1 /*
2 * jdhuff.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2016, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
10 *
11 * This file contains Huffman entropy decoding routines.
12 *
13 * Much of the complexity here has to do with supporting input suspension.
14 * If the data source module demands suspension, we want to be able to back
15 * up to the start of the current MCU. To do this, we copy state variables
16 * into local working storage, and update them back to the permanent
17 * storage only upon successful completion of an MCU.
18 */
19
20 #define JPEG_INTERNALS
21 #include "jinclude.h"
22 #include "jpeglib.h"
23 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
24 #include "jpegcomp.h"
25 #include "jstdhuff.c"
26
27
28 /*
29 * Expanded entropy decoder object for Huffman decoding.
30 *
31 * The savable_state subrecord contains fields that change within an MCU,
32 * but must not be updated permanently until we complete the MCU.
33 */
34
35 typedef struct {
36 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
37 } savable_state;
38
39 /* This macro is to work around compilers with missing or broken
40 * structure assignment. You'll need to fix this code if you have
41 * such a compiler and you change MAX_COMPS_IN_SCAN.
42 */
43
44 #ifndef NO_STRUCT_ASSIGN
45 #define ASSIGN_STATE(dest,src) ((dest) = (src))
46 #else
47 #if MAX_COMPS_IN_SCAN == 4
48 #define ASSIGN_STATE(dest,src) \
49 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
50 (dest).last_dc_val[1] = (src).last_dc_val[1], \
51 (dest).last_dc_val[2] = (src).last_dc_val[2], \
52 (dest).last_dc_val[3] = (src).last_dc_val[3])
53 #endif
54 #endif
55
56
57 typedef struct {
58 struct jpeg_entropy_decoder pub; /* public fields */
59
60 /* These fields are loaded into local variables at start of each MCU.
61 * In case of suspension, we exit WITHOUT updating them.
62 */
63 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
64 savable_state saved; /* Other state at start of MCU */
65
66 /* These fields are NOT loaded into local working state. */
67 unsigned int restarts_to_go; /* MCUs left in this restart interval */
68
69 /* Pointers to derived tables (these workspaces have image lifespan) */
70 d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
71 d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
72
73 /* Precalculated info set up by start_pass for use in decode_mcu: */
74
75 /* Pointers to derived tables to be used for each block within an MCU */
76 d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
77 d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
78 /* Whether we care about the DC and AC coefficient values for each block */
79 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
80 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
81 } huff_entropy_decoder;
82
83 typedef huff_entropy_decoder *huff_entropy_ptr;
84
85
86 /*
87 * Initialize for a Huffman-compressed scan.
88 */
89
90 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)91 start_pass_huff_decoder (j_decompress_ptr cinfo)
92 {
93 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
94 int ci, blkn, dctbl, actbl;
95 d_derived_tbl **pdtbl;
96 jpeg_component_info *compptr;
97
98 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
99 * This ought to be an error condition, but we make it a warning because
100 * there are some baseline files out there with all zeroes in these bytes.
101 */
102 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
103 cinfo->Ah != 0 || cinfo->Al != 0)
104 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
105
106 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
107 compptr = cinfo->cur_comp_info[ci];
108 dctbl = compptr->dc_tbl_no;
109 actbl = compptr->ac_tbl_no;
110 /* Compute derived values for Huffman tables */
111 /* We may do this more than once for a table, but it's not expensive */
112 pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
113 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
114 pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
115 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
116 /* Initialize DC predictions to 0 */
117 entropy->saved.last_dc_val[ci] = 0;
118 }
119
120 /* Precalculate decoding info for each block in an MCU of this scan */
121 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
122 ci = cinfo->MCU_membership[blkn];
123 compptr = cinfo->cur_comp_info[ci];
124 /* Precalculate which table to use for each block */
125 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
126 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
127 /* Decide whether we really care about the coefficient values */
128 if (compptr->component_needed) {
129 entropy->dc_needed[blkn] = TRUE;
130 /* we don't need the ACs if producing a 1/8th-size image */
131 entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
132 } else {
133 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
134 }
135 }
136
137 /* Initialize bitread state variables */
138 entropy->bitstate.bits_left = 0;
139 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
140 entropy->pub.insufficient_data = FALSE;
141
142 /* Initialize restart counter */
143 entropy->restarts_to_go = cinfo->restart_interval;
144 }
145
146
147 /*
148 * Compute the derived values for a Huffman table.
