1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * Optimization module for tcpdump intermediate representation.
22 */
23
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #ifdef _WIN32
29 #include <pcap-stdinc.h>
30 #else /* _WIN32 */
31 #if HAVE_INTTYPES_H
32 #include <inttypes.h>
33 #elif HAVE_STDINT_H
34 #include <stdint.h>
35 #endif
36 #ifdef HAVE_SYS_BITYPES_H
37 #include <sys/bitypes.h>
38 #endif
39 #include <sys/types.h>
40 #endif /* _WIN32 */
41
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <memory.h>
45 #include <string.h>
46
47 #include <errno.h>
48
49 #include "pcap-int.h"
50
51 #include "gencode.h"
52
53 #ifdef HAVE_OS_PROTO_H
54 #include "os-proto.h"
55 #endif
56
57 #ifdef BDEBUG
58 int pcap_optimizer_debug;
59 #endif
60
61 #if defined(MSDOS) && !defined(__DJGPP__)
62 extern int _w32_ffs (int mask);
63 #define ffs _w32_ffs
64 #endif
65
66 /*
67 * So is the check for _MSC_VER done because MinGW has this?
68 */
69 #if defined(_WIN32) && defined (_MSC_VER)
70 /*
71 * ffs -- vax ffs instruction
72 *
73 * XXX - with versions of VS that have it, use _BitScanForward()?
74 */
75 static int
ffs(int mask)76 ffs(int mask)
77 {
78 int bit;
79
80 if (mask == 0)
81 return(0);
82 for (bit = 1; !(mask & 1); bit++)
83 mask >>= 1;
84 return(bit);
85 }
86 #endif
87
88 /*
89 * Represents a deleted instruction.
90 */
91 #define NOP -1
92
93 /*
94 * Register numbers for use-def values.
95 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
96 * location. A_ATOM is the accumulator and X_ATOM is the index
97 * register.
98 */
99 #define A_ATOM BPF_MEMWORDS
100 #define X_ATOM (BPF_MEMWORDS+1)
101
102 /*
103 * This define is used to represent *both* the accumulator and
104 * x register in use-def computations.
105 * Currently, the use-def code assumes only one definition per instruction.
106 */
107 #define AX_ATOM N_ATOMS
108
109 /*
110 * These data structures are used in a Cocke and Shwarz style
111 * value numbering scheme. Since the flowgraph is acyclic,
112 * exit values can be propagated from a node's predecessors
113 * provided it is uniquely defined.
114 */
115 struct valnode {
116 int code;
117 int v0, v1;
118 int val;
119 struct valnode *next;
120 };
121
122 /* Integer constants mapped with the load immediate opcode. */
123 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
124
125 struct vmapinfo {
126 int is_const;
127 bpf_int32 const_val;
128 };
129
130 struct _opt_state {
131 /*
132 * A flag to indicate that further optimization is needed.
133 * Iterative passes are continued until a given pass yields no
134 * branch movement.
135 */
136 int done;
137
138 int n_blocks;
139 struct block **blocks;
140 int n_edges;
141 struct edge **edges;
142
143 /*
144 * A bit vector set representation of the dominators.
145 * We round up the set size to the next power of two.
146 */
147 int nodewords;
148 int edgewords;
149 struct block **levels;
150 bpf_u_int32 *space;
151
152 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
153 /*
154 * True if a is in uset {p}
155 */
156 #define SET_MEMBER(p, a) \
157 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
158
159 /*
160 * Add 'a' to uset p.
161 */
162 #define SET_INSERT(p, a) \
163 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
164
165 /*
166 * Delete 'a' from uset p.
167 */
168 #define SET_DELETE(p, a) \
169 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
170
171 /*
172 * a := a intersect b
173 */
174 #define SET_INTERSECT(a, b, n)\
175 {\
176 register bpf_u_int32 *_x = a, *_y = b;\
177 register int _n = n;\
178 while (--_n >= 0) *_x++ &= *_y++;\
179 }
180
181 /*
182 * a := a - b
183 */
184 #define SET_SUBTRACT(a, b, n)\
185 {\
186 register bpf_u_int32 *_x = a, *_y = b;\
187 register int _n = n;\
188 while (--_n >= 0) *_x++ &=~ *_y++;\
189 }
190
191 /*
192 * a := a union b
193 */
194 #define SET_UNION(a, b, n)\
195 {\
196 register bpf_u_int32 *_x = a, *_y = b;\
197 register int _n = n;\
198 while (--_n >= 0) *_x++ |= *_y++;\
199 }
200
201 uset all_dom_sets;
202 uset all_closure_sets;
203 uset all_edge_sets;
204
205 #define MODULUS 213
206 struct valnode *hashtbl[MODULUS];
207 int curval;
208 int maxval;
209
210 struct vmapinfo *vmap;
211 struct valnode *vnode_base;
212 struct valnode *next_vnode;
213 };
214
215 typedef struct {
216 /*
217 * Some pointers used to convert the basic block form of the code,
218 * into the array form that BPF requires. 'fstart' will point to
219 * the malloc'd array while 'ftail' is used during the recursive
220 * traversal.
221 */
222 struct bpf_insn *fstart;
223 struct bpf_insn *ftail;
224 } conv_state_t;
225
226 static void opt_init(compiler_state_t *, opt_state_t *, struct icode *);
227 static void opt_cleanup(opt_state_t *);
228
229 static void intern_blocks(opt_state_t *, struct icode *);
230
231 static void find_inedges(opt_state_t *, struct block *);
232 #ifdef BDEBUG
233 static void opt_dump(compiler_state_t *, struct icode *);
234 #endif
235
236 #ifndef MAX
237 #define MAX(a,b) ((a)>(b)?(a):(b))
238 #endif
239
240 static void
find_levels_r(opt_state_t * opt_state,struct icode * ic,struct block * b)241 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
242 {
243 int level;
244
245 if (isMarked(ic, b))
246 return;
247
248 Mark(ic, b);
249 b->link = 0;
250
251 if (JT(b)) {
252 find_levels_r(opt_state, ic, JT(b));
253 find_levels_r(opt_state, ic, JF(b));
254 level = MAX(JT(b)->level, JF(b)->level) + 1;
255 } else
256 level = 0;
257 b->level = level;
258 b->link = opt_state->levels[level];
259 opt_state->levels[level] = b;
260 }
261
262 /*
263 * Level graph. The levels go from 0 at the leaves to
264 * N_LEVELS at the root. The opt_state->levels[] array points to the
265 * first node of the level list, whose elements are linked
266 * with the 'link' field of the struct block.
267 */
268 static void
find_levels(opt_state_t * opt_state,struct icode * ic)269 find_levels(opt_state_t *opt_state, struct icode *ic)
270 {
271 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
272 unMarkAll(ic);
273 find_levels_r(opt_state, ic, ic->root);
274 }
275
276 /*
277 * Find dominator relationships.
278 * Assumes graph has been leveled.
279 */
280 static void
find_dom(opt_state_t * opt_state,struct block * root)281 find_dom(opt_state_t *opt_state, struct block *root)
282 {
283 int i;
284 struct block *b;
285 bpf_u_int32 *x;
286
287 /*
288 * Initialize sets to contain all nodes.
289 */
290 x = opt_state->all_dom_sets;
291 i = opt_state->n_blocks * opt_state->nodewords;
292 while (--i >= 0)
293 *x++ = ~0;
294 /* Root starts off empty. */
295 for (i = opt_state->nodewords; --i >= 0;)
296 root->dom[i] = 0;
297
298 /* root->level is the highest level no found. */
299 for (i = root->level; i >= 0; --i) {
300 for (b = opt_state->levels[i]; b; b = b->link) {
301 SET_INSERT(b->dom, b->id);
302 if (JT(b) == 0)
303 continue;
304 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
305 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
306 }
307 }
308 }
309
310 static void
propedom(opt_state_t * opt_state,struct edge * ep)311 propedom(opt_state_t *opt_state, struct edge *ep)
312 {
313 SET_INSERT(ep->edom, ep->id);
314 if (ep->succ) {
315 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
316 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
317 }
318 }
319
320 /*
321 * Compute edge dominators.
322 * Assumes graph has been leveled and predecessors established.
323 */
324 static void
find_edom(opt_state_t * opt_state,struct block * root)325 find_edom(opt_state_t *opt_state, struct block *root)
326 {
327 int i;
328 uset x;
329 struct block *b;
330
331 x = opt_state->all_edge_sets;
332 for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; )
333 x[i] = ~0;
334
335 /* root->level is the highest level no found. */
336 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
337 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
338 for (i = root->level; i >= 0; --i) {
339 for (b = opt_state->levels[i]; b != 0; b = b->link) {
340 propedom(opt_state, &b->et);
341 propedom(opt_state, &b->ef);
342 }
343 }
344 }
345
346 /*
347 * Find the backwards transitive closure of the flow graph. These sets
348 * are backwards in the sense that we find the set of nodes that reach
349 * a given node, not the set of nodes that can be reached by a node.
