1 /*
2 * DTLS implementation written by Nagendra Modadugu
3 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
4 */
5 /* ====================================================================
6 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
59 * All rights reserved.
60 *
61 * This package is an SSL implementation written
62 * by Eric Young (eay@cryptsoft.com).
63 * The implementation was written so as to conform with Netscapes SSL.
64 *
65 * This library is free for commercial and non-commercial use as long as
66 * the following conditions are aheared to. The following conditions
67 * apply to all code found in this distribution, be it the RC4, RSA,
68 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
69 * included with this distribution is covered by the same copyright terms
70 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
71 *
72 * Copyright remains Eric Young's, and as such any Copyright notices in
73 * the code are not to be removed.
74 * If this package is used in a product, Eric Young should be given attribution
75 * as the author of the parts of the library used.
76 * This can be in the form of a textual message at program startup or
77 * in documentation (online or textual) provided with the package.
78 *
79 * Redistribution and use in source and binary forms, with or without
80 * modification, are permitted provided that the following conditions
81 * are met:
82 * 1. Redistributions of source code must retain the copyright
83 * notice, this list of conditions and the following disclaimer.
84 * 2. Redistributions in binary form must reproduce the above copyright
85 * notice, this list of conditions and the following disclaimer in the
86 * documentation and/or other materials provided with the distribution.
87 * 3. All advertising materials mentioning features or use of this software
88 * must display the following acknowledgement:
89 * "This product includes cryptographic software written by
90 * Eric Young (eay@cryptsoft.com)"
91 * The word 'cryptographic' can be left out if the rouines from the library
92 * being used are not cryptographic related :-).
93 * 4. If you include any Windows specific code (or a derivative thereof) from
94 * the apps directory (application code) you must include an acknowledgement:
95 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
96 *
97 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107 * SUCH DAMAGE.
108 *
109 * The licence and distribution terms for any publically available version or
110 * derivative of this code cannot be changed. i.e. this code cannot simply be
111 * copied and put under another distribution licence
112 * [including the GNU Public Licence.] */
113
114 #include <openssl/ssl.h>
115
116 #include <assert.h>
117 #include <limits.h>
118 #include <string.h>
119
120 #include <openssl/buf.h>
121 #include <openssl/err.h>
122 #include <openssl/evp.h>
123 #include <openssl/mem.h>
124 #include <openssl/rand.h>
125
126 #include "../crypto/internal.h"
127 #include "internal.h"
128
129
130 /* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
131 * for these values? Notably, why is kMinMTU a function of the transport
132 * protocol's overhead rather than, say, what's needed to hold a minimally-sized
133 * handshake fragment plus protocol overhead. */
134
135 /* kMinMTU is the minimum acceptable MTU value. */
136 static const unsigned int kMinMTU = 256 - 28;
137
138 /* kDefaultMTU is the default MTU value to use if neither the user nor
139 * the underlying BIO supplies one. */
140 static const unsigned int kDefaultMTU = 1500 - 28;
141
142
143 /* Receiving handshake messages. */
144
dtls1_hm_fragment_free(hm_fragment * frag)145 static void dtls1_hm_fragment_free(hm_fragment *frag) {
146 if (frag == NULL) {
147 return;
148 }
149 OPENSSL_free(frag->data);
150 OPENSSL_free(frag->reassembly);
151 OPENSSL_free(frag);
152 }
153
dtls1_hm_fragment_new(const struct hm_header_st * msg_hdr)154 static hm_fragment *dtls1_hm_fragment_new(const struct hm_header_st *msg_hdr) {
155 hm_fragment *frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment));
156 if (frag == NULL) {
157 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
158 return NULL;
159 }
160 OPENSSL_memset(frag, 0, sizeof(hm_fragment));
161 frag->type = msg_hdr->type;
162 frag->seq = msg_hdr->seq;
163 frag->msg_len = msg_hdr->msg_len;
164
165 /* Allocate space for the reassembled message and fill in the header. */
166 frag->data =
167 (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len);
168 if (frag->data == NULL) {
169 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
170 goto err;
171 }
172
173 CBB cbb;
174 if (!CBB_init_fixed(&cbb, frag->data, DTLS1_HM_HEADER_LENGTH) ||
175 !CBB_add_u8(&cbb, msg_hdr->type) ||
176 !CBB_add_u24(&cbb, msg_hdr->msg_len) ||
177 !CBB_add_u16(&cbb, msg_hdr->seq) ||
178 !CBB_add_u24(&cbb, 0 /* frag_off */) ||
179 !CBB_add_u24(&cbb, msg_hdr->msg_len) ||