149 * This routine also performs some validation checks on the table.
150 *
151 * Note this is also used by jdphuff.c.
152 */
153
154 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)155 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
156 d_derived_tbl **pdtbl)
157 {
158 JHUFF_TBL *htbl;
159 d_derived_tbl *dtbl;
160 int p, i, l, si, numsymbols;
161 int lookbits, ctr;
162 char huffsize[257];
163 unsigned int huffcode[257];
164 unsigned int code;
165
166 /* Note that huffsize[] and huffcode[] are filled in code-length order,
167 * paralleling the order of the symbols themselves in htbl->huffval[].
168 */
169
170 /* Find the input Huffman table */
171 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
172 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
173 htbl =
174 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
175 if (htbl == NULL)
176 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
177
178 /* Allocate a workspace if we haven't already done so. */
179 if (*pdtbl == NULL)
180 *pdtbl = (d_derived_tbl *)
181 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
182 sizeof(d_derived_tbl));
183 dtbl = *pdtbl;
184 dtbl->pub = htbl; /* fill in back link */
185
186 /* Figure C.1: make table of Huffman code length for each symbol */
187
188 p = 0;
189 for (l = 1; l <= 16; l++) {
190 i = (int) htbl->bits[l];
191 if (i < 0 || p + i > 256) /* protect against table overrun */
192 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
193 while (i--)
194 huffsize[p++] = (char) l;
195 }
196 huffsize[p] = 0;
197 numsymbols = p;
198
199 /* Figure C.2: generate the codes themselves */
200 /* We also validate that the counts represent a legal Huffman code tree. */
201
202 code = 0;
203 si = huffsize[0];
204 p = 0;
205 while (huffsize[p]) {
206 while (((int) huffsize[p]) == si) {
207 huffcode[p++] = code;
208 code++;
209 }
210 /* code is now 1 more than the last code used for codelength si; but
211 * it must still fit in si bits, since no code is allowed to be all ones.
212 */
213 if (((JLONG) code) >= (((JLONG) 1) << si))
214 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
215 code <<= 1;
216 si++;
217 }
218
219 /* Figure F.15: generate decoding tables for bit-sequential decoding */
220
221 p = 0;
222 for (l = 1; l <= 16; l++) {
223 if (htbl->bits[l]) {
224 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
225 * minus the minimum code of length l
226 */
227 dtbl->valoffset[l] = (JLONG) p - (JLONG) huffcode[p];
228 p += htbl->bits[l];
229 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
230 } else {
231 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
232 }
233 }
234 dtbl->valoffset[17] = 0;
235 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
236
237 /* Compute lookahead tables to speed up decoding.
238 * First we set all the table entries to 0, indicating "too long";
239 * then we iterate through the Huffman codes that are short enough and
240 * fill in all the entries that correspond to bit sequences starting
241 * with that code.
242 */
243
244 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
245 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
246
247 p = 0;
248 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
249 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
250 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
251 /* Generate left-justified code followed by all possible bit sequences */
252 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
253 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
254 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
255 lookbits++;
256 }
257 }
258 }
259
260 /* Validate symbols as being reasonable.
261 * For AC tables, we make no check, but accept all byte values 0..255.
262 * For DC tables, we require the symbols to be in range 0..15.
263 * (Tighter bounds could be applied depending on the data depth and mode,
264 * but this is sufficient to ensure safe decoding.)
265 */
266 if (isDC) {
267 for (i = 0; i < numsymbols; i++) {
268 int sym = htbl->huffval[i];
269 if (sym < 0 || sym > 15)
270 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
271 }
272 }
273 }
274
275
276 /*
277 * Out-of-line code for bit fetching (shared with jdphuff.c).
278 * See jdhuff.h for info about usage.
