• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C)2009-2015 D. R. Commander.  All Rights Reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * - Redistributions of source code must retain the above copyright notice,
8  *   this list of conditions and the following disclaimer.
9  * - Redistributions in binary form must reproduce the above copyright notice,
10  *   this list of conditions and the following disclaimer in the documentation
11  *   and/or other materials provided with the distribution.
12  * - Neither the name of the libjpeg-turbo Project nor the names of its
13  *   contributors may be used to endorse or promote products derived from this
14  *   software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #ifndef __TURBOJPEG_H__
30 #define __TURBOJPEG_H__
31 
32 #if defined(_WIN32) && defined(DLLDEFINE)
33 #define DLLEXPORT __declspec(dllexport)
34 #else
35 #define DLLEXPORT
36 #endif
37 #define DLLCALL
38 
39 
40 /**
41  * @addtogroup TurboJPEG
42  * TurboJPEG API.  This API provides an interface for generating, decoding, and
43  * transforming planar YUV and JPEG images in memory.
44  *
45  * @anchor YUVnotes
46  * YUV Image Format Notes
47  * ----------------------
48  * Technically, the JPEG format uses the YCbCr colorspace (which is technically
49  * not a colorspace but a color transform), but per the convention of the
50  * digital video community, the TurboJPEG API uses "YUV" to refer to an image
51  * format consisting of Y, Cb, and Cr image planes.
52  *
53  * Each plane is simply a 2D array of bytes, each byte representing the value
54  * of one of the components (Y, Cb, or Cr) at a particular location in the
55  * image.  The width and height of each plane are determined by the image
56  * width, height, and level of chrominance subsampling.   The luminance plane
57  * width is the image width padded to the nearest multiple of the horizontal
58  * subsampling factor (2 in the case of 4:2:0 and 4:2:2, 4 in the case of
59  * 4:1:1, 1 in the case of 4:4:4 or grayscale.)  Similarly, the luminance plane
60  * height is the image height padded to the nearest multiple of the vertical
61  * subsampling factor (2 in the case of 4:2:0 or 4:4:0, 1 in the case of 4:4:4
62  * or grayscale.)  This is irrespective of any additional padding that may be
63  * specified as an argument to the various YUV functions.  The chrominance
64  * plane width is equal to the luminance plane width divided by the horizontal
65  * subsampling factor, and the chrominance plane height is equal to the
66  * luminance plane height divided by the vertical subsampling factor.
67  *
68  * For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is
69  * used, then the luminance plane would be 36 x 35 bytes, and each of the
70  * chrominance planes would be 18 x 35 bytes.  If you specify a line padding of
71  * 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and
72  * each of the chrominance planes would be 20 x 35 bytes.
73  *
74  * @{
75  */
76 
77 
78 /**
79  * The number of chrominance subsampling options
80  */
81 #define TJ_NUMSAMP 6
82 
83 /**
84  * Chrominance subsampling options.
85  * When pixels are converted from RGB to YCbCr (see #TJCS_YCbCr) or from CMYK
86  * to YCCK (see #TJCS_YCCK) as part of the JPEG compression process, some of
87  * the Cb and Cr (chrominance) components can be discarded or averaged together
88  * to produce a smaller image with little perceptible loss of image clarity
89  * (the human eye is more sensitive to small changes in brightness than to
90  * small changes in color.)  This is called "chrominance subsampling".
91  */
92 enum TJSAMP
93 {
94   /**
95    * 4:4:4 chrominance subsampling (no chrominance subsampling).  The JPEG or
96    * YUV image will contain one chrominance component for every pixel in the
97    * source image.
98    */
99   TJSAMP_444=0,
100   /**
101    * 4:2:2 chrominance subsampling.  The JPEG or YUV image will contain one
102    * chrominance component for every 2x1 block of pixels in the source image.
103    */
104   TJSAMP_422,
105   /**
106    * 4:2:0 chrominance subsampling.  The JPEG or YUV image will contain one
107    * chrominance component for every 2x2 block of pixels in the source image.
108    */
109   TJSAMP_420,
110   /**
111    * Grayscale.  The JPEG or YUV image will contain no chrominance components.
112    */
113   TJSAMP_GRAY,
114   /**
115    * 4:4:0 chrominance subsampling.  The JPEG or YUV image will contain one
116    * chrominance component for every 1x2 block of pixels in the source image.
117    *
118    * @note 4:4:0 subsampling is not fully accelerated in libjpeg-turbo.
119    */
120   TJSAMP_440,
121   /**
122    * 4:1:1 chrominance subsampling.  The JPEG or YUV image will contain one
123    * chrominance component for every 4x1 block of pixels in the source image.
124    * JPEG images compressed with 4:1:1 subsampling will be almost exactly the
125    * same size as those compressed with 4:2:0 subsampling, and in the
126    * aggregate, both subsampling methods produce approximately the same
127    * perceptual quality.  However, 4:1:1 is better able to reproduce sharp
128    * horizontal features.
129    *
130    * @note 4:1:1 subsampling is not fully accelerated in libjpeg-turbo.
131    */
132   TJSAMP_411
133 };
134 
135 /**
136  * MCU block width (in pixels) for a given level of chrominance subsampling.
137  * MCU block sizes:
138  * - 8x8 for no subsampling or grayscale
139  * - 16x8 for 4:2:2
140  * - 8x16 for 4:4:0
141  * - 16x16 for 4:2:0
142  * - 32x8 for 4:1:1
143  */
144 static const int tjMCUWidth[TJ_NUMSAMP]  = {8, 16, 16, 8, 8, 32};
145 
146 /**
147  * MCU block height (in pixels) for a given level of chrominance subsampling.
148  * MCU block sizes:
149  * - 8x8 for no subsampling or grayscale
150  * - 16x8 for 4:2:2
151  * - 8x16 for 4:4:0
152  * - 16x16 for 4:2:0
153  * - 32x8 for 4:1:1
154  */
155 static const int tjMCUHeight[TJ_NUMSAMP] = {8, 8, 16, 8, 16, 8};
156 
157 
158 /**
159  * The number of pixel formats
160  */
161 #define TJ_NUMPF 12
162 
163 /**
164  * Pixel formats
165  */
166 enum TJPF
167 {
168   /**
169    * RGB pixel format.  The red, green, and blue components in the image are
170    * stored in 3-byte pixels in the order R, G, B from lowest to highest byte
171    * address within each pixel.
172    */
173   TJPF_RGB=0,
174   /**
175    * BGR pixel format.  The red, green, and blue components in the image are
176    * stored in 3-byte pixels in the order B, G, R from lowest to highest byte
177    * address within each pixel.
178    */
179   TJPF_BGR,
180   /**
181    * RGBX pixel format.  The red, green, and blue components in the image are
182    * stored in 4-byte pixels in the order R, G, B from lowest to highest byte
183    * address within each pixel.  The X component is ignored when compressing
184    * and undefined when decompressing.
185    */
186   TJPF_RGBX,
187   /**
188    * BGRX pixel format.  The red, green, and blue components in the image are
189    * stored in 4-byte pixels in the order B, G, R from lowest to highest byte
190    * address within each pixel.  The X component is ignored when compressing
191    * and undefined when decompressing.
192    */
193   TJPF_BGRX,
194   /**
195    * XBGR pixel format.  The red, green, and blue components in the image are
196    * stored in 4-byte pixels in the order R, G, B from highest to lowest byte
197    * address within each pixel.  The X component is ignored when compressing
198    * and undefined when decompressing.
199    */
200   TJPF_XBGR,
201   /**
202    * XRGB pixel format.  The red, green, and blue components in the image are
203    * stored in 4-byte pixels in the order B, G, R from highest to lowest byte
204    * address within each pixel.  The X component is ignored when compressing
205    * and undefined when decompressing.
206    */
207   TJPF_XRGB,
208   /**
209    * Grayscale pixel format.  Each 1-byte pixel represents a luminance
210    * (brightness) level from 0 to 255.
211    */
212   TJPF_GRAY,
213   /**
214    * RGBA pixel format.  This is the same as @ref TJPF_RGBX, except that when
215    * decompressing, the X component is guaranteed to be 0xFF, which can be
216    * interpreted as an opaque alpha channel.
217    */
218   TJPF_RGBA,
219   /**
220    * BGRA pixel format.  This is the same as @ref TJPF_BGRX, except that when
221    * decompressing, the X component is guaranteed to be 0xFF, which can be
222    * interpreted as an opaque alpha channel.
