• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2010 Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // range_map_unittest.cc: Unit tests for RangeMap
31 //
32 // Author: Mark Mentovai
33 
34 
35 #include <limits.h>
36 #include <stdio.h>
37 
38 #include "processor/range_map-inl.h"
39 
40 #include "common/scoped_ptr.h"
41 #include "processor/linked_ptr.h"
42 #include "processor/logging.h"
43 
44 namespace {
45 
46 
47 using google_breakpad::linked_ptr;
48 using google_breakpad::scoped_ptr;
49 using google_breakpad::RangeMap;
50 
51 
52 // A CountedObject holds an int.  A global (not thread safe!) count of
53 // allocated CountedObjects is maintained to help test memory management.
54 class CountedObject {
55  public:
CountedObject(int id)56   explicit CountedObject(int id) : id_(id) { ++count_; }
~CountedObject()57   ~CountedObject() { --count_; }
58 
count()59   static int count() { return count_; }
id() const60   int id() const { return id_; }
61 
62  private:
63   static int count_;
64   int id_;
65 };
66 
67 int CountedObject::count_;
68 
69 
70 typedef int AddressType;
71 typedef RangeMap< AddressType, linked_ptr<CountedObject> > TestMap;
72 
73 
74 // RangeTest contains data to use for store and retrieve tests.  See
75 // RunTests for descriptions of the tests.
76 struct RangeTest {
77   // Base address to use for test
78   AddressType address;
79 
80   // Size of range to use for test
81   AddressType size;
82 
83   // Unique ID of range - unstorable ranges must have unique IDs too
84   int id;
85 
86   // Whether this range is expected to be stored successfully or not
87   bool expect_storable;
88 };
89 
90 
91 // A RangeTestSet encompasses multiple RangeTests, which are run in
92 // sequence on the same RangeMap.
93 struct RangeTestSet {
94   // An array of RangeTests
95   const RangeTest *range_tests;
96 
97   // The number of tests in the set
98   unsigned int range_test_count;
99 };
100 
101 
102 // StoreTest uses the data in a RangeTest and calls StoreRange on the
103 // test RangeMap.  It returns true if the expected result occurred, and
104 // false if something else happened.
StoreTest(TestMap * range_map,const RangeTest * range_test)105 static bool StoreTest(TestMap *range_map, const RangeTest *range_test) {
106   linked_ptr<CountedObject> object(new CountedObject(range_test->id));
107   bool stored = range_map->StoreRange(range_test->address,
108                                       range_test->size,
109                                       object);
110 
111   if (stored != range_test->expect_storable) {
112     fprintf(stderr, "FAILED: "
113             "StoreRange id %d, expected %s, observed %s\n",
114             range_test->id,
115             range_test->expect_storable ? "storable" : "not storable",
116             stored ? "stored" : "not stored");
117     return false;
118   }
119 
120   return true;
121 }
122 
123 
124 // RetrieveTest uses the data in RangeTest and calls RetrieveRange on the
125 // test RangeMap.  If it retrieves the expected value (which can be no
126 // map entry at the specified range,) it returns true, otherwise, it returns
127 // false.  RetrieveTest will check the values around the base address and
128 // the high address of a range to guard against off-by-one errors.
RetrieveTest(TestMap * range_map,const RangeTest * range_test)129 static bool RetrieveTest(TestMap *range_map, const RangeTest *range_test) {
130   for (unsigned int side = 0; side <= 1; ++side) {
131     // When side == 0, check the low side (base address) of each range.
132     // When side == 1, check the high side (base + size) of each range.
133 
134     // Check one-less and one-greater than the target address in addition
135     // to the target address itself.
136 
137     // If the size of the range is only 1, don't check one greater than
138     // the base or one less than the high - for a successfully stored
139     // range, these tests would erroneously fail because the range is too
140     // small.
141     AddressType low_offset = -1;
142     AddressType high_offset = 1;
143     if (range_test->size == 1) {
144       if (!side)          // When checking the low side,
145         high_offset = 0;  // don't check one over the target.