279 * Note: current values of get_buffer and bits_left are passed as parameters,
280 * but are returned in the corresponding fields of the state struct.
281 *
282 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
283 * of get_buffer to be used. (On machines with wider words, an even larger
284 * buffer could be used.) However, on some machines 32-bit shifts are
285 * quite slow and take time proportional to the number of places shifted.
286 * (This is true with most PC compilers, for instance.) In this case it may
287 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
288 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
289 */
290
291 #ifdef SLOW_SHIFT_32
292 #define MIN_GET_BITS 15 /* minimum allowable value */
293 #else
294 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
295 #endif
296
297
298 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)299 jpeg_fill_bit_buffer (bitread_working_state *state,
300 register bit_buf_type get_buffer, register int bits_left,
301 int nbits)
302 /* Load up the bit buffer to a depth of at least nbits */
303 {
304 /* Copy heavily used state fields into locals (hopefully registers) */
305 register const JOCTET *next_input_byte = state->next_input_byte;
306 register size_t bytes_in_buffer = state->bytes_in_buffer;
307 j_decompress_ptr cinfo = state->cinfo;
308
309 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
310 /* (It is assumed that no request will be for more than that many bits.) */
311 /* We fail to do so only if we hit a marker or are forced to suspend. */
312
313 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
314 while (bits_left < MIN_GET_BITS) {
315 register int c;
316
317 /* Attempt to read a byte */
318 if (bytes_in_buffer == 0) {
319 if (! (*cinfo->src->fill_input_buffer) (cinfo))
320 return FALSE;
321 next_input_byte = cinfo->src->next_input_byte;
322 bytes_in_buffer = cinfo->src->bytes_in_buffer;
323 }
324 bytes_in_buffer--;
325 c = GETJOCTET(*next_input_byte++);
326
327 /* If it's 0xFF, check and discard stuffed zero byte */
328 if (c == 0xFF) {
329 /* Loop here to discard any padding FF's on terminating marker,
330 * so that we can save a valid unread_marker value. NOTE: we will
331 * accept multiple FF's followed by a 0 as meaning a single FF data
332 * byte. This data pattern is not valid according to the standard.
333 */
334 do {
335 if (bytes_in_buffer == 0) {
336 if (! (*cinfo->src->fill_input_buffer) (cinfo))
337 return FALSE;
338 next_input_byte = cinfo->src->next_input_byte;
339 bytes_in_buffer = cinfo->src->bytes_in_buffer;
340 }
341 bytes_in_buffer--;
342 c = GETJOCTET(*next_input_byte++);
343 } while (c == 0xFF);
344
345 if (c == 0) {
346 /* Found FF/00, which represents an FF data byte */
347 c = 0xFF;
348 } else {
349 /* Oops, it's actually a marker indicating end of compressed data.
350 * Save the marker code for later use.
351 * Fine point: it might appear that we should save the marker into
352 * bitread working state, not straight into permanent state. But
353 * once we have hit a marker, we cannot need to suspend within the
354 * current MCU, because we will read no more bytes from the data
355 * source. So it is OK to update permanent state right away.
356 */
357 cinfo->unread_marker = c;
358 /* See if we need to insert some fake zero bits. */
359 goto no_more_bytes;
360 }
361 }
362
363 /* OK, load c into get_buffer */
364 get_buffer = (get_buffer << 8) | c;
365 bits_left += 8;
366 } /* end while */
367 } else {
368 no_more_bytes:
369 /* We get here if we've read the marker that terminates the compressed
370 * data segment. There should be enough bits in the buffer register
371 * to satisfy the request; if so, no problem.
372 */
373 if (nbits > bits_left) {
374 /* Uh-oh. Report corrupted data to user and stuff zeroes into
375 * the data stream, so that we can produce some kind of image.
376 * We use a nonvolatile flag to ensure that only one warning message
377 * appears per data segment.
