1 /*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* this implements a sensors hardware library for the Android emulator.
18 * the following code should be built as a shared library that will be
19 * placed into /system/lib/hw/sensors.goldfish.so
20 *
21 * it will be loaded by the code in hardware/libhardware/hardware.c
22 * which is itself called from com_android_server_SensorService.cpp
23 */
24
25
26 /* we connect with the emulator through the "sensors" qemud service
27 */
28 #define SENSORS_SERVICE_NAME "sensors"
29
30 #define LOG_TAG "QemuSensors"
31
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <errno.h>
35 #include <string.h>
36 #include <log/log.h>
37 #include <cutils/sockets.h>
38 #include <hardware/sensors.h>
39
40 #if 0
41 #define D(...) ALOGD(__VA_ARGS__)
42 #else
43 #define D(...) ((void)0)
44 #endif
45
46 #define E(...) ALOGE(__VA_ARGS__)
47
48 #include "qemud.h"
49
50 /** SENSOR IDS AND NAMES
51 **/
52
53 #define MAX_NUM_SENSORS 10
54
55 #define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
56
57 #define ID_BASE SENSORS_HANDLE_BASE
58 #define ID_ACCELERATION (ID_BASE+0)
59 #define ID_GYROSCOPE (ID_BASE+1)
60 #define ID_MAGNETIC_FIELD (ID_BASE+2)
61 #define ID_ORIENTATION (ID_BASE+3)
62 #define ID_TEMPERATURE (ID_BASE+4)
63 #define ID_PROXIMITY (ID_BASE+5)
64 #define ID_LIGHT (ID_BASE+6)
65 #define ID_PRESSURE (ID_BASE+7)
66 #define ID_HUMIDITY (ID_BASE+8)
67 #define ID_MAGNETIC_FIELD_UNCALIBRATED (ID_BASE+9)
68
69 #define SENSORS_ACCELERATION (1 << ID_ACCELERATION)
70 #define SENSORS_GYROSCOPE (1 << ID_GYROSCOPE)
71 #define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD)
72 #define SENSORS_ORIENTATION (1 << ID_ORIENTATION)
73 #define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE)
74 #define SENSORS_PROXIMITY (1 << ID_PROXIMITY)
75 #define SENSORS_LIGHT (1 << ID_LIGHT)
76 #define SENSORS_PRESSURE (1 << ID_PRESSURE)
77 #define SENSORS_HUMIDITY (1 << ID_HUMIDITY)
78 #define SENSORS_MAGNETIC_FIELD_UNCALIBRATED (1 << ID_MAGNETIC_FIELD_UNCALIBRATED)
79
80 #define ID_CHECK(x) ((unsigned)((x) - ID_BASE) < MAX_NUM_SENSORS)
81
82 #define SENSORS_LIST \
83 SENSOR_(ACCELERATION,"acceleration") \
84 SENSOR_(GYROSCOPE,"gyroscope") \
85 SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
86 SENSOR_(ORIENTATION,"orientation") \
87 SENSOR_(TEMPERATURE,"temperature") \
88 SENSOR_(PROXIMITY,"proximity") \
89 SENSOR_(LIGHT, "light") \
90 SENSOR_(PRESSURE, "pressure") \
91 SENSOR_(HUMIDITY, "humidity") \
92 SENSOR_(MAGNETIC_FIELD_UNCALIBRATED,"magnetic-field-uncalibrated") \
93
94 static const struct {
95 const char* name;
96 int id; } _sensorIds[MAX_NUM_SENSORS] =
97 {
98 #define SENSOR_(x,y) { y, ID_##x },
99 SENSORS_LIST
100 #undef SENSOR_
101 };
102
103 static const char*
_sensorIdToName(int id)104 _sensorIdToName( int id )
105 {
106 int nn;
107 for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
108 if (id == _sensorIds[nn].id)
109 return _sensorIds[nn].name;
110 return "<UNKNOWN>";
111 }
112
113 static int
_sensorIdFromName(const char * name)114 _sensorIdFromName( const char* name )
115 {
116 int nn;
117
118 if (name == NULL)
119 return -1;
120
121 for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
122 if (!strcmp(name, _sensorIds[nn].name))
123 return _sensorIds[nn].id;
124
125 return -1;
126 }
127
128 /* return the current time in nanoseconds */
now_ns(void)129 static int64_t now_ns(void) {
130 struct timespec ts;
131 clock_gettime(CLOCK_MONOTONIC, &ts);
132 return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
133 }
134
135 /** SENSORS POLL DEVICE
136 **
137 ** This one is used to read sensor data from the hardware.
