1 //===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the RewriteRope class, which is a powerful string.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Rewrite/Core/RewriteRope.h"
15 #include "clang/Basic/LLVM.h"
16 #include <algorithm>
17 using namespace clang;
18
19 /// RewriteRope is a "strong" string class, designed to make insertions and
20 /// deletions in the middle of the string nearly constant time (really, they are
21 /// O(log N), but with a very low constant factor).
22 ///
23 /// The implementation of this datastructure is a conceptual linear sequence of
24 /// RopePiece elements. Each RopePiece represents a view on a separately
25 /// allocated and reference counted string. This means that splitting a very
26 /// long string can be done in constant time by splitting a RopePiece that
27 /// references the whole string into two rope pieces that reference each half.
28 /// Once split, another string can be inserted in between the two halves by
29 /// inserting a RopePiece in between the two others. All of this is very
30 /// inexpensive: it takes time proportional to the number of RopePieces, not the
31 /// length of the strings they represent.
32 ///
33 /// While a linear sequences of RopePieces is the conceptual model, the actual
34 /// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
35 /// is a tree that keeps the values in the leaves and has where each node
36 /// contains a reasonable number of pointers to children/values) allows us to
37 /// maintain efficient operation when the RewriteRope contains a *huge* number
38 /// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
39 /// the RopePiece corresponding to some offset very efficiently, and it
40 /// automatically balances itself on insertions of RopePieces (which can happen
41 /// for both insertions and erases of string ranges).
42 ///
43 /// The one wrinkle on the theory is that we don't attempt to keep the tree
44 /// properly balanced when erases happen. Erases of string data can both insert
45 /// new RopePieces (e.g. when the middle of some other rope piece is deleted,
46 /// which results in two rope pieces, which is just like an insert) or it can
47 /// reduce the number of RopePieces maintained by the B+Tree. In the case when
48 /// the number of RopePieces is reduced, we don't attempt to maintain the
49 /// standard 'invariant' that each node in the tree contains at least
50 /// 'WidthFactor' children/values. For our use cases, this doesn't seem to
51 /// matter.
52 ///
53 /// The implementation below is primarily implemented in terms of three classes:
54 /// RopePieceBTreeNode - Common base class for:
55 ///
56 /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
57 /// nodes. This directly represents a chunk of the string with those
58 /// RopePieces contatenated.
59 /// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
60 /// up to '2*WidthFactor' other nodes in the tree.
61
62
63 //===----------------------------------------------------------------------===//
64 // RopePieceBTreeNode Class
65 //===----------------------------------------------------------------------===//
66
67 namespace {
68 /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
69 /// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
70 /// and a flag that determines which subclass the instance is. Also
71 /// important, this node knows the full extend of the node, including any
72 /// children that it has. This allows efficient skipping over entire subtrees
73 /// when looking for an offset in the BTree.
74 class RopePieceBTreeNode {
75 protected:
76 /// WidthFactor - This controls the number of K/V slots held in the BTree:
77 /// how wide it is. Each level of the BTree is guaranteed to have at least
78 /// 'WidthFactor' elements in it (either ropepieces or children), (except
79 /// the root, which may have less) and may have at most 2*WidthFactor
80 /// elements.
81 enum { WidthFactor = 8 };
82
83 /// Size - This is the number of bytes of file this node (including any
84 /// potential children) covers.
85 unsigned Size;
86
87 /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
88 /// is an instance of RopePieceBTreeInterior.
89 bool IsLeaf;
90
RopePieceBTreeNode(bool isLeaf)91 RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
92 ~RopePieceBTreeNode() = default;
93
94 public:
isLeaf() const95 bool isLeaf() const { return IsLeaf; }
size() const96 unsigned size() const { return Size; }
97
98 void Destroy();
99
100 /// split - Split the range containing the specified offset so that we are
101 /// guaranteed that there is a place to do an insertion at the specified
102 /// offset. The offset is relative, so "0" is the start of the node.
103 ///
104 /// If there is no space in this subtree for the extra piece, the extra tree
105 /// node is returned and must be inserted into a parent.
