• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 
13 template<typename MatrixType>
equalsIdentity(const MatrixType & A)14 bool equalsIdentity(const MatrixType& A)
15 {
16   typedef typename MatrixType::Scalar Scalar;
17   Scalar zero = static_cast<Scalar>(0);
18 
19   bool offDiagOK = true;
20   for (Index i = 0; i < A.rows(); ++i) {
21     for (Index j = i+1; j < A.cols(); ++j) {
22       offDiagOK = offDiagOK && (A(i,j) == zero);
23     }
24   }
25   for (Index i = 0; i < A.rows(); ++i) {
26     for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
27       offDiagOK = offDiagOK && (A(i,j) == zero);
28     }
29   }
30 
31   bool diagOK = (A.diagonal().array() == 1).all();
32   return offDiagOK && diagOK;
33 
34 }
35 
36 template<typename VectorType>
check_extremity_accuracy(const VectorType & v,const typename VectorType::Scalar & low,const typename VectorType::Scalar & high)37 void check_extremity_accuracy(const VectorType &v, const typename VectorType::Scalar &low, const typename VectorType::Scalar &high)
38 {
39   typedef typename VectorType::Scalar Scalar;
40   typedef typename VectorType::RealScalar RealScalar;
41 
42   RealScalar prec = internal::is_same<RealScalar,float>::value ? NumTraits<RealScalar>::dummy_precision()*10 : NumTraits<RealScalar>::dummy_precision()/10;
43   Index size = v.size();
44 
45   if(size<20)
46     return;
47 
48   for (int i=0; i<size; ++i)
49   {
50     if(i<5 || i>size-6)
51     {
52       Scalar ref = (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1);
53       if(std::abs(ref)>1)
54       {
55         if(!internal::isApprox(v(i), ref, prec))
56           std::cout << v(i) << " != " << ref << "  ; relative error: " << std::abs((v(i)-ref)/ref) << "  ; required precision: " << prec << "  ; range: " << low << "," << high << "  ; i: " << i << "\n";
57         VERIFY(internal::isApprox(v(i), (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1), prec));
58       }
59     }
60   }
61 }
62 
63 template<typename VectorType>
testVectorType(const VectorType & base)64 void testVectorType(const VectorType& base)
65 {
66   typedef typename VectorType::Scalar Scalar;
67   typedef typename VectorType::RealScalar RealScalar;
68 
69   const Index size = base.size();
70 
71   Scalar high = internal::random<Scalar>(-500,500);
72   Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
73   if (low>high) std::swap(low,high);
74 
75   // check low==high
76   if(internal::random<float>(0.f,1.f)<0.05f)
77     low = high;
78   // check abs(low) >> abs(high)
79   else if(size>2 && std::numeric_limits<RealScalar>::max_exponent10>0 && internal::random<float>(0.f,1.f)<0.1f)
80     low = -internal::random<Scalar>(1,2) * RealScalar(std::pow(RealScalar(10),std::numeric_limits<RealScalar>::max_exponent10/2));
81 
82   const Scalar step = ((size == 1) ? 1 : (high-low)/(size-1));
83 
84   // check whether the result yields what we expect it to do
85   VectorType m(base);
86   m.setLinSpaced(size,low,high);
87 
88   if(!NumTraits<Scalar>::IsInteger)
89   {
90     VectorType n(size);
91     for (int i=0; i<size; ++i)
92       n(i) = low+i*step;
93     VERIFY_IS_APPROX(m,n);
94 
95     CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
96   }
97 
98   if((!NumTraits<Scalar>::IsInteger) || ((high-low)>=size && (Index(high-low)%(size-1))==0) || (Index(high-low+1)<size && (size%Index(high-low+1))==0))
99   {
100     VectorType n(size);
101     if((!NumTraits<Scalar>::IsInteger) || (high-low>=size))
102       for (int i=0; i<size; ++i)
103         n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/(size-1));
104     else
105       for (int i=0; i<size; ++i)
106         n(i) = size==1 ? low : low + Scalar((double(high-low+1)*double(i))/double(size));
107     VERIFY_IS_APPROX(m,n);
108 
109     // random access version
110     m = VectorType::LinSpaced(size,low,high);
111     VERIFY_IS_APPROX(m,n);
112     VERIFY( internal::isApprox(m(m.size()-1),high) );
113     VERIFY( size==1 || internal::isApprox(m(0),low) );
114     VERIFY_IS_EQUAL(m(m.size()-1) , high);