223    */
224   TJPF_BGRA,
225   /**
226    * ABGR pixel format.  This is the same as @ref TJPF_XBGR, except that when
227    * decompressing, the X component is guaranteed to be 0xFF, which can be
228    * interpreted as an opaque alpha channel.
229    */
230   TJPF_ABGR,
231   /**
232    * ARGB pixel format.  This is the same as @ref TJPF_XRGB, except that when
233    * decompressing, the X component is guaranteed to be 0xFF, which can be
234    * interpreted as an opaque alpha channel.
235    */
236   TJPF_ARGB,
237   /**
238    * CMYK pixel format.  Unlike RGB, which is an additive color model used
239    * primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive
240    * color model used primarily for printing.  In the CMYK color model, the
241    * value of each color component typically corresponds to an amount of cyan,
242    * magenta, yellow, or black ink that is applied to a white background.  In
243    * order to convert between CMYK and RGB, it is necessary to use a color
244    * management system (CMS.)  A CMS will attempt to map colors within the
245    * printer's gamut to perceptually similar colors in the display's gamut and
246    * vice versa, but the mapping is typically not 1:1 or reversible, nor can it
247    * be defined with a simple formula.  Thus, such a conversion is out of scope
248    * for a codec library.  However, the TurboJPEG API allows for compressing
249    * CMYK pixels into a YCCK JPEG image (see #TJCS_YCCK) and decompressing YCCK
250    * JPEG images into CMYK pixels.
251    */
252   TJPF_CMYK
253 };
254 
255 
256 /**
257  * Red offset (in bytes) for a given pixel format.  This specifies the number
258  * of bytes that the red component is offset from the start of the pixel.  For
259  * instance, if a pixel of format TJ_BGRX is stored in <tt>char pixel[]</tt>,
260  * then the red component will be <tt>pixel[tjRedOffset[TJ_BGRX]]</tt>.
261  */
262 static const int tjRedOffset[TJ_NUMPF] = {0, 2, 0, 2, 3, 1, 0, 0, 2, 3, 1, -1};
263 /**
264  * Green offset (in bytes) for a given pixel format.  This specifies the number
265  * of bytes that the green component is offset from the start of the pixel.
266  * For instance, if a pixel of format TJ_BGRX is stored in
267  * <tt>char pixel[]</tt>, then the green component will be
268  * <tt>pixel[tjGreenOffset[TJ_BGRX]]</tt>.
269  */
270 static const int tjGreenOffset[TJ_NUMPF] = {1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 2, -1};
271 /**
272  * Blue offset (in bytes) for a given pixel format.  This specifies the number
273  * of bytes that the Blue component is offset from the start of the pixel.  For
274  * instance, if a pixel of format TJ_BGRX is stored in <tt>char pixel[]</tt>,
275  * then the blue component will be <tt>pixel[tjBlueOffset[TJ_BGRX]]</tt>.
276  */
277 static const int tjBlueOffset[TJ_NUMPF] = {2, 0, 2, 0, 1, 3, 0, 2, 0, 1, 3, -1};
278 
279 /**
280  * Pixel size (in bytes) for a given pixel format.
281  */
282 static const int tjPixelSize[TJ_NUMPF] = {3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4};
283 
284 
285 /**
286  * The number of JPEG colorspaces
287  */
288 #define TJ_NUMCS 5
289 
290 /**
291  * JPEG colorspaces
292  */
293 enum TJCS
294 {
295   /**
296    * RGB colorspace.  When compressing the JPEG image, the R, G, and B
297    * components in the source image are reordered into image planes, but no
298    * colorspace conversion or subsampling is performed.  RGB JPEG images can be
299    * decompressed to any of the extended RGB pixel formats or grayscale, but
300    * they cannot be decompressed to YUV images.
301    */
302   TJCS_RGB=0,
303   /**
304    * YCbCr colorspace.  YCbCr is not an absolute colorspace but rather a
305    * mathematical transformation of RGB designed solely for storage and
306    * transmission.  YCbCr images must be converted to RGB before they can
307    * actually be displayed.  In the YCbCr colorspace, the Y (luminance)
308    * component represents the black & white portion of the original image, and
309    * the Cb and Cr (chrominance) components represent the color portion of the
310    * original image.  Originally, the analog equivalent of this transformation
311    * allowed the same signal to drive both black & white and color televisions,
312    * but JPEG images use YCbCr primarily because it allows the color data to be
313    * optionally subsampled for the purposes of reducing bandwidth or disk
314    * space.  YCbCr is the most common JPEG colorspace, and YCbCr JPEG images
315    * can be compressed from and decompressed to any of the extended RGB pixel
316    * formats or grayscale, or they can be decompressed to YUV planar images.
317    */
318   TJCS_YCbCr,
319   /**
320    * Grayscale colorspace.  The JPEG image retains only the luminance data (Y
321    * component), and any color data from the source image is discarded.
322    * Grayscale JPEG images can be compressed from and decompressed to any of
323    * the extended RGB pixel formats or grayscale, or they can be decompressed
324    * to YUV planar images.
325    */
326   TJCS_GRAY,
327   /**
328    * CMYK colorspace.  When compressing the JPEG image, the C, M, Y, and K
329    * components in the source image are reordered into image planes, but no
330    * colorspace conversion or subsampling is performed.  CMYK JPEG images can
331    * only be decompressed to CMYK pixels.
332    */
333   TJCS_CMYK,
334   /**
335    * YCCK colorspace.  YCCK (AKA "YCbCrK") is not an absolute colorspace but
336    * rather a mathematical transformation of CMYK designed solely for storage
337    * and transmission.  It is to CMYK as YCbCr is to RGB.  CMYK pixels can be
338    * reversibly transformed into YCCK, and as with YCbCr, the chrominance
339    * components in the YCCK pixels can be subsampled without incurring major
340    * perceptual loss.  YCCK JPEG images can only be compressed from and
341    * decompressed to CMYK pixels.
342    */
343   TJCS_YCCK
344 };
345 
346 
347 /**
348  * The uncompressed source/destination image is stored in bottom-up (Windows,
349  * OpenGL) order, not top-down (X11) order.
350  */
351 #define TJFLAG_BOTTOMUP        2
352 /**
353  * When decompressing an image that was compressed using chrominance
354  * subsampling, use the fastest chrominance upsampling algorithm available in
355  * the underlying codec.  The default is to use smooth upsampling, which
356  * creates a smooth transition between neighboring chrominance components in
357  * order to reduce upsampling artifacts in the decompressed image.
358  */
359 #define TJFLAG_FASTUPSAMPLE  256
360 /**
361  * Disable buffer (re)allocation.  If passed to #tjCompress2() or
362  * #tjTransform(), this flag will cause those functions to generate an error if
363  * the JPEG image buffer is invalid or too small rather than attempting to
364  * allocate or reallocate that buffer.  This reproduces the behavior of earlier
365  * versions of TurboJPEG.
366  */
367 #define TJFLAG_NOREALLOC     1024
368 /**
369  * Use the fastest DCT/IDCT algorithm available in the underlying codec.  The
370  * default if this flag is not specified is implementation-specific.  For
371  * example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast
372  * algorithm by default when compressing, because this has been shown to have
373  * only a very slight effect on accuracy, but it uses the accurate algorithm
374  * when decompressing, because this has been shown to have a larger effect.
375  */
376 #define TJFLAG_FASTDCT       2048
377 /**
378  * Use the most accurate DCT/IDCT algorithm available in the underlying codec.
379  * The default if this flag is not specified is implementation-specific.  For
380  * example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast
381  * algorithm by default when compressing, because this has been shown to have
382  * only a very slight effect on accuracy, but it uses the accurate algorithm
383  * when decompressing, because this has been shown to have a larger effect.
384  */
385 #define TJFLAG_ACCURATEDCT   4096
386 
387 
388 /**
389  * The number of transform operations
390  */
391 #define TJ_NUMXOP 8
392 
393 /**
394  * Transform operations for #tjTransform()
395  */
396 enum TJXOP
397 {
398   /**
399    * Do not transform the position of the image pixels
400    */
401   TJXOP_NONE=0,
402   /**
403    * Flip (mirror) image horizontally.  This transform is imperfect if there
404    * are any partial MCU blocks on the right edge (see #TJXOPT_PERFECT.)
405    */
406   TJXOP_HFLIP,
407   /**
408    * Flip (mirror) image vertically.  This transform is imperfect if there are
409    * any partial MCU blocks on the bottom edge (see #TJXOPT_PERFECT.)