106 RopePieceBTreeNode *split(unsigned Offset);
107
108 /// insert - Insert the specified ropepiece into this tree node at the
109 /// specified offset. The offset is relative, so "0" is the start of the
110 /// node.
111 ///
112 /// If there is no space in this subtree for the extra piece, the extra tree
113 /// node is returned and must be inserted into a parent.
114 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
115
116 /// erase - Remove NumBytes from this node at the specified offset. We are
117 /// guaranteed that there is a split at Offset.
118 void erase(unsigned Offset, unsigned NumBytes);
119
120 };
121 } // end anonymous namespace
122
123 //===----------------------------------------------------------------------===//
124 // RopePieceBTreeLeaf Class
125 //===----------------------------------------------------------------------===//
126
127 namespace {
128 /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
129 /// nodes. This directly represents a chunk of the string with those
130 /// RopePieces contatenated. Since this is a B+Tree, all values (in this case
131 /// instances of RopePiece) are stored in leaves like this. To make iteration
132 /// over the leaves efficient, they maintain a singly linked list through the
133 /// NextLeaf field. This allows the B+Tree forward iterator to be constant
134 /// time for all increments.
135 class RopePieceBTreeLeaf : public RopePieceBTreeNode {
136 /// NumPieces - This holds the number of rope pieces currently active in the
137 /// Pieces array.
138 unsigned char NumPieces;
139
140 /// Pieces - This tracks the file chunks currently in this leaf.
141 ///
142 RopePiece Pieces[2*WidthFactor];
143
144 /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
145 /// efficient in-order forward iteration of the tree without traversal.
146 RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
147 public:
RopePieceBTreeLeaf()148 RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
149 PrevLeaf(nullptr), NextLeaf(nullptr) {}
~RopePieceBTreeLeaf()150 ~RopePieceBTreeLeaf() {
151 if (PrevLeaf || NextLeaf)
152 removeFromLeafInOrder();
153 clear();
154 }
155
isFull() const156 bool isFull() const { return NumPieces == 2*WidthFactor; }
157
158 /// clear - Remove all rope pieces from this leaf.
clear()159 void clear() {
160 while (NumPieces)
161 Pieces[--NumPieces] = RopePiece();
162 Size = 0;
163 }
164
getNumPieces() const165 unsigned getNumPieces() const { return NumPieces; }
166
getPiece(unsigned i) const167 const RopePiece &getPiece(unsigned i) const {
168 assert(i < getNumPieces() && "Invalid piece ID");
169 return Pieces[i];
170 }
171
getNextLeafInOrder() const172 const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
insertAfterLeafInOrder(RopePieceBTreeLeaf * Node)173 void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
174 assert(!PrevLeaf && !NextLeaf && "Already in ordering");
175
176 NextLeaf = Node->NextLeaf;
177 if (NextLeaf)
178 NextLeaf->PrevLeaf = &NextLeaf;
179 PrevLeaf = &Node->NextLeaf;
180 Node->NextLeaf = this;
181 }
182
removeFromLeafInOrder()183 void removeFromLeafInOrder() {
184 if (PrevLeaf) {
185 *PrevLeaf = NextLeaf;
186 if (NextLeaf)
187 NextLeaf->PrevLeaf = PrevLeaf;
188 } else if (NextLeaf) {
189 NextLeaf->PrevLeaf = nullptr;
190 }
191 }
192
193 /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
194 /// summing the size of all RopePieces.
FullRecomputeSizeLocally()195 void FullRecomputeSizeLocally() {
196 Size = 0;
197 for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
198 Size += getPiece(i).size();
199 }
200
201 /// split - Split the range containing the specified offset so that we are
202 /// guaranteed that there is a place to do an insertion at the specified
203 /// offset. The offset is relative, so "0" is the start of the node.
204 ///
205 /// If there is no space in this subtree for the extra piece, the extra tree
206 /// node is returned and must be inserted into a parent.
207 RopePieceBTreeNode *split(unsigned Offset);
208
209 /// insert - Insert the specified ropepiece into this tree node at the
210 /// specified offset. The offset is relative, so "0" is the start of the
211 /// node.
