1 /* 2 * Copyright (C) 2007 The Guava Authors 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.google.common.collect; 18 19 import static com.google.common.base.Preconditions.checkNotNull; 20 import static com.google.common.collect.CollectPreconditions.checkNonnegative; 21 22 import com.google.common.annotations.GwtCompatible; 23 import com.google.common.annotations.VisibleForTesting; 24 import com.google.common.base.Function; 25 26 import java.util.ArrayList; 27 import java.util.Arrays; 28 import java.util.Collection; 29 import java.util.Collections; 30 import java.util.Comparator; 31 import java.util.HashSet; 32 import java.util.Iterator; 33 import java.util.List; 34 import java.util.Map; 35 import java.util.NoSuchElementException; 36 import java.util.SortedMap; 37 import java.util.SortedSet; 38 import java.util.TreeSet; 39 import java.util.concurrent.atomic.AtomicInteger; 40 41 import javax.annotation.Nullable; 42 43 /** 44 * A comparator, with additional methods to support common operations. This is 45 * an "enriched" version of {@code Comparator}, in the same sense that {@link 46 * FluentIterable} is an enriched {@link Iterable}. 47 * 48 * <p>The common ways to get an instance of {@code Ordering} are: 49 * 50 * <ul> 51 * <li>Subclass it and implement {@link #compare} instead of implementing 52 * {@link Comparator} directly 53 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link 54 * #from(Comparator)} 55 * <li>Use the natural ordering, {@link Ordering#natural} 56 * </ul> 57 * 58 * <p>Then you can use the <i>chaining</i> methods to get an altered version of 59 * that {@code Ordering}, including: 60 * 61 * <ul> 62 * <li>{@link #reverse} 63 * <li>{@link #compound(Comparator)} 64 * <li>{@link #onResultOf(Function)} 65 * <li>{@link #nullsFirst} / {@link #nullsLast} 66 * </ul> 67 * 68 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator} 69 * is required, or use any of its special operations, such as:</p> 70 * 71 * <ul> 72 * <li>{@link #immutableSortedCopy} 73 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered} 74 * <li>{@link #min} / {@link #max} 75 * </ul> 76 * 77 * <p>Except as noted, the orderings returned by the factory methods of this 78 * class are serializable if and only if the provided instances that back them 79 * are. For example, if {@code ordering} and {@code function} can themselves be 80 * serialized, then {@code ordering.onResultOf(function)} can as well. 81 * 82 * <p>See the Guava User Guide article on <a href= 83 * "http://code.google.com/p/guava-libraries/wiki/OrderingExplained"> 84 * {@code Ordering}</a>. 85 * 86 * @author Jesse Wilson 87 * @author Kevin Bourrillion 88 * @since 2.0 (imported from Google Collections Library) 89 */ 90 @GwtCompatible 91 public abstract class Ordering<T> implements Comparator<T> { 92 // Natural order 93 94 /** 95 * Returns a serializable ordering that uses the natural order of the values. 96 * The ordering throws a {@link NullPointerException} when passed a null 97 * parameter. 98 * 99 * <p>The type specification is {@code <C extends Comparable>}, instead of 100 * the technically correct {@code <C extends Comparable<? super C>>}, to 101 * support legacy types from before Java 5. 102 */ 103 @GwtCompatible(serializable = true) 104 @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this?? natural()105 public static <C extends Comparable> Ordering<C> natural() { 106 return (Ordering<C>) NaturalOrdering.INSTANCE; 107 } 108 109 // Static factories 110 111 /** 112 * Returns an ordering based on an <i>existing</i> comparator instance. Note 113 * that it is unnecessary to create a <i>new</i> anonymous inner class 114 * implementing {@code Comparator} just to pass it in here. Instead, simply 115 * subclass {@code Ordering} and implement its {@code compare} method 116 * directly. 117 * 118 * @param comparator the comparator that defines the order 119 * @return comparator itself if it is already an {@code Ordering}; otherwise 120 * an ordering that wraps that comparator 121 */ 122 @GwtCompatible(serializable = true) from(Comparator<T> comparator)123 public static <T> Ordering<T> from(Comparator<T> comparator) { 124 return (comparator instanceof Ordering) 125 ? (Ordering<T>) comparator 126 : new ComparatorOrdering<T>(comparator); 127 } 128 129 /** 130 * Simply returns its argument. 