• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4//
5// This Source Code Form is subject to the terms of the Mozilla
6// Public License v. 2.0. If a copy of the MPL was not distributed
7// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
8
9#ifndef EIGEN_POLYNOMIALS_MODULE_H
10#define EIGEN_POLYNOMIALS_MODULE_H
11
12#include <Eigen/Core>
13
14#include <Eigen/src/Core/util/DisableStupidWarnings.h>
15
16#include <Eigen/Eigenvalues>
17
18// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
19#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
20  #ifndef EIGEN_HIDE_HEAVY_CODE
21  #define EIGEN_HIDE_HEAVY_CODE
22  #endif
23#elif defined EIGEN_HIDE_HEAVY_CODE
24  #undef EIGEN_HIDE_HEAVY_CODE
25#endif
26
27/**
28  * \defgroup Polynomials_Module Polynomials module
29  * \brief This module provides a QR based polynomial solver.
30	*
31  * To use this module, add
32  * \code
33  * #include <unsupported/Eigen/Polynomials>
34  * \endcode
35	* at the start of your source file.
36  */
37
38#include "src/Polynomials/PolynomialUtils.h"
39#include "src/Polynomials/Companion.h"
40#include "src/Polynomials/PolynomialSolver.h"
41
42/**
43	\page polynomials Polynomials defines functions for dealing with polynomials
44	and a QR based polynomial solver.
45	\ingroup Polynomials_Module
46
47	The remainder of the page documents first the functions for evaluating, computing
48	polynomials, computing estimates about polynomials and next the QR based polynomial
49	solver.
50
51	\section polynomialUtils convenient functions to deal with polynomials
52	\subsection roots_to_monicPolynomial
53	The function
54	\code
55	void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
56	\endcode
57	computes the coefficients \f$ a_i \f$ of
58
59	\f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$
60
61	where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
62
63	\subsection poly_eval
64	The function
65	\code
66	T poly_eval( const Polynomials& poly, const T& x )
67	\endcode
68	evaluates a polynomial at a given point using stabilized H&ouml;rner method.
69
70	The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots;
71	then, it evaluates the computed polynomial, using a stabilized H&ouml;rner method.
72
73	\include PolynomialUtils1.cpp
74  Output: \verbinclude PolynomialUtils1.out
75
76	\subsection Cauchy bounds
77	The function
78	\code
79	Real cauchy_max_bound( const Polynomial& poly )
80	\endcode
81	provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
82	\f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
83	\f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$
84	The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$.
85
86
87	The function
88	\code
89	Real cauchy_min_bound( const Polynomial& poly )
90	\endcode
91	provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
92	\f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
93	\f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
94
95
96
97
98	\section QR polynomial solver class
99	Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm.
100
101	The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
102	\f$
103	\left [
104	\begin{array}{cccc}
105	0 & 0 &  0 & a_0 \\
106	1 & 0 &  0 & a_1 \\
107	0 & 1 &  0 & a_2 \\
108	0 & 0 &  1 & a_3
109	\end{array} \right ]
110	\f$
111
112	However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus.
113
114	Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
115
116	\f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$.
117
118	With 32bit (float) floating types this problem shows up frequently.
119  However, almost always, correct accuracy is reached even in these cases for 64bit
120  (double) floating types and small polynomial degree (<20).
121
122	\include PolynomialSolver1.cpp
123
124	In the above example:
125
126	-# a simple use of the polynomial solver is shown;
127	-# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver.
128	Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
129	of the last root is bad;
130	-# a simple way to circumvent the problem is shown: use doubles instead of floats.
131
132  Output: \verbinclude PolynomialSolver1.out
133*/
134
135#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
136
137#endif // EIGEN_POLYNOMIALS_MODULE_H
138/* vim: set filetype=cpp et sw=2 ts=2 ai: */
139