212 ///
213 /// If there is no space in this subtree for the extra piece, the extra tree
214 /// node is returned and must be inserted into a parent.
215 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
216
217
218 /// erase - Remove NumBytes from this node at the specified offset. We are
219 /// guaranteed that there is a split at Offset.
220 void erase(unsigned Offset, unsigned NumBytes);
221
classof(const RopePieceBTreeNode * N)222 static inline bool classof(const RopePieceBTreeNode *N) {
223 return N->isLeaf();
224 }
225 };
226 } // end anonymous namespace
227
228 /// split - Split the range containing the specified offset so that we are
229 /// guaranteed that there is a place to do an insertion at the specified
230 /// offset. The offset is relative, so "0" is the start of the node.
231 ///
232 /// If there is no space in this subtree for the extra piece, the extra tree
233 /// node is returned and must be inserted into a parent.
split(unsigned Offset)234 RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
235 // Find the insertion point. We are guaranteed that there is a split at the
236 // specified offset so find it.
237 if (Offset == 0 || Offset == size()) {
238 // Fastpath for a common case. There is already a splitpoint at the end.
239 return nullptr;
240 }
241
242 // Find the piece that this offset lands in.
243 unsigned PieceOffs = 0;
244 unsigned i = 0;
245 while (Offset >= PieceOffs+Pieces[i].size()) {
246 PieceOffs += Pieces[i].size();
247 ++i;
248 }
249
250 // If there is already a split point at the specified offset, just return
251 // success.
252 if (PieceOffs == Offset)
253 return nullptr;
254
255 // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
256 // to being Piece relative.
257 unsigned IntraPieceOffset = Offset-PieceOffs;
258
259 // We do this by shrinking the RopePiece and then doing an insert of the tail.
260 RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
261 Pieces[i].EndOffs);
262 Size -= Pieces[i].size();
263 Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
264 Size += Pieces[i].size();
265
266 return insert(Offset, Tail);
267 }
268
269
270 /// insert - Insert the specified RopePiece into this tree node at the
271 /// specified offset. The offset is relative, so "0" is the start of the node.
272 ///
273 /// If there is no space in this subtree for the extra piece, the extra tree
274 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)275 RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
276 const RopePiece &R) {
277 // If this node is not full, insert the piece.
278 if (!isFull()) {
279 // Find the insertion point. We are guaranteed that there is a split at the
280 // specified offset so find it.
281 unsigned i = 0, e = getNumPieces();
282 if (Offset == size()) {
283 // Fastpath for a common case.
284 i = e;
285 } else {
286 unsigned SlotOffs = 0;
287 for (; Offset > SlotOffs; ++i)
288 SlotOffs += getPiece(i).size();
289 assert(SlotOffs == Offset && "Split didn't occur before insertion!");
290 }
291
292 // For an insertion into a non-full leaf node, just insert the value in
293 // its sorted position. This requires moving later values over.
294 for (; i != e; --e)
295 Pieces[e] = Pieces[e-1];
296 Pieces[i] = R;
297 ++NumPieces;
298 Size += R.size();
299 return nullptr;
300 }
301
302 // Otherwise, if this is leaf is full, split it in two halves. Since this
303 // node is full, it contains 2*WidthFactor values. We move the first
304 // 'WidthFactor' values to the LHS child (which we leave in this node) and
305 // move the last 'WidthFactor' values into the RHS child.
306
307 // Create the new node.
308 RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
309
310 // Move over the last 'WidthFactor' values from here to NewNode.
311 std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
312 &NewNode->Pieces[0]);
313 // Replace old pieces with null RopePieces to drop refcounts.
314 std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
315
316 // Decrease the number of values in the two nodes.
317 NewNode->NumPieces = NumPieces = WidthFactor;
318
319 // Recompute the two nodes' size.
320 NewNode->FullRecomputeSizeLocally();
321 FullRecomputeSizeLocally();
322
323 // Update the list of leaves.
324 NewNode->insertAfterLeafInOrder(this);
325
326 // These insertions can't fail.