131 * 132 * @deprecated no need to use this 133 */ 134 @GwtCompatible(serializable = true) from(Ordering<T> ordering)135 @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) { 136 return checkNotNull(ordering); 137 } 138 139 /** 140 * Returns an ordering that compares objects according to the order in 141 * which they appear in the given list. Only objects present in the list 142 * (according to {@link Object#equals}) may be compared. This comparator 143 * imposes a "partial ordering" over the type {@code T}. Subsequent changes 144 * to the {@code valuesInOrder} list will have no effect on the returned 145 * comparator. Null values in the list are not supported. 146 * 147 * <p>The returned comparator throws an {@link ClassCastException} when it 148 * receives an input parameter that isn't among the provided values. 149 * 150 * <p>The generated comparator is serializable if all the provided values are 151 * serializable. 152 * 153 * @param valuesInOrder the values that the returned comparator will be able 154 * to compare, in the order the comparator should induce 155 * @return the comparator described above 156 * @throws NullPointerException if any of the provided values is null 157 * @throws IllegalArgumentException if {@code valuesInOrder} contains any 158 * duplicate values (according to {@link Object#equals}) 159 */ 160 @GwtCompatible(serializable = true) explicit(List<T> valuesInOrder)161 public static <T> Ordering<T> explicit(List<T> valuesInOrder) { 162 return new ExplicitOrdering<T>(valuesInOrder); 163 } 164 165 /** 166 * Returns an ordering that compares objects according to the order in 167 * which they are given to this method. Only objects present in the argument 168 * list (according to {@link Object#equals}) may be compared. This comparator 169 * imposes a "partial ordering" over the type {@code T}. Null values in the 170 * argument list are not supported. 171 * 172 * <p>The returned comparator throws a {@link ClassCastException} when it 173 * receives an input parameter that isn't among the provided values. 174 * 175 * <p>The generated comparator is serializable if all the provided values are 176 * serializable. 177 * 178 * @param leastValue the value which the returned comparator should consider 179 * the "least" of all values 180 * @param remainingValuesInOrder the rest of the values that the returned 181 * comparator will be able to compare, in the order the comparator should 182 * follow 183 * @return the comparator described above 184 * @throws NullPointerException if any of the provided values is null 185 * @throws IllegalArgumentException if any duplicate values (according to 186 * {@link Object#equals(Object)}) are present among the method arguments 187 */ 188 @GwtCompatible(serializable = true) explicit( T leastValue, T... remainingValuesInOrder)189 public static <T> Ordering<T> explicit( 190 T leastValue, T... remainingValuesInOrder) { 191 return explicit(Lists.asList(leastValue, remainingValuesInOrder)); 192 } 193 194 // Ordering<Object> singletons 195 196 /** 197 * Returns an ordering which treats all values as equal, indicating "no 198 * ordering." Passing this ordering to any <i>stable</i> sort algorithm 199 * results in no change to the order of elements. Note especially that {@link 200 * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the 201 * returned instance these are implemented by simply copying the source list. 202 * 203 * <p>Example: <pre> {@code 204 * 205 * Ordering.allEqual().nullsLast().sortedCopy( 206 * asList(t, null, e, s, null, t, null))}</pre> 207 * 208 * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns 209 * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison 210 * order of those three values (which might not even implement {@link 211 * Comparable} at all). 212 * 213 * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with 214 * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in 215 * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency 216 * is expected. 217 * 218 * <p>The returned comparator is serializable. 219 * 220 * @since 13.0 221 */ 222 @GwtCompatible(serializable = true) 223 @SuppressWarnings("unchecked") allEqual()224 public static Ordering<Object> allEqual() { 225 return AllEqualOrdering.INSTANCE; 226 } 227 228 /** 229 * Returns an ordering that compares objects by the natural ordering of their 230 * string representations as returned by {@code toString()}. It does not 231 * support null values. 232 * 233 * <p>The comparator is serializable. 