ELF::Off hole_start,
267 ssize_t hole_size) {
268 if (elf_header->e_phoff > hole_start) {
269 elf_header->e_phoff += hole_size;
270 VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff;
271 }
272 if (elf_header->e_shoff > hole_start) {
273 elf_header->e_shoff += hole_size;
274 VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff;
275 }
276 }
277
278 // Helper for ResizeSection(). Adjust all section headers for the hole.
279 template <typename ELF>
AdjustSectionHeadersForHole(Elf * elf,typename ELF::Off hole_start,ssize_t hole_size)280 static void AdjustSectionHeadersForHole(Elf* elf,
281 typename ELF::Off hole_start,
282 ssize_t hole_size) {
283 size_t string_index;
284 elf_getshdrstrndx(elf, &string_index);
285
286 Elf_Scn* section = NULL;
287 while ((section = elf_nextscn(elf, section)) != NULL) {
288 auto section_header = ELF::getshdr(section);
289 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
290
291 if (section_header->sh_offset > hole_start) {
292 section_header->sh_offset += hole_size;
293 VLOG(1) << "section " << name
294 << " sh_offset adjusted to " << section_header->sh_offset;
295 } else {
296 section_header->sh_addr -= hole_size;
297 VLOG(1) << "section " << name
298 << " sh_addr adjusted to " << section_header->sh_addr;
299 }
300 }
301 }
302
303 // Helpers for ResizeSection(). On packing, reduce p_align for LOAD segments
304 // to 4kb if larger. On unpacking, restore p_align for LOAD segments if
305 // packing reduced it to 4kb. Return true if p_align was changed.
306 template <typename ELF>
ClampLoadSegmentAlignment(typename ELF::Phdr * program_header)307 static bool ClampLoadSegmentAlignment(typename ELF::Phdr* program_header) {
308 CHECK(program_header->p_type == PT_LOAD);
309
310 // If large, reduce p_align for a LOAD segment to page size on packing.
311 if (program_header->p_align > kPageSize) {
312 program_header->p_align = kPageSize;
313 return true;
314 }
315 return false;
316 }
317
318 template <typename ELF>
RestoreLoadSegmentAlignment(typename ELF::Phdr * program_headers,size_t count,typename ELF::Phdr * program_header)319 static bool RestoreLoadSegmentAlignment(typename ELF::Phdr* program_headers,
320 size_t count,
321 typename ELF::Phdr* program_header) {
322 CHECK(program_header->p_type == PT_LOAD);
323
324 // If p_align was reduced on packing, restore it to its previous value
325 // on unpacking. We do this by searching for a different LOAD segment
326 // and setting p_align to that of the other LOAD segment found.
327 //
328 // Relies on the following observations:
329 // - a packable ELF executable has more than one LOAD segment;
330 // - before packing all LOAD segments have the same p_align;
331 // - on packing we reduce only one LOAD segment's p_align.
332 if (program_header->p_align == kPageSize) {
333 for (size_t i = 0; i < count; ++i) {
334 typename ELF::Phdr* other_header = &program_headers[i];
335 if (other_header->p_type == PT_LOAD && other_header != program_header) {
336 program_header->p_align = other_header->p_align;
337 return true;
338 }
339 }
340 LOG(WARNING) << "Cannot find a LOAD segment from which to restore p_align";
341 }
342 return false;
343 }
344
345 template <typename ELF>
AdjustLoadSegmentAlignment(typename ELF::Phdr * program_headers,size_t count,typename ELF::Phdr * program_header,ssize_t hole_size)346 static bool AdjustLoadSegmentAlignment(typename ELF::Phdr* program_headers,
347 size_t count,
348 typename ELF::Phdr* program_header,
349 ssize_t hole_size) {
350 CHECK(program_header->p_type == PT_LOAD);
351
352 bool status = false;
353 if (hole_size < 0) {
354 status = ClampLoadSegmentAlignment<ELF>(program_header);
355 } else if (hole_size > 0) {
356 status = RestoreLoadSegmentAlignment<ELF>(program_headers,
357 count,
358 program_header);
359 }
360 return status;
361 }
362
363 // Helper for ResizeSection(). Adjust the offsets of any program headers
364 // that have offsets currently beyond the hole start, and adjust the
365 // virtual and physical addrs (and perhaps alignment) of the others.