410    */
411   TJXOP_VFLIP,
412   /**
413    * Transpose image (flip/mirror along upper left to lower right axis.)  This
414    * transform is always perfect.
415    */
416   TJXOP_TRANSPOSE,
417   /**
418    * Transverse transpose image (flip/mirror along upper right to lower left
419    * axis.)  This transform is imperfect if there are any partial MCU blocks in
420    * the image (see #TJXOPT_PERFECT.)
421    */
422   TJXOP_TRANSVERSE,
423   /**
424    * Rotate image clockwise by 90 degrees.  This transform is imperfect if
425    * there are any partial MCU blocks on the bottom edge (see
426    * #TJXOPT_PERFECT.)
427    */
428   TJXOP_ROT90,
429   /**
430    * Rotate image 180 degrees.  This transform is imperfect if there are any
431    * partial MCU blocks in the image (see #TJXOPT_PERFECT.)
432    */
433   TJXOP_ROT180,
434   /**
435    * Rotate image counter-clockwise by 90 degrees.  This transform is imperfect
436    * if there are any partial MCU blocks on the right edge (see
437    * #TJXOPT_PERFECT.)
438    */
439   TJXOP_ROT270
440 };
441 
442 
443 /**
444  * This option will cause #tjTransform() to return an error if the transform is
445  * not perfect.  Lossless transforms operate on MCU blocks, whose size depends
446  * on the level of chrominance subsampling used (see #tjMCUWidth
447  * and #tjMCUHeight.)  If the image's width or height is not evenly divisible
448  * by the MCU block size, then there will be partial MCU blocks on the right
449  * and/or bottom edges.  It is not possible to move these partial MCU blocks to
450  * the top or left of the image, so any transform that would require that is
451  * "imperfect."  If this option is not specified, then any partial MCU blocks
452  * that cannot be transformed will be left in place, which will create
453  * odd-looking strips on the right or bottom edge of the image.
454  */
455 #define TJXOPT_PERFECT  1
456 /**
457  * This option will cause #tjTransform() to discard any partial MCU blocks that
458  * cannot be transformed.
459  */
460 #define TJXOPT_TRIM     2
461 /**
462  * This option will enable lossless cropping.  See #tjTransform() for more
463  * information.
464  */
465 #define TJXOPT_CROP     4
466 /**
467  * This option will discard the color data in the input image and produce
468  * a grayscale output image.
469  */
470 #define TJXOPT_GRAY     8
471 /**
472  * This option will prevent #tjTransform() from outputting a JPEG image for
473  * this particular transform (this can be used in conjunction with a custom
474  * filter to capture the transformed DCT coefficients without transcoding
475  * them.)
476  */
477 #define TJXOPT_NOOUTPUT 16
478 
479 
480 /**
481  * Scaling factor
482  */
483 typedef struct
484 {
485   /**
486    * Numerator
487    */
488   int num;
489   /**
490    * Denominator
491    */
492   int denom;
493 } tjscalingfactor;
494 
495 /**
496  * Cropping region
497  */
498 typedef struct
499 {
500   /**
501    * The left boundary of the cropping region.  This must be evenly divisible
502    * by the MCU block width (see #tjMCUWidth.)
503    */
504   int x;
505   /**
506    * The upper boundary of the cropping region.  This must be evenly divisible
507    * by the MCU block height (see #tjMCUHeight.)
508    */
509   int y;
510   /**
511    * The width of the cropping region. Setting this to 0 is the equivalent of
512    * setting it to the width of the source JPEG image - x.
513    */
514   int w;
515   /**
516    * The height of the cropping region. Setting this to 0 is the equivalent of
517    * setting it to the height of the source JPEG image - y.
518    */
519   int h;
520 } tjregion;
521 
522 /**
523  * Lossless transform
524  */
525 typedef struct tjtransform
526 {
527   /**
528    * Cropping region
529    */
530   tjregion r;
531   /**
532    * One of the @ref TJXOP "transform operations"
533    */
534   int op;
535   /**
536    * The bitwise OR of one of more of the @ref TJXOPT_CROP "transform options"
537    */
538   int options;
539   /**
540    * Arbitrary data that can be accessed within the body of the callback
541    * function
542    */
543   void *data;
544   /**
545    * A callback function that can be used to modify the DCT coefficients
546    * after they are losslessly transformed but before they are transcoded to a
547    * new JPEG image.  This allows for custom filters or other transformations
548    * to be applied in the frequency domain.
549    *
550    * @param coeffs pointer to an array of transformed DCT coefficients.  (NOTE:
551    * this pointer is not guaranteed to be valid once the callback returns, so
552    * applications wishing to hand off the DCT coefficients to another function
553    * or library should make a copy of them within the body of the callback.)
554    *
555    * @param arrayRegion #tjregion structure containing the width and height of
556    * the array pointed to by <tt>coeffs</tt> as well as its offset relative to
557    * the component plane.  TurboJPEG implementations may choose to split each
558    * component plane into multiple DCT coefficient arrays and call the callback
559    * function once for each array.
560    *
561    * @param planeRegion #tjregion structure containing the width and height of
562    * the component plane to which <tt>coeffs</tt> belongs
563    *
564    * @param componentID ID number of the component plane to which
565    * <tt>coeffs</tt> belongs (Y, Cb, and Cr have, respectively, ID's of 0, 1,
566    * and 2 in typical JPEG images.)
567    *
568    * @param transformID ID number of the transformed image to which
569    * <tt>coeffs</tt> belongs.  This is the same as the index of the transform
570    * in the <tt>transforms</tt> array that was passed to #tjTransform().
571    *
572    * @param transform a pointer to a #tjtransform structure that specifies the
573    * parameters and/or cropping region for this transform
574    *
575    * @return 0 if the callback was successful, or -1 if an error occurred.
576    */
577   int (*customFilter)(short *coeffs, tjregion arrayRegion,
578     tjregion planeRegion, int componentIndex, int transformIndex,
579     struct tjtransform *transform);
580 } tjtransform;
581 
582 /**
583  * TurboJPEG instance handle
584  */
585 typedef void* tjhandle;
586 
587 
588 /**
589  * Pad the given width to the nearest 32-bit boundary
590  */
591 #define TJPAD(width) (((width)+3)&(~3))
592 
593 /**
594  * Compute the scaled value of <tt>dimension</tt> using the given scaling
595  * factor.  This macro performs the integer equivalent of <tt>ceil(dimension *
596  * scalingFactor)</tt>.
597  */
598 #define TJSCALED(dimension, scalingFactor) ((dimension * scalingFactor.num \
599   + scalingFactor.denom - 1) / scalingFactor.denom)
600 
601 
602 #ifdef __cplusplus
603 extern "C" {
604 #endif
605 
606 
607 /**
608  * Create a TurboJPEG compressor instance.
609  *
610  * @return a handle to the newly-created instance, or NULL if an error
611  * occurred (see #tjGetErrorStr().)
612  */
613 DLLEXPORT tjhandle DLLCALL tjInitCompress(void);
614 
615 
616 /**
617  * Compress an RGB, grayscale, or CMYK image into a JPEG image.
618  *
619  * @param handle a handle to a TurboJPEG compressor or transformer instance
620  *
621  * @param srcBuf pointer to an image buffer containing RGB, grayscale, or
622  * CMYK pixels to be compressed
623  *
624  * @param width width (in pixels) of the source image
625  *
626  * @param pitch bytes per line in the source image.  Normally, this should be
627  * <tt>width * #tjPixelSize[pixelFormat]</tt> if the image is unpadded, or
628  * <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line of the image
629  * is padded to the nearest 32-bit boundary, as is the case for Windows
630  * bitmaps.  You can also be clever and use this parameter to skip lines, etc.
631  * Setting this parameter to 0 is the equivalent of setting it to
632  * <tt>width * #tjPixelSize[pixelFormat]</tt>.
633  *
634  * @param height height (in pixels) of the source image
635  *
636  * @param pixelFormat pixel format of the source image (see @ref TJPF
637  * "Pixel formats".)
638  *
639  * @param jpegBuf address of a pointer to an image buffer that will receive the
640  * JPEG image.  TurboJPEG has the ability to reallocate the JPEG buffer
641  * to accommodate the size of the JPEG image.  Thus, you can choose to:
642  * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and
643  * let TurboJPEG grow the buffer as needed,
644  * -# set <tt>*jpegBuf</tt> to NULL to tell TurboJPEG to allocate the buffer
645  * for you, or
646  * -# pre-allocate the buffer to a "worst case" size determined by calling
647  * #tjBufSize().  This should ensure that the buffer never has to be
648  * re-allocated (setting #TJFLAG_NOREALLOC guarantees this.)