138 ** We implement this by simply reading the data from the
139 ** emulator through the QEMUD channel.
140 **/
141
142 typedef struct SensorDevice {
143 struct sensors_poll_device_1 device;
144 sensors_event_t sensors[MAX_NUM_SENSORS];
145 uint32_t pendingSensors;
146 int64_t timeStart;
147 int64_t timeOffset;
148 uint32_t active_sensors;
149 int fd;
150 pthread_mutex_t lock;
151 } SensorDevice;
152
153 /* Grab the file descriptor to the emulator's sensors service pipe.
154 * This function returns a file descriptor on success, or -errno on
155 * failure, and assumes the SensorDevice instance's lock is held.
156 *
157 * This is needed because set_delay(), poll() and activate() can be called
158 * from different threads, and poll() is blocking.
159 *
160 * Note that the emulator's sensors service creates a new client for each
161 * connection through qemud_channel_open(), where each client has its own
162 * delay and set of activated sensors. This precludes calling
163 * qemud_channel_open() on each request, because a typical emulated system
164 * will do something like:
165 *
166 * 1) On a first thread, de-activate() all sensors first, then call poll(),
167 * which results in the thread blocking.
168 *
169 * 2) On a second thread, slightly later, call set_delay() then activate()
170 * to enable the acceleration sensor.
171 *
172 * The system expects this to unblock the first thread which will receive
173 * new sensor events after the activate() call in 2).
174 *
175 * This cannot work if both threads don't use the same connection.
176 *
177 * TODO(digit): This protocol is brittle, implement another control channel
178 * for set_delay()/activate()/batch() when supporting HAL 1.3
179 */
sensor_device_get_fd_locked(SensorDevice * dev)180 static int sensor_device_get_fd_locked(SensorDevice* dev) {
181 /* Create connection to service on first call */
182 if (dev->fd < 0) {
183 dev->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
184 if (dev->fd < 0) {
185 int ret = -errno;
186 E("%s: Could not open connection to service: %s", __FUNCTION__,
187 strerror(-ret));
188 return ret;
189 }
190 }
191 return dev->fd;
192 }
193
194 /* Send a command to the sensors virtual device. |dev| is a device instance and
195 * |cmd| is a zero-terminated command string. Return 0 on success, or -errno
196 * on failure. */
sensor_device_send_command_locked(SensorDevice * dev,const char * cmd)197 static int sensor_device_send_command_locked(SensorDevice* dev,
198 const char* cmd) {
199 int fd = sensor_device_get_fd_locked(dev);
200 if (fd < 0) {
201 return fd;
202 }
203
204 int ret = 0;
205 if (qemud_channel_send(fd, cmd, strlen(cmd)) < 0) {
206 ret = -errno;
207 E("%s(fd=%d): ERROR: %s", __FUNCTION__, fd, strerror(errno));
208 }
209 return ret;
210 }
211
212 /* Pick up one pending sensor event. On success, this returns the sensor
213 * id, and sets |*event| accordingly. On failure, i.e. if there are no
214 * pending events, return -EINVAL.
215 *
216 * Note: The device's lock must be acquired.
217 */
sensor_device_pick_pending_event_locked(SensorDevice * d,sensors_event_t * event)218 static int sensor_device_pick_pending_event_locked(SensorDevice* d,
219 sensors_event_t* event)
220 {
221 uint32_t mask = SUPPORTED_SENSORS & d->pendingSensors;
222 if (mask) {
223 uint32_t i = 31 - __builtin_clz(mask);
224 d->pendingSensors &= ~(1U << i);
225 // Copy the structure
226 *event = d->sensors[i];
227
228 if (d->sensors[i].type == SENSOR_TYPE_META_DATA) {
229 // sensor_device_poll_event_locked() will leave
230 // the meta-data in place until we have it.
231 // Set |type| to something other than META_DATA
232 // so sensor_device_poll_event_locked() can
233 // continue.
234 d->sensors[i].type = SENSOR_TYPE_META_DATA + 1;
235 } else {
236 event->sensor = i;
237 event->version = sizeof(*event);
238 }
239
240 D("%s: %d [%f, %f, %f]", __FUNCTION__,
241 i,
242 event->data[0],
243 event->data[1],
244 event->data[2]);
245 return i;
246 }
247 E("No sensor to return!!! pendingSensors=0x%08x", d->pendingSensors);
248 // we may end-up in a busy loop, slow things down, just in case.