115     if(!NumTraits<Scalar>::IsInteger)
116       CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
117   }
118 
119   VERIFY( m(m.size()-1) <= high );
120   VERIFY( (m.array() <= high).all() );
121   VERIFY( (m.array() >= low).all() );
122 
123 
124   VERIFY( m(m.size()-1) >= low );
125   if(size>=1)
126   {
127     VERIFY( internal::isApprox(m(0),low) );
128     VERIFY_IS_EQUAL(m(0) , low);
129   }
130 
131   // check whether everything works with row and col major vectors
132   Matrix<Scalar,Dynamic,1> row_vector(size);
133   Matrix<Scalar,1,Dynamic> col_vector(size);
134   row_vector.setLinSpaced(size,low,high);
135   col_vector.setLinSpaced(size,low,high);
136   // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
137   // when computing the squared sum in isApprox, thus the 2x factor.
138   VERIFY( row_vector.isApprox(col_vector.transpose(), Scalar(2)*NumTraits<Scalar>::epsilon()));
139 
140   Matrix<Scalar,Dynamic,1> size_changer(size+50);
141   size_changer.setLinSpaced(size,low,high);
142   VERIFY( size_changer.size() == size );
143 
144   typedef Matrix<Scalar,1,1> ScalarMatrix;
145   ScalarMatrix scalar;
146   scalar.setLinSpaced(1,low,high);
147   VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
148   VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );
149 
150   // regression test for bug 526 (linear vectorized transversal)
151   if (size > 1 && (!NumTraits<Scalar>::IsInteger)) {
152     m.tail(size-1).setLinSpaced(low, high);
153     VERIFY_IS_APPROX(m(size-1), high);
154   }
155 
156   // regression test for bug 1383 (LinSpaced with empty size/range)
157   {
158     Index n0 = VectorType::SizeAtCompileTime==Dynamic ? 0 : VectorType::SizeAtCompileTime;
159     low = internal::random<Scalar>();
160     m = VectorType::LinSpaced(n0,low,low-1);
161     VERIFY(m.size()==n0);
162 
163     if(VectorType::SizeAtCompileTime==Dynamic)
164     {
165       VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,0,Scalar(n0-1)).sum(),Scalar(0));
166       VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,low,low-1).sum(),Scalar(0));
167     }
168 
169     m.setLinSpaced(n0,0,Scalar(n0-1));
170     VERIFY(m.size()==n0);
171     m.setLinSpaced(n0,low,low-1);
172     VERIFY(m.size()==n0);
173 
174     // empty range only:
175     VERIFY_IS_APPROX(VectorType::LinSpaced(size,low,low),VectorType::Constant(size,low));
176     m.setLinSpaced(size,low,low);
177     VERIFY_IS_APPROX(m,VectorType::Constant(size,low));
178 
179     if(NumTraits<Scalar>::IsInteger)
180     {
181       VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,Scalar(low+size-1)), VectorType::LinSpaced(size,Scalar(low+size-1),low).reverse() );
182 
183       if(VectorType::SizeAtCompileTime==Dynamic)
184       {
185         // Check negative multiplicator path:
186         for(Index k=1; k<5; ++k)
187           VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,Scalar(low+(size-1)*k)), VectorType::LinSpaced(size,Scalar(low+(size-1)*k),low).reverse() );
188         // Check negative divisor path:
189         for(Index k=1; k<5; ++k)
190           VERIFY_IS_APPROX( VectorType::LinSpaced(size*k,low,Scalar(low+size-1)), VectorType::LinSpaced(size*k,Scalar(low+size-1),low).reverse() );
191       }
192     }
193   }
194 }
195 
196 template<typename MatrixType>
testMatrixType(const MatrixType & m)197 void testMatrixType(const MatrixType& m)
198 {
199   using std::abs;
200   const Index rows = m.rows();
201   const Index cols = m.cols();
202   typedef typename MatrixType::Scalar Scalar;
203   typedef typename MatrixType::RealScalar RealScalar;
204 
205   Scalar s1;
206   do {
207     s1 = internal::random<Scalar>();
208   } while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));
209 
210   MatrixType A;
211   A.setIdentity(rows, cols);
212   VERIFY(equalsIdentity(A));
213   VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
214 
215 
216   A = MatrixType::Constant(rows,cols,s1);
217   Index i = internal::random<Index>(0,rows-1);