146       else                // When checking the high side,
147         low_offset = 0;   // don't check one under the target.
148     }
149 
150     for (AddressType offset = low_offset; offset <= high_offset; ++offset) {
151       AddressType address =
152           offset +
153           (!side ? range_test->address :
154                    range_test->address + range_test->size - 1);
155 
156       bool expected_result = false;  // This is correct for tests not stored.
157       if (range_test->expect_storable) {
158         if (offset == 0)             // When checking the target address,
159           expected_result = true;    // test should always succeed.
160         else if (offset == -1)       // When checking one below the target,
161           expected_result = side;    // should fail low and succeed high.
162         else                         // When checking one above the target,
163           expected_result = !side;   // should succeed low and fail high.
164       }
165 
166       linked_ptr<CountedObject> object;
167       AddressType retrieved_base = AddressType();
168       AddressType retrieved_size = AddressType();
169       bool retrieved = range_map->RetrieveRange(address, &object,
170                                                 &retrieved_base,
171                                                 &retrieved_size);
172 
173       bool observed_result = retrieved && object->id() == range_test->id;
174 
175       if (observed_result != expected_result) {
176         fprintf(stderr, "FAILED: "
177                         "RetrieveRange id %d, side %d, offset %d, "
178                         "expected %s, observed %s\n",
179                         range_test->id,
180                         side,
181                         offset,
182                         expected_result ? "true" : "false",
183                         observed_result ? "true" : "false");
184         return false;
185       }
186 
187       // If a range was successfully retrieved, check that the returned
188       // bounds match the range as stored.
189       if (observed_result == true &&
190           (retrieved_base != range_test->address ||
191            retrieved_size != range_test->size)) {
192         fprintf(stderr, "FAILED: "
193                         "RetrieveRange id %d, side %d, offset %d, "
194                         "expected base/size %d/%d, observed %d/%d\n",
195                         range_test->id,
196                         side,
197                         offset,
198                         range_test->address, range_test->size,
199                         retrieved_base, retrieved_size);
200         return false;
201       }
202 
203       // Now, check RetrieveNearestRange.  The nearest range is always
204       // expected to be different from the test range when checking one
205       // less than the low side.
206       bool expected_nearest = range_test->expect_storable;
207       if (!side && offset < 0)
208         expected_nearest = false;
209 
210       linked_ptr<CountedObject> nearest_object;
211       AddressType nearest_base = AddressType();
212       AddressType nearest_size = AddressType();
213       bool retrieved_nearest = range_map->RetrieveNearestRange(address,
214                                                                &nearest_object,
215                                                                &nearest_base,
216                                                                &nearest_size);
217 
218       // When checking one greater than the high side, RetrieveNearestRange
219       // should usually return the test range.  When a different range begins
220       // at that address, though, then RetrieveNearestRange should return the
221       // range at the address instead of the test range.
222       if (side && offset > 0 && nearest_base == address) {
223         expected_nearest = false;
224       }
225 
226       bool observed_nearest = retrieved_nearest &&
227                               nearest_object->id() == range_test->id;
228 
229       if (observed_nearest != expected_nearest) {
230         fprintf(stderr, "FAILED: "
231                         "RetrieveNearestRange id %d, side %d, offset %d, "
232                         "expected %s, observed %s\n",
233                         range_test->id,
234                         side,
235                         offset,
236                         expected_nearest ? "true" : "false",
237                         observed_nearest ? "true" : "false");
238         return false;
239       }
240 
241       // If a range was successfully retrieved, check that the returned
242       // bounds match the range as stored.