649  * .
650  * If you choose option 1, <tt>*jpegSize</tt> should be set to the size of your
651  * pre-allocated buffer.  In any case, unless you have set #TJFLAG_NOREALLOC,
652  * you should always check <tt>*jpegBuf</tt> upon return from this function, as
653  * it may have changed.
654  *
655  * @param jpegSize pointer to an unsigned long variable that holds the size of
656  * the JPEG image buffer.  If <tt>*jpegBuf</tt> points to a pre-allocated
657  * buffer, then <tt>*jpegSize</tt> should be set to the size of the buffer.
658  * Upon return, <tt>*jpegSize</tt> will contain the size of the JPEG image (in
659  * bytes.)  If <tt>*jpegBuf</tt> points to a JPEG image buffer that is being
660  * reused from a previous call to one of the JPEG compression functions, then
661  * <tt>*jpegSize</tt> is ignored.
662  *
663  * @param jpegSubsamp the level of chrominance subsampling to be used when
664  * generating the JPEG image (see @ref TJSAMP
665  * "Chrominance subsampling options".)
666  *
667  * @param jpegQual the image quality of the generated JPEG image (1 = worst,
668  * 100 = best)
669  *
670  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
671  * "flags"
672  *
673  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
674 */
675 DLLEXPORT int DLLCALL tjCompress2(tjhandle handle, const unsigned char *srcBuf,
676   int width, int pitch, int height, int pixelFormat, unsigned char **jpegBuf,
677   unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags);
678 
679 
680 /**
681  * Compress a YUV planar image into a JPEG image.
682  *
683  * @param handle a handle to a TurboJPEG compressor or transformer instance
684  *
685  * @param srcBuf pointer to an image buffer containing a YUV planar image to be
686  * compressed.  The size of this buffer should match the value returned by
687  * #tjBufSizeYUV2() for the given image width, height, padding, and level of
688  * chrominance subsampling.  The Y, U (Cb), and V (Cr) image planes should be
689  * stored sequentially in the source buffer (refer to @ref YUVnotes
690  * "YUV Image Format Notes".)
691  *
692  * @param width width (in pixels) of the source image.  If the width is not an
693  * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate
694  * buffer copy will be performed within TurboJPEG.
695  *
696  * @param pad the line padding used in the source image.  For instance, if each
697  * line in each plane of the YUV image is padded to the nearest multiple of 4
698  * bytes, then <tt>pad</tt> should be set to 4.
699  *
700  * @param height height (in pixels) of the source image.  If the height is not
701  * an even multiple of the MCU block height (see #tjMCUHeight), then an
702  * intermediate buffer copy will be performed within TurboJPEG.
703  *
704  * @param subsamp the level of chrominance subsampling used in the source
705  * image (see @ref TJSAMP "Chrominance subsampling options".)
706  *
707  * @param jpegBuf address of a pointer to an image buffer that will receive the
708  * JPEG image.  TurboJPEG has the ability to reallocate the JPEG buffer to
709  * accommodate the size of the JPEG image.  Thus, you can choose to:
710  * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and
711  * let TurboJPEG grow the buffer as needed,
712  * -# set <tt>*jpegBuf</tt> to NULL to tell TurboJPEG to allocate the buffer
713  * for you, or
714  * -# pre-allocate the buffer to a "worst case" size determined by calling
715  * #tjBufSize().  This should ensure that the buffer never has to be
716  * re-allocated (setting #TJFLAG_NOREALLOC guarantees this.)
717  * .
718  * If you choose option 1, <tt>*jpegSize</tt> should be set to the size of your
719  * pre-allocated buffer.  In any case, unless you have set #TJFLAG_NOREALLOC,
720  * you should always check <tt>*jpegBuf</tt> upon return from this function, as
721  * it may have changed.
722  *
723  * @param jpegSize pointer to an unsigned long variable that holds the size of
724  * the JPEG image buffer.  If <tt>*jpegBuf</tt> points to a pre-allocated
725  * buffer, then <tt>*jpegSize</tt> should be set to the size of the buffer.
726  * Upon return, <tt>*jpegSize</tt> will contain the size of the JPEG image (in
727  * bytes.)  If <tt>*jpegBuf</tt> points to a JPEG image buffer that is being
728  * reused from a previous call to one of the JPEG compression functions, then
729  * <tt>*jpegSize</tt> is ignored.
730  *
731  * @param jpegQual the image quality of the generated JPEG image (1 = worst,
732  * 100 = best)
733  *
734  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
735  * "flags"
736  *
737  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
738 */
739 DLLEXPORT int DLLCALL tjCompressFromYUV(tjhandle handle,
740   const unsigned char *srcBuf, int width, int pad, int height, int subsamp,
741   unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags);
742 
743 
744 /**
745  * Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image.
746  *
747  * @param handle a handle to a TurboJPEG compressor or transformer instance
748  *
749  * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
750  * (or just a Y plane, if compressing a grayscale image) that contain a YUV
751  * image to be compressed.  These planes can be contiguous or non-contiguous in
752  * memory.  The size of each plane should match the value returned by
753  * #tjPlaneSizeYUV() for the given image width, height, strides, and level of
754  * chrominance subsampling.  Refer to @ref YUVnotes "YUV Image Format Notes"
755  * for more details.
756  *
757  * @param width width (in pixels) of the source image.  If the width is not an
758  * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate
759  * buffer copy will be performed within TurboJPEG.
760  *
761  * @param strides an array of integers, each specifying the number of bytes per
762  * line in the corresponding plane of the YUV source image.  Setting the stride
763  * for any plane to 0 is the same as setting it to the plane width (see
764  * @ref YUVnotes "YUV Image Format Notes".)  If <tt>strides</tt> is NULL, then
765  * the strides for all planes will be set to their respective plane widths.
766  * You can adjust the strides in order to specify an arbitrary amount of line
767  * padding in each plane or to create a JPEG image from a subregion of a larger
768  * YUV planar image.
769  *
770  * @param height height (in pixels) of the source image.  If the height is not
771  * an even multiple of the MCU block height (see #tjMCUHeight), then an
772  * intermediate buffer copy will be performed within TurboJPEG.
773  *
774  * @param subsamp the level of chrominance subsampling used in the source
775  * image (see @ref TJSAMP "Chrominance subsampling options".)
776  *
777  * @param jpegBuf address of a pointer to an image buffer that will receive the
778  * JPEG image.  TurboJPEG has the ability to reallocate the JPEG buffer to
779  * accommodate the size of the JPEG image.  Thus, you can choose to:
780  * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and
781  * let TurboJPEG grow the buffer as needed,
782  * -# set <tt>*jpegBuf</tt> to NULL to tell TurboJPEG to allocate the buffer
783  * for you, or
784  * -# pre-allocate the buffer to a "worst case" size determined by calling
785  * #tjBufSize().  This should ensure that the buffer never has to be
786  * re-allocated (setting #TJFLAG_NOREALLOC guarantees this.)
787  * .
788  * If you choose option 1, <tt>*jpegSize</tt> should be set to the size of your
789  * pre-allocated buffer.  In any case, unless you have set #TJFLAG_NOREALLOC,
790  * you should always check <tt>*jpegBuf</tt> upon return from this function, as
791  * it may have changed.
792  *
793  * @param jpegSize pointer to an unsigned long variable that holds the size of
794  * the JPEG image buffer.  If <tt>*jpegBuf</tt> points to a pre-allocated
795  * buffer, then <tt>*jpegSize</tt> should be set to the size of the buffer.
796  * Upon return, <tt>*jpegSize</tt> will contain the size of the JPEG image (in
797  * bytes.)  If <tt>*jpegBuf</tt> points to a JPEG image buffer that is being
798  * reused from a previous call to one of the JPEG compression functions, then
799  * <tt>*jpegSize</tt> is ignored.
