• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "calibration/common/sphere_fit_calibration.h"
2 
3 #include <errno.h>
4 #include <stdarg.h>
5 #include <stdio.h>
6 #include <string.h>
7 
8 #include "calibration/util/cal_log.h"
9 #include "common/math/mat.h"
10 #include "common/math/vec.h"
11 
12 // FORWARD DECLARATIONS
13 ///////////////////////////////////////////////////////////////////////////////
14 // Utility for converting solver state to a calibration data structure.
15 static void convertStateToCalStruct(const float x[SF_STATE_DIM],
16                                     struct ThreeAxisCalData *calstruct);
17 
18 static bool runCalibration(struct SphereFitCal *sphere_cal,
19                            const struct SphereFitData *data,
20                            uint64_t timestamp_nanos);
21 
22 #define MIN_VALID_DATA_NORM (1e-4)
23 
24 // FUNCTION IMPLEMENTATIONS
25 //////////////////////////////////////////////////////////////////////////////
sphereFitInit(struct SphereFitCal * sphere_cal,const struct LmParams * lm_params,const size_t min_num_points_for_cal)26 void sphereFitInit(struct SphereFitCal *sphere_cal,
27                    const struct LmParams *lm_params,
28                    const size_t min_num_points_for_cal) {
29   ASSERT_NOT_NULL(sphere_cal);
30   ASSERT_NOT_NULL(lm_params);
31 
32   // Initialize LM solver.
33   lmSolverInit(&sphere_cal->lm_solver, lm_params,
34                &sphereFitResidAndJacobianFunc);
35 
36   // Reset other parameters.
37   sphereFitReset(sphere_cal);
38 
39   // Set num points for calibration, checking that it is above min.
40   if (min_num_points_for_cal < MIN_NUM_SPHERE_FIT_POINTS) {
41     sphere_cal->min_points_for_cal = MIN_NUM_SPHERE_FIT_POINTS;
42   } else {
43     sphere_cal->min_points_for_cal = min_num_points_for_cal;
44   }
45 }
46 
sphereFitReset(struct SphereFitCal * sphere_cal)47 void sphereFitReset(struct SphereFitCal *sphere_cal) {
48   ASSERT_NOT_NULL(sphere_cal);
49 
50   // Set state to default (diagonal scale matrix and zero offset).
51   memset(&sphere_cal->x0[0], 0, sizeof(float) * SF_STATE_DIM);
52   sphere_cal->x0[eParamScaleMatrix11] = 1.f;
53   sphere_cal->x0[eParamScaleMatrix22] = 1.f;
54   sphere_cal->x0[eParamScaleMatrix33] = 1.f;
55   memcpy(sphere_cal->x, sphere_cal->x0, sizeof(sphere_cal->x));
56 
57   // Reset time.
58   sphere_cal->estimate_time_nanos = 0;
59 }
60 
sphereFitSetSolverData(struct SphereFitCal * sphere_cal,struct LmData * lm_data)61 void sphereFitSetSolverData(struct SphereFitCal *sphere_cal,
62                             struct LmData *lm_data) {
63   ASSERT_NOT_NULL(sphere_cal);
64   ASSERT_NOT_NULL(lm_data);
65 
66   // Set solver data.
67   lmSolverSetData(&sphere_cal->lm_solver, lm_data);
68 }
69 
sphereFitRunCal(struct SphereFitCal * sphere_cal,const struct SphereFitData * data,uint64_t timestamp_nanos)70 bool sphereFitRunCal(struct SphereFitCal *sphere_cal,
71                      const struct SphereFitData *data,
72                      uint64_t timestamp_nanos) {
73   ASSERT_NOT_NULL(sphere_cal);
74   ASSERT_NOT_NULL(data);
75 
76   // Run calibration if have enough points.