243       if (expected_nearest &&
244           (nearest_base != range_test->address ||
245            nearest_size != range_test->size)) {
246         fprintf(stderr, "FAILED: "
247                         "RetrieveNearestRange id %d, side %d, offset %d, "
248                         "expected base/size %d/%d, observed %d/%d\n",
249                         range_test->id,
250                         side,
251                         offset,
252                         range_test->address, range_test->size,
253                         nearest_base, nearest_size);
254         return false;
255       }
256     }
257   }
258 
259   return true;
260 }
261 
262 
263 // Test RetrieveRangeAtIndex, which is supposed to return objects in order
264 // according to their addresses.  This test is performed by looping through
265 // the map, calling RetrieveRangeAtIndex for all possible indices in sequence,
266 // and verifying that each call returns a different object than the previous
267 // call, and that ranges are returned with increasing base addresses.  Returns
268 // false if the test fails.
RetrieveIndexTest(TestMap * range_map,int set)269 static bool RetrieveIndexTest(TestMap *range_map, int set) {
270   linked_ptr<CountedObject> object;
271   CountedObject *last_object = NULL;
272   AddressType last_base = 0;
273 
274   int object_count = range_map->GetCount();
275   for (int object_index = 0; object_index < object_count; ++object_index) {
276     AddressType base;
277     if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) {
278       fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
279               "expected success, observed failure\n",
280               set, object_index);
281       return false;
282     }
283 
284     if (!object.get()) {
285       fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
286               "expected object, observed NULL\n",
287               set, object_index);
288       return false;
289     }
290 
291     // It's impossible to do these comparisons unless there's a previous
292     // object to compare against.
293     if (last_object) {
294       // The object must be different from the last one.
295       if (object->id() == last_object->id()) {
296         fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
297                 "expected different objects, observed same objects (%d)\n",
298                 set, object_index, object->id());
299         return false;
300       }
301 
302       // Each object must have a base greater than the previous object's base.
303       if (base <= last_base) {
304         fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
305                 "expected different bases, observed same bases (%d)\n",
306                 set, object_index, base);
307         return false;
308       }
309     }
310 
311     last_object = object.get();
312     last_base = base;
313   }
314 
315   // Make sure that RetrieveRangeAtIndex doesn't allow lookups at indices that
316   // are too high.
317   if (range_map->RetrieveRangeAtIndex(object_count, &object, NULL, NULL)) {
318     fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d (too large), "
319             "expected failure, observed success\n",
320             set, object_count);
321     return false;
322   }
323 
324   return true;
325 }
326 
327 // Additional RetriveAtIndex test to expose the bug in RetrieveRangeAtIndex().
328 // Bug info: RetrieveRangeAtIndex() previously retrieves the high address of
329 // entry, however, it is supposed to retrieve the base address of entry as
330 // stated in the comment in range_map.h.
RetriveAtIndexTest2()331 static bool RetriveAtIndexTest2() {
332   scoped_ptr<TestMap> range_map(new TestMap());
333 
334   // Store ranges with base address = 2 * object_id:
335   const int range_size = 2;
336   for (int object_id = 0; object_id < 100; ++object_id) {
337     linked_ptr<CountedObject> object(new CountedObject(object_id));
338     int base_address = 2 * object_id;
339     range_map->StoreRange(base_address, range_size, object);
340   }
341 
342   linked_ptr<CountedObject> object;
343   int object_count = range_map->GetCount();
344   for (int object_index = 0; object_index < object_count; ++object_index) {
345     AddressType base;
346     if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) {
347       fprintf(stderr, "FAILED: RetrieveAtIndexTest2 index %d, "
348               "expected success, observed failure\n", object_index);
349       return false;
350     }
351 
352     int expected_base = 2 * object->id();
353     if (base != expected_base) {
354       fprintf(stderr, "FAILED: RetriveAtIndexTest2 index %d, "
355               "expected base %d, observed base %d",
356               object_index, expected_base, base);
357       return false;
358     }
359   }
360 
361   return true;
362 }
363 
364 
365 // RunTests runs a series of test sets.
RunTests()366 static bool RunTests() {
367   // These tests will be run sequentially.  The first set of tests exercises
368   // most functions of RangeTest, and verifies all of the bounds-checking.