800  *
801  * @param jpegQual the image quality of the generated JPEG image (1 = worst,
802  * 100 = best)
803  *
804  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
805  * "flags"
806  *
807  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
808 */
809 DLLEXPORT int DLLCALL tjCompressFromYUVPlanes(tjhandle handle,
810   const unsigned char **srcPlanes, int width, const int *strides, int height,
811   int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual,
812   int flags);
813 
814 
815 /**
816  * The maximum size of the buffer (in bytes) required to hold a JPEG image with
817  * the given parameters.  The number of bytes returned by this function is
818  * larger than the size of the uncompressed source image.  The reason for this
819  * is that the JPEG format uses 16-bit coefficients, and it is thus possible
820  * for a very high-quality JPEG image with very high-frequency content to
821  * expand rather than compress when converted to the JPEG format.  Such images
822  * represent a very rare corner case, but since there is no way to predict the
823  * size of a JPEG image prior to compression, the corner case has to be
824  * handled.
825  *
826  * @param width width (in pixels) of the image
827  *
828  * @param height height (in pixels) of the image
829  *
830  * @param jpegSubsamp the level of chrominance subsampling to be used when
831  * generating the JPEG image (see @ref TJSAMP
832  * "Chrominance subsampling options".)
833  *
834  * @return the maximum size of the buffer (in bytes) required to hold the
835  * image, or -1 if the arguments are out of bounds.
836  */
837 DLLEXPORT unsigned long DLLCALL tjBufSize(int width, int height,
838   int jpegSubsamp);
839 
840 
841 /**
842  * The size of the buffer (in bytes) required to hold a YUV planar image with
843  * the given parameters.
844  *
845  * @param width width (in pixels) of the image
846  *
847  * @param pad the width of each line in each plane of the image is padded to
848  * the nearest multiple of this number of bytes (must be a power of 2.)
849  *
850  * @param height height (in pixels) of the image
851  *
852  * @param subsamp level of chrominance subsampling in the image (see
853  * @ref TJSAMP "Chrominance subsampling options".)
854  *
855  * @return the size of the buffer (in bytes) required to hold the image, or
856  * -1 if the arguments are out of bounds.
857  */
858 DLLEXPORT unsigned long DLLCALL tjBufSizeYUV2(int width, int pad, int height,
859   int subsamp);
860 
861 
862 /**
863  * The size of the buffer (in bytes) required to hold a YUV image plane with
864  * the given parameters.
865  *
866  * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
867  *
868  * @param width width (in pixels) of the YUV image.  NOTE: this is the width of
869  * the whole image, not the plane width.
870  *
871  * @param stride bytes per line in the image plane.  Setting this to 0 is the
872  * equivalent of setting it to the plane width.
873  *
874  * @param height height (in pixels) of the YUV image.  NOTE: this is the height
875  * of the whole image, not the plane height.
876  *
877  * @param subsamp level of chrominance subsampling in the image (see
878  * @ref TJSAMP "Chrominance subsampling options".)
879  *
880  * @return the size of the buffer (in bytes) required to hold the YUV image
881  * plane, or -1 if the arguments are out of bounds.
882  */
883 DLLEXPORT unsigned long DLLCALL tjPlaneSizeYUV(int componentID, int width,
884   int stride, int height, int subsamp);
885 
886 
887 /**
888  * The plane width of a YUV image plane with the given parameters.  Refer to
889  * @ref YUVnotes "YUV Image Format Notes" for a description of plane width.
890  *
891  * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
892  *
893  * @param width width (in pixels) of the YUV image
894  *
895  * @param subsamp level of chrominance subsampling in the image (see
896  * @ref TJSAMP "Chrominance subsampling options".)
897  *
898  * @return the plane width of a YUV image plane with the given parameters, or
899  * -1 if the arguments are out of bounds.
900  */
901 DLLEXPORT int tjPlaneWidth(int componentID, int width, int subsamp);
902 
903 
904 /**
905  * The plane height of a YUV image plane with the given parameters.  Refer to
906  * @ref YUVnotes "YUV Image Format Notes" for a description of plane height.
907  *
908  * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
909  *
910  * @param height height (in pixels) of the YUV image
911  *
912  * @param subsamp level of chrominance subsampling in the image (see
913  * @ref TJSAMP "Chrominance subsampling options".)
914  *
915  * @return the plane height of a YUV image plane with the given parameters, or
916  * -1 if the arguments are out of bounds.
917  */
918 DLLEXPORT int tjPlaneHeight(int componentID, int height, int subsamp);
919 
920 
921 /**
922  * Encode an RGB or grayscale image into a YUV planar image.  This function
923  * uses the accelerated color conversion routines in the underlying
924  * codec but does not execute any of the other steps in the JPEG compression
925  * process.
926  *
927  * @param handle a handle to a TurboJPEG compressor or transformer instance
928  *
929  * @param srcBuf pointer to an image buffer containing RGB or grayscale pixels
930  * to be encoded
931  *
932  * @param width width (in pixels) of the source image
933  *
934  * @param pitch bytes per line in the source image.  Normally, this should be
935  * <tt>width * #tjPixelSize[pixelFormat]</tt> if the image is unpadded, or
936  * <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line of the image
937  * is padded to the nearest 32-bit boundary, as is the case for Windows
938  * bitmaps.  You can also be clever and use this parameter to skip lines, etc.
939  * Setting this parameter to 0 is the equivalent of setting it to
940  * <tt>width * #tjPixelSize[pixelFormat]</tt>.
941  *
942  * @param height height (in pixels) of the source image
943  *
944  * @param pixelFormat pixel format of the source image (see @ref TJPF
945  * "Pixel formats".)
946  *
947  * @param dstBuf pointer to an image buffer that will receive the YUV image.
948  * Use #tjBufSizeYUV2() to determine the appropriate size for this buffer based
949  * on the image width, height, padding, and level of chrominance subsampling.
950  * The Y, U (Cb), and V (Cr) image planes will be stored sequentially in the
951  * buffer (refer to @ref YUVnotes "YUV Image Format Notes".)
952  *
953  * @param pad the width of each line in each plane of the YUV image will be
954  * padded to the nearest multiple of this number of bytes (must be a power of
955  * 2.)  To generate images suitable for X Video, <tt>pad</tt> should be set to
956  * 4.
957  *
958  * @param subsamp the level of chrominance subsampling to be used when
959  * generating the YUV image (see @ref TJSAMP
960  * "Chrominance subsampling options".)  To generate images suitable for X
961  * Video, <tt>subsamp</tt> should be set to @ref TJSAMP_420.  This produces an
962  * image compatible with the I420 (AKA "YUV420P") format.
963  *
964  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
965  * "flags"
966  *
967  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
968 */
969 DLLEXPORT int DLLCALL tjEncodeYUV3(tjhandle handle,
970   const unsigned char *srcBuf, int width, int pitch, int height,
971   int pixelFormat, unsigned char *dstBuf, int pad, int subsamp, int flags);
972 
973 
974 /**
975  * Encode an RGB or grayscale image into separate Y, U (Cb), and V (Cr) image
976  * planes.  This function uses the accelerated color conversion routines in the
977  * underlying codec but does not execute any of the other steps in the JPEG
978  * compression process.
979  *
980  * @param handle a handle to a TurboJPEG compressor or transformer instance
981  *
982  * @param srcBuf pointer to an image buffer containing RGB or grayscale pixels
983  * to be encoded
984  *
985  * @param width width (in pixels) of the source image
986  *
987  * @param pitch bytes per line in the source image.  Normally, this should be
988  * <tt>width * #tjPixelSize[pixelFormat]</tt> if the image is unpadded, or
989  * <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line of the image
990  * is padded to the nearest 32-bit boundary, as is the case for Windows
991  * bitmaps.  You can also be clever and use this parameter to skip lines, etc.
992  * Setting this parameter to 0 is the equivalent of setting it to
993  * <tt>width * #tjPixelSize[pixelFormat]</tt>.
994  *
995  * @param height height (in pixels) of the source image
996  *
997  * @param pixelFormat pixel format of the source image (see @ref TJPF
998  * "Pixel formats".)
999  *
1000  * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
1001  * (or just a Y plane, if generating a grayscale image) that will receive the
1002  * encoded image.  These planes can be contiguous or non-contiguous in memory.
1003  * Use #tjPlaneSizeYUV() to determine the appropriate size for each plane based
1004  * on the image width, height, strides, and level of chrominance subsampling.
1005  * Refer to @ref YUVnotes "YUV Image Format Notes" for more details.
1006  *
1007  * @param strides an array of integers, each specifying the number of bytes per
1008  * line in the corresponding plane of the output image.  Setting the stride for
1009  * any plane to 0 is the same as setting it to the plane width (see
1010  * @ref YUVnotes "YUV Image Format Notes".)  If <tt>strides</tt> is NULL, then
1011  * the strides for all planes will be set to their respective plane widths.