234 */ 235 @GwtCompatible(serializable = true) usingToString()236 public static Ordering<Object> usingToString() { 237 return UsingToStringOrdering.INSTANCE; 238 } 239 240 /** 241 * Returns an arbitrary ordering over all objects, for which {@code compare(a, 242 * b) == 0} implies {@code a == b} (identity equality). There is no meaning 243 * whatsoever to the order imposed, but it is constant for the life of the VM. 244 * 245 * <p>Because the ordering is identity-based, it is not "consistent with 246 * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use 247 * caution when building a {@link SortedSet} or {@link SortedMap} from it, as 248 * the resulting collection will not behave exactly according to spec. 249 * 250 * <p>This ordering is not serializable, as its implementation relies on 251 * {@link System#identityHashCode(Object)}, so its behavior cannot be 252 * preserved across serialization. 253 * 254 * @since 2.0 255 */ arbitrary()256 public static Ordering<Object> arbitrary() { 257 return ArbitraryOrderingHolder.ARBITRARY_ORDERING; 258 } 259 260 private static class ArbitraryOrderingHolder { 261 static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering(); 262 } 263 264 @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> { 265 @SuppressWarnings("deprecation") // TODO(kevinb): ? 266 private Map<Object, Integer> uids = 267 Platform.tryWeakKeys(new MapMaker()).makeComputingMap( 268 new Function<Object, Integer>() { 269 final AtomicInteger counter = new AtomicInteger(0); 270 @Override 271 public Integer apply(Object from) { 272 return counter.getAndIncrement(); 273 } 274 }); 275 compare(Object left, Object right)276 @Override public int compare(Object left, Object right) { 277 if (left == right) { 278 return 0; 279 } else if (left == null) { 280 return -1; 281 } else if (right == null) { 282 return 1; 283 } 284 int leftCode = identityHashCode(left); 285 int rightCode = identityHashCode(right); 286 if (leftCode != rightCode) { 287 return leftCode < rightCode ? -1 : 1; 288 } 289 290 // identityHashCode collision (rare, but not as rare as you'd think) 291 int result = uids.get(left).compareTo(uids.get(right)); 292 if (result == 0) { 293 throw new AssertionError(); // extremely, extremely unlikely. 294 } 295 return result; 296 } 297 toString()298 @Override public String toString() { 299 return "Ordering.arbitrary()"; 300 } 301 302 /* 303 * We need to be able to mock identityHashCode() calls for tests, because it 304 * can take 1-10 seconds to find colliding objects. Mocking frameworks that 305 * can do magic to mock static method calls still can't do so for a system 306 * class, so we need the indirection. In production, Hotspot should still 307 * recognize that the call is 1-morphic and should still be willing to 308 * inline it if necessary. 309 */ identityHashCode(Object object)310 int identityHashCode(Object object) { 311 return System.identityHashCode(object); 312 } 313 } 314 315 // Constructor 316 317 /** 318 * Constructs a new instance of this class (only invokable by the subclass 319 * constructor, typically implicit). 320 */ Ordering()321 protected Ordering() {} 322 323 // Instance-based factories (and any static equivalents) 324 325 /** 326 * Returns the reverse of this ordering; the {@code Ordering} equivalent to 327 * {@link Collections#reverseOrder(Comparator)}. 328 */ 329 // type parameter <S> lets us avoid the extra <String> in statements like: 330 // Ordering<String> o = Ordering.<String>natural().reverse(); 331 @GwtCompatible(serializable = true) reverse()332 public <S extends T> Ordering<S> reverse() { 333 return new ReverseOrdering<S>(this); 334 } 335 336 /** 337 * Returns an ordering that treats {@code null} as less than all other values 338 * and uses {@code this} to compare non-null values. 339 */ 340 // type parameter <S> lets us avoid the extra <String> in statements like: 341 // Ordering<String> o = Ordering.<String>natural().nullsFirst(); 342 @GwtCompatible(serializable = true) nullsFirst()343 public <S extends T> Ordering<S> nullsFirst() { 344 return new NullsFirstOrdering<S>(this); 345 } 346 347 /** 348 * Returns an ordering that treats {@code null} as greater than all other 349 * values and uses this ordering to compare non-null values. 350 */ 351 // type parameter <S> lets us avoid the extra <String> in statements like: 352 // Ordering<String> o = Ordering.