249 usleep(1000);
250 return -EINVAL;
251 }
252
253 /* Block until new sensor events are reported by the emulator, or if a
254 * 'wake' command is received through the service. On succes, return 0
255 * and updates the |pendingEvents| and |sensors| fields of |dev|.
256 * On failure, return -errno.
257 *
258 * Note: The device lock must be acquired when calling this function, and
259 * will still be held on return. However, the function releases the
260 * lock temporarily during the blocking wait.
261 */
sensor_device_poll_event_locked(SensorDevice * dev)262 static int sensor_device_poll_event_locked(SensorDevice* dev)
263 {
264 D("%s: dev=%p", __FUNCTION__, dev);
265
266 int fd = sensor_device_get_fd_locked(dev);
267 if (fd < 0) {
268 E("%s: Could not get pipe channel: %s", __FUNCTION__, strerror(-fd));
269 return fd;
270 }
271
272 // Accumulate pending events into |events| and |new_sensors| mask
273 // until a 'sync' or 'wake' command is received. This also simplifies the
274 // code a bit.
275 uint32_t new_sensors = 0U;
276 sensors_event_t* events = dev->sensors;
277
278 int64_t event_time = -1;
279 int ret = 0;
280
281 for (;;) {
282 /* Release the lock since we're going to block on recv() */
283 pthread_mutex_unlock(&dev->lock);
284
285 /* read the next event */
286 char buff[256];
287 int len = qemud_channel_recv(fd, buff, sizeof(buff) - 1U);
288 /* re-acquire the lock to modify the device state. */
289 pthread_mutex_lock(&dev->lock);
290
291 if (len < 0) {
292 ret = -errno;
293 E("%s(fd=%d): Could not receive event data len=%d, errno=%d: %s",
294 __FUNCTION__, fd, len, errno, strerror(errno));
295 break;
296 }
297 buff[len] = 0;
298 D("%s(fd=%d): received [%s]", __FUNCTION__, fd, buff);
299
300
301 /* "wake" is sent from the emulator to exit this loop. */
302 /* TODO(digit): Is it still needed? */
303 if (!strcmp((const char*)buff, "wake")) {
304 ret = 0x7FFFFFFF;
305 break;
306 }
307
308 float params[3];
309
310 // If the existing entry for this sensor is META_DATA,
311 // do not overwrite it. We can resume saving sensor
312 // values after that meta data has been received.
313
314 /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
315 if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2)
316 == 3) {
317 new_sensors |= SENSORS_ACCELERATION;
318 if (events[ID_ACCELERATION].type == SENSOR_TYPE_META_DATA) continue;
319 events[ID_ACCELERATION].acceleration.x = params[0];
320 events[ID_ACCELERATION].acceleration.y = params[1];
321 events[ID_ACCELERATION].acceleration.z = params[2];
322 events[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
323 continue;
324 }
325
326 /* "gyroscope:<x>:<y>:<z>" corresponds to a gyroscope event */
327 if (sscanf(buff, "gyroscope:%g:%g:%g", params+0, params+1, params+2)
328 == 3) {
329 new_sensors |= SENSORS_GYROSCOPE;
330 if (events[ID_GYROSCOPE].type == SENSOR_TYPE_META_DATA) continue;
331 events[ID_GYROSCOPE].gyro.x = params[0];
332 events[ID_GYROSCOPE].gyro.y = params[1];
333 events[ID_GYROSCOPE].gyro.z = params[2];
334 events[ID_GYROSCOPE].type = SENSOR_TYPE_GYROSCOPE;
335 continue;
336 }
337
338 /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation
339 * changes */
340 if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2)
341 == 3) {
342 new_sensors |= SENSORS_ORIENTATION;
343 if (events[ID_ORIENTATION].type == SENSOR_TYPE_META_DATA) continue;
344 events[ID_ORIENTATION].orientation.azimuth = params[0];
345 events[ID_ORIENTATION].orientation.pitch = params[1];
346 events[ID_ORIENTATION].orientation.roll = params[2];
347 events[ID_ORIENTATION].orientation.status =
348 SENSOR_STATUS_ACCURACY_HIGH;