366 template <typename ELF>
AdjustProgramHeaderFields(typename ELF::Phdr * program_headers,size_t count,typename ELF::Off hole_start,ssize_t hole_size)367 static void AdjustProgramHeaderFields(typename ELF::Phdr* program_headers,
368 size_t count,
369 typename ELF::Off hole_start,
370 ssize_t hole_size) {
371 int alignment_changes = 0;
372 for (size_t i = 0; i < count; ++i) {
373 typename ELF::Phdr* program_header = &program_headers[i];
374
375 // Do not adjust PT_GNU_STACK - it confuses gdb and results
376 // in incorrect unwinding if the executable is stripped after
377 // packing.
378 if (program_header->p_type == PT_GNU_STACK) {
379 continue;
380 }
381
382 if (program_header->p_offset > hole_start) {
383 // The hole start is past this segment, so adjust offset.
384 program_header->p_offset += hole_size;
385 VLOG(1) << "phdr[" << i
386 << "] p_offset adjusted to "<< program_header->p_offset;
387 } else {
388 program_header->p_vaddr -= hole_size;
389 program_header->p_paddr -= hole_size;
390
391 // If packing, clamp LOAD segment alignment to 4kb to prevent strip
392 // from adjusting it unnecessarily if run on a packed file. If
393 // unpacking, attempt to restore a reduced alignment to its previous
394 // value. Ensure that we do this on at most one LOAD segment.
395 if (program_header->p_type == PT_LOAD) {
396 alignment_changes += AdjustLoadSegmentAlignment<ELF>(program_headers,
397 count,
398 program_header,
399 hole_size);
400 LOG_IF(FATAL, alignment_changes > 1)
401 << "Changed p_align on more than one LOAD segment";
402 }
403
404 VLOG(1) << "phdr[" << i
405 << "] p_vaddr adjusted to "<< program_header->p_vaddr
406 << "; p_paddr adjusted to "<< program_header->p_paddr
407 << "; p_align adjusted to "<< program_header->p_align;
408 }
409 }
410 }
411
412 // Helper for ResizeSection(). Find the first loadable segment in the
413 // file. We expect it to map from file offset zero.
414 template <typename ELF>
FindLoadSegmentForHole(typename ELF::Phdr * program_headers,size_t count,typename ELF::Off hole_start)415 static typename ELF::Phdr* FindLoadSegmentForHole(typename ELF::Phdr* program_headers,
416 size_t count,
417 typename ELF::Off hole_start) {
418 for (size_t i = 0; i < count; ++i) {
419 typename ELF::Phdr* program_header = &program_headers[i];
420
421 if (program_header->p_type == PT_LOAD &&
422 program_header->p_offset <= hole_start &&
423 (program_header->p_offset + program_header->p_filesz) >= hole_start ) {
424 return program_header;
425 }
426 }
427 LOG(FATAL) << "Cannot locate a LOAD segment with hole_start=0x" << std::hex << hole_start;
428 NOTREACHED();
429
430 return nullptr;
431 }
432
433 // Helper for ResizeSection(). Rewrite program headers.
434 template <typename ELF>
RewriteProgramHeadersForHole(Elf * elf,typename ELF::Off hole_start,ssize_t hole_size)435 static void RewriteProgramHeadersForHole(Elf* elf,
436 typename ELF::Off hole_start,
437 ssize_t hole_size) {
438 const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
439 CHECK(elf_header);
440
441 typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
442 CHECK(elf_program_header);
443
444 const size_t program_header_count = elf_header->e_phnum;
445
446 // Locate the segment that we can overwrite to form the new LOAD entry,
447 // and the segment that we are going to split into two parts.