327 if (this->size() >= Offset)
328 this->insert(Offset, R);
329 else
330 NewNode->insert(Offset - this->size(), R);
331 return NewNode;
332 }
333
334 /// erase - Remove NumBytes from this node at the specified offset. We are
335 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)336 void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
337 // Since we are guaranteed that there is a split at Offset, we start by
338 // finding the Piece that starts there.
339 unsigned PieceOffs = 0;
340 unsigned i = 0;
341 for (; Offset > PieceOffs; ++i)
342 PieceOffs += getPiece(i).size();
343 assert(PieceOffs == Offset && "Split didn't occur before erase!");
344
345 unsigned StartPiece = i;
346
347 // Figure out how many pieces completely cover 'NumBytes'. We want to remove
348 // all of them.
349 for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
350 PieceOffs += getPiece(i).size();
351
352 // If we exactly include the last one, include it in the region to delete.
353 if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
354 PieceOffs += getPiece(i).size();
355 ++i;
356 }
357
358 // If we completely cover some RopePieces, erase them now.
359 if (i != StartPiece) {
360 unsigned NumDeleted = i-StartPiece;
361 for (; i != getNumPieces(); ++i)
362 Pieces[i-NumDeleted] = Pieces[i];
363
364 // Drop references to dead rope pieces.
365 std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
366 RopePiece());
367 NumPieces -= NumDeleted;
368
369 unsigned CoverBytes = PieceOffs-Offset;
370 NumBytes -= CoverBytes;
371 Size -= CoverBytes;
372 }
373
374 // If we completely removed some stuff, we could be done.
375 if (NumBytes == 0) return;
376
377 // Okay, now might be erasing part of some Piece. If this is the case, then
378 // move the start point of the piece.
379 assert(getPiece(StartPiece).size() > NumBytes);
380 Pieces[StartPiece].StartOffs += NumBytes;
381
382 // The size of this node just shrunk by NumBytes.
383 Size -= NumBytes;
384 }
385
386 //===----------------------------------------------------------------------===//
387 // RopePieceBTreeInterior Class
388 //===----------------------------------------------------------------------===//
389
390 namespace {
391 /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
392 /// which holds up to 2*WidthFactor pointers to child nodes.
393 class RopePieceBTreeInterior : public RopePieceBTreeNode {
394 /// NumChildren - This holds the number of children currently active in the
395 /// Children array.
396 unsigned char NumChildren;
397 RopePieceBTreeNode *Children[2*WidthFactor];
398 public:
RopePieceBTreeInterior()399 RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
400
RopePieceBTreeInterior(RopePieceBTreeNode * LHS,RopePieceBTreeNode * RHS)401 RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
402 : RopePieceBTreeNode(false) {
403 Children[0] = LHS;
404 Children[1] = RHS;
405 NumChildren = 2;
406 Size = LHS->size() + RHS->size();
407 }
408
~RopePieceBTreeInterior()409 ~RopePieceBTreeInterior() {
410 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
411 Children[i]->Destroy();
412 }
413
isFull() const414 bool isFull() const { return NumChildren == 2*WidthFactor; }
415
getNumChildren() const416 unsigned getNumChildren() const { return NumChildren; }
getChild(unsigned i) const417 const RopePieceBTreeNode *getChild(unsigned i) const {
418 assert(i < NumChildren && "invalid child #");
419 return Children[i];
420 }
getChild(unsigned i)421 RopePieceBTreeNode *getChild(unsigned i) {
422 assert(i < NumChildren && "invalid child #");
423 return Children[i];
424 }
425
426 /// FullRecomputeSizeLocally - Recompute the Size field of this node by
427 /// summing up the sizes of the child nodes.
FullRecomputeSizeLocally()428 void FullRecomputeSizeLocally() {
429 Size = 0;
430 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
431 Size += getChild(i)->size();
432 }
433
434
435 /// split - Split the range containing the specified offset so that we are
436 /// guaranteed that there is a place to do an insertion at the specified
437 /// offset. The offset is relative, so "0" is the start of the node.
438 ///
439 /// If there is no space in this subtree for the extra piece, the extra tree
440 /// node is returned and must be inserted into a parent.