349 events[ID_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
350 continue;
351 }
352
353 /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic
354 * field */
355 if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2)
356 == 3) {
357 new_sensors |= SENSORS_MAGNETIC_FIELD;
358 if (events[ID_MAGNETIC_FIELD].type == SENSOR_TYPE_META_DATA) continue;
359 events[ID_MAGNETIC_FIELD].magnetic.x = params[0];
360 events[ID_MAGNETIC_FIELD].magnetic.y = params[1];
361 events[ID_MAGNETIC_FIELD].magnetic.z = params[2];
362 events[ID_MAGNETIC_FIELD].magnetic.status =
363 SENSOR_STATUS_ACCURACY_HIGH;
364 events[ID_MAGNETIC_FIELD].type = SENSOR_TYPE_MAGNETIC_FIELD;
365 continue;
366 }
367
368 if (sscanf(buff, "magnetic-uncalibrated:%g:%g:%g", params+0, params+1, params+2)
369 == 3) {
370 new_sensors |= SENSORS_MAGNETIC_FIELD_UNCALIBRATED;
371 if (events[ID_MAGNETIC_FIELD_UNCALIBRATED].type == SENSOR_TYPE_META_DATA) continue;
372 events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.x = params[0];
373 events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.y = params[1];
374 events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.z = params[2];
375 events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.status =
376 SENSOR_STATUS_ACCURACY_HIGH;
377 events[ID_MAGNETIC_FIELD_UNCALIBRATED].type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
378 continue;
379 }
380
381 /* "temperature:<celsius>" */
382 if (sscanf(buff, "temperature:%g", params+0) == 1) {
383 new_sensors |= SENSORS_TEMPERATURE;
384 if (events[ID_TEMPERATURE].type == SENSOR_TYPE_META_DATA) continue;
385 events[ID_TEMPERATURE].temperature = params[0];
386 events[ID_TEMPERATURE].type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
387 continue;
388 }
389
390 /* "proximity:<value>" */
391 if (sscanf(buff, "proximity:%g", params+0) == 1) {
392 new_sensors |= SENSORS_PROXIMITY;
393 if (events[ID_PROXIMITY].type == SENSOR_TYPE_META_DATA) continue;
394 events[ID_PROXIMITY].distance = params[0];
395 events[ID_PROXIMITY].type = SENSOR_TYPE_PROXIMITY;
396 continue;
397 }
398 /* "light:<lux>" */
399 if (sscanf(buff, "light:%g", params+0) == 1) {
400 new_sensors |= SENSORS_LIGHT;
401 if (events[ID_LIGHT].type == SENSOR_TYPE_META_DATA) continue;
402 events[ID_LIGHT].light = params[0];
403 events[ID_LIGHT].type = SENSOR_TYPE_LIGHT;
404 continue;
405 }
406
407 /* "pressure:<hpa>" */
408 if (sscanf(buff, "pressure:%g", params+0) == 1) {
409 new_sensors |= SENSORS_PRESSURE;
410 if (events[ID_PRESSURE].type == SENSOR_TYPE_META_DATA) continue;
411 events[ID_PRESSURE].pressure = params[0];
412 events[ID_PRESSURE].type = SENSOR_TYPE_PRESSURE;
413 continue;
414 }
415
416 /* "humidity:<percent>" */
417 if (sscanf(buff, "humidity:%g", params+0) == 1) {
418 new_sensors |= SENSORS_HUMIDITY;
419 if (events[ID_HUMIDITY].type == SENSOR_TYPE_META_DATA) continue;
420 events[ID_HUMIDITY].relative_humidity = params[0];
421 events[ID_HUMIDITY].type = SENSOR_TYPE_RELATIVE_HUMIDITY;
422 continue;
423 }
424
425 /* "sync:<time>" is sent after a series of sensor events.
426 * where 'time' is expressed in micro-seconds and corresponds
427 * to the VM time when the real poll occured.
428 */
429 if (sscanf(buff, "sync:%lld", &event_time) == 1) {
430 if (new_sensors) {
431 goto out;
432 }
433 D("huh ? sync without any sensor data ?");
434 continue;
435 }
436 D("huh ? unsupported command");
437 }
438 out:
439 if (new_sensors) {
440 /* update the time of each new sensor event. */
441 dev->pendingSensors |= new_sensors;
442 int64_t t = (event_time < 0) ? 0 : event_time * 1000LL;
443
444 /* Use the time at the first "sync:" as the base for later
445 * time values.