448 typename ELF::Phdr* target_load_header =
449 FindLoadSegmentForHole<ELF>(elf_program_header, program_header_count, hole_start);
450
451 VLOG(1) << "phdr[" << target_load_header - elf_program_header << "] adjust";
452 // Adjust PT_LOAD program header memsz and filesz
453 target_load_header->p_filesz += hole_size;
454 target_load_header->p_memsz += hole_size;
455
456 // Adjust the offsets and p_vaddrs
457 AdjustProgramHeaderFields<ELF>(elf_program_header,
458 program_header_count,
459 hole_start,
460 hole_size);
461 }
462
463 // Helper for ResizeSection(). Locate and return the dynamic section.
464 template <typename ELF>
GetDynamicSection(Elf * elf)465 static Elf_Scn* GetDynamicSection(Elf* elf) {
466 const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
467 CHECK(elf_header);
468
469 const typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
470 CHECK(elf_program_header);
471
472 // Find the program header that describes the dynamic section.
473 const typename ELF::Phdr* dynamic_program_header = NULL;
474 for (size_t i = 0; i < elf_header->e_phnum; ++i) {
475 const typename ELF::Phdr* program_header = &elf_program_header[i];
476
477 if (program_header->p_type == PT_DYNAMIC) {
478 dynamic_program_header = program_header;
479 }
480 }
481 CHECK(dynamic_program_header);
482
483 // Now find the section with the same offset as this program header.
484 Elf_Scn* dynamic_section = NULL;
485 Elf_Scn* section = NULL;
486 while ((section = elf_nextscn(elf, section)) != NULL) {
487 typename ELF::Shdr* section_header = ELF::getshdr(section);
488
489 if (section_header->sh_offset == dynamic_program_header->p_offset) {
490 dynamic_section = section;
491 }
492 }
493 CHECK(dynamic_section != NULL);
494
495 return dynamic_section;
496 }
497
498 // Helper for ResizeSection(). Adjust the .dynamic section for the hole.
499 template <typename ELF>
AdjustDynamicSectionForHole(Elf_Scn * dynamic_section,typename ELF::Off hole_start,ssize_t hole_size,relocations_type_t relocations_type)500 void ElfFile<ELF>::AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
501 typename ELF::Off hole_start,
502 ssize_t hole_size,
503 relocations_type_t relocations_type) {
504 CHECK(relocations_type != NONE);
505 Elf_Data* data = GetSectionData(dynamic_section);
506
507 auto dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
508 std::vector<typename ELF::Dyn> dynamics(
509 dynamic_base,
510 dynamic_base + data->d_size / sizeof(dynamics[0]));
511
512 if (hole_size > 0) { // expanding
513 hole_start += hole_size;
514 }
515
516 for (size_t i = 0; i < dynamics.size(); ++i) {
517 typename ELF::Dyn* dynamic = &dynamics[i];
518 const typename ELF::Sword tag = dynamic->d_tag;
519
520 // Any tags that hold offsets are adjustment candidates.
521 const bool is_adjustable = (tag == DT_PLTGOT ||
522 tag == DT_HASH ||
523 tag == DT_GNU_HASH ||
524 tag == DT_STRTAB ||
525 tag == DT_SYMTAB ||
526 tag == DT_RELA ||
527 tag == DT_INIT ||
528 tag == DT_FINI ||
529 tag == DT_REL ||
530 tag == DT_JMPREL ||
531 tag == DT_INIT_ARRAY ||
532 tag == DT_FINI_ARRAY ||
533 tag == DT_VERSYM ||
534 tag == DT_VERNEED ||
535 tag == DT_VERDEF ||
536 tag == DT_ANDROID_REL||
537 tag == DT_ANDROID_RELA);
538
539 if (is_adjustable && dynamic->d_un.d_ptr <= hole_start) {
540 dynamic->d_un.d_ptr -= hole_size;
541 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
542 << " d_ptr adjusted to " << dynamic->d_un.d_ptr;
543 }
544
545 // DT_RELSZ or DT_RELASZ indicate the overall size of relocations.