1012  * You can adjust the strides in order to add an arbitrary amount of line
1013  * padding to each plane or to encode an RGB or grayscale image into a
1014  * subregion of a larger YUV planar image.
1015  *
1016  * @param subsamp the level of chrominance subsampling to be used when
1017  * generating the YUV image (see @ref TJSAMP
1018  * "Chrominance subsampling options".)  To generate images suitable for X
1019  * Video, <tt>subsamp</tt> should be set to @ref TJSAMP_420.  This produces an
1020  * image compatible with the I420 (AKA "YUV420P") format.
1021  *
1022  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
1023  * "flags"
1024  *
1025  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1026 */
1027 DLLEXPORT int DLLCALL tjEncodeYUVPlanes(tjhandle handle,
1028   const unsigned char *srcBuf, int width, int pitch, int height,
1029   int pixelFormat, unsigned char **dstPlanes, int *strides, int subsamp,
1030   int flags);
1031 
1032 
1033 /**
1034  * Create a TurboJPEG decompressor instance.
1035  *
1036  * @return a handle to the newly-created instance, or NULL if an error
1037  * occurred (see #tjGetErrorStr().)
1038 */
1039 DLLEXPORT tjhandle DLLCALL tjInitDecompress(void);
1040 
1041 
1042 /**
1043  * Retrieve information about a JPEG image without decompressing it.
1044  *
1045  * @param handle a handle to a TurboJPEG decompressor or transformer instance
1046  *
1047  * @param jpegBuf pointer to a buffer containing a JPEG image
1048  *
1049  * @param jpegSize size of the JPEG image (in bytes)
1050  *
1051  * @param width pointer to an integer variable that will receive the width (in
1052  * pixels) of the JPEG image
1053  *
1054  * @param height pointer to an integer variable that will receive the height
1055  * (in pixels) of the JPEG image
1056  *
1057  * @param jpegSubsamp pointer to an integer variable that will receive the
1058  * level of chrominance subsampling used when the JPEG image was compressed
1059  * (see @ref TJSAMP "Chrominance subsampling options".)
1060  *
1061  * @param jpegColorspace pointer to an integer variable that will receive one
1062  * of the JPEG colorspace constants, indicating the colorspace of the JPEG
1063  * image (see @ref TJCS "JPEG colorspaces".)
1064  *
1065  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1066 */
1067 DLLEXPORT int DLLCALL tjDecompressHeader3(tjhandle handle,
1068   const unsigned char *jpegBuf, unsigned long jpegSize, int *width,
1069   int *height, int *jpegSubsamp, int *jpegColorspace);
1070 
1071 
1072 /**
1073  * Returns a list of fractional scaling factors that the JPEG decompressor in
1074  * this implementation of TurboJPEG supports.
1075  *
1076  * @param numscalingfactors pointer to an integer variable that will receive
1077  * the number of elements in the list
1078  *
1079  * @return a pointer to a list of fractional scaling factors, or NULL if an
1080  * error is encountered (see #tjGetErrorStr().)
1081 */
1082 DLLEXPORT tjscalingfactor* DLLCALL tjGetScalingFactors(int *numscalingfactors);
1083 
1084 
1085 /**
1086  * Decompress a JPEG image to an RGB, grayscale, or CMYK image.
1087  *
1088  * @param handle a handle to a TurboJPEG decompressor or transformer instance
1089  *
1090  * @param jpegBuf pointer to a buffer containing the JPEG image to decompress
1091  *
1092  * @param jpegSize size of the JPEG image (in bytes)
1093  *
1094  * @param dstBuf pointer to an image buffer that will receive the decompressed
1095  * image.  This buffer should normally be <tt>pitch * scaledHeight</tt> bytes
1096  * in size, where <tt>scaledHeight</tt> can be determined by calling
1097  * #TJSCALED() with the JPEG image height and one of the scaling factors
1098  * returned by #tjGetScalingFactors().  The <tt>dstBuf</tt> pointer may also be
1099  * used to decompress into a specific region of a larger buffer.
1100  *
1101  * @param width desired width (in pixels) of the destination image.  If this is
1102  * different than the width of the JPEG image being decompressed, then
1103  * TurboJPEG will use scaling in the JPEG decompressor to generate the largest
1104  * possible image that will fit within the desired width.  If <tt>width</tt> is
1105  * set to 0, then only the height will be considered when determining the
1106  * scaled image size.
1107  *
1108  * @param pitch bytes per line in the destination image.  Normally, this is
1109  * <tt>scaledWidth * #tjPixelSize[pixelFormat]</tt> if the decompressed image
1110  * is unpadded, else <tt>#TJPAD(scaledWidth * #tjPixelSize[pixelFormat])</tt>
1111  * if each line of the decompressed image is padded to the nearest 32-bit
1112  * boundary, as is the case for Windows bitmaps.  (NOTE: <tt>scaledWidth</tt>
1113  * can be determined by calling #TJSCALED() with the JPEG image width and one
1114  * of the scaling factors returned by #tjGetScalingFactors().)  You can also be
1115  * clever and use the pitch parameter to skip lines, etc.  Setting this
1116  * parameter to 0 is the equivalent of setting it to
1117  * <tt>scaledWidth * #tjPixelSize[pixelFormat]</tt>.
1118  *
1119  * @param height desired height (in pixels) of the destination image.  If this
1120  * is different than the height of the JPEG image being decompressed, then
1121  * TurboJPEG will use scaling in the JPEG decompressor to generate the largest
1122  * possible image that will fit within the desired height.  If <tt>height</tt>
1123  * is set to 0, then only the width will be considered when determining the
1124  * scaled image size.
1125  *
1126  * @param pixelFormat pixel format of the destination image (see @ref
1127  * TJPF "Pixel formats".)
1128  *
1129  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
1130  * "flags"
1131  *
1132  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1133  */
1134 DLLEXPORT int DLLCALL tjDecompress2(tjhandle handle,
1135   const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf,
1136   int width, int pitch, int height, int pixelFormat, int flags);
1137 
1138 
1139 /**
1140  * Decompress a JPEG image to a YUV planar image.  This function performs JPEG
1141  * decompression but leaves out the color conversion step, so a planar YUV
1142  * image is generated instead of an RGB image.
1143  *
1144  * @param handle a handle to a TurboJPEG decompressor or transformer instance
1145  *
1146  * @param jpegBuf pointer to a buffer containing the JPEG image to decompress
1147  *
1148  * @param jpegSize size of the JPEG image (in bytes)
1149  *
1150  * @param dstBuf pointer to an image buffer that will receive the YUV image.
1151  * Use #tjBufSizeYUV2() to determine the appropriate size for this buffer based
1152  * on the image width, height, padding, and level of subsampling.  The Y,
1153  * U (Cb), and V (Cr) image planes will be stored sequentially in the buffer
1154  * (refer to @ref YUVnotes "YUV Image Format Notes".)
1155  *
1156  * @param width desired width (in pixels) of the YUV image.  If this is
1157  * different than the width of the JPEG image being decompressed, then
1158  * TurboJPEG will use scaling in the JPEG decompressor to generate the largest
1159  * possible image that will fit within the desired width.  If <tt>width</tt> is
1160  * set to 0, then only the height will be considered when determining the
1161  * scaled image size.  If the scaled width is not an even multiple of the MCU
1162  * block width (see #tjMCUWidth), then an intermediate buffer copy will be
1163  * performed within TurboJPEG.
1164  *
1165  * @param pad the width of each line in each plane of the YUV image will be
1166  * padded to the nearest multiple of this number of bytes (must be a power of
1167  * 2.)  To generate images suitable for X Video, <tt>pad</tt> should be set to
1168  * 4.
1169  *
1170  * @param height desired height (in pixels) of the YUV image.  If this is
1171  * different than the height of the JPEG image being decompressed, then
1172  * TurboJPEG will use scaling in the JPEG decompressor to generate the largest
1173  * possible image that will fit within the desired height.  If <tt>height</tt>
1174  * is set to 0, then only the width will be considered when determining the
1175  * scaled image size.  If the scaled height is not an even multiple of the MCU
1176  * block height (see #tjMCUHeight), then an intermediate buffer copy will be
1177  * performed within TurboJPEG.