446 * CTS tests require sensors to return an event timestamp (sync) that is
447 * strictly before the time of the event arrival. We don't actually have
448 * a time syncronization protocol here, and the only data point is the
449 * "sync:" timestamp - which is an emulator's timestamp of a clock that
450 * is synced with the guest clock, and it only the timestamp after all
451 * events were sent.
452 * To make it work, let's compare the calculated timestamp with current
453 * time and take the lower value - we don't believe in events from the
454 * future anyway.
455 */
456 const int64_t now = now_ns();
457
458 if (dev->timeStart == 0) {
459 dev->timeStart = now;
460 dev->timeOffset = dev->timeStart - t;
461 }
462 t += dev->timeOffset;
463 if (t > now) {
464 t = now;
465 }
466
467 while (new_sensors) {
468 uint32_t i = 31 - __builtin_clz(new_sensors);
469 new_sensors &= ~(1U << i);
470 dev->sensors[i].timestamp = t;
471 }
472 }
473 return ret;
474 }
475
476 /** SENSORS POLL DEVICE FUNCTIONS **/
477
sensor_device_close(struct hw_device_t * dev0)478 static int sensor_device_close(struct hw_device_t* dev0)
479 {
480 SensorDevice* dev = (void*)dev0;
481 // Assume that there are no other threads blocked on poll()
482 if (dev->fd >= 0) {
483 close(dev->fd);
484 dev->fd = -1;
485 }
486 pthread_mutex_destroy(&dev->lock);
487 free(dev);
488 return 0;
489 }
490
491 /* Return an array of sensor data. This function blocks until there is sensor
492 * related events to report. On success, it will write the events into the
493 * |data| array, which contains |count| items. The function returns the number
494 * of events written into the array, which shall never be greater than |count|.
495 * On error, return -errno code.
496 *
497 * Note that according to the sensor HAL [1], it shall never return 0!
498 *
499 * [1] http://source.android.com/devices/sensors/hal-interface.html
500 */
sensor_device_poll(struct sensors_poll_device_t * dev0,sensors_event_t * data,int count)501 static int sensor_device_poll(struct sensors_poll_device_t *dev0,
502 sensors_event_t* data, int count)
503 {
504 SensorDevice* dev = (void*)dev0;
505 D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
506
507 if (count <= 0) {
508 return -EINVAL;
509 }
510
511 int result = 0;
512 pthread_mutex_lock(&dev->lock);
513 if (!dev->pendingSensors) {
514 /* Block until there are pending events. Note that this releases
515 * the lock during the blocking call, then re-acquires it before
516 * returning. */
517 int ret = sensor_device_poll_event_locked(dev);
518 if (ret < 0) {
519 result = ret;
520 goto out;
521 }
522 if (!dev->pendingSensors) {
523 /* 'wake' event received before any sensor data. */
524 result = -EIO;
525 goto out;
526 }
527 }
528 /* Now read as many pending events as needed. */
529 int i;
530 for (i = 0; i < count; i++) {
531 if (!dev->pendingSensors) {
532 break;
533 }
534 int ret = sensor_device_pick_pending_event_locked(dev, data);
535 if (ret < 0) {
536 if (!result) {
537 result = ret;
538 }
539 break;
540 }
541 data++;
542 result++;
543 }
544 out:
545 pthread_mutex_unlock(&dev->lock);
546 D("%s: result=%d", __FUNCTION__, result);
547 return result;
548 }
549
sensor_device_activate(struct sensors_poll_device_t * dev0,int handle,int enabled)550 static int sensor_device_activate(struct sensors_poll_device_t *dev0,
551 int handle,