546 // Only one will be present. Adjust by hole size.
547 if (tag == DT_RELSZ || tag == DT_RELASZ || tag == DT_ANDROID_RELSZ || tag == DT_ANDROID_RELASZ) {
548 dynamic->d_un.d_val += hole_size;
549 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
550 << " d_val adjusted to " << dynamic->d_un.d_val;
551 }
552
553 // Special case: DT_MIPS_RLD_MAP_REL stores the difference between dynamic
554 // entry address and the address of the _r_debug (used by GDB)
555 // since the dynamic section and target address are on the
556 // different sides of the hole it needs to be adjusted accordingly
557 if (tag == DT_MIPS_RLD_MAP_REL) {
558 dynamic->d_un.d_val += hole_size;
559 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
560 << " d_val adjusted to " << dynamic->d_un.d_val;
561 }
562
563 // Ignore DT_RELCOUNT and DT_RELACOUNT: (1) nobody uses them and
564 // technically (2) the relative relocation count is not changed.
565
566 // DT_RELENT and DT_RELAENT don't change, ignore them as well.
567 }
568
569 void* section_data = &dynamics[0];
570 size_t bytes = dynamics.size() * sizeof(dynamics[0]);
571 RewriteSectionData(dynamic_section, section_data, bytes);
572 }
573
574 // Resize a section. If the new size is larger than the current size, open
575 // up a hole by increasing file offsets that come after the hole. If smaller
576 // than the current size, remove the hole by decreasing those offsets.
577 template <typename ELF>
ResizeSection(Elf * elf,Elf_Scn * section,size_t new_size,typename ELF::Word new_sh_type,relocations_type_t relocations_type)578 void ElfFile<ELF>::ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size,
579 typename ELF::Word new_sh_type,
580 relocations_type_t relocations_type) {
581
582 size_t string_index;
583 elf_getshdrstrndx(elf, &string_index);
584 auto section_header = ELF::getshdr(section);
585 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
586
587 if (section_header->sh_size == new_size) {
588 return;
589 }
590
591 // Require that the section size and the data size are the same. True
592 // in practice for all sections we resize when packing or unpacking.
593 Elf_Data* data = GetSectionData(section);
594 CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
595
596 // Require that the section is not zero-length (that is, has allocated
597 // data that we can validly expand).
598 CHECK(data->d_size && data->d_buf);
599
600 const auto hole_start = section_header->sh_offset;
601 const ssize_t hole_size = new_size - data->d_size;
602
603 VLOG_IF(1, (hole_size > 0)) << "expand section (" << name << ") size: " <<
604 data->d_size << " -> " << (data->d_size + hole_size);
605 VLOG_IF(1, (hole_size < 0)) << "shrink section (" << name << ") size: " <<
606 data->d_size << " -> " << (data->d_size + hole_size);
607
608 // libelf overrides sh_entsize for known sh_types, so it does not matter what we set
609 // for SHT_REL/SHT_RELA.
610 typename ELF::Xword new_entsize =
611 (new_sh_type == SHT_ANDROID_REL || new_sh_type == SHT_ANDROID_RELA) ? 1 : 0;
612
613 VLOG(1) << "Update section (" << name << ") entry size: " <<
614 section_header->sh_entsize << " -> " << new_entsize;
615
616 // Resize the data and the section header.
617 data->d_size += hole_size;
618 section_header->sh_size += hole_size;
619 section_header->sh_entsize = new_entsize;
620 section_header->sh_type = new_sh_type;
621
622 // Add the hole size to all offsets in the ELF file that are after the
623 // start of the hole. If the hole size is positive we are expanding the
624 // section to create a new hole; if negative, we are closing up a hole.