<String>natural().nullsLast(); 353 @GwtCompatible(serializable = true) nullsLast()354 public <S extends T> Ordering<S> nullsLast() { 355 return new NullsLastOrdering<S>(this); 356 } 357 358 /** 359 * Returns a new ordering on {@code F} which orders elements by first applying 360 * a function to them, then comparing those results using {@code this}. For 361 * example, to compare objects by their string forms, in a case-insensitive 362 * manner, use: <pre> {@code 363 * 364 * Ordering.from(String.CASE_INSENSITIVE_ORDER) 365 * .onResultOf(Functions.toStringFunction())}</pre> 366 */ 367 @GwtCompatible(serializable = true) onResultOf(Function<F, ? extends T> function)368 public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) { 369 return new ByFunctionOrdering<F, T>(function, this); 370 } 371 onKeys()372 <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() { 373 return onResultOf(Maps.<T2>keyFunction()); 374 } 375 376 /** 377 * Returns an ordering which first uses the ordering {@code this}, but which 378 * in the event of a "tie", then delegates to {@code secondaryComparator}. 379 * For example, to sort a bug list first by status and second by priority, you 380 * might use {@code byStatus.compound(byPriority)}. For a compound ordering 381 * with three or more components, simply chain multiple calls to this method. 382 * 383 * <p>An ordering produced by this method, or a chain of calls to this method, 384 * is equivalent to one created using {@link Ordering#compound(Iterable)} on 385 * the same component comparators. 386 */ 387 @GwtCompatible(serializable = true) compound( Comparator<? super U> secondaryComparator)388 public <U extends T> Ordering<U> compound( 389 Comparator<? super U> secondaryComparator) { 390 return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator)); 391 } 392 393 /** 394 * Returns an ordering which tries each given comparator in order until a 395 * non-zero result is found, returning that result, and returning zero only if 396 * all comparators return zero. The returned ordering is based on the state of 397 * the {@code comparators} iterable at the time it was provided to this 398 * method. 399 * 400 * <p>The returned ordering is equivalent to that produced using {@code 401 * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}. 402 * 403 * <p><b>Warning:</b> Supplying an argument with undefined iteration order, 404 * such as a {@link HashSet}, will produce non-deterministic results. 405 * 406 * @param comparators the comparators to try in order 407 */ 408 @GwtCompatible(serializable = true) compound( Iterable<? extends Comparator<? super T>> comparators)409 public static <T> Ordering<T> compound( 410 Iterable<? extends Comparator<? super T>> comparators) { 411 return new CompoundOrdering<T>(comparators); 412 } 413 414 /** 415 * Returns a new ordering which sorts iterables by comparing corresponding 416 * elements pairwise until a nonzero result is found; imposes "dictionary 417 * order". If the end of one iterable is reached, but not the other, the 418 * shorter iterable is considered to be less than the longer one. For example, 419 * a lexicographical natural ordering over integers considers {@code 420 * [] < [1] < [1, 1] < [1, 2] < [2]}. 421 * 422 * <p>Note that {@code ordering.lexicographical().reverse()} is not 423 * equivalent to {@code ordering.reverse().lexicographical()} (consider how 424 * each would order {@code [1]} and {@code [1, 1]}). 425 * 426 * @since 2.0 427 */ 428 @GwtCompatible(serializable = true) 429 // type parameter <S> lets us avoid the extra <String> in statements like: 430 // Ordering<Iterable<String>> o = 431 // Ordering.<String>natural().lexicographical(); lexicographical()432 public <S extends T> Ordering<Iterable<S>> lexicographical() { 433 /* 434 * Note that technically the returned ordering should be capable of 435 * handling not just {@code Iterable<S>} instances, but also any {@code 436 * Iterable<? extends S>}. However, the need for this comes up so rarely 437 * that it doesn't justify making everyone else deal with the very ugly 438 * wildcard. 439 */ 440 return new LexicographicalOrdering<S>(this); 441 } 442 443 // Regular instance methods 444 445 // Override to add @Nullable compare(@ullable T left, @Nullable T right)446 @Override public abstract int compare(@Nullable T left, @Nullable T right); 447 448 /** 449 * Returns the least of the specified values according to this ordering. If 450 * there are multiple least values, the first of those is returned. The 451 * iterator will be left exhausted: its {@code hasNext()} method will return 452 * {@code false}. 