552 int enabled)
553 {
554 SensorDevice* dev = (void*)dev0;
555
556 D("%s: handle=%s (%d) enabled=%d", __FUNCTION__,
557 _sensorIdToName(handle), handle, enabled);
558
559 /* Sanity check */
560 if (!ID_CHECK(handle)) {
561 E("%s: bad handle ID", __FUNCTION__);
562 return -EINVAL;
563 }
564
565 /* Exit early if sensor is already enabled/disabled. */
566 uint32_t mask = (1U << handle);
567 uint32_t sensors = enabled ? mask : 0;
568
569 pthread_mutex_lock(&dev->lock);
570
571 uint32_t active = dev->active_sensors;
572 uint32_t new_sensors = (active & ~mask) | (sensors & mask);
573 uint32_t changed = active ^ new_sensors;
574
575 int ret = 0;
576 if (changed) {
577 /* Send command to the emulator. */
578 char command[64];
579 snprintf(command,
580 sizeof command,
581 "set:%s:%d",
582 _sensorIdToName(handle),
583 enabled != 0);
584
585 ret = sensor_device_send_command_locked(dev, command);
586 if (ret < 0) {
587 E("%s: when sending command errno=%d: %s", __FUNCTION__, -ret,
588 strerror(-ret));
589 } else {
590 dev->active_sensors = new_sensors;
591 }
592 }
593 pthread_mutex_unlock(&dev->lock);
594 return ret;
595 }
596
sensor_device_default_flush(struct sensors_poll_device_1 * dev0,int handle)597 static int sensor_device_default_flush(
598 struct sensors_poll_device_1* dev0,
599 int handle) {
600
601 SensorDevice* dev = (void*)dev0;
602
603 D("%s: handle=%s (%d)", __FUNCTION__,
604 _sensorIdToName(handle), handle);
605
606 /* Sanity check */
607 if (!ID_CHECK(handle)) {
608 E("%s: bad handle ID", __FUNCTION__);
609 return -EINVAL;
610 }
611
612 pthread_mutex_lock(&dev->lock);
613 dev->sensors[handle].version = META_DATA_VERSION;
614 dev->sensors[handle].type = SENSOR_TYPE_META_DATA;
615 dev->sensors[handle].sensor = 0;
616 dev->sensors[handle].timestamp = 0;
617 dev->sensors[handle].meta_data.sensor = handle;
618 dev->sensors[handle].meta_data.what = META_DATA_FLUSH_COMPLETE;
619 dev->pendingSensors |= (1U << handle);
620 pthread_mutex_unlock(&dev->lock);
621
622 return 0;
623 }
624
sensor_device_set_delay(struct sensors_poll_device_t * dev0,int handle __unused,int64_t ns)625 static int sensor_device_set_delay(struct sensors_poll_device_t *dev0,
626 int handle __unused,
627 int64_t ns)
628 {
629 SensorDevice* dev = (void*)dev0;
630
631 int ms = (int)(ns / 1000000);
632 D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
633
634 char command[64];
635 snprintf(command, sizeof command, "set-delay:%d", ms);
636
637 pthread_mutex_lock(&dev->lock);
638 int ret = sensor_device_send_command_locked(dev, command);
639 pthread_mutex_unlock(&dev->lock);
640 if (ret < 0) {
641 E("%s: Could not send command: %s", __FUNCTION__, strerror(-ret));
642 }
643 return ret;
644 }
645
sensor_device_default_batch(struct sensors_poll_device_1 * dev,int sensor_handle,int flags,int64_t sampling_period_ns,int64_t max_report_latency_ns)646 static int sensor_device_default_batch(
647 struct sensors_poll_device_1* dev,
648 int sensor_handle,
649 int flags,
650 int64_t sampling_period_ns,
651 int64_t max_report_latency_ns) {
652 return sensor_device_set_delay(dev, sensor_handle, sampling_period_ns);
653 }
654
655 /** MODULE REGISTRATION SUPPORT
656 **
657 ** This is required so that hardware/libhardware/hardware.c
658 ** will dlopen() this library appropriately.
659 **/
660
661 /*
662 * the following is the list of all supported sensors.