625
626 // Start with the main ELF header.
627 typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
628 AdjustElfHeaderForHole<ELF>(elf_header, hole_start, hole_size);
629
630 // Adjust all section headers.
631 AdjustSectionHeadersForHole<ELF>(elf, hole_start, hole_size);
632
633 // Rewrite the program headers to either split or coalesce segments,
634 // and adjust dynamic entries to match.
635 RewriteProgramHeadersForHole<ELF>(elf, hole_start, hole_size);
636
637 Elf_Scn* dynamic_section = GetDynamicSection<ELF>(elf);
638 AdjustDynamicSectionForHole(dynamic_section, hole_start, hole_size, relocations_type);
639 }
640
641 // Find the first slot in a dynamics array with the given tag. The array
642 // always ends with a free (unused) element, and which we exclude from the
643 // search. Returns dynamics->size() if not found.
644 template <typename ELF>
FindDynamicEntry(typename ELF::Sword tag,std::vector<typename ELF::Dyn> * dynamics)645 static size_t FindDynamicEntry(typename ELF::Sword tag,
646 std::vector<typename ELF::Dyn>* dynamics) {
647 // Loop until the penultimate entry. We exclude the end sentinel.
648 for (size_t i = 0; i < dynamics->size() - 1; ++i) {
649 if (dynamics->at(i).d_tag == tag) {
650 return i;
651 }
652 }
653
654 // The tag was not found.
655 return dynamics->size();
656 }
657
658 // Replace dynamic entry.
659 template <typename ELF>
ReplaceDynamicEntry(typename ELF::Sword tag,const typename ELF::Dyn & dyn,std::vector<typename ELF::Dyn> * dynamics)660 static void ReplaceDynamicEntry(typename ELF::Sword tag,
661 const typename ELF::Dyn& dyn,
662 std::vector<typename ELF::Dyn>* dynamics) {
663 const size_t slot = FindDynamicEntry<ELF>(tag, dynamics);
664 if (slot == dynamics->size()) {
665 LOG(FATAL) << "Dynamic slot is not found for tag=" << tag;
666 }
667
668 // Replace this entry with the one supplied.
669 dynamics->at(slot) = dyn;
670 VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag;
671 }
672
673 // Remove relative entries from dynamic relocations and write as packed
674 // data into android packed relocations.
675 template <typename ELF>
PackRelocations()676 bool ElfFile<ELF>::PackRelocations() {
677 // Load the ELF file into libelf.
678 if (!Load()) {
679 LOG(ERROR) << "Failed to load as ELF";
680 return false;
681 }
682
683 if (relocations_section_ == nullptr) {
684 // There is nothing to do
685 return true;
686 }
687
688 // Retrieve the current dynamic relocations section data.
689 Elf_Data* data = GetSectionData(relocations_section_);
690 // we always pack rela, because packed format is pretty much the same
691 std::vector<typename ELF::Rela> relocations;
692
693 if (relocations_type_ == REL) {
694 // Convert data to a vector of relocations.
695 const typename ELF::Rel* relocations_base = reinterpret_cast<typename ELF::Rel*>(data->d_buf);
696 ConvertRelArrayToRelaVector(relocations_base,
697 data->d_size / sizeof(typename ELF::Rel), &relocations);
698 VLOG(1) << "Relocations : REL";
699 } else if (relocations_type_ == RELA) {
700 // Convert data to a vector of relocations with addends.