378 */
379 if (! cinfo->entropy->insufficient_data) {
380 WARNMS(cinfo, JWRN_HIT_MARKER);
381 cinfo->entropy->insufficient_data = TRUE;
382 }
383 /* Fill the buffer with zero bits */
384 get_buffer <<= MIN_GET_BITS - bits_left;
385 bits_left = MIN_GET_BITS;
386 }
387 }
388
389 /* Unload the local registers */
390 state->next_input_byte = next_input_byte;
391 state->bytes_in_buffer = bytes_in_buffer;
392 state->get_buffer = get_buffer;
393 state->bits_left = bits_left;
394
395 return TRUE;
396 }
397
398
399 /* Macro version of the above, which performs much better but does not
400 handle markers. We have to hand off any blocks with markers to the
401 slower routines. */
402
403 #define GET_BYTE \
404 { \
405 register int c0, c1; \
406 c0 = GETJOCTET(*buffer++); \
407 c1 = GETJOCTET(*buffer); \
408 /* Pre-execute most common case */ \
409 get_buffer = (get_buffer << 8) | c0; \
410 bits_left += 8; \
411 if (c0 == 0xFF) { \
412 /* Pre-execute case of FF/00, which represents an FF data byte */ \
413 buffer++; \
414 if (c1 != 0) { \
415 /* Oops, it's actually a marker indicating end of compressed data. */ \
416 cinfo->unread_marker = c1; \
417 /* Back out pre-execution and fill the buffer with zero bits */ \
418 buffer -= 2; \
419 get_buffer &= ~0xFF; \
420 } \
421 } \
422 }
423
424 #if SIZEOF_SIZE_T==8 || defined(_WIN64)
425
426 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
427 #define FILL_BIT_BUFFER_FAST \
428 if (bits_left <= 16) { \
429 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
430 }
431
432 #else
433
434 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
435 #define FILL_BIT_BUFFER_FAST \
436 if (bits_left <= 16) { \
437 GET_BYTE GET_BYTE \
438 }
439
440 #endif
441
442
443 /*
444 * Out-of-line code for Huffman code decoding.
445 * See jdhuff.h for info about usage.
446 */
447
448 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)449 jpeg_huff_decode (bitread_working_state *state,
450 register bit_buf_type get_buffer, register int bits_left,
451 d_derived_tbl *htbl, int min_bits)
452 {
453 register int l = min_bits;
454 register JLONG code;
455
456 /* HUFF_DECODE has determined that the code is at least min_bits */
457 /* bits long, so fetch that many bits in one swoop. */
458
459 CHECK_BIT_BUFFER(*state, l, return -1);
460 code = GET_BITS(l);
461
462 /* Collect the rest of the Huffman code one bit at a time. */
463 /* This is per Figure F.16 in the JPEG spec. */
464
465 while (code > htbl->maxcode[l]) {
466 code <<= 1;
467 CHECK_BIT_BUFFER(*state, 1, return -1);
468 code |= GET_BITS(1);
469 l++;
470 }
471
472 /* Unload the local registers */
473 state->get_buffer = get_buffer;
474 state->bits_left = bits_left;
475
476 /* With garbage input we may reach the sentinel value l = 17. */
477
478 if (l > 16) {
479 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
480 return 0; /* fake a zero as the safest result */
481 }
482
483 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
484 }
485
486
487 /*
488 * Figure F.12: extend sign bit.
489 * On some machines, a shift and add will be faster than a table lookup.
490 */
491
492 #define AVOID_TABLES
493 #ifdef AVOID_TABLES
494
495 #define NEG_1 ((unsigned int)-1)
496 #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1)))
497
498 #else
499
500 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
501
502 static const int extend_test[16] = /* entry n is 2**(n-1) */
503 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
504 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
505
506 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
507 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
508 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
509 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
510 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
511
512 #endif /* AVOID_TABLES */
513
514
515 /*
516 * Check for a restart marker & resynchronize decoder.
517 * Returns FALSE if must suspend.