77   if (data->num_fit_points >= sphere_cal->min_points_for_cal) {
78     return runCalibration(sphere_cal, data, timestamp_nanos);
79   }
80 
81   return false;
82 }
83 
sphereFitSetInitialBias(struct SphereFitCal * sphere_cal,const float initial_bias[THREE_AXIS_DIM])84 void sphereFitSetInitialBias(struct SphereFitCal *sphere_cal,
85                              const float initial_bias[THREE_AXIS_DIM]) {
86   ASSERT_NOT_NULL(sphere_cal);
87   sphere_cal->x0[eParamOffset1] = initial_bias[0];
88   sphere_cal->x0[eParamOffset2] = initial_bias[1];
89   sphere_cal->x0[eParamOffset3] = initial_bias[2];
90 }
91 
sphereFitGetLatestCal(const struct SphereFitCal * sphere_cal,struct ThreeAxisCalData * cal_data)92 void sphereFitGetLatestCal(const struct SphereFitCal *sphere_cal,
93                            struct ThreeAxisCalData *cal_data) {
94   ASSERT_NOT_NULL(sphere_cal);
95   ASSERT_NOT_NULL(cal_data);
96   convertStateToCalStruct(sphere_cal->x, cal_data);
97   cal_data->calibration_time_nanos = sphere_cal->estimate_time_nanos;
98 }
99 
sphereFitResidAndJacobianFunc(const float * state,const void * f_data,float * residual,float * jacobian)100 void sphereFitResidAndJacobianFunc(const float *state, const void *f_data,
101                                    float *residual, float *jacobian) {
102   ASSERT_NOT_NULL(state);
103   ASSERT_NOT_NULL(f_data);
104   ASSERT_NOT_NULL(residual);
105 
106   const struct SphereFitData *data = (const struct SphereFitData*)f_data;
107 
108   // Verify that expected norm is non-zero, else use default of 1.0.
109   float expected_norm = 1.0;
110   ASSERT(data->expected_norm > MIN_VALID_DATA_NORM);
111   if (data->expected_norm > MIN_VALID_DATA_NORM) {
112     expected_norm = data->expected_norm;
113   }
114 
115   // Convert parameters to calibration structure.
116   struct ThreeAxisCalData calstruct;
117   convertStateToCalStruct(state, &calstruct);
118 
119   // Compute Jacobian helper matrix if Jacobian requested.
120   //
121   // J = d(||M(x_data - bias)|| - expected_norm)/dstate
122   //   = (M(x_data - bias) / ||M(x_data - bias)||) * d(M(x_data - bias))/dstate
123   //   = x_corr / ||x_corr|| * A
124   // A = d(M(x_data - bias))/dstate
125   //   = [dy/dM11, dy/dM21, dy/dM22, dy/dM31, dy/dM32, dy/dM3,...
126   //      dy/db1, dy/db2, dy/db3]'
127   // where:
128   // dy/dM11 = [x_data[0] - bias[0], 0, 0]
129   // dy/dM21 = [0, x_data[0] - bias[0], 0]
130   // dy/dM22 = [0, x_data[1] - bias[1], 0]
131   // dy/dM31 = [0, 0, x_data[0] - bias[0]]
132   // dy/dM32 = [0, 0, x_data[1] - bias[1]]
133   // dy/dM33 = [0, 0, x_data[2] - bias[2]]
134   // dy/db1 = [-scale_factor_x, 0, 0]
135   // dy/db2 = [0, -scale_factor_y, 0]
136   // dy/db3 = [0, 0, -scale_factor_z]
137   float A[SF_STATE_DIM * THREE_AXIS_DIM];
138   if (jacobian) {
139     memset(jacobian, 0, sizeof(float) * SF_STATE_DIM * data->num_fit_points);
140     memset(A, 0, sizeof(A));
141     A[0 * SF_STATE_DIM + eParamOffset1] = -calstruct.scale_factor_x;
142     A[1 * SF_STATE_DIM + eParamOffset2] = -calstruct.scale_factor_y;
143     A[2 * SF_STATE_DIM + eParamOffset3] = -calstruct.scale_factor_z;
144   }
145 
146   // Loop over all data points to compute residual and Jacobian.
147   // TODO(dvitus): Use fit_data_std when available to weight residuals.
148   float x_corr[THREE_AXIS_DIM];
149   float x_bias_corr[THREE_AXIS_DIM];
150   size_t i;
151   for (i = 0; i < data->num_fit_points; ++i) {
152     const float *x_data = &data->fit_data[i * THREE_AXIS_DIM];
153 
154     // Compute corrected sensor data
155     calDataCorrectData(&calstruct, x_data, x_corr);
156 
157     // Compute norm of x_corr.
158     const float norm = vecNorm(x_corr, THREE_AXIS_DIM);
159 
160     // Compute residual error: f_x = norm - exp_norm
161     residual[i] = norm - data->expected_norm;
162 
163     // Compute Jacobian if valid pointer.
164     if (jacobian) {
165       if (norm < MIN_VALID_DATA_NORM) {
166         return;
167       }
168       const float scale = 1.f / norm;
169 
170       // Compute bias corrected data.