350 *
351 * Assumes graph has been leveled.
352 */
353 static void
find_closure(opt_state_t * opt_state,struct block * root)354 find_closure(opt_state_t *opt_state, struct block *root)
355 {
356 int i;
357 struct block *b;
358
359 /*
360 * Initialize sets to contain no nodes.
361 */
362 memset((char *)opt_state->all_closure_sets, 0,
363 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
364
365 /* root->level is the highest level no found. */
366 for (i = root->level; i >= 0; --i) {
367 for (b = opt_state->levels[i]; b; b = b->link) {
368 SET_INSERT(b->closure, b->id);
369 if (JT(b) == 0)
370 continue;
371 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
372 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
373 }
374 }
375 }
376
377 /*
378 * Return the register number that is used by s. If A and X are both
379 * used, return AX_ATOM. If no register is used, return -1.
380 *
381 * The implementation should probably change to an array access.
382 */
383 static int
atomuse(struct stmt * s)384 atomuse(struct stmt *s)
385 {
386 register int c = s->code;
387
388 if (c == NOP)
389 return -1;
390
391 switch (BPF_CLASS(c)) {
392
393 case BPF_RET:
394 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
395 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
396
397 case BPF_LD:
398 case BPF_LDX:
399 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
400 (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
401
402 case BPF_ST:
403 return A_ATOM;
404
405 case BPF_STX:
406 return X_ATOM;
407
408 case BPF_JMP:
409 case BPF_ALU:
410 if (BPF_SRC(c) == BPF_X)
411 return AX_ATOM;
412 return A_ATOM;
413
414 case BPF_MISC:
415 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
416 }
417 abort();
418 /* NOTREACHED */
419 }
420
421 /*
422 * Return the register number that is defined by 's'. We assume that
423 * a single stmt cannot define more than one register. If no register
424 * is defined, return -1.
425 *
426 * The implementation should probably change to an array access.
427 */
428 static int
atomdef(struct stmt * s)429 atomdef(struct stmt *s)
430 {
431 if (s->code == NOP)
432 return -1;
433
434 switch (BPF_CLASS(s->code)) {
435
436 case BPF_LD:
437 case BPF_ALU:
438 return A_ATOM;
439
440 case BPF_LDX:
441 return X_ATOM;
442
443 case BPF_ST:
444 case BPF_STX:
445 return s->k;
446
447 case BPF_MISC:
448 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
449 }
450 return -1;
451 }
452
453 /*
454 * Compute the sets of registers used, defined, and killed by 'b'.
455 *
456 * "Used" means that a statement in 'b' uses the register before any
457 * statement in 'b' defines it, i.e. it uses the value left in
458 * that register by a predecessor block of this block.
459 * "Defined" means that a statement in 'b' defines it.
460 * "Killed" means that a statement in 'b' defines it before any
461 * statement in 'b' uses it, i.e. it kills the value left in that
462 * register by a predecessor block of this block.
463 */
464 static void
compute_local_ud(struct block * b)465 compute_local_ud(struct block *b)
466 {
467 struct slist *s;
468 atomset def = 0, use = 0, killed = 0;
469 int atom;
470
471 for (s = b->stmts; s; s = s->next) {
472 if (s->s.code == NOP)
473 continue;
474 atom = atomuse(&s->s);
475 if (atom >= 0) {
476 if (atom == AX_ATOM) {
477 if (!ATOMELEM(def, X_ATOM))
478 use |= ATOMMASK(X_ATOM);
479 if (!ATOMELEM(def, A_ATOM))
480 use |= ATOMMASK(A_ATOM);
481 }
482 else if (atom < N_ATOMS) {
483 if (!ATOMELEM(def, atom))
484 use |= ATOMMASK(atom);
485 }
486 else
487 abort();
488 }
489 atom = atomdef(&s->s);
490 if (atom >= 0) {
491 if (!ATOMELEM(use, atom))
492 killed |= ATOMMASK(atom);
493 def |= ATOMMASK(atom);
494 }
495 }
496 if (BPF_CLASS(b->s.code) == BPF_JMP) {
497 /*
498 * XXX - what about RET?
499 */
500 atom = atomuse(&b->s);
501 if (atom >= 0) {
502 if (atom == AX_ATOM) {
503 if (!ATOMELEM(def, X_ATOM))
504 use |= ATOMMASK(X_ATOM);
505 if (!ATOMELEM(def, A_ATOM))
506 use |= ATOMMASK(A_ATOM);
507 }
508 else if (atom < N_ATOMS) {
509 if (!ATOMELEM(def, atom))
510 use |= ATOMMASK(atom);
511 }
512 else
513 abort();
514 }
515 }
516
517 b->def = def;
518 b->kill = killed;
519 b->in_use = use;
520 }
521
522 /*
523 * Assume graph is already leveled.
524 */
525 static void
find_ud(opt_state_t * opt_state,struct block * root)526 find_ud(opt_state_t *opt_state, struct block *root)
527 {
528 int i, maxlevel;
529 struct block *p;
530
531 /*
532 * root->level is the highest level no found;
533 * count down from there.
534 */
535 maxlevel = root->level;
536 for (i = maxlevel; i >= 0; --i)
537 for (p = opt_state->levels[i]; p; p = p->link) {
538 compute_local_ud(p);
539 p->out_use = 0;
540 }
541
542 for (i = 1; i <= maxlevel; ++i) {
543 for (p = opt_state->levels[i]; p; p = p->link) {
544 p->out_use |= JT(p)->in_use | JF(p)->in_use;
545 p->in_use |= p->out_use &~ p->kill;
546 }
547 }
548 }
549 static void
init_val(opt_state_t * opt_state)550 init_val(opt_state_t *opt_state)
551 {
552 opt_state->curval = 0;
553 opt_state->next_vnode = opt_state->vnode_base;
554 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
555 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
556 }
557
558 /* Because we really don't have an IR, this stuff is a little messy. */
559 static int
F(opt_state_t * opt_state,int code,int v0,int v1)560 F(opt_state_t *opt_state, int code, int v0, int v1)
561 {
562 u_int hash;
563 int val;
564 struct valnode *p;
565
566 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
567 hash %= MODULUS;
568
569 for (p = opt_state->hashtbl[hash]; p; p = p->next)
570 if (p->code == code && p->v0 == v0 && p->v1 == v1)
571 return p->val;
572
573 val = ++opt_state->curval;
574 if (BPF_MODE(code) == BPF_IMM &&
575 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
576 opt_state->vmap[val].const_val = v0;
577 opt_state->vmap[val].is_const = 1;
578 }
579 p = opt_state->next_vnode++;
580 p->val = val;
581 p->code = code;
582 p->v0 = v0;
583 p->v1 = v1;
584 p->next = opt_state->hashtbl[hash];
585 opt_state->hashtbl[hash] = p;
586
587 return val;
588 }
589
590 static inline void
vstore(struct stmt * s,int * valp,int newval,int alter)591 vstore(struct stmt *s, int *valp, int newval, int alter)
592 {
593 if (alter && *valp == newval)
594 s->code = NOP;
595 else
596 *valp = newval;
597 }
598
599 /*
600 * Do constant-folding on binary operators.
601 * (Unary operators are handled elsewhere.)
602 */
603 static void
fold_op(compiler_state_t * cstate,struct icode * ic,opt_state_t * opt_state,struct stmt * s,int v0,int v1)604 fold_op(compiler_state_t *cstate, struct icode *ic, opt_state_t *opt_state,
605 struct stmt *s, int v0, int v1)
606 {
607 bpf_u_int32 a, b;
608
609 a = opt_state->vmap[v0].const_val;
610 b = opt_state->vmap[v1].const_val;
611
612 switch (BPF_OP(s->code)) {
613 case BPF_ADD:
614 a += b;
615 break;
616
617 case BPF_SUB:
618 a -= b;
619 break;
620
621 case BPF_MUL:
622 a *= b;
623 break;
624
625 case BPF_DIV:
626 if (b == 0)
627 bpf_error(cstate, "division by zero");
628 a /= b;
629 break;
630
631 case BPF_MOD:
632 if (b == 0)
633 bpf_error(cstate, "modulus by zero");
634 a %= b;
635 break;
636
637 case BPF_AND:
638 a &= b;
639 break;
640
641 case BPF_OR:
642 a |= b;
643 break;
644
645 case BPF_XOR:
646 a ^= b;
647 break;
648
649 case BPF_LSH:
650 a <<= b;
651 break;
652
653 case BPF_RSH:
654 a >>= b;
655 break;
656
657 default:
658 abort();
659 }
660 s->k = a;
661 s->code = BPF_LD|BPF_IMM;
662 opt_state->done = 0;
663 }
664
665 static inline struct slist *
this_op(struct slist * s)666 this_op(struct slist *s)
667 {
668 while (s != 0 && s->s.code == NOP)
669 s = s->next;
670 return s;
671 }
672
673 static void
opt_not(struct block * b)674 opt_not(struct block *b)
675 {
676 struct block *tmp = JT(b);
677
678 JT(b) = JF(b);
679 JF(b) = tmp;
680 }
681
682 static void
opt_peep(opt_state_t * opt_state,struct block * b)683 opt_peep(opt_state_t *opt_state, struct block *b)
684 {
685 struct slist *s;
686 struct slist *next, *last;
687 int val;
688
689 s = b->stmts;
690 if (s == 0)
691 return;
692
693 last = s;
694 for (/*empty*/; /*empty*/; s = next) {
695 /*
696 * Skip over nops.