369   const RangeTest range_tests_0[] = {
370     { INT_MIN,     16,      1,  true },   // lowest possible range
371     { -2,          5,       2,  true },   // a range through zero
372     { INT_MAX - 9, 11,      3,  false },  // tests anti-overflow
373     { INT_MAX - 9, 10,      4,  true },   // highest possible range
374     { 5,           0,       5,  false },  // tests anti-zero-size
375     { 5,           1,       6,  true },   // smallest possible range
376     { -20,         15,      7,  true },   // entirely negative
377 
378     { 10,          10,      10, true },   // causes the following tests to fail
379     { 9,           10,      11, false },  // one-less base, one-less high
380     { 9,           11,      12, false },  // one-less base, identical high
381     { 9,           12,      13, false },  // completely contains existing
382     { 10,          9,       14, false },  // identical base, one-less high
383     { 10,          10,      15, false },  // exactly identical to existing range
384     { 10,          11,      16, false },  // identical base, one-greater high
385     { 11,          8,       17, false },  // contained completely within
386     { 11,          9,       18, false },  // one-greater base, identical high
387     { 11,          10,      19, false },  // one-greater base, one-greater high
388     { 9,           2,       20, false },  // overlaps bottom by one
389     { 10,          1,       21, false },  // overlaps bottom by one, contained
390     { 19,          1,       22, false },  // overlaps top by one, contained
391     { 19,          2,       23, false },  // overlaps top by one
392 
393     { 9,           1,       24, true },   // directly below without overlap
394     { 20,          1,       25, true },   // directly above without overlap
395 
396     { 6,           3,       26, true },   // exactly between two ranges, gapless
397     { 7,           3,       27, false },  // tries to span two ranges
398     { 7,           5,       28, false },  // tries to span three ranges
399     { 4,           20,      29, false },  // tries to contain several ranges
400 
401     { 30,          50,      30, true },
402     { 90,          25,      31, true },
403     { 35,          65,      32, false },  // tries to span two noncontiguous
404     { 120,         10000,   33, true },   // > 8-bit
405     { 20000,       20000,   34, true },   // > 8-bit
406     { 0x10001,     0x10001, 35, true },   // > 16-bit
407 
408     { 27,          -1,      36, false }   // tests high < base
409   };
410 
411   // Attempt to fill the entire space.  The entire space must be filled with
412   // three stores because AddressType is signed for these tests, so RangeMap
413   // treats the size as signed and rejects sizes that appear to be negative.
414   // Even if these tests were run as unsigned, two stores would be needed
415   // to fill the space because the entire size of the space could only be
416   // described by using one more bit than would be present in AddressType.
417   const RangeTest range_tests_1[] = {
418     { INT_MIN, INT_MAX, 50, true },   // From INT_MIN to -2, inclusive
419     { -1,      2,       51, true },   // From -1 to 0, inclusive
420     { 1,       INT_MAX, 52, true },   // From 1 to INT_MAX, inclusive
421     { INT_MIN, INT_MAX, 53, false },  // Can't fill the space twice
422     { -1,      2,       54, false },
423     { 1,       INT_MAX, 55, false },
424     { -3,      6,       56, false },  // -3 to 2, inclusive - spans 3 ranges
425   };
426 
427   // A light round of testing to verify that RetrieveRange does the right
428   // the right thing at the extremities of the range when nothing is stored
429   // there.  Checks are forced without storing anything at the extremities
430   // by setting size = 0.
431   const RangeTest range_tests_2[] = {
432     { INT_MIN, 0, 100, false },  // makes RetrieveRange check low end
433     { -1,      3, 101, true },
434     { INT_MAX, 0, 102, false },  // makes RetrieveRange check high end
435   };
436 
437   // Similar to the previous test set, but with a couple of ranges closer
438   // to the extremities.