518 */
519
520 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)521 process_restart (j_decompress_ptr cinfo)
522 {
523 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
524 int ci;
525
526 /* Throw away any unused bits remaining in bit buffer; */
527 /* include any full bytes in next_marker's count of discarded bytes */
528 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
529 entropy->bitstate.bits_left = 0;
530
531 /* Advance past the RSTn marker */
532 if (! (*cinfo->marker->read_restart_marker) (cinfo))
533 return FALSE;
534
535 /* Re-initialize DC predictions to 0 */
536 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
537 entropy->saved.last_dc_val[ci] = 0;
538
539 /* Reset restart counter */
540 entropy->restarts_to_go = cinfo->restart_interval;
541
542 /* Reset out-of-data flag, unless read_restart_marker left us smack up
543 * against a marker. In that case we will end up treating the next data
544 * segment as empty, and we can avoid producing bogus output pixels by
545 * leaving the flag set.
546 */
547 if (cinfo->unread_marker == 0)
548 entropy->pub.insufficient_data = FALSE;
549
550 return TRUE;
551 }
552
553
554 LOCAL(boolean)
decode_mcu_slow(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)555 decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
556 {
557 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
558 BITREAD_STATE_VARS;
559 int blkn;
560 savable_state state;
561 /* Outer loop handles each block in the MCU */
562
563 /* Load up working state */
564 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
565 ASSIGN_STATE(state, entropy->saved);
566
567 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
568 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
569 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
570 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
571 register int s, k, r;
572
573 /* Decode a single block's worth of coefficients */
574
575 /* Section F.2.2.1: decode the DC coefficient difference */
576 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
577 if (s) {
578 CHECK_BIT_BUFFER(br_state, s, return FALSE);
579 r = GET_BITS(s);
580 s = HUFF_EXTEND(r, s);
581 }
582
583 if (entropy->dc_needed[blkn]) {
584 /* Convert DC difference to actual value, update last_dc_val */
585 int ci = cinfo->MCU_membership[blkn];
586 s += state.last_dc_val[ci];
587 state.last_dc_val[ci] = s;
588 if (block) {
589 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
590 (*block)[0] = (JCOEF) s;
591 }
592 }
593
594 if (entropy->ac_needed[blkn] && block) {
595
596 /* Section F.2.2.2: decode the AC coefficients */
597 /* Since zeroes are skipped, output area must be cleared beforehand */
598 for (k = 1; k < DCTSIZE2; k++) {
599 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
600
601 r = s >> 4;
602 s &= 15;
603
604 if (s) {
605 k += r;
606 CHECK_BIT_BUFFER(br_state, s, return FALSE);
607 r = GET_BITS(s);
608 s = HUFF_EXTEND(r, s);
609 /* Output coefficient in natural (dezigzagged) order.
610 * Note: the extra entries in jpeg_natural_order[] will save us
611 * if k >= DCTSIZE2, which could happen if the data is corrupted.
612 */
613 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
614 } else {
615 if (r != 15)
616 break;
617 k += 15;
618 }
619 }
620
621 } else {
622
623 /* Section F.2.2.2: decode the AC coefficients */
624 /* In this path we just discard the values */
625 for (k = 1; k < DCTSIZE2; k++) {
626 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
627
628 r = s >> 4;
629 s &= 15;
630
631 if (s) {
632 k += r;
633 CHECK_BIT_BUFFER(br_state, s, return FALSE);
634 DROP_BITS(s);
635 } else {
636 if (r != 15)
637 break;
638 k += 15;
639 }
640 }
641 }
642 }
643
644 /* Completed MCU, so update state */
645 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
646 ASSIGN_STATE(entropy->saved, state);
647 return TRUE;
648 }
649
650
651 LOCAL(boolean)
decode_mcu_fast(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)652 decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
653 {
654 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
655 BITREAD_STATE_VARS;
656 JOCTET *buffer;
657 int blkn;
658 savable_state state;
659 /* Outer loop handles each block in the MCU */
660
661 /* Load up working state */
662 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
663 buffer = (JOCTET *) br_state.next_input_byte;