697 */
698 s = this_op(s);
699 if (s == 0)
700 break; /* nothing left in the block */
701
702 /*
703 * Find the next real instruction after that one
704 * (skipping nops).
705 */
706 next = this_op(s->next);
707 if (next == 0)
708 break; /* no next instruction */
709 last = next;
710
711 /*
712 * st M[k] --> st M[k]
713 * ldx M[k] tax
714 */
715 if (s->s.code == BPF_ST &&
716 next->s.code == (BPF_LDX|BPF_MEM) &&
717 s->s.k == next->s.k) {
718 opt_state->done = 0;
719 next->s.code = BPF_MISC|BPF_TAX;
720 }
721 /*
722 * ld #k --> ldx #k
723 * tax txa
724 */
725 if (s->s.code == (BPF_LD|BPF_IMM) &&
726 next->s.code == (BPF_MISC|BPF_TAX)) {
727 s->s.code = BPF_LDX|BPF_IMM;
728 next->s.code = BPF_MISC|BPF_TXA;
729 opt_state->done = 0;
730 }
731 /*
732 * This is an ugly special case, but it happens
733 * when you say tcp[k] or udp[k] where k is a constant.
734 */
735 if (s->s.code == (BPF_LD|BPF_IMM)) {
736 struct slist *add, *tax, *ild;
737
738 /*
739 * Check that X isn't used on exit from this
740 * block (which the optimizer might cause).
741 * We know the code generator won't generate
742 * any local dependencies.
743 */
744 if (ATOMELEM(b->out_use, X_ATOM))
745 continue;
746
747 /*
748 * Check that the instruction following the ldi
749 * is an addx, or it's an ldxms with an addx
750 * following it (with 0 or more nops between the
751 * ldxms and addx).
752 */
753 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
754 add = next;
755 else
756 add = this_op(next->next);
757 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
758 continue;
759
760 /*
761 * Check that a tax follows that (with 0 or more
762 * nops between them).
763 */
764 tax = this_op(add->next);
765 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
766 continue;
767
768 /*
769 * Check that an ild follows that (with 0 or more
770 * nops between them).
771 */
772 ild = this_op(tax->next);
773 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
774 BPF_MODE(ild->s.code) != BPF_IND)
775 continue;
776 /*
777 * We want to turn this sequence:
778 *
779 * (004) ldi #0x2 {s}
780 * (005) ldxms [14] {next} -- optional
781 * (006) addx {add}
782 * (007) tax {tax}
783 * (008) ild [x+0] {ild}
784 *
785 * into this sequence:
786 *
787 * (004) nop
788 * (005) ldxms [14]
789 * (006) nop
790 * (007) nop
791 * (008) ild [x+2]
792 *
793 * XXX We need to check that X is not
794 * subsequently used, because we want to change
795 * what'll be in it after this sequence.
796 *
797 * We know we can eliminate the accumulator
798 * modifications earlier in the sequence since
799 * it is defined by the last stmt of this sequence
800 * (i.e., the last statement of the sequence loads
801 * a value into the accumulator, so we can eliminate
802 * earlier operations on the accumulator).
803 */
804 ild->s.k += s->s.k;
805 s->s.code = NOP;
806 add->s.code = NOP;
807 tax->s.code = NOP;
808 opt_state->done = 0;
809 }
810 }
811 /*
812 * If the comparison at the end of a block is an equality
813 * comparison against a constant, and nobody uses the value
814 * we leave in the A register at the end of a block, and
815 * the operation preceding the comparison is an arithmetic
816 * operation, we can sometime optimize it away.
817 */
818 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
819 !ATOMELEM(b->out_use, A_ATOM)) {
820 /*
821 * We can optimize away certain subtractions of the
822 * X register.
823 */
824 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
825 val = b->val[X_ATOM];
826 if (opt_state->vmap[val].is_const) {
827 /*
828 * If we have a subtract to do a comparison,
829 * and the X register is a known constant,
830 * we can merge this value into the
831 * comparison:
832 *
833 * sub x -> nop
834 * jeq #y jeq #(x+y)
835 */
836 b->s.k += opt_state->vmap[val].const_val;
837 last->s.code = NOP;
838 opt_state->done = 0;
839 } else if (b->s.k == 0) {
840 /*
841 * If the X register isn't a constant,
842 * and the comparison in the test is
843 * against 0, we can compare with the
844 * X register, instead:
845 *
846 * sub x -> nop
847 * jeq #0 jeq x
848 */
849 last->s.code = NOP;
850 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
851 opt_state->done = 0;
852 }
853 }
854 /*
855 * Likewise, a constant subtract can be simplified:
856 *
857 * sub #x -> nop
858 * jeq #y -> jeq #(x+y)
859 */
860 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
861 last->s.code = NOP;
862 b->s.k += last->s.k;
863 opt_state->done = 0;
864 }
865 /*
866 * And, similarly, a constant AND can be simplified
867 * if we're testing against 0, i.e.:
868 *
869 * and #k nop
870 * jeq #0 -> jset #k
871 */
872 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
873 b->s.k == 0) {
874 b->s.k = last->s.k;
875 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
876 last->s.code = NOP;
877 opt_state->done = 0;
878 opt_not(b);
879 }
880 }
881 /*
882 * jset #0 -> never
883 * jset #ffffffff -> always
884 */
885 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
886 if (b->s.k == 0)
887 JT(b) = JF(b);
888 if ((u_int)b->s.k == 0xffffffffU)
889 JF(b) = JT(b);
890 }
891 /*
892 * If we're comparing against the index register, and the index
893 * register is a known constant, we can just compare against that
894 * constant.
895 */
896 val = b->val[X_ATOM];
897 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
898 bpf_int32 v = opt_state->vmap[val].const_val;
899 b->s.code &= ~BPF_X;
900 b->s.k = v;
901 }
902 /*
903 * If the accumulator is a known constant, we can compute the
904 * comparison result.
905 */
906 val = b->val[A_ATOM];
907 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
908 bpf_int32 v = opt_state->vmap[val].const_val;
909 switch (BPF_OP(b->s.code)) {
910
911 case BPF_JEQ:
912 v = v == b->s.k;
913 break;
914
915 case BPF_JGT:
916 v = (unsigned)v > (unsigned)b->s.k;
917 break;
918
919 case BPF_JGE:
920 v = (unsigned)v >= (unsigned)b->s.k;
921 break;
922
923 case BPF_JSET:
924 v &= b->s.k;
925 break;
926
927 default:
928 abort();
929 }
930 if (JF(b) != JT(b))
931 opt_state->done = 0;
932 if (v)
933 JF(b) = JT(b);
934 else
935 JT(b) = JF(b);
936 }
937 }
938
939 /*
940 * Compute the symbolic value of expression of 's', and update
941 * anything it defines in the value table 'val'. If 'alter' is true,
942 * do various optimizations. This code would be cleaner if symbolic
943 * evaluation and code transformations weren't folded together.