1178  *
1179  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
1180  * "flags"
1181  *
1182  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1183  */
1184 DLLEXPORT int DLLCALL tjDecompressToYUV2(tjhandle handle,
1185   const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf,
1186   int width, int pad, int height, int flags);
1187 
1188 
1189 /**
1190  * Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image
1191  * planes.  This function performs JPEG decompression but leaves out the color
1192  * conversion step, so a planar YUV image is generated instead of an RGB image.
1193  *
1194  * @param handle a handle to a TurboJPEG decompressor or transformer instance
1195  *
1196  * @param jpegBuf pointer to a buffer containing the JPEG image to decompress
1197  *
1198  * @param jpegSize size of the JPEG image (in bytes)
1199  *
1200  * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
1201  * (or just a Y plane, if decompressing a grayscale image) that will receive
1202  * the YUV image.  These planes can be contiguous or non-contiguous in memory.
1203  * Use #tjPlaneSizeYUV() to determine the appropriate size for each plane based
1204  * on the scaled image width, scaled image height, strides, and level of
1205  * chrominance subsampling.  Refer to @ref YUVnotes "YUV Image Format Notes"
1206  * for more details.
1207  *
1208  * @param width desired width (in pixels) of the YUV image.  If this is
1209  * different than the width of the JPEG image being decompressed, then
1210  * TurboJPEG will use scaling in the JPEG decompressor to generate the largest
1211  * possible image that will fit within the desired width.  If <tt>width</tt> is
1212  * set to 0, then only the height will be considered when determining the
1213  * scaled image size.  If the scaled width is not an even multiple of the MCU
1214  * block width (see #tjMCUWidth), then an intermediate buffer copy will be
1215  * performed within TurboJPEG.
1216  *
1217  * @param strides an array of integers, each specifying the number of bytes per
1218  * line in the corresponding plane of the output image.  Setting the stride for
1219  * any plane to 0 is the same as setting it to the scaled plane width (see
1220  * @ref YUVnotes "YUV Image Format Notes".)  If <tt>strides</tt> is NULL, then
1221  * the strides for all planes will be set to their respective scaled plane
1222  * widths.  You can adjust the strides in order to add an arbitrary amount of
1223  * line padding to each plane or to decompress the JPEG image into a subregion
1224  * of a larger YUV planar image.
1225  *
1226  * @param height desired height (in pixels) of the YUV image.  If this is
1227  * different than the height of the JPEG image being decompressed, then
1228  * TurboJPEG will use scaling in the JPEG decompressor to generate the largest
1229  * possible image that will fit within the desired height.  If <tt>height</tt>
1230  * is set to 0, then only the width will be considered when determining the
1231  * scaled image size.  If the scaled height is not an even multiple of the MCU
1232  * block height (see #tjMCUHeight), then an intermediate buffer copy will be
1233  * performed within TurboJPEG.
1234  *
1235  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
1236  * "flags"
1237  *
1238  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1239  */
1240 DLLEXPORT int DLLCALL tjDecompressToYUVPlanes(tjhandle handle,
1241   const unsigned char *jpegBuf, unsigned long jpegSize,
1242   unsigned char **dstPlanes, int width, int *strides, int height, int flags);
1243 
1244 
1245 /**
1246  * Decode a YUV planar image into an RGB or grayscale image.  This function
1247  * uses the accelerated color conversion routines in the underlying
1248  * codec but does not execute any of the other steps in the JPEG decompression
1249  * process.
1250  *
1251  * @param handle a handle to a TurboJPEG decompressor or transformer instance
1252  *
1253  * @param srcBuf pointer to an image buffer containing a YUV planar image to be
1254  * decoded.  The size of this buffer should match the value returned by
1255  * #tjBufSizeYUV2() for the given image width, height, padding, and level of
1256  * chrominance subsampling.  The Y, U (Cb), and V (Cr) image planes should be
1257  * stored sequentially in the source buffer (refer to @ref YUVnotes
1258  * "YUV Image Format Notes".)
1259  *
1260  * @param pad Use this parameter to specify that the width of each line in each
1261  * plane of the YUV source image is padded to the nearest multiple of this
1262  * number of bytes (must be a power of 2.)
1263  *
1264  * @param subsamp the level of chrominance subsampling used in the YUV source
1265  * image (see @ref TJSAMP "Chrominance subsampling options".)
1266  *
1267  * @param dstBuf pointer to an image buffer that will receive the decoded
1268  * image.  This buffer should normally be <tt>pitch * height</tt> bytes in
1269  * size, but the <tt>dstBuf</tt> pointer can also be used to decode into a
1270  * specific region of a larger buffer.
1271  *
1272  * @param width width (in pixels) of the source and destination images
1273  *
1274  * @param pitch bytes per line in the destination image.  Normally, this should
1275  * be <tt>width * #tjPixelSize[pixelFormat]</tt> if the destination image is
1276  * unpadded, or <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line
1277  * of the destination image should be padded to the nearest 32-bit boundary, as
1278  * is the case for Windows bitmaps.  You can also be clever and use the pitch
1279  * parameter to skip lines, etc.  Setting this parameter to 0 is the equivalent
1280  * of setting it to <tt>width * #tjPixelSize[pixelFormat]</tt>.
1281  *
1282  * @param height height (in pixels) of the source and destination images
1283  *
1284  * @param pixelFormat pixel format of the destination image (see @ref TJPF
1285  * "Pixel formats".)
1286  *
1287  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
1288  * "flags"
1289  *
1290  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1291  */
1292 DLLEXPORT int DLLCALL tjDecodeYUV(tjhandle handle, const unsigned char *srcBuf,
1293   int pad, int subsamp, unsigned char *dstBuf, int width, int pitch,
1294   int height, int pixelFormat, int flags);
1295 
1296 
1297 /**
1298  * Decode a set of Y, U (Cb), and V (Cr) image planes into an RGB or grayscale
1299  * image.  This function uses the accelerated color conversion routines in the
1300  * underlying codec but does not execute any of the other steps in the JPEG
1301  * decompression process.
1302  *
1303  * @param handle a handle to a TurboJPEG decompressor or transformer instance
1304  *
1305  * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
1306  * (or just a Y plane, if decoding a grayscale image) that contain a YUV image
1307  * to be decoded.  These planes can be contiguous or non-contiguous in memory.
1308  * The size of each plane should match the value returned by #tjPlaneSizeYUV()
1309  * for the given image width, height, strides, and level of chrominance
1310  * subsampling.  Refer to @ref YUVnotes "YUV Image Format Notes" for more
1311  * details.
1312  *
1313  * @param strides an array of integers, each specifying the number of bytes per
1314  * line in the corresponding plane of the YUV source image.  Setting the stride
1315  * for any plane to 0 is the same as setting it to the plane width (see
1316  * @ref YUVnotes "YUV Image Format Notes".)  If <tt>strides</tt> is NULL, then
1317  * the strides for all planes will be set to their respective plane widths.
1318  * You can adjust the strides in order to specify an arbitrary amount of line
1319  * padding in each plane or to decode a subregion of a larger YUV planar image.
1320  *
1321  * @param subsamp the level of chrominance subsampling used in the YUV source
1322  * image (see @ref TJSAMP "Chrominance subsampling options".)
1323  *
1324  * @param dstBuf pointer to an image buffer that will receive the decoded
1325  * image.  This buffer should normally be <tt>pitch * height</tt> bytes in
1326  * size, but the <tt>dstBuf</tt> pointer can also be used to decode into a
1327  * specific region of a larger buffer.
1328  *
1329  * @param width width (in pixels) of the source and destination images
1330  *
1331  * @param pitch bytes per line in the destination image.  Normally, this should
1332  * be <tt>width * #tjPixelSize[pixelFormat]</tt> if the destination image is
1333  * unpadded, or <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line
1334  * of the destination image should be padded to the nearest 32-bit boundary, as
1335  * is the case for Windows bitmaps.  You can also be clever and use the pitch
1336  * parameter to skip lines, etc.  Setting this parameter to 0 is the equivalent
1337  * of setting it to <tt>width * #tjPixelSize[pixelFormat]</tt>.
1338  *
1339  * @param height height (in pixels) of the source and destination images
1340  *
1341  * @param pixelFormat pixel format of the destination image (see @ref TJPF
1342  * "Pixel formats".)
1343  *
1344  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
1345  * "flags"
1346  *
1347  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1348  */
1349 DLLEXPORT int DLLCALL tjDecodeYUVPlanes(tjhandle handle,
1350   const unsigned char **srcPlanes, const int *strides, int subsamp,
1351   unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat,
1352   int flags);
1353 
1354 
1355 /**
1356  * Create a new TurboJPEG transformer instance.