180 !CBB_finish(&cbb, NULL, NULL)) {
181 CBB_cleanup(&cbb);
182 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
183 goto err;
184 }
185
186 /* If the handshake message is empty, |frag->reassembly| is NULL. */
187 if (msg_hdr->msg_len > 0) {
188 /* Initialize reassembly bitmask. */
189 if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) {
190 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
191 goto err;
192 }
193 size_t bitmask_len = (msg_hdr->msg_len + 7) / 8;
194 frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len);
195 if (frag->reassembly == NULL) {
196 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
197 goto err;
198 }
199 OPENSSL_memset(frag->reassembly, 0, bitmask_len);
200 }
201
202 return frag;
203
204 err:
205 dtls1_hm_fragment_free(frag);
206 return NULL;
207 }
208
209 /* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
210 * exclusive, set. */
bit_range(size_t start,size_t end)211 static uint8_t bit_range(size_t start, size_t end) {
212 return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
213 }
214
215 /* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
216 * as received in |frag|. If |frag| becomes complete, it clears
217 * |frag->reassembly|. The range must be within the bounds of |frag|'s message
218 * and |frag->reassembly| must not be NULL. */
dtls1_hm_fragment_mark(hm_fragment * frag,size_t start,size_t end)219 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
220 size_t end) {
221 size_t msg_len = frag->msg_len;
222
223 if (frag->reassembly == NULL || start > end || end > msg_len) {
224 assert(0);
225 return;
226 }
227 /* A zero-length message will never have a pending reassembly. */
228 assert(msg_len > 0);
229
230 if ((start >> 3) == (end >> 3)) {
231 frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
232 } else {
233 frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
234 for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) {
235 frag->reassembly[i] = 0xff;
236 }
237 if ((end & 7) != 0) {
238 frag->reassembly[end >> 3] |= bit_range(0, end & 7);
239 }
240 }
241
242 /* Check if the fragment is complete. */
243 for (size_t i = 0; i < (msg_len >> 3); i++) {
244 if (frag->reassembly[i] != 0xff) {
245 return;
246 }
247 }
248 if ((msg_len & 7) != 0 &&
249 frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
250 return;
251 }
252
253 OPENSSL_free(frag->reassembly);
254 frag->reassembly = NULL;
255 }
256
257 /* dtls1_is_current_message_complete returns one if the current handshake
258 * message is complete and zero otherwise. */
dtls1_is_current_message_complete(const SSL * ssl)259 static int dtls1_is_current_message_complete(const SSL *ssl) {
260 hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq %
261 SSL_MAX_HANDSHAKE_FLIGHT];
262 return frag != NULL && frag->reassembly == NULL;
263 }
264
265 /* dtls1_get_incoming_message returns the incoming message corresponding to
266 * |msg_hdr|. If none exists, it creates a new one and inserts it in the
267 * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
268 * returns NULL on failure. The caller does not take ownership of the result. */
dtls1_get_incoming_message(SSL * ssl,const struct hm_header_st * msg_hdr)269 static hm_fragment *dtls1_get_incoming_message(
270 SSL *ssl, const struct hm_header_st *msg_hdr) {
271 if (msg_hdr->seq < ssl->d1->handshake_read_seq ||
272 msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) {
273 return NULL;
274 }
275
276 size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT;
277 hm_fragment *frag = ssl->d1->incoming_messages[idx];
278 if (frag != NULL) {
279 assert(frag->seq == msg_hdr->seq);
280 /* The new fragment must be compatible with the previous fragments from this
281 * message. */
282 if (frag->type != msg_hdr->type ||
283 frag->msg_len != msg_hdr->msg_len) {
284 OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
285 ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
286 return NULL;
287 }
288 return frag;
289 }
290
291 /* This is the first fragment from this message. */
292 frag = dtls1_hm_fragment_new(msg_hdr);
293 if (frag == NULL) {
294 return NULL;
295 }
296 ssl->d1->incoming_messages[idx] = frag;
297 return frag;
298 }
299
300 /* dtls1_process_handshake_record reads a handshake record and processes it. It
301 * returns one if the record was successfully processed and 0 or -1 on error. */
dtls1_process_handshake_record(SSL * ssl)302 static int dtls1_process_handshake_record(SSL *ssl) {
303 SSL3_RECORD *rr = &ssl->s3->rrec;
304
305 start:
306 if (rr->length == 0) {
307 int ret = dtls1_get_record(ssl);
308 if (ret <= 0) {
309 return ret;
310 }
311 }
312
313 /* Cross-epoch records are discarded, but we may receive out-of-order
314 * application data between ChangeCipherSpec and Finished or a
315 * ChangeCipherSpec before the appropriate point in the handshake. Those must
316 * be silently discarded.