944 */
945 static void
opt_stmt(compiler_state_t * cstate,struct icode * ic,opt_state_t * opt_state,struct stmt * s,int val[],int alter)946 opt_stmt(compiler_state_t *cstate, struct icode *ic, opt_state_t *opt_state,
947 struct stmt *s, int val[], int alter)
948 {
949 int op;
950 int v;
951
952 switch (s->code) {
953
954 case BPF_LD|BPF_ABS|BPF_W:
955 case BPF_LD|BPF_ABS|BPF_H:
956 case BPF_LD|BPF_ABS|BPF_B:
957 v = F(opt_state, s->code, s->k, 0L);
958 vstore(s, &val[A_ATOM], v, alter);
959 break;
960
961 case BPF_LD|BPF_IND|BPF_W:
962 case BPF_LD|BPF_IND|BPF_H:
963 case BPF_LD|BPF_IND|BPF_B:
964 v = val[X_ATOM];
965 if (alter && opt_state->vmap[v].is_const) {
966 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
967 s->k += opt_state->vmap[v].const_val;
968 v = F(opt_state, s->code, s->k, 0L);
969 opt_state->done = 0;
970 }
971 else
972 v = F(opt_state, s->code, s->k, v);
973 vstore(s, &val[A_ATOM], v, alter);
974 break;
975
976 case BPF_LD|BPF_LEN:
977 v = F(opt_state, s->code, 0L, 0L);
978 vstore(s, &val[A_ATOM], v, alter);
979 break;
980
981 case BPF_LD|BPF_IMM:
982 v = K(s->k);
983 vstore(s, &val[A_ATOM], v, alter);
984 break;
985
986 case BPF_LDX|BPF_IMM:
987 v = K(s->k);
988 vstore(s, &val[X_ATOM], v, alter);
989 break;
990
991 case BPF_LDX|BPF_MSH|BPF_B:
992 v = F(opt_state, s->code, s->k, 0L);
993 vstore(s, &val[X_ATOM], v, alter);
994 break;
995
996 case BPF_ALU|BPF_NEG:
997 if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
998 s->code = BPF_LD|BPF_IMM;
999 s->k = -opt_state->vmap[val[A_ATOM]].const_val;
1000 val[A_ATOM] = K(s->k);
1001 }
1002 else
1003 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1004 break;
1005
1006 case BPF_ALU|BPF_ADD|BPF_K:
1007 case BPF_ALU|BPF_SUB|BPF_K:
1008 case BPF_ALU|BPF_MUL|BPF_K:
1009 case BPF_ALU|BPF_DIV|BPF_K:
1010 case BPF_ALU|BPF_MOD|BPF_K:
1011 case BPF_ALU|BPF_AND|BPF_K:
1012 case BPF_ALU|BPF_OR|BPF_K:
1013 case BPF_ALU|BPF_XOR|BPF_K:
1014 case BPF_ALU|BPF_LSH|BPF_K:
1015 case BPF_ALU|BPF_RSH|BPF_K:
1016 op = BPF_OP(s->code);
1017 if (alter) {
1018 if (s->k == 0) {
1019 /* don't optimize away "sub #0"
1020 * as it may be needed later to
1021 * fixup the generated math code */
1022 if (op == BPF_ADD ||
1023 op == BPF_LSH || op == BPF_RSH ||
1024 op == BPF_OR || op == BPF_XOR) {
1025 s->code = NOP;
1026 break;
1027 }
1028 if (op == BPF_MUL || op == BPF_AND) {
1029 s->code = BPF_LD|BPF_IMM;
1030 val[A_ATOM] = K(s->k);
1031 break;
1032 }
1033 }
1034 if (opt_state->vmap[val[A_ATOM]].is_const) {
1035 fold_op(cstate, ic, opt_state, s, val[A_ATOM], K(s->k));
1036 val[A_ATOM] = K(s->k);
1037 break;
1038 }
1039 }
1040 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1041 break;
1042
1043 case BPF_ALU|BPF_ADD|BPF_X:
1044 case BPF_ALU|BPF_SUB|BPF_X:
1045 case BPF_ALU|BPF_MUL|BPF_X:
1046 case BPF_ALU|BPF_DIV|BPF_X:
1047 case BPF_ALU|BPF_MOD|BPF_X:
1048 case BPF_ALU|BPF_AND|BPF_X:
1049 case BPF_ALU|BPF_OR|BPF_X:
1050 case BPF_ALU|BPF_XOR|BPF_X:
1051 case BPF_ALU|BPF_LSH|BPF_X:
1052 case BPF_ALU|BPF_RSH|BPF_X:
1053 op = BPF_OP(s->code);
1054 if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1055 if (opt_state->vmap[val[A_ATOM]].is_const) {
1056 fold_op(cstate, ic, opt_state, s, val[A_ATOM], val[X_ATOM]);
1057 val[A_ATOM] = K(s->k);
1058 }
1059 else {
1060 s->code = BPF_ALU|BPF_K|op;
1061 s->k = opt_state->vmap[val[X_ATOM]].const_val;
1062 opt_state->done = 0;
1063 val[A_ATOM] =
1064 F(opt_state, s->code, val[A_ATOM], K(s->k));
1065 }
1066 break;
1067 }
1068 /*
1069 * Check if we're doing something to an accumulator
1070 * that is 0, and simplify. This may not seem like
1071 * much of a simplification but it could open up further
1072 * optimizations.
1073 * XXX We could also check for mul by 1, etc.
1074 */
1075 if (alter && opt_state->vmap[val[A_ATOM]].is_const
1076 && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1077 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1078 s->code = BPF_MISC|BPF_TXA;
1079 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1080 break;
1081 }
1082 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1083 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1084 s->code = BPF_LD|BPF_IMM;
1085 s->k = 0;
1086 vstore(s, &val[A_ATOM], K(s->k), alter);
1087 break;
1088 }
1089 else if (op == BPF_NEG) {
1090 s->code = NOP;
1091 break;
1092 }
1093 }
1094 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1095 break;
1096
1097 case BPF_MISC|BPF_TXA:
1098 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1099 break;
1100
1101 case BPF_LD|BPF_MEM:
1102 v = val[s->k];
1103 if (alter && opt_state->vmap[v].is_const) {
1104 s->code = BPF_LD|BPF_IMM;
1105 s->k = opt_state->vmap[v].const_val;
1106 opt_state->done = 0;
1107 }
1108 vstore(s, &val[A_ATOM], v, alter);
1109 break;
1110
1111 case BPF_MISC|BPF_TAX:
1112 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1113 break;
1114
1115 case BPF_LDX|BPF_MEM:
1116 v = val[s->k];
1117 if (alter && opt_state->vmap[v].is_const) {
1118 s->code = BPF_LDX|BPF_IMM;
1119 s->k = opt_state->vmap[v].const_val;
1120 opt_state->done = 0;
1121 }
1122 vstore(s, &val[X_ATOM], v, alter);
1123 break;
1124
1125 case BPF_ST:
1126 vstore(s, &val[s->k], val[A_ATOM], alter);
1127 break;
1128
1129 case BPF_STX:
1130 vstore(s, &val[s->k], val[X_ATOM], alter);
1131 break;
1132 }
1133 }
1134
1135 static void
deadstmt(opt_state_t * opt_state,register struct stmt * s,register struct stmt * last[])1136 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1137 {
1138 register int atom;
1139
1140 atom = atomuse(s);
1141 if (atom >= 0) {
1142 if (atom == AX_ATOM) {
1143 last[X_ATOM] = 0;
1144 last[A_ATOM] = 0;
1145 }
1146 else
1147 last[atom] = 0;
1148 }
1149 atom = atomdef(s);
1150 if (atom >= 0) {
1151 if (last[atom]) {
1152 opt_state->done = 0;
1153 last[atom]->code = NOP;
1154 }
1155 last[atom] = s;
1156 }
1157 }
1158
1159 static void
opt_deadstores(opt_state_t * opt_state,register struct block * b)1160 opt_deadstores(opt_state_t *opt_state, register struct block *b)
1161 {
1162 register struct slist *s;
1163 register int atom;
1164 struct stmt *last[N_ATOMS];
1165
1166 memset((char *)last, 0, sizeof last);
1167
1168 for (s = b->stmts; s != 0; s = s->next)
1169 deadstmt(opt_state, &s->s, last);
1170 deadstmt(opt_state, &b->s, last);
1171
1172 for (atom = 0; atom < N_ATOMS; ++atom)
1173 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1174 last[atom]->code = NOP;
1175 opt_state->done = 0;
1176 }
1177 }
1178
1179 static void
opt_blk(compiler_state_t * cstate,struct icode * ic,opt_state_t * opt_state,struct block * b,int do_stmts)1180 opt_blk(compiler_state_t *cstate, struct icode *ic, opt_state_t *opt_state,
1181 struct block *b, int do_stmts)
1182 {
1183 struct slist *s;
1184 struct edge *p;
1185 int i;
1186 bpf_int32 aval, xval;
1187
1188 #if 0
1189 for (s = b->stmts; s && s->next; s = s->next)
1190 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1191 do_stmts = 0;
1192 break;
1193 }
1194 #endif
1195
1196 /*
1197 * Initialize the atom values.
1198 */
1199 p = b->in_edges;
1200 if (p == 0) {
1201 /*
1202 * We have no predecessors, so everything is undefined
1203 * upon entry to this block.
1204 */
1205 memset((char *)b->val, 0, sizeof(b->val));
1206 } else {
1207 /*
1208 * Inherit values from our predecessors.
1209 *
1210 * First, get the values from the predecessor along the
1211 * first edge leading to this node.
1212 */
1213 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1214 /*
1215 * Now look at all the other nodes leading to this node.
1216 * If, for the predecessor along that edge, a register
1217 * has a different value from the one we have (i.e.,
1218 * control paths are merging, and the merging paths
1219 * assign different values to that register), give the
1220 * register the undefined value of 0.