701 const typename ELF::Rela* relocations_base = reinterpret_cast<typename ELF::Rela*>(data->d_buf);
702 relocations = std::vector<typename ELF::Rela>(
703 relocations_base,
704 relocations_base + data->d_size / sizeof(relocations[0]));
705
706 VLOG(1) << "Relocations : RELA";
707 } else {
708 NOTREACHED();
709 }
710
711 return PackTypedRelocations(&relocations);
712 }
713
714 // Helper for PackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
715 template <typename ELF>
PackTypedRelocations(std::vector<typename ELF::Rela> * relocations)716 bool ElfFile<ELF>::PackTypedRelocations(std::vector<typename ELF::Rela>* relocations) {
717 typedef typename ELF::Rela Rela;
718
719 if (has_android_relocations_) {
720 LOG(INFO) << "Relocation table is already packed";
721 return true;
722 }
723
724 // If no relocations then we have nothing packable. Perhaps
725 // the shared object has already been packed?
726 if (relocations->empty()) {
727 LOG(ERROR) << "No relocations found";
728 return false;
729 }
730
731 const size_t rel_size =
732 relocations_type_ == RELA ? sizeof(typename ELF::Rela) : sizeof(typename ELF::Rel);
733 const size_t initial_bytes = relocations->size() * rel_size;
734
735 VLOG(1) << "Unpacked : " << initial_bytes << " bytes";
736 std::vector<uint8_t> packed;
737 RelocationPacker<ELF> packer;
738
739 // Pack relocations: dry run to estimate memory savings.
740 packer.PackRelocations(*relocations, &packed);
741 const size_t packed_bytes_estimate = packed.size() * sizeof(packed[0]);
742 VLOG(1) << "Packed (no padding): " << packed_bytes_estimate << " bytes";
743
744 if (packed.empty()) {
745 VLOG(1) << "Too few relocations to pack";
746 return true;
747 }
748
749 // Pre-calculate the size of the hole we will close up when we rewrite
750 // dynamic relocations. We have to adjust relocation addresses to
751 // account for this.
752 typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
753 ssize_t hole_size = initial_bytes - packed_bytes_estimate;
754
755 // hole_size needs to be page_aligned.
756 hole_size -= hole_size % kPreserveAlignment;
757
758 VLOG(1) << "Compaction : " << hole_size << " bytes";
759
760 // Adjusting for alignment may have removed any packing benefit.
761 if (hole_size == 0) {
762 VLOG(1) << "Too few relocations to pack after alignment";
763 return true;
764 }
765
766 if (hole_size <= 0) {
767 VLOG(1) << "Packing relocations saves no space";
768 return true;
769 }
770
771 size_t data_padding_bytes = is_padding_relocations_ ?
772 initial_bytes - packed_bytes_estimate :
773 initial_bytes - hole_size - packed_bytes_estimate;
774
775 // pad data
776 std::vector<uint8_t> padding(data_padding_bytes, 0);
777 packed.insert(packed.end(), padding.begin(), padding.end());
778
779 const void* packed_data = &packed[0];
780
781 // Run a loopback self-test as a check that packing is lossless.
782 std::vector<Rela> unpacked;
783 packer.UnpackRelocations(packed, &unpacked);
784 CHECK(unpacked.size() == relocations->size());
785 CHECK(!memcmp(&unpacked[0],
786 &relocations->at(0),
787 unpacked.size() * sizeof(unpacked[0])));
788
789 // Rewrite the current dynamic relocations section with packed one then shrink it to size.
790 const size_t bytes = packed.size() * sizeof(packed[0]);
791 ResizeSection(elf_, relocations_section_, bytes,
792 relocations_type_ == REL ? SHT_ANDROID_REL : SHT_ANDROID_RELA, relocations_type_);
793 RewriteSectionData(relocations_section_, packed_data, bytes);
794
795 // TODO (dimitry): fix string table and replace .rel.dyn/plt with .android.rel.dyn/plt
796
797 // Rewrite .dynamic and rename relocation tags describing the packed android
798 // relocations.