441 RopePieceBTreeNode *split(unsigned Offset);
442
443
444 /// insert - Insert the specified ropepiece into this tree node at the
445 /// specified offset. The offset is relative, so "0" is the start of the
446 /// node.
447 ///
448 /// If there is no space in this subtree for the extra piece, the extra tree
449 /// node is returned and must be inserted into a parent.
450 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
451
452 /// HandleChildPiece - A child propagated an insertion result up to us.
453 /// Insert the new child, and/or propagate the result further up the tree.
454 RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
455
456 /// erase - Remove NumBytes from this node at the specified offset. We are
457 /// guaranteed that there is a split at Offset.
458 void erase(unsigned Offset, unsigned NumBytes);
459
classof(const RopePieceBTreeNode * N)460 static inline bool classof(const RopePieceBTreeNode *N) {
461 return !N->isLeaf();
462 }
463 };
464 } // end anonymous namespace
465
466 /// split - Split the range containing the specified offset so that we are
467 /// guaranteed that there is a place to do an insertion at the specified
468 /// offset. The offset is relative, so "0" is the start of the node.
469 ///
470 /// If there is no space in this subtree for the extra piece, the extra tree
471 /// node is returned and must be inserted into a parent.
split(unsigned Offset)472 RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
473 // Figure out which child to split.
474 if (Offset == 0 || Offset == size())
475 return nullptr; // If we have an exact offset, we're already split.
476
477 unsigned ChildOffset = 0;
478 unsigned i = 0;
479 for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
480 ChildOffset += getChild(i)->size();
481
482 // If already split there, we're done.
483 if (ChildOffset == Offset)
484 return nullptr;
485
486 // Otherwise, recursively split the child.
487 if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
488 return HandleChildPiece(i, RHS);
489 return nullptr; // Done!
490 }
491
492 /// insert - Insert the specified ropepiece into this tree node at the
493 /// specified offset. The offset is relative, so "0" is the start of the
494 /// node.
495 ///
496 /// If there is no space in this subtree for the extra piece, the extra tree
497 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)498 RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
499 const RopePiece &R) {
500 // Find the insertion point. We are guaranteed that there is a split at the
501 // specified offset so find it.
502 unsigned i = 0, e = getNumChildren();
503
504 unsigned ChildOffs = 0;
505 if (Offset == size()) {
506 // Fastpath for a common case. Insert at end of last child.
507 i = e-1;
508 ChildOffs = size()-getChild(i)->size();
509 } else {
510 for (; Offset > ChildOffs+getChild(i)->size(); ++i)
511 ChildOffs += getChild(i)->size();
512 }
513
514 Size += R.size();
515
516 // Insert at the end of this child.
517 if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
518 return HandleChildPiece(i, RHS);
519
520 return nullptr;
521 }
522
523 /// HandleChildPiece - A child propagated an insertion result up to us.
524 /// Insert the new child, and/or propagate the result further up the tree.
525 RopePieceBTreeNode *
HandleChildPiece(unsigned i,RopePieceBTreeNode * RHS)526 RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
527 // Otherwise the child propagated a subtree up to us as a new child. See if
528 // we have space for it here.
529 if (!isFull()) {
530 // Insert RHS after child 'i'.
531 if (i + 1 != getNumChildren())
532 memmove(&Children[i+2], &Children[i+1],
533 (getNumChildren()-i-1)*sizeof(Children[0]));
534 Children[i+1] = RHS;
535 ++NumChildren;
536 return nullptr;
537 }
538
539 // Okay, this node is full. Split it in half, moving WidthFactor children to
540 // a newly allocated interior node.
541
542 // Create the new node.
543 RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
544
545 // Move over the last 'WidthFactor' values from here to NewNode.
546 memcpy(&NewNode->Children[0], &Children[WidthFactor],
547 WidthFactor*sizeof(Children[0]));
548
549 // Decrease the number of values in the two nodes.
550 NewNode->NumChildren = NumChildren = WidthFactor;
551
552 // Finally, insert the two new children in the side the can (now) hold them.
553 // These insertions can't fail.
554 if (i < WidthFactor)
555 this->HandleChildPiece(i, RHS);
556 else
557 NewNode->HandleChildPiece(i-WidthFactor, RHS);
558
559 // Recompute the two nodes' size.