1221 */
1222 while ((p = p->next) != NULL) {
1223 for (i = 0; i < N_ATOMS; ++i)
1224 if (b->val[i] != p->pred->val[i])
1225 b->val[i] = 0;
1226 }
1227 }
1228 aval = b->val[A_ATOM];
1229 xval = b->val[X_ATOM];
1230 for (s = b->stmts; s; s = s->next)
1231 opt_stmt(cstate, ic, opt_state, &s->s, b->val, do_stmts);
1232
1233 /*
1234 * This is a special case: if we don't use anything from this
1235 * block, and we load the accumulator or index register with a
1236 * value that is already there, or if this block is a return,
1237 * eliminate all the statements.
1238 *
1239 * XXX - what if it does a store?
1240 *
1241 * XXX - why does it matter whether we use anything from this
1242 * block? If the accumulator or index register doesn't change
1243 * its value, isn't that OK even if we use that value?
1244 *
1245 * XXX - if we load the accumulator with a different value,
1246 * and the block ends with a conditional branch, we obviously
1247 * can't eliminate it, as the branch depends on that value.
1248 * For the index register, the conditional branch only depends
1249 * on the index register value if the test is against the index
1250 * register value rather than a constant; if nothing uses the
1251 * value we put into the index register, and we're not testing
1252 * against the index register's value, and there aren't any
1253 * other problems that would keep us from eliminating this
1254 * block, can we eliminate it?
1255 */
1256 if (do_stmts &&
1257 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1258 xval != 0 && b->val[X_ATOM] == xval) ||
1259 BPF_CLASS(b->s.code) == BPF_RET)) {
1260 if (b->stmts != 0) {
1261 b->stmts = 0;
1262 opt_state->done = 0;
1263 }
1264 } else {
1265 opt_peep(opt_state, b);
1266 opt_deadstores(opt_state, b);
1267 }
1268 /*
1269 * Set up values for branch optimizer.
1270 */
1271 if (BPF_SRC(b->s.code) == BPF_K)
1272 b->oval = K(b->s.k);
1273 else
1274 b->oval = b->val[X_ATOM];
1275 b->et.code = b->s.code;
1276 b->ef.code = -b->s.code;
1277 }
1278
1279 /*
1280 * Return true if any register that is used on exit from 'succ', has
1281 * an exit value that is different from the corresponding exit value
1282 * from 'b'.
1283 */
1284 static int
use_conflict(struct block * b,struct block * succ)1285 use_conflict(struct block *b, struct block *succ)
1286 {
1287 int atom;
1288 atomset use = succ->out_use;
1289
1290 if (use == 0)
1291 return 0;
1292
1293 for (atom = 0; atom < N_ATOMS; ++atom)
1294 if (ATOMELEM(use, atom))
1295 if (b->val[atom] != succ->val[atom])
1296 return 1;
1297 return 0;
1298 }
1299
1300 static struct block *
fold_edge(struct block * child,struct edge * ep)1301 fold_edge(struct block *child, struct edge *ep)
1302 {
1303 int sense;
1304 int aval0, aval1, oval0, oval1;
1305 int code = ep->code;
1306
1307 if (code < 0) {
1308 code = -code;
1309 sense = 0;
1310 } else
1311 sense = 1;
1312
1313 if (child->s.code != code)
1314 return 0;
1315
1316 aval0 = child->val[A_ATOM];
1317 oval0 = child->oval;
1318 aval1 = ep->pred->val[A_ATOM];
1319 oval1 = ep->pred->oval;
1320
1321 if (aval0 != aval1)
1322 return 0;
1323
1324 if (oval0 == oval1)
1325 /*
1326 * The operands of the branch instructions are
1327 * identical, so the result is true if a true
1328 * branch was taken to get here, otherwise false.
1329 */
1330 return sense ? JT(child) : JF(child);
1331
1332 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1333 /*
1334 * At this point, we only know the comparison if we
1335 * came down the true branch, and it was an equality
1336 * comparison with a constant.
1337 *
1338 * I.e., if we came down the true branch, and the branch
1339 * was an equality comparison with a constant, we know the
1340 * accumulator contains that constant. If we came down
1341 * the false branch, or the comparison wasn't with a
1342 * constant, we don't know what was in the accumulator.
1343 *
1344 * We rely on the fact that distinct constants have distinct
1345 * value numbers.
1346 */
1347 return JF(child);
1348
1349 return 0;
1350 }
1351
1352 static void
opt_j(opt_state_t * opt_state,struct edge * ep)1353 opt_j(opt_state_t *opt_state, struct edge *ep)
1354 {
1355 register int i, k;
1356 register struct block *target;
1357
1358 if (JT(ep->succ) == 0)
1359 return;
1360
1361 if (JT(ep->succ) == JF(ep->succ)) {
1362 /*
1363 * Common branch targets can be eliminated, provided
1364 * there is no data dependency.
1365 */
1366 if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1367 opt_state->done = 0;
1368 ep->succ = JT(ep->succ);
1369 }
1370 }
1371 /*
1372 * For each edge dominator that matches the successor of this
1373 * edge, promote the edge successor to the its grandchild.
1374 *
1375 * XXX We violate the set abstraction here in favor a reasonably
1376 * efficient loop.
1377 */
1378 top:
1379 for (i = 0; i < opt_state->edgewords; ++i) {
1380 register bpf_u_int32 x = ep->edom[i];
1381
1382 while (x != 0) {
1383 k = ffs(x) - 1;
1384 x &=~ (1 << k);
1385 k += i * BITS_PER_WORD;
1386
1387 target = fold_edge(ep->succ, opt_state->edges[k]);
1388 /*
1389 * Check that there is no data dependency between
1390 * nodes that will be violated if we move the edge.
1391 */
1392 if (target != 0 && !use_conflict(ep->pred, target)) {
1393 opt_state->done = 0;
1394 ep->succ = target;
1395 if (JT(target) != 0)
1396 /*
1397 * Start over unless we hit a leaf.
1398 */
1399 goto top;
1400 return;
1401 }
1402 }
1403 }
1404 }
1405
1406
1407 static void
or_pullup(opt_state_t * opt_state,struct block * b)1408 or_pullup(opt_state_t *opt_state, struct block *b)
1409 {
1410 int val, at_top;
1411 struct block *pull;
1412 struct block **diffp, **samep;
1413 struct edge *ep;
1414
1415 ep = b->in_edges;
1416 if (ep == 0)
1417 return;
1418
1419 /*
1420 * Make sure each predecessor loads the same value.
1421 * XXX why?
1422 */
1423 val = ep->pred->val[A_ATOM];
1424 for (ep = ep->next; ep != 0; ep = ep->next)
1425 if (val != ep->pred->val[A_ATOM])
1426 return;
1427
1428 if (JT(b->in_edges->pred) == b)
1429 diffp = &JT(b->in_edges->pred);
1430 else
1431 diffp = &JF(b->in_edges->pred);
1432
1433 at_top = 1;
1434 while (1) {
1435 if (*diffp == 0)
1436 return;
1437
1438 if (JT(*diffp) != JT(b))
1439 return;
1440
1441 if (!SET_MEMBER((*diffp)->dom, b->id))
1442 return;
1443
1444 if ((*diffp)->val[A_ATOM] != val)
1445 break;
1446
1447 diffp = &JF(*diffp);
1448 at_top = 0;
1449 }
1450 samep = &JF(*diffp);
1451 while (1) {
1452 if (*samep == 0)
1453 return;
1454
1455 if (JT(*samep) != JT(b))
1456 return;
1457
1458 if (!SET_MEMBER((*samep)->dom, b->id))
1459 return;
1460
1461 if ((*samep)->val[A_ATOM] == val)
1462 break;
1463
1464 /* XXX Need to check that there are no data dependencies
1465 between dp0 and dp1. Currently, the code generator
1466 will not produce such dependencies. */
1467 samep = &JF(*samep);
1468 }
1469 #ifdef notdef
1470 /* XXX This doesn't cover everything. */
1471 for (i = 0; i < N_ATOMS; ++i)
1472 if ((*samep)->val[i] != pred->val[i])
1473 return;
1474 #endif
1475 /* Pull up the node. */
1476 pull = *samep;
1477 *samep = JF(pull);
1478 JF(pull) = *diffp;
1479
1480 /*
1481 * At the top of the chain, each predecessor needs to point at the
1482 * pulled up node. Inside the chain, there is only one predecessor
1483 * to worry about.
1484 */
1485 if (at_top) {
1486 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1487 if (JT(ep->pred) == b)
1488 JT(ep->pred) = pull;
1489 else
1490 JF(ep->pred) = pull;
1491 }
1492 }
1493 else
1494 *diffp = pull;
1495
1496 opt_state->done = 0;
1497 }
1498
1499 static void
and_pullup(opt_state_t * opt_state,struct block * b)1500 and_pullup(opt_state_t *opt_state, struct block *b)
1501 {
1502 int val, at_top;
1503 struct block *pull;
1504 struct block **diffp, **samep;
1505 struct edge *ep;
1506
1507 ep = b->in_edges;
1508 if (ep == 0)
1509 return;
1510
1511 /*
1512 * Make sure each predecessor loads the same value.