663 * this table is used to build sSensorList declared below
664 * according to which hardware sensors are reported as
665 * available from the emulator (see get_sensors_list below)
666 *
667 * note: numerical values for maxRange/resolution/power for
668 * all sensors but light, pressure and humidity were
669 * taken from the reference AK8976A implementation
670 */
671 static const struct sensor_t sSensorListInit[] = {
672 { .name = "Goldfish 3-axis Accelerometer",
673 .vendor = "The Android Open Source Project",
674 .version = 1,
675 .handle = ID_ACCELERATION,
676 .type = SENSOR_TYPE_ACCELEROMETER,
677 .maxRange = 2.8f,
678 .resolution = 1.0f/4032.0f,
679 .power = 3.0f,
680 .minDelay = 10000,
681 .maxDelay = 60 * 1000 * 1000,
682 .fifoReservedEventCount = 0,
683 .fifoMaxEventCount = 0,
684 .stringType = 0,
685 .requiredPermission = 0,
686 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
687 .reserved = {}
688 },
689
690 { .name = "Goldfish 3-axis Gyroscope",
691 .vendor = "The Android Open Source Project",
692 .version = 1,
693 .handle = ID_GYROSCOPE,
694 .type = SENSOR_TYPE_GYROSCOPE,
695 .maxRange = 11.1111111,
696 .resolution = 1.0f/1000.0f,
697 .power = 3.0f,
698 .minDelay = 10000,
699 .maxDelay = 60 * 1000 * 1000,
700 .reserved = {}
701 },
702
703 { .name = "Goldfish 3-axis Magnetic field sensor",
704 .vendor = "The Android Open Source Project",
705 .version = 1,
706 .handle = ID_MAGNETIC_FIELD,
707 .type = SENSOR_TYPE_MAGNETIC_FIELD,
708 .maxRange = 2000.0f,
709 .resolution = 1.0f,
710 .power = 6.7f,
711 .minDelay = 10000,
712 .maxDelay = 60 * 1000 * 1000,
713 .fifoReservedEventCount = 0,
714 .fifoMaxEventCount = 0,
715 .stringType = 0,
716 .requiredPermission = 0,
717 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
718 .reserved = {}
719 },
720
721 { .name = "Goldfish Orientation sensor",
722 .vendor = "The Android Open Source Project",
723 .version = 1,
724 .handle = ID_ORIENTATION,
725 .type = SENSOR_TYPE_ORIENTATION,
726 .maxRange = 360.0f,
727 .resolution = 1.0f,
728 .power = 9.7f,
729 .minDelay = 10000,
730 .maxDelay = 60 * 1000 * 1000,
731 .fifoReservedEventCount = 0,
732 .fifoMaxEventCount = 0,
733 .stringType = 0,
734 .requiredPermission = 0,
735 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
736 .reserved = {}
737 },
738
739 { .name = "Goldfish Temperature sensor",
740 .vendor = "The Android Open Source Project",
741 .version = 1,
742 .handle = ID_TEMPERATURE,
743 .type = SENSOR_TYPE_AMBIENT_TEMPERATURE,
744 .maxRange = 80.0f,
745 .resolution = 1.0f,
746 .power = 0.0f,
747 .minDelay = 10000,
748 .maxDelay = 60 * 1000 * 1000,
749 .fifoReservedEventCount = 0,
750 .fifoMaxEventCount = 0,
751 .stringType = 0,
752 .requiredPermission = 0,
753 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
754 .reserved = {}
755 },
756
757 { .name = "Goldfish Proximity sensor",
758 .vendor = "The Android Open Source Project",
759 .version = 1,
760 .handle = ID_PROXIMITY,
761 .type = SENSOR_TYPE_PROXIMITY,
762 .maxRange = 1.0f,
763 .resolution = 1.0f,
764 .power = 20.0f,
765 .minDelay = 10000,
766 .maxDelay = 60 * 1000 * 1000,
767 .fifoReservedEventCount = 0,
768 .fifoMaxEventCount = 0,
769 .stringType = 0,
770 .requiredPermission = 0,
771 .flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE,
772 .reserved = {}
773 },
774
775 { .name = "Goldfish Light sensor",
776 .vendor = "The Android Open Source Project",
777 .version = 1,
778 .handle = ID_LIGHT,
779 .type = SENSOR_TYPE_LIGHT,
780 .maxRange = 40000.0f,
781 .resolution = 1.0f,
782 .power = 20.0f,
783 .minDelay = 10000,
784 .maxDelay = 60 * 1000 * 1000,
785 .fifoReservedEventCount = 0,
786 .fifoMaxEventCount = 0,
787 .stringType = 0,
788 .requiredPermission = 0,
789 .flags = SENSOR_FLAG_ON_CHANGE_MODE,
790 .reserved = {}
791 },
792
793 { .name = "Goldfish Pressure sensor",
794 .vendor = "The Android Open Source Project",
795 .version = 1,
796 .handle = ID_PRESSURE,
797 .type = SENSOR_TYPE_PRESSURE,
798 .maxRange = 800.0f,
799 .resolution = 1.0f,
800 .power = 20.0f,
801 .minDelay = 10000,
802 .maxDelay = 60 * 1000 * 1000,
803 .fifoReservedEventCount = 0,
804 .fifoMaxEventCount = 0,
805 .stringType = 0,
806 .requiredPermission = 0,