560 NewNode->FullRecomputeSizeLocally();
561 FullRecomputeSizeLocally();
562 return NewNode;
563 }
564
565 /// erase - Remove NumBytes from this node at the specified offset. We are
566 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)567 void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
568 // This will shrink this node by NumBytes.
569 Size -= NumBytes;
570
571 // Find the first child that overlaps with Offset.
572 unsigned i = 0;
573 for (; Offset >= getChild(i)->size(); ++i)
574 Offset -= getChild(i)->size();
575
576 // Propagate the delete request into overlapping children, or completely
577 // delete the children as appropriate.
578 while (NumBytes) {
579 RopePieceBTreeNode *CurChild = getChild(i);
580
581 // If we are deleting something contained entirely in the child, pass on the
582 // request.
583 if (Offset+NumBytes < CurChild->size()) {
584 CurChild->erase(Offset, NumBytes);
585 return;
586 }
587
588 // If this deletion request starts somewhere in the middle of the child, it
589 // must be deleting to the end of the child.
590 if (Offset) {
591 unsigned BytesFromChild = CurChild->size()-Offset;
592 CurChild->erase(Offset, BytesFromChild);
593 NumBytes -= BytesFromChild;
594 // Start at the beginning of the next child.
595 Offset = 0;
596 ++i;
597 continue;
598 }
599
600 // If the deletion request completely covers the child, delete it and move
601 // the rest down.
602 NumBytes -= CurChild->size();
603 CurChild->Destroy();
604 --NumChildren;
605 if (i != getNumChildren())
606 memmove(&Children[i], &Children[i+1],
607 (getNumChildren()-i)*sizeof(Children[0]));
608 }
609 }
610
611 //===----------------------------------------------------------------------===//
612 // RopePieceBTreeNode Implementation
613 //===----------------------------------------------------------------------===//
614
Destroy()615 void RopePieceBTreeNode::Destroy() {
616 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
617 delete Leaf;
618 else
619 delete cast<RopePieceBTreeInterior>(this);
620 }
621
622 /// split - Split the range containing the specified offset so that we are
623 /// guaranteed that there is a place to do an insertion at the specified
624 /// offset. The offset is relative, so "0" is the start of the node.
625 ///
626 /// If there is no space in this subtree for the extra piece, the extra tree
627 /// node is returned and must be inserted into a parent.
split(unsigned Offset)628 RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
629 assert(Offset <= size() && "Invalid offset to split!");
630 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
631 return Leaf->split(Offset);
632 return cast<RopePieceBTreeInterior>(this)->split(Offset);
633 }
634
635 /// insert - Insert the specified ropepiece into this tree node at the
636 /// specified offset. The offset is relative, so "0" is the start of the
637 /// node.
638 ///
639 /// If there is no space in this subtree for the extra piece, the extra tree
640 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)641 RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
642 const RopePiece &R) {
643 assert(Offset <= size() && "Invalid offset to insert!");
644 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
645 return Leaf->insert(Offset, R);
646 return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
647 }
648
649 /// erase - Remove NumBytes from this node at the specified offset. We are
650 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)651 void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
652 assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
653 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
654 return Leaf->erase(Offset, NumBytes);
655 return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
656 }
657
658
659 //===----------------------------------------------------------------------===//
660 // RopePieceBTreeIterator Implementation
661 //===----------------------------------------------------------------------===//
662
getCN(const void * P)663 static const RopePieceBTreeLeaf *getCN(const void *P) {
664 return static_cast<const RopePieceBTreeLeaf*>(P);
665 }
666
667 // begin iterator.
RopePieceBTreeIterator(const void * n)668 RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
669 const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
670
671 // Walk down the left side of the tree until we get to a leaf.
672 while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
673 N = IN->getChild(0);
674
675 // We must have at least one leaf.
676 CurNode = cast<RopePieceBTreeLeaf>(N);
677
678 // If we found a leaf that happens to be empty, skip over it until we get
679 // to something full.