1513 */
1514 val = ep->pred->val[A_ATOM];
1515 for (ep = ep->next; ep != 0; ep = ep->next)
1516 if (val != ep->pred->val[A_ATOM])
1517 return;
1518
1519 if (JT(b->in_edges->pred) == b)
1520 diffp = &JT(b->in_edges->pred);
1521 else
1522 diffp = &JF(b->in_edges->pred);
1523
1524 at_top = 1;
1525 while (1) {
1526 if (*diffp == 0)
1527 return;
1528
1529 if (JF(*diffp) != JF(b))
1530 return;
1531
1532 if (!SET_MEMBER((*diffp)->dom, b->id))
1533 return;
1534
1535 if ((*diffp)->val[A_ATOM] != val)
1536 break;
1537
1538 diffp = &JT(*diffp);
1539 at_top = 0;
1540 }
1541 samep = &JT(*diffp);
1542 while (1) {
1543 if (*samep == 0)
1544 return;
1545
1546 if (JF(*samep) != JF(b))
1547 return;
1548
1549 if (!SET_MEMBER((*samep)->dom, b->id))
1550 return;
1551
1552 if ((*samep)->val[A_ATOM] == val)
1553 break;
1554
1555 /* XXX Need to check that there are no data dependencies
1556 between diffp and samep. Currently, the code generator
1557 will not produce such dependencies. */
1558 samep = &JT(*samep);
1559 }
1560 #ifdef notdef
1561 /* XXX This doesn't cover everything. */
1562 for (i = 0; i < N_ATOMS; ++i)
1563 if ((*samep)->val[i] != pred->val[i])
1564 return;
1565 #endif
1566 /* Pull up the node. */
1567 pull = *samep;
1568 *samep = JT(pull);
1569 JT(pull) = *diffp;
1570
1571 /*
1572 * At the top of the chain, each predecessor needs to point at the
1573 * pulled up node. Inside the chain, there is only one predecessor
1574 * to worry about.
1575 */
1576 if (at_top) {
1577 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1578 if (JT(ep->pred) == b)
1579 JT(ep->pred) = pull;
1580 else
1581 JF(ep->pred) = pull;
1582 }
1583 }
1584 else
1585 *diffp = pull;
1586
1587 opt_state->done = 0;
1588 }
1589
1590 static void
opt_blks(compiler_state_t * cstate,opt_state_t * opt_state,struct icode * ic,int do_stmts)1591 opt_blks(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
1592 int do_stmts)
1593 {
1594 int i, maxlevel;
1595 struct block *p;
1596
1597 init_val(opt_state);
1598 maxlevel = ic->root->level;
1599
1600 find_inedges(opt_state, ic->root);
1601 for (i = maxlevel; i >= 0; --i)
1602 for (p = opt_state->levels[i]; p; p = p->link)
1603 opt_blk(cstate, ic, opt_state, p, do_stmts);
1604
1605 if (do_stmts)
1606 /*
1607 * No point trying to move branches; it can't possibly
1608 * make a difference at this point.
1609 */
1610 return;
1611
1612 for (i = 1; i <= maxlevel; ++i) {
1613 for (p = opt_state->levels[i]; p; p = p->link) {
1614 opt_j(opt_state, &p->et);
1615 opt_j(opt_state, &p->ef);
1616 }
1617 }
1618
1619 find_inedges(opt_state, ic->root);
1620 for (i = 1; i <= maxlevel; ++i) {
1621 for (p = opt_state->levels[i]; p; p = p->link) {
1622 or_pullup(opt_state, p);
1623 and_pullup(opt_state, p);
1624 }
1625 }
1626 }
1627
1628 static inline void
link_inedge(struct edge * parent,struct block * child)1629 link_inedge(struct edge *parent, struct block *child)
1630 {
1631 parent->next = child->in_edges;
1632 child->in_edges = parent;
1633 }
1634
1635 static void
find_inedges(opt_state_t * opt_state,struct block * root)1636 find_inedges(opt_state_t *opt_state, struct block *root)
1637 {
1638 int i;
1639 struct block *b;
1640
1641 for (i = 0; i < opt_state->n_blocks; ++i)
1642 opt_state->blocks[i]->in_edges = 0;
1643
1644 /*
1645 * Traverse the graph, adding each edge to the predecessor
1646 * list of its successors. Skip the leaves (i.e. level 0).
1647 */
1648 for (i = root->level; i > 0; --i) {
1649 for (b = opt_state->levels[i]; b != 0; b = b->link) {
1650 link_inedge(&b->et, JT(b));
1651 link_inedge(&b->ef, JF(b));
1652 }
1653 }
1654 }
1655
1656 static void
opt_root(struct block ** b)1657 opt_root(struct block **b)
1658 {
1659 struct slist *tmp, *s;
1660
1661 s = (*b)->stmts;
1662 (*b)->stmts = 0;
1663 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1664 *b = JT(*b);
1665
1666 tmp = (*b)->stmts;
1667 if (tmp != 0)
1668 sappend(s, tmp);
1669 (*b)->stmts = s;
1670
1671 /*
1672 * If the root node is a return, then there is no
1673 * point executing any statements (since the bpf machine
1674 * has no side effects).
1675 */
1676 if (BPF_CLASS((*b)->s.code) == BPF_RET)
1677 (*b)->stmts = 0;
1678 }
1679
1680 static void
opt_loop(compiler_state_t * cstate,opt_state_t * opt_state,struct icode * ic,int do_stmts)1681 opt_loop(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
1682 int do_stmts)
1683 {
1684
1685 #ifdef BDEBUG
1686 if (pcap_optimizer_debug > 1) {
1687 printf("opt_loop(root, %d) begin\n", do_stmts);
1688 opt_dump(cstate, ic);
1689 }
1690 #endif
1691 do {
1692 opt_state->done = 1;
1693 find_levels(opt_state, ic);
1694 find_dom(opt_state, ic->root);
1695 find_closure(opt_state, ic->root);
1696 find_ud(opt_state, ic->root);
1697 find_edom(opt_state, ic->root);
1698 opt_blks(cstate, opt_state, ic, do_stmts);
1699 #ifdef BDEBUG
1700 if (pcap_optimizer_debug > 1) {
1701 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
1702 opt_dump(cstate, ic);
1703 }
1704 #endif
1705 } while (!opt_state->done);
1706 }
1707
1708 /*
1709 * Optimize the filter code in its dag representation.
1710 */
1711 void
bpf_optimize(compiler_state_t * cstate,struct icode * ic)1712 bpf_optimize(compiler_state_t *cstate, struct icode *ic)
1713 {
1714 opt_state_t opt_state;
1715
1716 opt_init(cstate, &opt_state, ic);
1717 opt_loop(cstate, &opt_state, ic, 0);
1718 opt_loop(cstate, &opt_state, ic, 1);
1719 intern_blocks(&opt_state, ic);
1720 #ifdef BDEBUG
1721 if (pcap_optimizer_debug > 1) {
1722 printf("after intern_blocks()\n");
1723 opt_dump(cstate, ic);
1724 }
1725 #endif
1726 opt_root(&ic->root);
1727 #ifdef BDEBUG
1728 if (pcap_optimizer_debug > 1) {
1729 printf("after opt_root()\n");
1730 opt_dump(cstate, ic);
1731 }
1732 #endif
1733 opt_cleanup(&opt_state);
1734 }
1735
1736 static void
make_marks(struct icode * ic,struct block * p)1737 make_marks(struct icode *ic, struct block *p)
1738 {
1739 if (!isMarked(ic, p)) {
1740 Mark(ic, p);
1741 if (BPF_CLASS(p->s.code) != BPF_RET) {
1742 make_marks(ic, JT(p));
1743 make_marks(ic, JF(p));
1744 }
1745 }
1746 }
1747
1748 /*
1749 * Mark code array such that isMarked(ic->cur_mark, i) is true
1750 * only for nodes that are alive.
1751 */
1752 static void
mark_code(struct icode * ic)1753 mark_code(struct icode *ic)
1754 {
1755 ic->cur_mark += 1;
1756 make_marks(ic, ic->root);
1757 }
1758
1759 /*
1760 * True iff the two stmt lists load the same value from the packet into
1761 * the accumulator.