317 *
318 * However, only allow the out-of-order records in the correct epoch.
319 * Application data must come in the encrypted epoch, and ChangeCipherSpec in
320 * the unencrypted epoch (we never renegotiate). Other cases fall through and
321 * fail with a fatal error. */
322 if ((rr->type == SSL3_RT_APPLICATION_DATA &&
323 ssl->s3->aead_read_ctx != NULL) ||
324 (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC &&
325 ssl->s3->aead_read_ctx == NULL)) {
326 rr->length = 0;
327 goto start;
328 }
329
330 if (rr->type != SSL3_RT_HANDSHAKE) {
331 ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
332 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
333 return -1;
334 }
335
336 CBS cbs;
337 CBS_init(&cbs, rr->data, rr->length);
338
339 while (CBS_len(&cbs) > 0) {
340 /* Read a handshake fragment. */
341 struct hm_header_st msg_hdr;
342 CBS body;
343 if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
344 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
345 ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
346 return -1;
347 }
348
349 const size_t frag_off = msg_hdr.frag_off;
350 const size_t frag_len = msg_hdr.frag_len;
351 const size_t msg_len = msg_hdr.msg_len;
352 if (frag_off > msg_len || frag_off + frag_len < frag_off ||
353 frag_off + frag_len > msg_len ||
354 msg_len > ssl_max_handshake_message_len(ssl)) {
355 OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
356 ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
357 return -1;
358 }
359
360 /* The encrypted epoch in DTLS has only one handshake message. */
361 if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) {
362 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
363 ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
364 return -1;
365 }
366
367 if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
368 msg_hdr.seq >
369 (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) {
370 /* Ignore fragments from the past, or ones too far in the future. */
371 continue;
372 }
373
374 hm_fragment *frag = dtls1_get_incoming_message(ssl, &msg_hdr);
375 if (frag == NULL) {
376 return -1;
377 }
378 assert(frag->msg_len == msg_len);
379
380 if (frag->reassembly == NULL) {
381 /* The message is already assembled. */
382 continue;
383 }
384 assert(msg_len > 0);
385
386 /* Copy the body into the fragment. */
387 OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off,
388 CBS_data(&body), CBS_len(&body));
389 dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
390 }
391
392 rr->length = 0;
393 ssl_read_buffer_discard(ssl);
394 return 1;
395 }
396
dtls1_get_message(SSL * ssl)397 int dtls1_get_message(SSL *ssl) {
398 if (ssl->s3->tmp.reuse_message) {
399 /* There must be a current message. */
400 assert(ssl->init_msg != NULL);
401 ssl->s3->tmp.reuse_message = 0;
402 } else {
403 dtls1_release_current_message(ssl, 0 /* don't free buffer */);
404 }
405
406 /* Process handshake records until the current message is ready. */
407 while (!dtls1_is_current_message_complete(ssl)) {
408 int ret = dtls1_process_handshake_record(ssl);
409 if (ret <= 0) {
410 return ret;
411 }
412 }
413
414 hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq %
415 SSL_MAX_HANDSHAKE_FLIGHT];
416 assert(frag != NULL);
417 assert(frag->reassembly == NULL);
418 assert(ssl->d1->handshake_read_seq == frag->seq);
419
420 /* TODO(davidben): This function has a lot of implicit outputs. Simplify the
421 * |ssl_get_message| API. */
422 ssl->s3->tmp.message_type = frag->type;
423 ssl->init_msg = frag->data + DTLS1_HM_HEADER_LENGTH;
424 ssl->init_num = frag->msg_len;
425
426 ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, frag->data,
427 ssl->init_num + DTLS1_HM_HEADER_LENGTH);
428 return 1;
429 }
430
dtls1_get_current_message(const SSL * ssl,CBS * out)431 void dtls1_get_current_message(const SSL *ssl, CBS *out) {
432 assert(dtls1_is_current_message_complete(ssl));
433
434 hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq %
435 SSL_MAX_HANDSHAKE_FLIGHT];
436 CBS_init(out, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len);
437 }
438
dtls1_release_current_message(SSL * ssl,int free_buffer)439 void dtls1_release_current_message(SSL *ssl, int free_buffer) {