439   const RangeTest range_tests_3[] = {
440     { INT_MIN + 1, 1, 110, true },
441     { INT_MAX - 1, 1, 111, true },
442     { INT_MIN,     0, 112, false },  // makes RetrieveRange check low end
443     { INT_MAX,     0, 113, false }   // makes RetrieveRange check high end
444   };
445 
446   // The range map is cleared between sets of tests listed here.
447   const RangeTestSet range_test_sets[] = {
448     { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) },
449     { range_tests_1, sizeof(range_tests_1) / sizeof(RangeTest) },
450     { range_tests_2, sizeof(range_tests_2) / sizeof(RangeTest) },
451     { range_tests_3, sizeof(range_tests_3) / sizeof(RangeTest) },
452     { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) }   // Run again
453   };
454 
455   // Maintain the range map in a pointer so that deletion can be meaningfully
456   // tested.
457   scoped_ptr<TestMap> range_map(new TestMap());
458 
459   // Run all of the test sets in sequence.
460   unsigned int range_test_set_count = sizeof(range_test_sets) /
461                                       sizeof(RangeTestSet);
462   for (unsigned int range_test_set_index = 0;
463        range_test_set_index < range_test_set_count;
464        ++range_test_set_index) {
465     const RangeTest *range_tests =
466         range_test_sets[range_test_set_index].range_tests;
467     unsigned int range_test_count =
468         range_test_sets[range_test_set_index].range_test_count;
469 
470     // Run the StoreRange test, which validates StoreRange and initializes
471     // the RangeMap with data for the RetrieveRange test.
472     int stored_count = 0;  // The number of ranges successfully stored
473     for (unsigned int range_test_index = 0;
474          range_test_index < range_test_count;
475          ++range_test_index) {
476       const RangeTest *range_test = &range_tests[range_test_index];
477       if (!StoreTest(range_map.get(), range_test))
478         return false;
479 
480       if (range_test->expect_storable)
481         ++stored_count;
482     }
483 
484     // There should be exactly one CountedObject for everything successfully
485     // stored in the RangeMap.
486     if (CountedObject::count() != stored_count) {
487       fprintf(stderr, "FAILED: "
488               "stored object counts don't match, expected %d, observed %d\n",
489               stored_count,
490               CountedObject::count());
491 
492       return false;
493     }
494 
495     // The RangeMap's own count of objects should also match.
496     if (range_map->GetCount() != stored_count) {
497       fprintf(stderr, "FAILED: stored object count doesn't match GetCount, "
498               "expected %d, observed %d\n",
499               stored_count, range_map->GetCount());
500 
501       return false;
502     }
503 
504     // Run the RetrieveRange test
505     for (unsigned int range_test_index = 0;
506          range_test_index < range_test_count;
507          ++range_test_index) {
508       const RangeTest *range_test = &range_tests[range_test_index];
509       if (!RetrieveTest(range_map.get(), range_test))
510         return false;
511     }
512 
513     if (!RetrieveIndexTest(range_map.get(), range_test_set_index))
514       return false;
515 
516     // Clear the map between test sets.  If this is the final test set,
517     // delete the map instead to test destruction.
518     if (range_test_set_index < range_test_set_count - 1)
519       range_map->Clear();
520     else
521       range_map.reset();
522 
523     // Test that all stored objects are freed when the RangeMap is cleared
524     // or deleted.
525     if (CountedObject::count() != 0) {
526       fprintf(stderr, "FAILED: "
527               "did not free all objects after %s, %d still allocated\n",
528               range_test_set_index < range_test_set_count - 1 ? "clear"
529                                                               : "delete",
530               CountedObject::count());
531 
532       return false;
533     }
534   }
535 
536   if (!RetriveAtIndexTest2()) {
537     fprintf(stderr, "FAILED: did not pass RetrieveAtIndexTest2()\n");
538     return false;
539   }
540 
541   return true;
542 }
543 
544 
545 }  // namespace
546 
547 
main(int argc,char ** argv)548 int main(int argc, char **argv) {
549   BPLOG_INIT(&argc, &argv);
550 
551   return RunTests() ? 0 : 1;
552 }
553