1762 */
1763 static int
eq_slist(struct slist * x,struct slist * y)1764 eq_slist(struct slist *x, struct slist *y)
1765 {
1766 while (1) {
1767 while (x && x->s.code == NOP)
1768 x = x->next;
1769 while (y && y->s.code == NOP)
1770 y = y->next;
1771 if (x == 0)
1772 return y == 0;
1773 if (y == 0)
1774 return x == 0;
1775 if (x->s.code != y->s.code || x->s.k != y->s.k)
1776 return 0;
1777 x = x->next;
1778 y = y->next;
1779 }
1780 }
1781
1782 static inline int
eq_blk(struct block * b0,struct block * b1)1783 eq_blk(struct block *b0, struct block *b1)
1784 {
1785 if (b0->s.code == b1->s.code &&
1786 b0->s.k == b1->s.k &&
1787 b0->et.succ == b1->et.succ &&
1788 b0->ef.succ == b1->ef.succ)
1789 return eq_slist(b0->stmts, b1->stmts);
1790 return 0;
1791 }
1792
1793 static void
intern_blocks(opt_state_t * opt_state,struct icode * ic)1794 intern_blocks(opt_state_t *opt_state, struct icode *ic)
1795 {
1796 struct block *p;
1797 int i, j;
1798 int done1; /* don't shadow global */
1799 top:
1800 done1 = 1;
1801 for (i = 0; i < opt_state->n_blocks; ++i)
1802 opt_state->blocks[i]->link = 0;
1803
1804 mark_code(ic);
1805
1806 for (i = opt_state->n_blocks - 1; --i >= 0; ) {
1807 if (!isMarked(ic, opt_state->blocks[i]))
1808 continue;
1809 for (j = i + 1; j < opt_state->n_blocks; ++j) {
1810 if (!isMarked(ic, opt_state->blocks[j]))
1811 continue;
1812 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
1813 opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
1814 opt_state->blocks[j]->link : opt_state->blocks[j];
1815 break;
1816 }
1817 }
1818 }
1819 for (i = 0; i < opt_state->n_blocks; ++i) {
1820 p = opt_state->blocks[i];
1821 if (JT(p) == 0)
1822 continue;
1823 if (JT(p)->link) {
1824 done1 = 0;
1825 JT(p) = JT(p)->link;
1826 }
1827 if (JF(p)->link) {
1828 done1 = 0;
1829 JF(p) = JF(p)->link;
1830 }
1831 }
1832 if (!done1)
1833 goto top;
1834 }
1835
1836 static void
opt_cleanup(opt_state_t * opt_state)1837 opt_cleanup(opt_state_t *opt_state)
1838 {
1839 free((void *)opt_state->vnode_base);
1840 free((void *)opt_state->vmap);
1841 free((void *)opt_state->edges);
1842 free((void *)opt_state->space);
1843 free((void *)opt_state->levels);
1844 free((void *)opt_state->blocks);
1845 }
1846
1847 /*
1848 * Return the number of stmts in 's'.
1849 */
1850 static u_int
slength(struct slist * s)1851 slength(struct slist *s)
1852 {
1853 u_int n = 0;
1854
1855 for (; s; s = s->next)
1856 if (s->s.code != NOP)
1857 ++n;
1858 return n;
1859 }
1860
1861 /*
1862 * Return the number of nodes reachable by 'p'.
1863 * All nodes should be initially unmarked.
1864 */
1865 static int
count_blocks(struct icode * ic,struct block * p)1866 count_blocks(struct icode *ic, struct block *p)
1867 {
1868 if (p == 0 || isMarked(ic, p))
1869 return 0;
1870 Mark(ic, p);
1871 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
1872 }
1873
1874 /*
1875 * Do a depth first search on the flow graph, numbering the
1876 * the basic blocks, and entering them into the 'blocks' array.`
1877 */
1878 static void
number_blks_r(opt_state_t * opt_state,struct icode * ic,struct block * p)1879 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
1880 {
1881 int n;
1882
1883 if (p == 0 || isMarked(ic, p))
1884 return;
1885
1886 Mark(ic, p);
1887 n = opt_state->n_blocks++;
1888 p->id = n;
1889 opt_state->blocks[n] = p;
1890
1891 number_blks_r(opt_state, ic, JT(p));
1892 number_blks_r(opt_state, ic, JF(p));
1893 }
1894
1895 /*
1896 * Return the number of stmts in the flowgraph reachable by 'p'.
1897 * The nodes should be unmarked before calling.
1898 *
1899 * Note that "stmts" means "instructions", and that this includes
1900 *
1901 * side-effect statements in 'p' (slength(p->stmts));
1902 *
1903 * statements in the true branch from 'p' (count_stmts(JT(p)));
1904 *
1905 * statements in the false branch from 'p' (count_stmts(JF(p)));
1906 *
1907 * the conditional jump itself (1);
1908 *
1909 * an extra long jump if the true branch requires it (p->longjt);
1910 *
1911 * an extra long jump if the false branch requires it (p->longjf).
1912 */
1913 static u_int
count_stmts(struct icode * ic,struct block * p)1914 count_stmts(struct icode *ic, struct block *p)
1915 {
1916 u_int n;
1917
1918 if (p == 0 || isMarked(ic, p))
1919 return 0;
1920 Mark(ic, p);
1921 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
1922 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1923 }
1924
1925 /*
1926 * Allocate memory. All allocation is done before optimization
1927 * is begun. A linear bound on the size of all data structures is computed
1928 * from the total number of blocks and/or statements.
1929 */
1930 static void
opt_init(compiler_state_t * cstate,opt_state_t * opt_state,struct icode * ic)1931 opt_init(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic)
1932 {
1933 bpf_u_int32 *p;
1934 int i, n, max_stmts;
1935
1936 /*
1937 * First, count the blocks, so we can malloc an array to map
1938 * block number to block. Then, put the blocks into the array.
1939 */
1940 unMarkAll(ic);
1941 n = count_blocks(ic, ic->root);
1942 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
1943 if (opt_state->blocks == NULL)
1944 bpf_error(cstate, "malloc");
1945 unMarkAll(ic);
1946 opt_state->n_blocks = 0;
1947 number_blks_r(opt_state, ic, ic->root);
1948
1949 opt_state->n_edges = 2 * opt_state->n_blocks;
1950 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
1951 if (opt_state->edges == NULL)
1952 bpf_error(cstate, "malloc");
1953
1954 /*
1955 * The number of levels is bounded by the number of nodes.
1956 */
1957 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
1958 if (opt_state->levels == NULL)
1959 bpf_error(cstate, "malloc");
1960
1961 opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1962 opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1963
1964 /* XXX */
1965 opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space)
1966 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space));
1967 if (opt_state->space == NULL)
1968 bpf_error(cstate, "malloc");
1969 p = opt_state->space;
1970 opt_state->all_dom_sets = p;
1971 for (i = 0; i < n; ++i) {
1972 opt_state->blocks[i]->dom = p;
1973 p += opt_state->nodewords;
1974 }
1975 opt_state->all_closure_sets = p;
1976 for (i = 0; i < n; ++i) {
1977 opt_state->blocks[i]->closure = p;
1978 p += opt_state->nodewords;
1979 }
1980 opt_state->all_edge_sets = p;
1981 for (i = 0; i < n; ++i) {
1982 register struct block *b = opt_state->blocks[i];
1983
1984 b->et.edom = p;
1985 p += opt_state->edgewords;
1986 b->ef.edom = p;
1987 p += opt_state->edgewords;
1988 b->et.id = i;
1989 opt_state->edges[i] = &b->et;
1990 b->ef.id = opt_state->n_blocks + i;
1991 opt_state->edges[opt_state->n_blocks + i] = &b->ef;
1992 b->et.pred = b;
1993 b->ef.pred = b;
1994 }
1995 max_stmts = 0;
1996 for (i = 0; i < n; ++i)
1997 max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
1998 /*
1999 * We allocate at most 3 value numbers per statement,
2000 * so this is an upper bound on the number of valnodes
2001 * we'll need.
2002 */
2003 opt_state->maxval = 3 * max_stmts;
2004 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2005 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2006 if (opt_state->vmap == NULL || opt_state->vnode_base == NULL)
2007 bpf_error(cstate, "malloc");
2008 }
2009
2010 /*
2011 * This is only used when supporting optimizer debugging. It is
2012 * global state, so do *not* do more than one compile in parallel
2013 * and expect it to provide meaningful information.
2014 */
2015 #ifdef BDEBUG
2016 int bids[1000];
2017 #endif
2018
2019 /*
2020 * Returns true if successful. Returns false if a branch has
2021 * an offset that is too large. If so, we have marked that
2022 * branch so that on a subsequent iteration, it will be treated
2023 * properly.