440 if (ssl->init_msg == NULL) {
441 return;
442 }
443
444 assert(dtls1_is_current_message_complete(ssl));
445 size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
446 dtls1_hm_fragment_free(ssl->d1->incoming_messages[index]);
447 ssl->d1->incoming_messages[index] = NULL;
448 ssl->d1->handshake_read_seq++;
449
450 ssl->init_msg = NULL;
451 ssl->init_num = 0;
452 }
453
dtls_clear_incoming_messages(SSL * ssl)454 void dtls_clear_incoming_messages(SSL *ssl) {
455 for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
456 dtls1_hm_fragment_free(ssl->d1->incoming_messages[i]);
457 ssl->d1->incoming_messages[i] = NULL;
458 }
459 }
460
dtls_has_incoming_messages(const SSL * ssl)461 int dtls_has_incoming_messages(const SSL *ssl) {
462 size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
463 for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
464 /* Skip the current message. */
465 if (ssl->init_msg != NULL && i == current) {
466 assert(dtls1_is_current_message_complete(ssl));
467 continue;
468 }
469 if (ssl->d1->incoming_messages[i] != NULL) {
470 return 1;
471 }
472 }
473 return 0;
474 }
475
dtls1_parse_fragment(CBS * cbs,struct hm_header_st * out_hdr,CBS * out_body)476 int dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
477 CBS *out_body) {
478 OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st));
479
480 if (!CBS_get_u8(cbs, &out_hdr->type) ||
481 !CBS_get_u24(cbs, &out_hdr->msg_len) ||
482 !CBS_get_u16(cbs, &out_hdr->seq) ||
483 !CBS_get_u24(cbs, &out_hdr->frag_off) ||
484 !CBS_get_u24(cbs, &out_hdr->frag_len) ||
485 !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
486 return 0;
487 }
488
489 return 1;
490 }
491
492
493 /* Sending handshake messages. */
494
dtls_clear_outgoing_messages(SSL * ssl)495 void dtls_clear_outgoing_messages(SSL *ssl) {
496 for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) {
497 OPENSSL_free(ssl->d1->outgoing_messages[i].data);
498 ssl->d1->outgoing_messages[i].data = NULL;
499 }
500 ssl->d1->outgoing_messages_len = 0;
501 ssl->d1->outgoing_written = 0;
502 ssl->d1->outgoing_offset = 0;
503 }
504
dtls1_init_message(SSL * ssl,CBB * cbb,CBB * body,uint8_t type)505 int dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) {
506 /* Pick a modest size hint to save most of the |realloc| calls. */
507 if (!CBB_init(cbb, 64) ||
508 !CBB_add_u8(cbb, type) ||
509 !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||
510 !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||
511 !CBB_add_u24(cbb, 0 /* offset */) ||
512 !CBB_add_u24_length_prefixed(cbb, body)) {
513 return 0;
514 }
515
516 return 1;
517 }
518
dtls1_finish_message(SSL * ssl,CBB * cbb,uint8_t ** out_msg,size_t * out_len)519 int dtls1_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg,
520 size_t *out_len) {
521 *out_msg = NULL;
522 if (!CBB_finish(cbb, out_msg, out_len) ||
523 *out_len < DTLS1_HM_HEADER_LENGTH) {
524 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
525 OPENSSL_free(*out_msg);
526 return 0;
527 }
528
529 /* Fix up the header. Copy the fragment length into the total message
530 * length. */
531 OPENSSL_memcpy(*out_msg + 1, *out_msg + DTLS1_HM_HEADER_LENGTH - 3, 3);
532 return 1;
533 }
534
535 /* add_outgoing adds a new handshake message or ChangeCipherSpec to the current
536 * outgoing flight. It returns one on success and zero on error. In both cases,
537 * it takes ownership of |data| and releases it with |OPENSSL_free| when
538 * done. */
add_outgoing(SSL * ssl,int is_ccs,uint8_t * data,size_t len)539 static int add_outgoing(SSL *ssl, int is_ccs, uint8_t *data, size_t len) {
540 static_assert(SSL_MAX_HANDSHAKE_FLIGHT <
541 (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)),
542 "outgoing_messages_len is too small");
543 if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT) {
544 assert(0);
545 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
546 OPENSSL_free(data);
547 return 0;
548 }
549
550 if (!is_ccs) {
551 /* TODO(svaldez): Move this up a layer to fix abstraction for SSL_TRANSCRIPT
552 * on hs. */
553 if (ssl->s3->hs != NULL &&
554 !SSL_TRANSCRIPT_update(&ssl->s3->hs->transcript, data, len)) {