680 while (CurNode && getCN(CurNode)->getNumPieces() == 0)
681 CurNode = getCN(CurNode)->getNextLeafInOrder();
682
683 if (CurNode)
684 CurPiece = &getCN(CurNode)->getPiece(0);
685 else // Empty tree, this is an end() iterator.
686 CurPiece = nullptr;
687 CurChar = 0;
688 }
689
MoveToNextPiece()690 void RopePieceBTreeIterator::MoveToNextPiece() {
691 if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
692 CurChar = 0;
693 ++CurPiece;
694 return;
695 }
696
697 // Find the next non-empty leaf node.
698 do
699 CurNode = getCN(CurNode)->getNextLeafInOrder();
700 while (CurNode && getCN(CurNode)->getNumPieces() == 0);
701
702 if (CurNode)
703 CurPiece = &getCN(CurNode)->getPiece(0);
704 else // Hit end().
705 CurPiece = nullptr;
706 CurChar = 0;
707 }
708
709 //===----------------------------------------------------------------------===//
710 // RopePieceBTree Implementation
711 //===----------------------------------------------------------------------===//
712
getRoot(void * P)713 static RopePieceBTreeNode *getRoot(void *P) {
714 return static_cast<RopePieceBTreeNode*>(P);
715 }
716
RopePieceBTree()717 RopePieceBTree::RopePieceBTree() {
718 Root = new RopePieceBTreeLeaf();
719 }
RopePieceBTree(const RopePieceBTree & RHS)720 RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
721 assert(RHS.empty() && "Can't copy non-empty tree yet");
722 Root = new RopePieceBTreeLeaf();
723 }
~RopePieceBTree()724 RopePieceBTree::~RopePieceBTree() {
725 getRoot(Root)->Destroy();
726 }
727
size() const728 unsigned RopePieceBTree::size() const {
729 return getRoot(Root)->size();
730 }
731
clear()732 void RopePieceBTree::clear() {
733 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
734 Leaf->clear();
735 else {
736 getRoot(Root)->Destroy();
737 Root = new RopePieceBTreeLeaf();
738 }
739 }
740
insert(unsigned Offset,const RopePiece & R)741 void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
742 // #1. Split at Offset.
743 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
744 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
745
746 // #2. Do the insertion.
747 if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
748 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
749 }
750
erase(unsigned Offset,unsigned NumBytes)751 void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
752 // #1. Split at Offset.
753 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
754 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
755
756 // #2. Do the erasing.
757 getRoot(Root)->erase(Offset, NumBytes);
758 }
759
760 //===----------------------------------------------------------------------===//
761 // RewriteRope Implementation
762 //===----------------------------------------------------------------------===//
763
764 /// MakeRopeString - This copies the specified byte range into some instance of
765 /// RopeRefCountString, and return a RopePiece that represents it. This uses
766 /// the AllocBuffer object to aggregate requests for small strings into one
767 /// allocation instead of doing tons of tiny allocations.
MakeRopeString(const char * Start,const char * End)768 RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
769 unsigned Len = End-Start;
770 assert(Len && "Zero length RopePiece is invalid!");
771
772 // If we have space for this string in the current alloc buffer, use it.
773 if (AllocOffs+Len <= AllocChunkSize) {
774 memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
775 AllocOffs += Len;
776 return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
777 }
778
779 // If we don't have enough room because this specific allocation is huge,
780 // just allocate a new rope piece for it alone.
781 if (Len > AllocChunkSize) {
782 unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
783 RopeRefCountString *Res =
784 reinterpret_cast<RopeRefCountString *>(new char[Size]);
785 Res->RefCount = 0;
786 memcpy(Res->Data, Start, End-Start);
787 return RopePiece(Res, 0, End-Start);
788 }
789
790 // Otherwise, this was a small request but we just don't have space for it
791 // Make a new chunk and share it with later allocations.
792
793 unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
794 RopeRefCountString *Res =
795 reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
796 Res->RefCount = 0;
797 memcpy(Res->Data, Start, Len);
798 AllocBuffer = Res;
799 AllocOffs = Len;
800
801 return RopePiece(AllocBuffer, 0, Len);
802 }
803
804
805