171       vecSub(x_bias_corr, x_data, calstruct.bias, THREE_AXIS_DIM);
172 
173       // Populate non-bias terms for A
174       A[0 + eParamScaleMatrix11] = x_bias_corr[0];
175       A[1 * SF_STATE_DIM + eParamScaleMatrix21] = x_bias_corr[0];
176       A[1 * SF_STATE_DIM + eParamScaleMatrix22] = x_bias_corr[1];
177       A[2 * SF_STATE_DIM + eParamScaleMatrix31] = x_bias_corr[0];
178       A[2 * SF_STATE_DIM + eParamScaleMatrix32] = x_bias_corr[1];
179       A[2 * SF_STATE_DIM + eParamScaleMatrix33] = x_bias_corr[2];
180 
181       // Compute J = x_corr / ||x_corr|| * A
182       matTransposeMultiplyVec(&jacobian[i * SF_STATE_DIM], A, x_corr,
183                               THREE_AXIS_DIM, SF_STATE_DIM);
184       vecScalarMulInPlace(&jacobian[i * SF_STATE_DIM], scale, SF_STATE_DIM);
185     }
186   }
187 }
188 
convertStateToCalStruct(const float x[SF_STATE_DIM],struct ThreeAxisCalData * calstruct)189 void convertStateToCalStruct(const float x[SF_STATE_DIM],
190                              struct ThreeAxisCalData *calstruct) {
191   memcpy(&calstruct->bias[0], &x[eParamOffset1],
192          sizeof(float) * THREE_AXIS_DIM);
193   calstruct->scale_factor_x = x[eParamScaleMatrix11];
194   calstruct->skew_yx = x[eParamScaleMatrix21];
195   calstruct->scale_factor_y = x[eParamScaleMatrix22];
196   calstruct->skew_zx = x[eParamScaleMatrix31];
197   calstruct->skew_zy = x[eParamScaleMatrix32];
198   calstruct->scale_factor_z = x[eParamScaleMatrix33];
199 }
200 
runCalibration(struct SphereFitCal * sphere_cal,const struct SphereFitData * data,uint64_t timestamp_nanos)201 bool runCalibration(struct SphereFitCal *sphere_cal,
202                     const struct SphereFitData *data,
203                     uint64_t timestamp_nanos) {
204   float x_sol[SF_STATE_DIM];
205 
206   // Run calibration
207   const enum LmStatus status = lmSolverSolve(&sphere_cal->lm_solver,
208                                              sphere_cal->x0, (void *)data,
209                                              SF_STATE_DIM, data->num_fit_points,
210                                              x_sol);
211 
212   // Check if solver was successful
213   if (status == RELATIVE_STEP_SUFFICIENTLY_SMALL ||
214       status == GRADIENT_SUFFICIENTLY_SMALL) {
215     // TODO(dvitus): Check quality of new fit before using.
216     // Store new fit.
217 #ifdef SPHERE_FIT_DBG_ENABLED
218     CAL_DEBUG_LOG(
219         "[SPHERE CAL]",
220         "Solution found in %d iterations with status %d.\n",
221         sphere_cal->lm_solver.num_iter, status);
222     CAL_DEBUG_LOG(
223         "[SPHERE CAL]",
224         "Solution:\n {%s%d.%06d [M(1,1)], %s%d.%06d [M(2,1)], "
225         "%s%d.%06d [M(2,2)], \n"
226         "%s%d.%06d [M(3,1)], %s%d.%06d [M(3,2)], %s%d.%06d [M(3,3)], \n"
227         "%s%d.%06d [b(1)], %s%d.%06d [b(2)], %s%d.%06d [b(3)]}.",
228         CAL_ENCODE_FLOAT(x_sol[0], 6), CAL_ENCODE_FLOAT(x_sol[1], 6),
229         CAL_ENCODE_FLOAT(x_sol[2], 6), CAL_ENCODE_FLOAT(x_sol[3], 6),
230         CAL_ENCODE_FLOAT(x_sol[4], 6), CAL_ENCODE_FLOAT(x_sol[5], 6),
231         CAL_ENCODE_FLOAT(x_sol[6], 6), CAL_ENCODE_FLOAT(x_sol[7], 6),
232         CAL_ENCODE_FLOAT(x_sol[8], 6));
233 #endif
234     memcpy(sphere_cal->x, x_sol, sizeof(x_sol));
235     sphere_cal->estimate_time_nanos = timestamp_nanos;
236     return true;
237   } else {
238 #ifdef SPHERE_FIT_DBG_ENABLED
239      CAL_DEBUG_LOG(
240         "[SPHERE CAL]",
241         "Solution failed in %d iterations with status %d.\n",
242         sphere_cal->lm_solver.num_iter, status);
243 #endif
244   }
245 
246   return false;
247 }
248