453 * 454 * @param iterator the iterator whose minimum element is to be determined 455 * @throws NoSuchElementException if {@code iterator} is empty 456 * @throws ClassCastException if the parameters are not <i>mutually 457 * comparable</i> under this ordering. 458 * 459 * @since 11.0 460 */ min(Iterator<E> iterator)461 public <E extends T> E min(Iterator<E> iterator) { 462 // let this throw NoSuchElementException as necessary 463 E minSoFar = iterator.next(); 464 465 while (iterator.hasNext()) { 466 minSoFar = min(minSoFar, iterator.next()); 467 } 468 469 return minSoFar; 470 } 471 472 /** 473 * Returns the least of the specified values according to this ordering. If 474 * there are multiple least values, the first of those is returned. 475 * 476 * @param iterable the iterable whose minimum element is to be determined 477 * @throws NoSuchElementException if {@code iterable} is empty 478 * @throws ClassCastException if the parameters are not <i>mutually 479 * comparable</i> under this ordering. 480 */ min(Iterable<E> iterable)481 public <E extends T> E min(Iterable<E> iterable) { 482 return min(iterable.iterator()); 483 } 484 485 /** 486 * Returns the lesser of the two values according to this ordering. If the 487 * values compare as 0, the first is returned. 488 * 489 * <p><b>Implementation note:</b> this method is invoked by the default 490 * implementations of the other {@code min} overloads, so overriding it will 491 * affect their behavior. 492 * 493 * @param a value to compare, returned if less than or equal to b. 494 * @param b value to compare. 495 * @throws ClassCastException if the parameters are not <i>mutually 496 * comparable</i> under this ordering. 497 */ min(@ullable E a, @Nullable E b)498 public <E extends T> E min(@Nullable E a, @Nullable E b) { 499 return (compare(a, b) <= 0) ? a : b; 500 } 501 502 /** 503 * Returns the least of the specified values according to this ordering. If 504 * there are multiple least values, the first of those is returned. 505 * 506 * @param a value to compare, returned if less than or equal to the rest. 507 * @param b value to compare 508 * @param c value to compare 509 * @param rest values to compare 510 * @throws ClassCastException if the parameters are not <i>mutually 511 * comparable</i> under this ordering. 512 */ min( @ullable E a, @Nullable E b, @Nullable E c, E... rest)513 public <E extends T> E min( 514 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 515 E minSoFar = min(min(a, b), c); 516 517 for (E r : rest) { 518 minSoFar = min(minSoFar, r); 519 } 520 521 return minSoFar; 522 } 523 524 /** 525 * Returns the greatest of the specified values according to this ordering. If 526 * there are multiple greatest values, the first of those is returned. The 527 * iterator will be left exhausted: its {@code hasNext()} method will return 528 * {@code false}. 529 * 530 * @param iterator the iterator whose maximum element is to be determined 531 * @throws NoSuchElementException if {@code iterator} is empty 532 * @throws ClassCastException if the parameters are not <i>mutually 533 * comparable</i> under this ordering. 534 * 535 * @since 11.0 536 */ max(Iterator<E> iterator)537 public <E extends T> E max(Iterator<E> iterator) { 538 // let this throw NoSuchElementException as necessary 539 E maxSoFar = iterator.next(); 540 541 while (iterator.hasNext()) { 542 maxSoFar = max(maxSoFar, iterator.next()); 543 } 544 545 return maxSoFar; 546 } 547 548 /** 549 * Returns the greatest of the specified values according to this ordering. If 550 * there are multiple greatest values, the first of those is returned. 551 * 552 * @param iterable the iterable whose maximum element is to be determined 553 * @throws NoSuchElementException if {@code iterable} is empty 554 * @throws ClassCastException if the parameters are not <i>mutually 555 * comparable</i> under this ordering. 556 */ max(Iterable<E> iterable)557 public <E extends T> E max(Iterable<E> iterable) { 558 return max(iterable.iterator()); 559 } 560 561 /** 562 * Returns the greater of the two values according to this ordering. If the 563 * values compare as 0, the first is returned. 564 * 565 * <p><b>Implementation note:</b> this method is invoked by the default 566 * implementations of the other {@code max} overloads, so overriding it will 567 * affect their behavior. 568 * 569 * @param a value to compare, returned if greater than or equal to b. 570 * @param b value to compare. 571 * @throws ClassCastException if the parameters are not <i>mutually 572 * comparable</i> under this ordering. 