555 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
556 OPENSSL_free(data);
557 return 0;
558 }
559 ssl->d1->handshake_write_seq++;
560 }
561
562 DTLS_OUTGOING_MESSAGE *msg =
563 &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len];
564 msg->data = data;
565 msg->len = len;
566 msg->epoch = ssl->d1->w_epoch;
567 msg->is_ccs = is_ccs;
568
569 ssl->d1->outgoing_messages_len++;
570 return 1;
571 }
572
dtls1_add_message(SSL * ssl,uint8_t * data,size_t len)573 int dtls1_add_message(SSL *ssl, uint8_t *data, size_t len) {
574 return add_outgoing(ssl, 0 /* handshake */, data, len);
575 }
576
dtls1_add_change_cipher_spec(SSL * ssl)577 int dtls1_add_change_cipher_spec(SSL *ssl) {
578 return add_outgoing(ssl, 1 /* ChangeCipherSpec */, NULL, 0);
579 }
580
dtls1_add_alert(SSL * ssl,uint8_t level,uint8_t desc)581 int dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc) {
582 /* The |add_alert| path is only used for warning alerts for now, which DTLS
583 * never sends. This will be implemented later once closure alerts are
584 * converted. */
585 assert(0);
586 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
587 return 0;
588 }
589
590 /* dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above
591 * the minimum. */
dtls1_update_mtu(SSL * ssl)592 static void dtls1_update_mtu(SSL *ssl) {
593 /* TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the
594 * only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use
595 * |SSL_set_mtu|. Does this need to be so complex? */
596 if (ssl->d1->mtu < dtls1_min_mtu() &&
597 !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
598 long mtu = BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
599 if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
600 ssl->d1->mtu = (unsigned)mtu;
601 } else {
602 ssl->d1->mtu = kDefaultMTU;
603 BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
604 }
605 }
606
607 /* The MTU should be above the minimum now. */
608 assert(ssl->d1->mtu >= dtls1_min_mtu());
609 }
610
611 enum seal_result_t {
612 seal_error,
613 seal_no_progress,
614 seal_partial,
615 seal_success,
616 };
617
618 /* seal_next_message seals |msg|, which must be the next message, to |out|. If
619 * progress was made, it returns |seal_partial| or |seal_success| and sets
620 * |*out_len| to the number of bytes written. */
seal_next_message(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out,const DTLS_OUTGOING_MESSAGE * msg)621 static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out,
622 size_t *out_len, size_t max_out,
623 const DTLS_OUTGOING_MESSAGE *msg) {
624 assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
625 assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]);
626
627 /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
628 * (negotiated cipher) exist. */
629 assert(ssl->d1->w_epoch == 0 || ssl->d1->w_epoch == 1);
630 assert(msg->epoch <= ssl->d1->w_epoch);
631 enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
632 if (ssl->d1->w_epoch == 1 && msg->epoch == 0) {
633 use_epoch = dtls1_use_previous_epoch;
634 }
635 size_t overhead = dtls_max_seal_overhead(ssl, use_epoch);
636 size_t prefix = dtls_seal_prefix_len(ssl, use_epoch);
637
638 if (msg->is_ccs) {
639 /* Check there is room for the ChangeCipherSpec. */
640 static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
641 if (max_out < sizeof(kChangeCipherSpec) + overhead) {
642 return seal_no_progress;
643 }
644
645 if (!dtls_seal_record(ssl, out, out_len, max_out,
646 SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
647 sizeof(kChangeCipherSpec), use_epoch)) {
648 return seal_error;
649 }
650
651 ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC,
652 kChangeCipherSpec, sizeof(kChangeCipherSpec));
653 return seal_success;
654 }
655
656 /* DTLS messages are serialized as a single fragment in |msg|. */
657 CBS cbs, body;
658 struct hm_header_st hdr;
659 CBS_init(&cbs, msg->data, msg->len);
660 if (!dtls1_parse_fragment(&cbs, &hdr, &body) ||
661 hdr.frag_off != 0 ||
662 hdr.frag_len != CBS_len(&body) ||
663 hdr.msg_len != CBS_len(&body) ||
664 !CBS_skip(&body, ssl->d1->outgoing_offset) ||
665 CBS_len(&cbs) != 0) {
666 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