799 Elf_Data* data = GetSectionData(dynamic_section_);
800 const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
801 std::vector<typename ELF::Dyn> dynamics(
802 dynamic_base,
803 dynamic_base + data->d_size / sizeof(dynamics[0]));
804 section_header = ELF::getshdr(relocations_section_);
805 {
806 typename ELF::Dyn dyn;
807 dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA;
808 dyn.d_un.d_ptr = section_header->sh_addr;
809 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_REL : DT_RELA, dyn, &dynamics);
810 }
811 {
812 typename ELF::Dyn dyn;
813 dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ;
814 dyn.d_un.d_val = section_header->sh_size;
815 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_RELSZ : DT_RELASZ, dyn, &dynamics);
816 }
817
818 const void* dynamics_data = &dynamics[0];
819 const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
820 RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
821
822 Flush();
823 return true;
824 }
825
826 // Find packed relative relocations in the packed android relocations
827 // section, unpack them, and rewrite the dynamic relocations section to
828 // contain unpacked data.
829 template <typename ELF>
UnpackRelocations()830 bool ElfFile<ELF>::UnpackRelocations() {
831 // Load the ELF file into libelf.
832 if (!Load()) {
833 LOG(ERROR) << "Failed to load as ELF";
834 return false;
835 }
836
837 if (relocations_section_ == nullptr) {
838 // There is nothing to do
839 return true;
840 }
841
842 typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
843 // Retrieve the current packed android relocations section data.
844 Elf_Data* data = GetSectionData(relocations_section_);
845
846 // Convert data to a vector of bytes.
847 const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
848 std::vector<uint8_t> packed(
849 packed_base,
850 packed_base + data->d_size / sizeof(packed[0]));
851
852 if ((section_header->sh_type == SHT_ANDROID_RELA || section_header->sh_type == SHT_ANDROID_REL) &&
853 packed.size() > 3 &&
854 packed[0] == 'A' &&
855 packed[1] == 'P' &&
856 packed[2] == 'S' &&
857 packed[3] == '2') {
858 LOG(INFO) << "Relocations : " << (relocations_type_ == REL ? "REL" : "RELA");
859 } else {
860 LOG(ERROR) << "Packed relocations not found (not packed?)";
861 return false;
862 }
863
864 return UnpackTypedRelocations(packed);
865 }
866
867 // Helper for UnpackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
868 template <typename ELF>
UnpackTypedRelocations(const std::vector<uint8_t> & packed)869 bool ElfFile<ELF>::UnpackTypedRelocations(const std::vector<uint8_t>& packed) {
870 // Unpack the data to re-materialize the relative relocations.
871 const size_t packed_bytes = packed.size() * sizeof(packed[0]);
872 LOG(INFO) << "Packed : " << packed_bytes << " bytes";
873 std::vector<typename ELF::Rela> unpacked_relocations;
874 RelocationPacker<ELF> packer;
875 packer.UnpackRelocations(packed, &unpacked_relocations);
876
877 const size_t relocation_entry_size =
878 relocations_type_ == REL ? sizeof(typename ELF::Rel) : sizeof(typename ELF::Rela);
879 const size_t unpacked_bytes = unpacked_relocations.size() * relocation_entry_size;
880 LOG(INFO) << "Unpacked : " << unpacked_bytes << " bytes";
881
882 // Retrieve the current dynamic relocations section data.
883 Elf_Data* data = GetSectionData(relocations_section_);
884
885 LOG(INFO) << "Relocations : " << unpacked_relocations.size() << " entries";
886
887 // If we found the same number of null relocation entries in the dynamic
888 // relocations section as we hold as unpacked relative relocations, then
889 // this is a padded file.
890
891 const bool is_padded = packed_bytes == unpacked_bytes;
892
893 // Unless padded, pre-apply relative relocations to account for the
894 // hole, and pre-adjust all relocation offsets accordingly.
895 typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
896
897 if (!is_padded) {
898 LOG(INFO) << "Expansion : " << unpacked_bytes - packed_bytes << " bytes";
899 }
900
901 // Rewrite the current dynamic relocations section with unpacked version of
902 // relocations.
