• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <unsupported/Eigen/Polynomials>
2 #include <vector>
3 #include <iostream>
4 
5 using namespace Eigen;
6 using namespace std;
7 
main()8 int main()
9 {
10   typedef Matrix<double,5,1> Vector5d;
11 
12   Vector5d roots = Vector5d::Random();
13   cout << "Roots: " << roots.transpose() << endl;
14   Eigen::Matrix<double,6,1> polynomial;
15   roots_to_monicPolynomial( roots, polynomial );
16 
17   PolynomialSolver<double,5> psolve( polynomial );
18   cout << "Complex roots: " << psolve.roots().transpose() << endl;
19 
20   std::vector<double> realRoots;
21   psolve.realRoots( realRoots );
22   Map<Vector5d> mapRR( &realRoots[0] );
23   cout << "Real roots: " << mapRR.transpose() << endl;
24 
25   cout << endl;
26   cout << "Illustration of the convergence problem with the QR algorithm: " << endl;
27   cout << "---------------------------------------------------------------" << endl;
28   Eigen::Matrix<float,7,1> hardCase_polynomial;
29   hardCase_polynomial <<
30   -0.957, 0.9219, 0.3516, 0.9453, -0.4023, -0.5508, -0.03125;
31   cout << "Hard case polynomial defined by floats: " << hardCase_polynomial.transpose() << endl;
32   PolynomialSolver<float,6> psolvef( hardCase_polynomial );
33   cout << "Complex roots: " << psolvef.roots().transpose() << endl;
34   Eigen::Matrix<float,6,1> evals;
35   for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] ) ); }
36   cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
37 
38   cout << "Using double's almost always solves the problem for small degrees: " << endl;
39   cout << "-------------------------------------------------------------------" << endl;
40   PolynomialSolver<double,6> psolve6d( hardCase_polynomial.cast<double>() );
41   cout << "Complex roots: " << psolve6d.roots().transpose() << endl;
42   for( int i=0; i<6; ++i )
43   {
44     std::complex<float> castedRoot( psolve6d.roots()[i].real(), psolve6d.roots()[i].imag() );
45     evals[i] = std::abs( poly_eval( hardCase_polynomial, castedRoot ) );
46   }
47   cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
48 
49   cout.precision(10);
50   cout << "The last root in float then in double: " << psolvef.roots()[5] << "\t" << psolve6d.roots()[5] << endl;
51   std::complex<float> castedRoot( psolve6d.roots()[5].real(), psolve6d.roots()[5].imag() );
52   cout << "Norm of the difference: " << std::abs( psolvef.roots()[5] - castedRoot ) << endl;
53 }
54