667 return seal_error;
668 }
669
670 /* Determine how much progress can be made. */
671 if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) {
672 return seal_no_progress;
673 }
674 size_t todo = CBS_len(&body);
675 if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) {
676 todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead;
677 }
678
679 /* Assemble a fragment, to be sealed in-place. */
680 CBB cbb;
681 uint8_t *frag = out + prefix;
682 size_t max_frag = max_out - prefix, frag_len;
683 if (!CBB_init_fixed(&cbb, frag, max_frag) ||
684 !CBB_add_u8(&cbb, hdr.type) ||
685 !CBB_add_u24(&cbb, hdr.msg_len) ||
686 !CBB_add_u16(&cbb, hdr.seq) ||
687 !CBB_add_u24(&cbb, ssl->d1->outgoing_offset) ||
688 !CBB_add_u24(&cbb, todo) ||
689 !CBB_add_bytes(&cbb, CBS_data(&body), todo) ||
690 !CBB_finish(&cbb, NULL, &frag_len)) {
691 CBB_cleanup(&cbb);
692 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
693 return seal_error;
694 }
695
696 ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, frag, frag_len);
697
698 if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE,
699 out + prefix, frag_len, use_epoch)) {
700 return seal_error;
701 }
702
703 if (todo == CBS_len(&body)) {
704 /* The next message is complete. */
705 ssl->d1->outgoing_offset = 0;
706 return seal_success;
707 }
708
709 ssl->d1->outgoing_offset += todo;
710 return seal_partial;
711 }
712
713 /* seal_next_packet writes as much of the next flight as possible to |out| and
714 * advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as
715 * appropriate. */
seal_next_packet(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out)716 static int seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len,
717 size_t max_out) {
718 int made_progress = 0;
719 size_t total = 0;
720 assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
721 for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len;
722 ssl->d1->outgoing_written++) {
723 const DTLS_OUTGOING_MESSAGE *msg =
724 &ssl->d1->outgoing_messages[ssl->d1->outgoing_written];
725 size_t len;
726 enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg);
727 switch (ret) {
728 case seal_error:
729 return 0;
730
731 case seal_no_progress:
732 goto packet_full;
733
734 case seal_partial:
735 case seal_success:
736 out += len;
737 max_out -= len;
738 total += len;
739 made_progress = 1;
740
741 if (ret == seal_partial) {
742 goto packet_full;
743 }
744 break;
745 }
746 }
747
748 packet_full:
749 /* The MTU was too small to make any progress. */
750 if (!made_progress) {
751 OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
752 return 0;
753 }
754
755 *out_len = total;
756 return 1;
757 }
758
dtls1_flush_flight(SSL * ssl)759 int dtls1_flush_flight(SSL *ssl) {
760 dtls1_update_mtu(ssl);
761
762 int ret = -1;
763 uint8_t *packet = (uint8_t *)OPENSSL_malloc(ssl->d1->mtu);
764 if (packet == NULL) {
765 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
766 goto err;
767 }
768
769 while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) {
770 uint8_t old_written = ssl->d1->outgoing_written;
771 uint32_t old_offset = ssl->d1->outgoing_offset;
772
773 size_t packet_len;
774 if (!seal_next_packet(ssl, packet, &packet_len, ssl->d1->mtu)) {
775 goto err;
776 }
777
778 int bio_ret = BIO_write(ssl->wbio, packet, packet_len);
779 if (bio_ret <= 0) {
780 /* Retry this packet the next time around. */
781 ssl->d1->outgoing_written = old_written;
782 ssl->d1->outgoing_offset = old_offset;
783 ssl->rwstate = SSL_WRITING;
784 ret = bio_ret;
785 goto err;
786 }
787 }
788
789 if (BIO_flush(ssl->wbio) <= 0) {
790 ssl->rwstate = SSL_WRITING;
791 goto err;
792 }
793
794 ret = 1;
795
796 err:
797 OPENSSL_free(packet);
798 return ret;
799 }
800
dtls1_retransmit_outgoing_messages(SSL * ssl)801 int dtls1_retransmit_outgoing_messages(SSL *ssl) {
802 /* Rewind to the start of the flight and write it again.
803 *
804 * TODO(davidben): This does not allow retransmits to be resumed on
805 * non-blocking write. */
806 ssl->d1->outgoing_written = 0;
807 ssl->d1->outgoing_offset = 0;
808
809 return dtls1_flush_flight(ssl);
810 }
811
dtls1_min_mtu(void)812 unsigned int dtls1_min_mtu(void) {
813 return kMinMTU;
814 }
815