807 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
808 .reserved = {}
809 },
810
811 { .name = "Goldfish Humidity sensor",
812 .vendor = "The Android Open Source Project",
813 .version = 1,
814 .handle = ID_HUMIDITY,
815 .type = SENSOR_TYPE_RELATIVE_HUMIDITY,
816 .maxRange = 100.0f,
817 .resolution = 1.0f,
818 .power = 20.0f,
819 .minDelay = 10000,
820 .maxDelay = 60 * 1000 * 1000,
821 .fifoReservedEventCount = 0,
822 .fifoMaxEventCount = 0,
823 .stringType = 0,
824 .requiredPermission = 0,
825 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
826 .reserved = {}
827 },
828
829 { .name = "Goldfish 3-axis Magnetic field sensor (uncalibrated)",
830 .vendor = "The Android Open Source Project",
831 .version = 1,
832 .handle = ID_MAGNETIC_FIELD_UNCALIBRATED,
833 .type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED,
834 .maxRange = 2000.0f,
835 .resolution = 1.0f,
836 .power = 6.7f,
837 .minDelay = 10000,
838 .maxDelay = 60 * 1000 * 1000,
839 .reserved = {}
840 },
841 };
842
843 static struct sensor_t sSensorList[MAX_NUM_SENSORS];
844
sensors__get_sensors_list(struct sensors_module_t * module __unused,struct sensor_t const ** list)845 static int sensors__get_sensors_list(struct sensors_module_t* module __unused,
846 struct sensor_t const** list)
847 {
848 int fd = qemud_channel_open(SENSORS_SERVICE_NAME);
849 char buffer[12];
850 int mask, nn, count;
851 int ret = 0;
852
853 if (fd < 0) {
854 E("%s: no qemud connection", __FUNCTION__);
855 goto out;
856 }
857 ret = qemud_channel_send(fd, "list-sensors", -1);
858 if (ret < 0) {
859 E("%s: could not query sensor list: %s", __FUNCTION__,
860 strerror(errno));
861 goto out;
862 }
863 ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
864 if (ret < 0) {
865 E("%s: could not receive sensor list: %s", __FUNCTION__,
866 strerror(errno));
867 goto out;
868 }
869 buffer[ret] = 0;
870
871 /* the result is a integer used as a mask for available sensors */
872 mask = atoi(buffer);
873 count = 0;
874 for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
875 if (((1 << nn) & mask) == 0)
876 continue;
877 sSensorList[count++] = sSensorListInit[nn];
878 }
879 D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
880 *list = sSensorList;
881
882 ret = count;
883 out:
884 if (fd >= 0) {
885 close(fd);
886 }
887 return ret;
888 }
889
890
891 static int
open_sensors(const struct hw_module_t * module,const char * name,struct hw_device_t ** device)892 open_sensors(const struct hw_module_t* module,
893 const char* name,
894 struct hw_device_t* *device)
895 {
896 int status = -EINVAL;
897
898 D("%s: name=%s", __FUNCTION__, name);
899
900 if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
901 SensorDevice *dev = malloc(sizeof(*dev));
902
903 memset(dev, 0, sizeof(*dev));
904
905 dev->device.common.tag = HARDWARE_DEVICE_TAG;
906 dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
907 dev->device.common.module = (struct hw_module_t*) module;
908 dev->device.common.close = sensor_device_close;
909 dev->device.poll = sensor_device_poll;
910 dev->device.activate = sensor_device_activate;
911 dev->device.setDelay = sensor_device_set_delay;
912
913 // (dev->sensors[i].type == SENSOR_TYPE_META_DATA) is
914 // sticky. Don't start off with that setting.
915 for (int idx = 0; idx < MAX_NUM_SENSORS; idx++) {
916 dev->sensors[idx].type = SENSOR_TYPE_META_DATA + 1;
917 }
918
919 // Version 1.3-specific functions
920 dev->device.batch = sensor_device_default_batch;
921 dev->device.flush = sensor_device_default_flush;
922
923 dev->fd = -1;
924 pthread_mutex_init(&dev->lock, NULL);
925
926 *device = &dev->device.common;
927 status = 0;
928 }
929 return status;
930 }
931
932
933 static struct hw_module_methods_t sensors_module_methods = {
934 .open = open_sensors
935 };
936
937 struct sensors_module_t HAL_MODULE_INFO_SYM = {
938 .common = {
939 .tag = HARDWARE_MODULE_TAG,
940 .version_major = 1,
941 .version_minor = 3,
942 .id = SENSORS_HARDWARE_MODULE_ID,
943 .name = "Goldfish SENSORS Module",
944 .author = "The Android Open Source Project",
945 .methods = &sensors_module_methods,
946 },
947 .get_sensors_list = sensors__get_sensors_list
948 };
949