1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
12 #define EIGEN_INCOMPLETE_CHOlESKY_H
13
14 #include <vector>
15 #include <list>
16
17 namespace Eigen {
18 /**
19 * \brief Modified Incomplete Cholesky with dual threshold
20 *
21 * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
22 * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
23 *
24 * \tparam Scalar the scalar type of the input matrices
25 * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
26 * or Upper. Default is Lower.
27 * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
28 * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
29 *
30 * \implsparsesolverconcept
31 *
32 * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
33 * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
34 * fill-in reducing permutation as computed by the ordering method.
35 *
36 * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
37 * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
38 * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
39 * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
40 * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
41 * the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
42 *
43 */
44 template <typename Scalar, int _UpLo = Lower, typename _OrderingType =
45 #ifndef EIGEN_MPL2_ONLY
46 AMDOrdering<int>
47 #else
48 NaturalOrdering<int>
49 #endif
50 >
51 class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
52 {
53 protected:
54 typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
55 using Base::m_isInitialized;
56 public:
57 typedef typename NumTraits<Scalar>::Real RealScalar;
58 typedef _OrderingType OrderingType;
59 typedef typename OrderingType::PermutationType PermutationType;
60 typedef typename PermutationType::StorageIndex StorageIndex;
61 typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
62 typedef Matrix<Scalar,Dynamic,1> VectorSx;
63 typedef Matrix<RealScalar,Dynamic,1> VectorRx;
64 typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
65 typedef std::vector<std::list<StorageIndex> > VectorList;
66 enum { UpLo = _UpLo };
67 enum {
68 ColsAtCompileTime = Dynamic,
69 MaxColsAtCompileTime = Dynamic
70 };
71 public:
72
73 /** Default constructor leaving the object in a partly non-initialized stage.
74 *
75 * You must call compute() or the pair analyzePattern()/factorize() to make it valid.
76 *
77 * \sa IncompleteCholesky(const MatrixType&)
78 */
IncompleteCholesky()79 IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
80
81 /** Constructor computing the incomplete factorization for the given matrix \a matrix.
82 */
83 template<typename MatrixType>
IncompleteCholesky(const MatrixType & matrix)84 IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
85 {
86 compute(matrix);
87 }
88
89 /** \returns number of rows of the factored matrix */
rows()90 Index rows() const { return m_L.rows(); }
91
92 /** \returns number of columns of the factored matrix */
cols()93 Index cols() const { return m_L.cols(); }
94
95
96 /** \brief Reports whether previous computation was successful.
97 *
98 * It triggers an assertion if \c *this has not been initialized through the respective constructor,
99 * or a call to compute() or analyzePattern().
100 *
101 * \returns \c Success if computation was successful,
102 * \c NumericalIssue if the matrix appears to be negative.
103 */
info()104 ComputationInfo info() const
105 {
106 eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
107 return m_info;
108 }
109
110 /** \brief Set the initial shift parameter \f$ \sigma \f$.
111 */
setInitialShift(RealScalar shift)112 void setInitialShift(RealScalar shift) { m_initialShift = shift; }
113
114 /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
115 */
116 template<typename MatrixType>
analyzePattern(const MatrixType & mat)117 void analyzePattern(const MatrixType& mat)
118 {
119 OrderingType ord;
120 PermutationType pinv;
121 ord(mat.template selfadjointView<UpLo>(), pinv);
122 if(pinv.size()>0) m_perm = pinv.inverse();
123 else m_perm.resize(0);
124 m_L.resize(mat.rows(), mat.cols());
125 m_analysisIsOk = true;
126 m_isInitialized = true;
127 m_info = Success;
128 }
129
130 /** \brief Performs the numerical factorization of the input matrix \a mat
131 *
132 * The method analyzePattern() or compute() must have been called beforehand
133 * with a matrix having the same pattern.