664 ASSIGN_STATE(state, entropy->saved);
665
666 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
667 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
668 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
669 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
670 register int s, k, r, l;
671
672 HUFF_DECODE_FAST(s, l, dctbl);
673 if (s) {
674 FILL_BIT_BUFFER_FAST
675 r = GET_BITS(s);
676 s = HUFF_EXTEND(r, s);
677 }
678
679 if (entropy->dc_needed[blkn]) {
680 int ci = cinfo->MCU_membership[blkn];
681 s += state.last_dc_val[ci];
682 state.last_dc_val[ci] = s;
683 if (block)
684 (*block)[0] = (JCOEF) s;
685 }
686
687 if (entropy->ac_needed[blkn] && block) {
688
689 for (k = 1; k < DCTSIZE2; k++) {
690 HUFF_DECODE_FAST(s, l, actbl);
691 r = s >> 4;
692 s &= 15;
693
694 if (s) {
695 k += r;
696 FILL_BIT_BUFFER_FAST
697 r = GET_BITS(s);
698 s = HUFF_EXTEND(r, s);
699 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
700 } else {
701 if (r != 15) break;
702 k += 15;
703 }
704 }
705
706 } else {
707
708 for (k = 1; k < DCTSIZE2; k++) {
709 HUFF_DECODE_FAST(s, l, actbl);
710 r = s >> 4;
711 s &= 15;
712
713 if (s) {
714 k += r;
715 FILL_BIT_BUFFER_FAST
716 DROP_BITS(s);
717 } else {
718 if (r != 15) break;
719 k += 15;
720 }
721 }
722 }
723 }
724
725 if (cinfo->unread_marker != 0) {
726 cinfo->unread_marker = 0;
727 return FALSE;
728 }
729
730 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
731 br_state.next_input_byte = buffer;
732 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
733 ASSIGN_STATE(entropy->saved, state);
734 return TRUE;
735 }
736
737
738 /*
739 * Decode and return one MCU's worth of Huffman-compressed coefficients.
740 * The coefficients are reordered from zigzag order into natural array order,
741 * but are not dequantized.
742 *
743 * The i'th block of the MCU is stored into the block pointed to by
744 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
745 * (Wholesale zeroing is usually a little faster than retail...)
746 *
747 * Returns FALSE if data source requested suspension. In that case no
748 * changes have been made to permanent state. (Exception: some output
749 * coefficients may already have been assigned. This is harmless for
750 * this module, since we'll just re-assign them on the next call.)
751 */
752
753 #define BUFSIZE (DCTSIZE2 * 8)
754
755 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)756 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
757 {
758 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
759 int usefast = 1;
760
761 /* Process restart marker if needed; may have to suspend */
762 if (cinfo->restart_interval) {
763 if (entropy->restarts_to_go == 0)
764 if (! process_restart(cinfo))
765 return FALSE;
766 usefast = 0;
767 }
768
769 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
770 || cinfo->unread_marker != 0)
771 usefast = 0;
772
773 /* If we've run out of data, just leave the MCU set to zeroes.
774 * This way, we return uniform gray for the remainder of the segment.
775 */
776 if (! entropy->pub.insufficient_data) {
777
778 if (usefast) {
779 if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
780 }
781 else {
782 use_slow:
783 if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
784 }
785
786 }
787
788 /* Account for restart interval (no-op if not using restarts) */
789 entropy->restarts_to_go--;
790
791 return TRUE;
792 }
793
794
795 /*
796 * Module initialization routine for Huffman entropy decoding.
797 */
798
799 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)800 jinit_huff_decoder (j_decompress_ptr cinfo)
801 {
802 huff_entropy_ptr entropy;
803 int i;
804
805 /* Motion JPEG frames typically do not include the Huffman tables if they
806 are the default tables. Thus, if the tables are not set by the time
807 the Huffman decoder is initialized (usually within the body of
808 jpeg_start_decompress()), we set them to default values. */
809 std_huff_tables((j_common_ptr) cinfo);
810
811 entropy = (huff_entropy_ptr)
812 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
813 sizeof(huff_entropy_decoder));
814 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
815 entropy->pub.start_pass = start_pass_huff_decoder;
816 entropy->pub.decode_mcu = decode_mcu;
817
818 /* Mark tables unallocated */
819 for (i = 0; i < NUM_HUFF_TBLS; i++) {
820 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
821 }
822 }
823