573 */ max(@ullable E a, @Nullable E b)574 public <E extends T> E max(@Nullable E a, @Nullable E b) { 575 return (compare(a, b) >= 0) ? a : b; 576 } 577 578 /** 579 * Returns the greatest of the specified values according to this ordering. If 580 * there are multiple greatest values, the first of those is returned. 581 * 582 * @param a value to compare, returned if greater than or equal to the rest. 583 * @param b value to compare 584 * @param c value to compare 585 * @param rest values to compare 586 * @throws ClassCastException if the parameters are not <i>mutually 587 * comparable</i> under this ordering. 588 */ max( @ullable E a, @Nullable E b, @Nullable E c, E... rest)589 public <E extends T> E max( 590 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 591 E maxSoFar = max(max(a, b), c); 592 593 for (E r : rest) { 594 maxSoFar = max(maxSoFar, r); 595 } 596 597 return maxSoFar; 598 } 599 600 /** 601 * Returns the {@code k} least elements of the given iterable according to 602 * this ordering, in order from least to greatest. If there are fewer than 603 * {@code k} elements present, all will be included. 604 * 605 * <p>The implementation does not necessarily use a <i>stable</i> sorting 606 * algorithm; when multiple elements are equivalent, it is undefined which 607 * will come first. 608 * 609 * @return an immutable {@code RandomAccess} list of the {@code k} least 610 * elements in ascending order 611 * @throws IllegalArgumentException if {@code k} is negative 612 * @since 8.0 613 */ leastOf(Iterable<E> iterable, int k)614 public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) { 615 if (iterable instanceof Collection) { 616 Collection<E> collection = (Collection<E>) iterable; 617 if (collection.size() <= 2L * k) { 618 // In this case, just dumping the collection to an array and sorting is 619 // faster than using the implementation for Iterator, which is 620 // specialized for k much smaller than n. 621 622 @SuppressWarnings("unchecked") // c only contains E's and doesn't escape 623 E[] array = (E[]) collection.toArray(); 624 Arrays.sort(array, this); 625 if (array.length > k) { 626 array = ObjectArrays.arraysCopyOf(array, k); 627 } 628 return Collections.unmodifiableList(Arrays.asList(array)); 629 } 630 } 631 return leastOf(iterable.iterator(), k); 632 } 633 634 /** 635 * Returns the {@code k} least elements from the given iterator according to 636 * this ordering, in order from least to greatest. If there are fewer than 637 * {@code k} elements present, all will be included. 638 * 639 * <p>The implementation does not necessarily use a <i>stable</i> sorting 640 * algorithm; when multiple elements are equivalent, it is undefined which 641 * will come first. 642 * 643 * @return an immutable {@code RandomAccess} list of the {@code k} least 644 * elements in ascending order 645 * @throws IllegalArgumentException if {@code k} is negative 646 * @since 14.0 647 */ leastOf(Iterator<E> elements, int k)648 public <E extends T> List<E> leastOf(Iterator<E> elements, int k) { 649 checkNotNull(elements); 650 checkNonnegative(k, "k"); 651 652 if (k == 0 || !elements.hasNext()) { 653 return ImmutableList.of(); 654 } else if (k >= Integer.MAX_VALUE / 2) { 655 // k is really large; just do a straightforward sorted-copy-and-sublist 656 ArrayList<E> list = Lists.newArrayList(elements); 657 Collections.sort(list, this); 658 if (list.size() > k) { 659 list.subList(k, list.size()).clear(); 660 } 661 list.trimToSize(); 662 return Collections.unmodifiableList(list); 663 } 664 665 /* 666 * Our goal is an O(n) algorithm using only one pass and O(k) additional 667 * memory. 668 * 669 * We use the following algorithm: maintain a buffer of size 2*k. Every time 670 * the buffer gets full, find the median and partition around it, keeping 671 * only the lowest k elements. This requires n/k find-median-and-partition 672 * steps, each of which take O(k) time with a traditional quickselect. 673 * 674 * After sorting the output, the whole algorithm is O(n + k log k). It 675 * degrades gracefully for worst-case input (descending order), performs 676 * competitively or wins outright for randomly ordered input, and doesn't 677 * require the whole collection to fit into memory. 678 */ 679 int bufferCap = k * 2; 680 @SuppressWarnings("unchecked") // we'll only put E's in 681 E[] buffer = (E[]) new Object[bufferCap]; 682 E threshold = elements.next(); 683 buffer[0] = threshold; 684 int bufferSize = 1; 685 // threshold is the kth smallest element seen so far. Once bufferSize >= k, 686 // anything larger than threshold can be ignored immediately. 