134 *
135 * \sa compute(), analyzePattern()
136 */
137 template<typename MatrixType>
138 void factorize(const MatrixType& mat);
139
140 /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
141 *
142 * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
143 *
144 * \sa analyzePattern(), factorize()
145 */
146 template<typename MatrixType>
compute(const MatrixType & mat)147 void compute(const MatrixType& mat)
148 {
149 analyzePattern(mat);
150 factorize(mat);
151 }
152
153 // internal
154 template<typename Rhs, typename Dest>
_solve_impl(const Rhs & b,Dest & x)155 void _solve_impl(const Rhs& b, Dest& x) const
156 {
157 eigen_assert(m_factorizationIsOk && "factorize() should be called first");
158 if (m_perm.rows() == b.rows()) x = m_perm * b;
159 else x = b;
160 x = m_scale.asDiagonal() * x;
161 x = m_L.template triangularView<Lower>().solve(x);
162 x = m_L.adjoint().template triangularView<Upper>().solve(x);
163 x = m_scale.asDiagonal() * x;
164 if (m_perm.rows() == b.rows())
165 x = m_perm.inverse() * x;
166 }
167
168 /** \returns the sparse lower triangular factor L */
matrixL()169 const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
170
171 /** \returns a vector representing the scaling factor S */
scalingS()172 const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
173
174 /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
permutationP()175 const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
176
177 protected:
178 FactorType m_L; // The lower part stored in CSC
179 VectorRx m_scale; // The vector for scaling the matrix
180 RealScalar m_initialShift; // The initial shift parameter
181 bool m_analysisIsOk;
182 bool m_factorizationIsOk;
183 ComputationInfo m_info;
184 PermutationType m_perm;
185
186 private:
187 inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
188 };
189
190 // Based on the following paper:
191 // C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
192 // Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
193 // http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
194 template<typename Scalar, int _UpLo, typename OrderingType>
195 template<typename _MatrixType>
factorize(const _MatrixType & mat)196 void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
197 {
198 using std::sqrt;
199 eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
200
201 // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
202
203 // Apply the fill-reducing permutation computed in analyzePattern()
204 if (m_perm.rows() == mat.rows() ) // To detect the null permutation
205 {
206 // The temporary is needed to make sure that the diagonal entry is properly sorted
207 FactorType tmp(mat.rows(), mat.cols());
208 tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
209 m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
210 }
211 else
212 {
213 m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
214 }
215
216 Index n = m_L.cols();
217 Index nnz = m_L.nonZeros();
218 Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
219 Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
220 Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
221 VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
222 VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
223 VectorSx col_vals(n); // Store a nonzero values in each column
224 VectorIx col_irow(n); // Row indices of nonzero elements in each column
225 VectorIx col_pattern(n);
226 col_pattern.fill(-1);
227 StorageIndex col_nnz;
228
229
230 // Computes the scaling factors
231 m_scale.resize(n);
232 m_scale.setZero();
233 for (Index j = 0; j < n; j++)
234 for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
235 {
236 m_scale(j) += numext::abs2(vals(k));
237 if(rowIdx[k]!=j)
238 m_scale(rowIdx[k]) += numext::abs2(vals(k));
239 }
240
241 m_scale = m_scale.cwiseSqrt().cwiseSqrt();
242
243 for (Index j = 0; j < n; ++j)
244 if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
245 m_scale(j) = RealScalar(1)/m_scale(j);
246 else
247 m_scale(j) = 1;
248
249 // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
250
251 // Scale and compute the shift for the matrix
252 RealScalar mindiag = NumTraits<RealScalar>::highest();
253 for (Index j = 0; j < n; j++)
254 {
255 for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
256 vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
257 eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
258 mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
259 }
260
261 FactorType L_save = m_L;
262
263 RealScalar shift = 0;
264 if(mindiag <= RealScalar(0.))