1357  *
1358  * @return a handle to the newly-created instance, or NULL if an error
1359  * occurred (see #tjGetErrorStr().)
1360  */
1361 DLLEXPORT tjhandle DLLCALL tjInitTransform(void);
1362 
1363 
1364 /**
1365  * Losslessly transform a JPEG image into another JPEG image.  Lossless
1366  * transforms work by moving the raw DCT coefficients from one JPEG image
1367  * structure to another without altering the values of the coefficients.  While
1368  * this is typically faster than decompressing the image, transforming it, and
1369  * re-compressing it, lossless transforms are not free.  Each lossless
1370  * transform requires reading and performing Huffman decoding on all of the
1371  * coefficients in the source image, regardless of the size of the destination
1372  * image.  Thus, this function provides a means of generating multiple
1373  * transformed images from the same source or  applying multiple
1374  * transformations simultaneously, in order to eliminate the need to read the
1375  * source coefficients multiple times.
1376  *
1377  * @param handle a handle to a TurboJPEG transformer instance
1378  *
1379  * @param jpegBuf pointer to a buffer containing the JPEG source image to
1380  * transform
1381  *
1382  * @param jpegSize size of the JPEG source image (in bytes)
1383  *
1384  * @param n the number of transformed JPEG images to generate
1385  *
1386  * @param dstBufs pointer to an array of n image buffers.  <tt>dstBufs[i]</tt>
1387  * will receive a JPEG image that has been transformed using the parameters in
1388  * <tt>transforms[i]</tt>.  TurboJPEG has the ability to reallocate the JPEG
1389  * buffer to accommodate the size of the JPEG image.  Thus, you can choose to:
1390  * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and
1391  * let TurboJPEG grow the buffer as needed,
1392  * -# set <tt>dstBufs[i]</tt> to NULL to tell TurboJPEG to allocate the buffer
1393  * for you, or
1394  * -# pre-allocate the buffer to a "worst case" size determined by calling
1395  * #tjBufSize() with the transformed or cropped width and height.  This should
1396  * ensure that the buffer never has to be re-allocated (setting
1397  * #TJFLAG_NOREALLOC guarantees this.)
1398  * .
1399  * If you choose option 1, <tt>dstSizes[i]</tt> should be set to the size of
1400  * your pre-allocated buffer.  In any case, unless you have set
1401  * #TJFLAG_NOREALLOC, you should always check <tt>dstBufs[i]</tt> upon return
1402  * from this function, as it may have changed.
1403  *
1404  * @param dstSizes pointer to an array of n unsigned long variables that will
1405  * receive the actual sizes (in bytes) of each transformed JPEG image.  If
1406  * <tt>dstBufs[i]</tt> points to a pre-allocated buffer, then
1407  * <tt>dstSizes[i]</tt> should be set to the size of the buffer.  Upon return,
1408  * <tt>dstSizes[i]</tt> will contain the size of the JPEG image (in bytes.)
1409  *
1410  * @param transforms pointer to an array of n #tjtransform structures, each of
1411  * which specifies the transform parameters and/or cropping region for the
1412  * corresponding transformed output image.
1413  *
1414  * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP
1415  * "flags"
1416  *
1417  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1418  */
1419 DLLEXPORT int DLLCALL tjTransform(tjhandle handle,
1420   const unsigned char *jpegBuf, unsigned long jpegSize, int n,
1421   unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *transforms,
1422   int flags);
1423 
1424 
1425 /**
1426  * Destroy a TurboJPEG compressor, decompressor, or transformer instance.
1427  *
1428  * @param handle a handle to a TurboJPEG compressor, decompressor or
1429  * transformer instance
1430  *
1431  * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().)
1432  */
1433 DLLEXPORT int DLLCALL tjDestroy(tjhandle handle);
1434 
1435 
1436 /**
1437  * Allocate an image buffer for use with TurboJPEG.  You should always use
1438  * this function to allocate the JPEG destination buffer(s) for #tjCompress2()
1439  * and #tjTransform() unless you are disabling automatic buffer
1440  * (re)allocation (by setting #TJFLAG_NOREALLOC.)
1441  *
1442  * @param bytes the number of bytes to allocate
1443  *
1444  * @return a pointer to a newly-allocated buffer with the specified number of
1445  * bytes.
1446  *
1447  * @sa tjFree()
1448  */
1449 DLLEXPORT unsigned char* DLLCALL tjAlloc(int bytes);
1450 
1451 
1452 /**
1453  * Free an image buffer previously allocated by TurboJPEG.  You should always
1454  * use this function to free JPEG destination buffer(s) that were automatically
1455  * (re)allocated by #tjCompress2() or #tjTransform() or that were manually
1456  * allocated using #tjAlloc().
1457  *
1458  * @param buffer address of the buffer to free
1459  *
1460  * @sa tjAlloc()
1461  */
1462 DLLEXPORT void DLLCALL tjFree(unsigned char *buffer);
1463 
1464 
1465 /**
1466  * Returns a descriptive error message explaining why the last command failed.
1467  *
1468  * @return a descriptive error message explaining why the last command failed.
1469  */
1470 DLLEXPORT char* DLLCALL tjGetErrorStr(void);
1471 
1472 
1473 /* Deprecated functions and macros */
1474 #define TJFLAG_FORCEMMX        8
1475 #define TJFLAG_FORCESSE       16
1476 #define TJFLAG_FORCESSE2      32
1477 #define TJFLAG_FORCESSE3     128
1478 
1479 
1480 /* Backward compatibility functions and macros (nothing to see here) */
1481 #define NUMSUBOPT TJ_NUMSAMP
1482 #define TJ_444 TJSAMP_444
1483 #define TJ_422 TJSAMP_422
1484 #define TJ_420 TJSAMP_420
1485 #define TJ_411 TJSAMP_420
1486 #define TJ_GRAYSCALE TJSAMP_GRAY
1487 
1488 #define TJ_BGR 1
1489 #define TJ_BOTTOMUP TJFLAG_BOTTOMUP
1490 #define TJ_FORCEMMX TJFLAG_FORCEMMX
1491 #define TJ_FORCESSE TJFLAG_FORCESSE
1492 #define TJ_FORCESSE2 TJFLAG_FORCESSE2
1493 #define TJ_ALPHAFIRST 64
1494 #define TJ_FORCESSE3 TJFLAG_FORCESSE3
1495 #define TJ_FASTUPSAMPLE TJFLAG_FASTUPSAMPLE
1496 #define TJ_YUV 512
1497 
1498 DLLEXPORT unsigned long DLLCALL TJBUFSIZE(int width, int height);
1499 
1500 DLLEXPORT unsigned long DLLCALL TJBUFSIZEYUV(int width, int height,
1501   int jpegSubsamp);
1502 
1503 DLLEXPORT unsigned long DLLCALL tjBufSizeYUV(int width, int height,
1504   int subsamp);
1505 
1506 DLLEXPORT int DLLCALL tjCompress(tjhandle handle, unsigned char *srcBuf,
1507   int width, int pitch, int height, int pixelSize, unsigned char *dstBuf,
1508   unsigned long *compressedSize, int jpegSubsamp, int jpegQual, int flags);
1509 
1510 DLLEXPORT int DLLCALL tjEncodeYUV(tjhandle handle,
1511   unsigned char *srcBuf, int width, int pitch, int height, int pixelSize,
1512   unsigned char *dstBuf, int subsamp, int flags);
1513 
1514 DLLEXPORT int DLLCALL tjEncodeYUV2(tjhandle handle,
1515   unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat,
1516   unsigned char *dstBuf, int subsamp, int flags);
1517 
1518 DLLEXPORT int DLLCALL tjDecompressHeader(tjhandle handle,
1519   unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height);
1520 
1521 DLLEXPORT int DLLCALL tjDecompressHeader2(tjhandle handle,
1522   unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height,
1523   int *jpegSubsamp);
1524 
1525 DLLEXPORT int DLLCALL tjDecompress(tjhandle handle,
1526   unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf,
1527   int width, int pitch, int height, int pixelSize, int flags);
1528 
1529 DLLEXPORT int DLLCALL tjDecompressToYUV(tjhandle handle,
1530   unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf,
1531   int flags);
1532 
1533 
1534 /**
1535  * @}
1536  */
1537 
1538 #ifdef __cplusplus
1539 }
1540 #endif
1541 
1542 #endif
1543