218   Index j = internal::random<Index>(0,cols-1);
219   VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 );
220   VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 );
221   VERIFY_IS_APPROX( A(i,j), s1 );
222 }
223 
test_nullary()224 void test_nullary()
225 {
226   CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
227   CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
228   CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
229 
230   for(int i = 0; i < g_repeat*10; i++) {
231     CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,30000))) );
232     CALL_SUBTEST_5( testVectorType(Vector4d()) );  // regression test for bug 232
233     CALL_SUBTEST_6( testVectorType(Vector3d()) );
234     CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,30000))) );
235     CALL_SUBTEST_8( testVectorType(Vector3f()) );
236     CALL_SUBTEST_8( testVectorType(Vector4f()) );
237     CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) );
238     CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );
239 
240     CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,10))) );
241     CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(9,300))) );
242     CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) );
243   }
244 
245 #ifdef EIGEN_TEST_PART_6
246   // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
247   VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() );
248 #endif
249 
250 #ifdef EIGEN_TEST_PART_9
251   // Check possible overflow issue
252   {
253     int n = 60000;
254     ArrayXi a1(n), a2(n);
255     a1.setLinSpaced(n, 0, n-1);
256     for(int i=0; i<n; ++i)
257       a2(i) = i;
258     VERIFY_IS_APPROX(a1,a2);
259   }
260 #endif
261 
262 #ifdef EIGEN_TEST_PART_10
263   // check some internal logic
264   VERIFY((  internal::has_nullary_operator<internal::scalar_constant_op<double> >::value ));
265   VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value ));
266   VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value ));
267   VERIFY((  internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret ));
268 
269   VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value ));
270   VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value ));
271   VERIFY((  internal::has_binary_operator<internal::scalar_identity_op<double> >::value ));
272   VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret ));
273 
274   VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float,float> >::value ));
275   VERIFY((  internal::has_unary_operator<internal::linspaced_op<float,float> >::value ));
276   VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float,float> >::value ));
277   VERIFY((  internal::functor_has_linear_access<internal::linspaced_op<float,float> >::ret ));
278 
279   // Regression unit test for a weird MSVC bug.
280   // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details.
281   // See also traits<Ref>::match.
282   {
283     MatrixXf A = MatrixXf::Random(3,3);
284     Ref<const MatrixXf> R = 2.0*A;
285     VERIFY_IS_APPROX(R, A+A);
286 
287     Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A;
288 
289     VectorXi V = VectorXi::Random(3);
290     Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V;
291     VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3));
292 
293     VERIFY((  internal::has_nullary_operator<internal::scalar_constant_op<float> >::value ));
294     VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<float> >::value ));
295     VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value ));
296     VERIFY((  internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret ));
297 
298     VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int,int> >::value ));
299     VERIFY((  internal::has_unary_operator<internal::linspaced_op<int,int> >::value ));
300     VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int,int> >::value ));
301     VERIFY((  internal::functor_has_linear_access<internal::linspaced_op<int,int> >::ret ));
302   }
303 #endif
304 }
305