265 shift = m_initialShift - mindiag;
266
267 m_info = NumericalIssue;
268
269 // Try to perform the incomplete factorization using the current shift
270 int iter = 0;
271 do
272 {
273 // Apply the shift to the diagonal elements of the matrix
274 for (Index j = 0; j < n; j++)
275 vals[colPtr[j]] += shift;
276
277 // jki version of the Cholesky factorization
278 Index j=0;
279 for (; j < n; ++j)
280 {
281 // Left-looking factorization of the j-th column
282 // First, load the j-th column into col_vals
283 Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
284 col_nnz = 0;
285 for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
286 {
287 StorageIndex l = rowIdx[i];
288 col_vals(col_nnz) = vals[i];
289 col_irow(col_nnz) = l;
290 col_pattern(l) = col_nnz;
291 col_nnz++;
292 }
293 {
294 typename std::list<StorageIndex>::iterator k;
295 // Browse all previous columns that will update column j
296 for(k = listCol[j].begin(); k != listCol[j].end(); k++)
297 {
298 Index jk = firstElt(*k); // First element to use in the column
299 eigen_internal_assert(rowIdx[jk]==j);
300 Scalar v_j_jk = numext::conj(vals[jk]);
301
302 jk += 1;
303 for (Index i = jk; i < colPtr[*k+1]; i++)
304 {
305 StorageIndex l = rowIdx[i];
306 if(col_pattern[l]<0)
307 {
308 col_vals(col_nnz) = vals[i] * v_j_jk;
309 col_irow[col_nnz] = l;
310 col_pattern(l) = col_nnz;
311 col_nnz++;
312 }
313 else
314 col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
315 }
316 updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
317 }
318 }
319
320 // Scale the current column
321 if(numext::real(diag) <= 0)
322 {
323 if(++iter>=10)
324 return;
325
326 // increase shift
327 shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
328 // restore m_L, col_pattern, and listCol
329 vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
330 rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
331 colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
332 col_pattern.fill(-1);
333 for(Index i=0; i<n; ++i)
334 listCol[i].clear();
335
336 break;
337 }
338
339 RealScalar rdiag = sqrt(numext::real(diag));
340 vals[colPtr[j]] = rdiag;
341 for (Index k = 0; k<col_nnz; ++k)
342 {
343 Index i = col_irow[k];
344 //Scale
345 col_vals(k) /= rdiag;
346 //Update the remaining diagonals with col_vals
347 vals[colPtr[i]] -= numext::abs2(col_vals(k));
348 }
349 // Select the largest p elements
350 // p is the original number of elements in the column (without the diagonal)
351 Index p = colPtr[j+1] - colPtr[j] - 1 ;
352 Ref<VectorSx> cvals = col_vals.head(col_nnz);
353 Ref<VectorIx> cirow = col_irow.head(col_nnz);
354 internal::QuickSplit(cvals,cirow, p);
355 // Insert the largest p elements in the matrix
356 Index cpt = 0;
357 for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
358 {
359 vals[i] = col_vals(cpt);
360 rowIdx[i] = col_irow(cpt);
361 // restore col_pattern:
362 col_pattern(col_irow(cpt)) = -1;
363 cpt++;
364 }
365 // Get the first smallest row index and put it after the diagonal element
366 Index jk = colPtr(j)+1;
367 updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
368 }
369
370 if(j==n)
371 {
372 m_factorizationIsOk = true;
373 m_info = Success;
374 }
375 } while(m_info!=Success);
376 }
377
378 template<typename Scalar, int _UpLo, typename OrderingType>
updateList(Ref<const VectorIx> colPtr,Ref<VectorIx> rowIdx,Ref<VectorSx> vals,const Index & col,const Index & jk,VectorIx & firstElt,VectorList & listCol)379 inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
380 {
381 if (jk < colPtr(col+1) )
382 {
383 Index p = colPtr(col+1) - jk;
384 Index minpos;
385 rowIdx.segment(jk,p).minCoeff(&minpos);
386 minpos += jk;
387 if (rowIdx(minpos) != rowIdx(jk))
388 {
389 //Swap
390 std::swap(rowIdx(jk),rowIdx(minpos));
391 std::swap(vals(jk),vals(minpos));
392 }
393 firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
394 listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
395 }
396 }
397
398 } // end namespace Eigen
399
400 #endif
401