687 688 while (bufferSize < k && elements.hasNext()) { 689 E e = elements.next(); 690 buffer[bufferSize++] = e; 691 threshold = max(threshold, e); 692 } 693 694 while (elements.hasNext()) { 695 E e = elements.next(); 696 if (compare(e, threshold) >= 0) { 697 continue; 698 } 699 700 buffer[bufferSize++] = e; 701 if (bufferSize == bufferCap) { 702 // We apply the quickselect algorithm to partition about the median, 703 // and then ignore the last k elements. 704 int left = 0; 705 int right = bufferCap - 1; 706 707 int minThresholdPosition = 0; 708 // The leftmost position at which the greatest of the k lower elements 709 // -- the new value of threshold -- might be found. 710 711 while (left < right) { 712 int pivotIndex = (left + right + 1) >>> 1; 713 int pivotNewIndex = partition(buffer, left, right, pivotIndex); 714 if (pivotNewIndex > k) { 715 right = pivotNewIndex - 1; 716 } else if (pivotNewIndex < k) { 717 left = Math.max(pivotNewIndex, left + 1); 718 minThresholdPosition = pivotNewIndex; 719 } else { 720 break; 721 } 722 } 723 bufferSize = k; 724 725 threshold = buffer[minThresholdPosition]; 726 for (int i = minThresholdPosition + 1; i < bufferSize; i++) { 727 threshold = max(threshold, buffer[i]); 728 } 729 } 730 } 731 732 Arrays.sort(buffer, 0, bufferSize, this); 733 734 bufferSize = Math.min(bufferSize, k); 735 return Collections.unmodifiableList( 736 Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize))); 737 // We can't use ImmutableList; we have to be null-friendly! 738 } 739 partition( E[] values, int left, int right, int pivotIndex)740 private <E extends T> int partition( 741 E[] values, int left, int right, int pivotIndex) { 742 E pivotValue = values[pivotIndex]; 743 744 values[pivotIndex] = values[right]; 745 values[right] = pivotValue; 746 747 int storeIndex = left; 748 for (int i = left; i < right; i++) { 749 if (compare(values[i], pivotValue) < 0) { 750 ObjectArrays.swap(values, storeIndex, i); 751 storeIndex++; 752 } 753 } 754 ObjectArrays.swap(values, right, storeIndex); 755 return storeIndex; 756 } 757 758 /** 759 * Returns the {@code k} greatest elements of the given iterable according to 760 * this ordering, in order from greatest to least. If there are fewer than 761 * {@code k} elements present, all will be included. 762 * 763 * <p>The implementation does not necessarily use a <i>stable</i> sorting 764 * algorithm; when multiple elements are equivalent, it is undefined which 765 * will come first. 766 * 767 * @return an immutable {@code RandomAccess} list of the {@code k} greatest 768 * elements in <i>descending order</i> 769 * @throws IllegalArgumentException if {@code k} is negative 770 * @since 8.0 771 */ greatestOf(Iterable<E> iterable, int k)772 public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) { 773 // TODO(kevinb): see if delegation is hurting performance noticeably 774 // TODO(kevinb): if we change this implementation, add full unit tests. 775 return reverse().leastOf(iterable, k); 776 } 777 778 /** 779 * Returns the {@code k} greatest elements from the given iterator according to 780 * this ordering, in order from greatest to least. If there are fewer than 781 * {@code k} elements present, all will be included. 782 * 783 * <p>The implementation does not necessarily use a <i>stable</i> sorting 784 * algorithm; when multiple elements are equivalent, it is undefined which 785 * will come first. 786 * 787 * @return an immutable {@code RandomAccess} list of the {@code k} greatest 788 * elements in <i>descending order</i> 789 * @throws IllegalArgumentException if {@code k} is negative 790 * @since 14.0 791 */ greatestOf(Iterator<E> iterator, int k)792 public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) { 793 return reverse().leastOf(iterator, k); 794 } 795 796 /** 797 * Returns a <b>mutable</b> list containing {@code elements} sorted by this 798 * ordering; use this only when the resulting list may need further 799 * modification, or may contain {@code null}. The input is not modified. The 800 * returned list is serializable and has random access. 801 * 802 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 803 * elements that are duplicates according to the comparator. The sort 804 * performed is <i>stable</i>, meaning that such elements will appear in the 805 * returned list in the same order they appeared in {@code elements}. 