903 const void* section_data = nullptr;
904 std::vector<typename ELF::Rel> unpacked_rel_relocations;
905 if (relocations_type_ == RELA) {
906 section_data = &unpacked_relocations[0];
907 } else if (relocations_type_ == REL) {
908 ConvertRelaVectorToRelVector(unpacked_relocations, &unpacked_rel_relocations);
909 section_data = &unpacked_rel_relocations[0];
910 } else {
911 NOTREACHED();
912 }
913
914 ResizeSection(elf_, relocations_section_, unpacked_bytes,
915 relocations_type_ == REL ? SHT_REL : SHT_RELA, relocations_type_);
916 RewriteSectionData(relocations_section_, section_data, unpacked_bytes);
917
918 // Rewrite .dynamic to remove two tags describing packed android relocations.
919 data = GetSectionData(dynamic_section_);
920 const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
921 std::vector<typename ELF::Dyn> dynamics(
922 dynamic_base,
923 dynamic_base + data->d_size / sizeof(dynamics[0]));
924 {
925 typename ELF::Dyn dyn;
926 dyn.d_tag = relocations_type_ == REL ? DT_REL : DT_RELA;
927 dyn.d_un.d_ptr = section_header->sh_addr;
928 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA,
929 dyn, &dynamics);
930 }
931
932 {
933 typename ELF::Dyn dyn;
934 dyn.d_tag = relocations_type_ == REL ? DT_RELSZ : DT_RELASZ;
935 dyn.d_un.d_val = section_header->sh_size;
936 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ,
937 dyn, &dynamics);
938 }
939
940 const void* dynamics_data = &dynamics[0];
941 const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
942 RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
943
944 Flush();
945 return true;
946 }
947
948 // Flush rewritten shared object file data.
949 template <typename ELF>
Flush()950 void ElfFile<ELF>::Flush() {
951 // Flag all ELF data held in memory as needing to be written back to the
952 // file, and tell libelf that we have controlled the file layout.
953 elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
954 elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
955
956 // Write ELF data back to disk.
957 const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
958 if (file_bytes == -1) {
959 LOG(ERROR) << "elf_update failed: " << elf_errmsg(elf_errno());
960 }
961
962 CHECK(file_bytes > 0);
963 VLOG(1) << "elf_update returned: " << file_bytes;
964
965 // Clean up libelf, and truncate the output file to the number of bytes
966 // written by elf_update().
967 elf_end(elf_);
968 elf_ = NULL;
969 const int truncate = ftruncate(fd_, file_bytes);
970 CHECK(truncate == 0);
971 }
972
973 template <typename ELF>
ConvertRelArrayToRelaVector(const typename ELF::Rel * rel_array,size_t rel_array_size,std::vector<typename ELF::Rela> * rela_vector)974 void ElfFile<ELF>::ConvertRelArrayToRelaVector(const typename ELF::Rel* rel_array,
975 size_t rel_array_size,
976 std::vector<typename ELF::Rela>* rela_vector) {
977 for (size_t i = 0; i<rel_array_size; ++i) {
978 typename ELF::Rela rela;
979 rela.r_offset = rel_array[i].r_offset;
980 rela.r_info = rel_array[i].r_info;
981 rela.r_addend = 0;
982 rela_vector->push_back(rela);
983 }
984 }
985
986 template <typename ELF>
ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela> & rela_vector,std::vector<typename ELF::Rel> * rel_vector)987 void ElfFile<ELF>::ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela>& rela_vector,
988 std::vector<typename ELF::Rel>* rel_vector) {
989 for (auto rela : rela_vector) {
990 typename ELF::Rel rel;
991 rel.r_offset = rela.r_offset;
992 rel.r_info = rela.r_info;
993 CHECK(rela.r_addend == 0);
994 rel_vector->push_back(rel);
995 }
996 }
997
998 template class ElfFile<ELF32_traits>;
999 template class ElfFile<ELF64_traits>;
1000
1001 } // namespace relocation_packer
1002