806 * 807 * <p><b>Performance note:</b> According to our 808 * benchmarking 809 * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in 810 * both time and space) than this method, and this method in turn generally 811 * performs better than copying the list and calling {@link 812 * Collections#sort(List)}. 813 */ sortedCopy(Iterable<E> elements)814 public <E extends T> List<E> sortedCopy(Iterable<E> elements) { 815 @SuppressWarnings("unchecked") // does not escape, and contains only E's 816 E[] array = (E[]) Iterables.toArray(elements); 817 Arrays.sort(array, this); 818 return Lists.newArrayList(Arrays.asList(array)); 819 } 820 821 /** 822 * Returns an <b>immutable</b> list containing {@code elements} sorted by this 823 * ordering. The input is not modified. 824 * 825 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 826 * elements that are duplicates according to the comparator. The sort 827 * performed is <i>stable</i>, meaning that such elements will appear in the 828 * returned list in the same order they appeared in {@code elements}. 829 * 830 * <p><b>Performance note:</b> According to our 831 * benchmarking 832 * on Open JDK 7, this method is the most efficient way to make a sorted copy 833 * of a collection. 834 * 835 * @throws NullPointerException if any of {@code elements} (or {@code 836 * elements} itself) is null 837 * @since 3.0 838 */ immutableSortedCopy( Iterable<E> elements)839 public <E extends T> ImmutableList<E> immutableSortedCopy( 840 Iterable<E> elements) { 841 @SuppressWarnings("unchecked") // we'll only ever have E's in here 842 E[] array = (E[]) Iterables.toArray(elements); 843 for (E e : array) { 844 checkNotNull(e); 845 } 846 Arrays.sort(array, this); 847 return ImmutableList.asImmutableList(array); 848 } 849 850 /** 851 * Returns {@code true} if each element in {@code iterable} after the first is 852 * greater than or equal to the element that preceded it, according to this 853 * ordering. Note that this is always true when the iterable has fewer than 854 * two elements. 855 */ isOrdered(Iterable<? extends T> iterable)856 public boolean isOrdered(Iterable<? extends T> iterable) { 857 Iterator<? extends T> it = iterable.iterator(); 858 if (it.hasNext()) { 859 T prev = it.next(); 860 while (it.hasNext()) { 861 T next = it.next(); 862 if (compare(prev, next) > 0) { 863 return false; 864 } 865 prev = next; 866 } 867 } 868 return true; 869 } 870 871 /** 872 * Returns {@code true} if each element in {@code iterable} after the first is 873 * <i>strictly</i> greater than the element that preceded it, according to 874 * this ordering. Note that this is always true when the iterable has fewer 875 * than two elements. 876 */ isStrictlyOrdered(Iterable<? extends T> iterable)877 public boolean isStrictlyOrdered(Iterable<? extends T> iterable) { 878 Iterator<? extends T> it = iterable.iterator(); 879 if (it.hasNext()) { 880 T prev = it.next(); 881 while (it.hasNext()) { 882 T next = it.next(); 883 if (compare(prev, next) >= 0) { 884 return false; 885 } 886 prev = next; 887 } 888 } 889 return true; 890 } 891 892 /** 893 * {@link Collections#binarySearch(List, Object, Comparator) Searches} 894 * {@code sortedList} for {@code key} using the binary search algorithm. The 895 * list must be sorted using this ordering. 896 * 897 * @param sortedList the list to be searched 898 * @param key the key to be searched for 899 */ binarySearch(List<? extends T> sortedList, @Nullable T key)900 public int binarySearch(List<? extends T> sortedList, @Nullable T key) { 901 return Collections.binarySearch(sortedList, key, this); 902 } 903 904 /** 905 * Exception thrown by a {@link Ordering#explicit(List)} or {@link 906 * Ordering#explicit(Object, Object[])} comparator when comparing a value 907 * outside the set of values it can compare. Extending {@link 908 * ClassCastException} may seem odd, but it is required. 909 */ 910 // TODO(kevinb): make this public, document it right 911 @VisibleForTesting 912 static class IncomparableValueException extends ClassCastException { 913 final Object value; 914 IncomparableValueException(Object value)915 IncomparableValueException(Object value) { 916 super("Cannot compare value: " + value); 917 this.value = value; 918 } 919 920 private static final long serialVersionUID = 0; 921 } 922 923 // Never make these public 924 static final int LEFT_IS_GREATER = 1; 925 static final int RIGHT_IS_GREATER = -1; 926 } 927