2024 */
2025 static int
convert_code_r(compiler_state_t * cstate,conv_state_t * conv_state,struct icode * ic,struct block * p)2026 convert_code_r(compiler_state_t *cstate, conv_state_t *conv_state,
2027 struct icode *ic, struct block *p)
2028 {
2029 struct bpf_insn *dst;
2030 struct slist *src;
2031 u_int slen;
2032 u_int off;
2033 int extrajmps; /* number of extra jumps inserted */
2034 struct slist **offset = NULL;
2035
2036 if (p == 0 || isMarked(ic, p))
2037 return (1);
2038 Mark(ic, p);
2039
2040 if (convert_code_r(cstate, conv_state, ic, JF(p)) == 0)
2041 return (0);
2042 if (convert_code_r(cstate, conv_state, ic, JT(p)) == 0)
2043 return (0);
2044
2045 slen = slength(p->stmts);
2046 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2047 /* inflate length by any extra jumps */
2048
2049 p->offset = (int)(dst - conv_state->fstart);
2050
2051 /* generate offset[] for convenience */
2052 if (slen) {
2053 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2054 if (!offset) {
2055 bpf_error(cstate, "not enough core");
2056 /*NOTREACHED*/
2057 }
2058 }
2059 src = p->stmts;
2060 for (off = 0; off < slen && src; off++) {
2061 #if 0
2062 printf("off=%d src=%x\n", off, src);
2063 #endif
2064 offset[off] = src;
2065 src = src->next;
2066 }
2067
2068 off = 0;
2069 for (src = p->stmts; src; src = src->next) {
2070 if (src->s.code == NOP)
2071 continue;
2072 dst->code = (u_short)src->s.code;
2073 dst->k = src->s.k;
2074
2075 /* fill block-local relative jump */
2076 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2077 #if 0
2078 if (src->s.jt || src->s.jf) {
2079 bpf_error(cstate, "illegal jmp destination");
2080 /*NOTREACHED*/
2081 }
2082 #endif
2083 goto filled;
2084 }
2085 if (off == slen - 2) /*???*/
2086 goto filled;
2087
2088 {
2089 u_int i;
2090 int jt, jf;
2091 const char *ljerr = "%s for block-local relative jump: off=%d";
2092
2093 #if 0
2094 printf("code=%x off=%d %x %x\n", src->s.code,
2095 off, src->s.jt, src->s.jf);
2096 #endif
2097
2098 if (!src->s.jt || !src->s.jf) {
2099 bpf_error(cstate, ljerr, "no jmp destination", off);
2100 /*NOTREACHED*/
2101 }
2102
2103 jt = jf = 0;
2104 for (i = 0; i < slen; i++) {
2105 if (offset[i] == src->s.jt) {
2106 if (jt) {
2107 bpf_error(cstate, ljerr, "multiple matches", off);
2108 /*NOTREACHED*/
2109 }
2110
2111 dst->jt = i - off - 1;
2112 jt++;
2113 }
2114 if (offset[i] == src->s.jf) {
2115 if (jf) {
2116 bpf_error(cstate, ljerr, "multiple matches", off);
2117 /*NOTREACHED*/
2118 }
2119 dst->jf = i - off - 1;
2120 jf++;
2121 }
2122 }
2123 if (!jt || !jf) {
2124 bpf_error(cstate, ljerr, "no destination found", off);
2125 /*NOTREACHED*/
2126 }
2127 }
2128 filled:
2129 ++dst;
2130 ++off;
2131 }
2132 if (offset)
2133 free(offset);
2134
2135 #ifdef BDEBUG
2136 bids[dst - conv_state->fstart] = p->id + 1;
2137 #endif
2138 dst->code = (u_short)p->s.code;
2139 dst->k = p->s.k;
2140 if (JT(p)) {
2141 extrajmps = 0;
2142 off = JT(p)->offset - (p->offset + slen) - 1;
2143 if (off >= 256) {
2144 /* offset too large for branch, must add a jump */
2145 if (p->longjt == 0) {
2146 /* mark this instruction and retry */
2147 p->longjt++;
2148 return(0);
2149 }
2150 /* branch if T to following jump */
2151 dst->jt = extrajmps;
2152 extrajmps++;
2153 dst[extrajmps].code = BPF_JMP|BPF_JA;
2154 dst[extrajmps].k = off - extrajmps;
2155 }
2156 else
2157 dst->jt = off;
2158 off = JF(p)->offset - (p->offset + slen) - 1;
2159 if (off >= 256) {
2160 /* offset too large for branch, must add a jump */
2161 if (p->longjf == 0) {
2162 /* mark this instruction and retry */
2163 p->longjf++;
2164 return(0);
2165 }
2166 /* branch if F to following jump */
2167 /* if two jumps are inserted, F goes to second one */
2168 dst->jf = extrajmps;
2169 extrajmps++;
2170 dst[extrajmps].code = BPF_JMP|BPF_JA;
2171 dst[extrajmps].k = off - extrajmps;
2172 }
2173 else
2174 dst->jf = off;
2175 }
2176 return (1);
2177 }
2178
2179
2180 /*
2181 * Convert flowgraph intermediate representation to the
2182 * BPF array representation. Set *lenp to the number of instructions.
2183 *
2184 * This routine does *NOT* leak the memory pointed to by fp. It *must
2185 * not* do free(fp) before returning fp; doing so would make no sense,
2186 * as the BPF array pointed to by the return value of icode_to_fcode()
2187 * must be valid - it's being returned for use in a bpf_program structure.
2188 *
2189 * If it appears that icode_to_fcode() is leaking, the problem is that
2190 * the program using pcap_compile() is failing to free the memory in
2191 * the BPF program when it's done - the leak is in the program, not in
2192 * the routine that happens to be allocating the memory. (By analogy, if
2193 * a program calls fopen() without ever calling fclose() on the FILE *,
2194 * it will leak the FILE structure; the leak is not in fopen(), it's in
2195 * the program.) Change the program to use pcap_freecode() when it's
2196 * done with the filter program. See the pcap man page.
2197 */
2198 struct bpf_insn *
icode_to_fcode(compiler_state_t * cstate,struct icode * ic,struct block * root,u_int * lenp)2199 icode_to_fcode(compiler_state_t *cstate, struct icode *ic,
2200 struct block *root, u_int *lenp)
2201 {
2202 u_int n;
2203 struct bpf_insn *fp;
2204 conv_state_t conv_state;
2205
2206 /*
2207 * Loop doing convert_code_r() until no branches remain
2208 * with too-large offsets.
2209 */
2210 while (1) {
2211 unMarkAll(ic);
2212 n = *lenp = count_stmts(ic, root);
2213
2214 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2215 if (fp == NULL)
2216 bpf_error(cstate, "malloc");
2217 memset((char *)fp, 0, sizeof(*fp) * n);
2218 conv_state.fstart = fp;
2219 conv_state.ftail = fp + n;
2220
2221 unMarkAll(ic);
2222 if (convert_code_r(cstate, &conv_state, ic, root))
2223 break;
2224 free(fp);
2225 }
2226
2227 return fp;
2228 }
2229
2230 /*
2231 * Make a copy of a BPF program and put it in the "fcode" member of
2232 * a "pcap_t".
2233 *
2234 * If we fail to allocate memory for the copy, fill in the "errbuf"
2235 * member of the "pcap_t" with an error message, and return -1;
2236 * otherwise, return 0.
2237 */
2238 int
install_bpf_program(pcap_t * p,struct bpf_program * fp)2239 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2240 {
2241 size_t prog_size;
2242
2243 /*
2244 * Validate the program.
2245 */
2246 if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2247 pcap_snprintf(p->errbuf, sizeof(p->errbuf),
2248 "BPF program is not valid");
2249 return (-1);
2250 }
2251
2252 /*
2253 * Free up any already installed program.
2254 */
2255 pcap_freecode(&p->fcode);
2256
2257 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2258 p->fcode.bf_len = fp->bf_len;
2259 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2260 if (p->fcode.bf_insns == NULL) {
2261 pcap_snprintf(p->errbuf, sizeof(p->errbuf),
2262 "malloc: %s", pcap_strerror(errno));
2263 return (-1);
2264 }
2265 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2266 return (0);
2267 }
2268
2269 #ifdef BDEBUG
2270 static void
dot_dump_node(struct icode * ic,struct block * block,struct bpf_program * prog,FILE * out)2271 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2272 FILE *out)
2273 {
2274 int icount, noffset;
2275 int i;
2276
2277 if (block == NULL || isMarked(ic, block))
2278 return;
2279 Mark(ic, block);
2280
2281 icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2282 noffset = min(block->offset + icount, (int)prog->bf_len);
2283
2284 fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2285 for (i = block->offset; i < noffset; i++) {
2286 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2287 }
2288 fprintf(out, "\" tooltip=\"");
2289 for (i = 0; i < BPF_MEMWORDS; i++)
2290 if (block->val[i] != 0)
2291 fprintf(out, "val[%d]=%d ", i, block->val[i]);
2292 fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2293 fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2294 fprintf(out, "\"");
2295 if (JT(block) == NULL)
2296 fprintf(out, ", peripheries=2");
2297 fprintf(out, "];\n");
2298
2299 dot_dump_node(ic, JT(block), prog, out);
2300 dot_dump_node(ic, JF(block), prog, out);
2301 }
2302
2303 static void
dot_dump_edge(struct icode * ic,struct block * block,FILE * out)2304 dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
2305 {
2306 if (block == NULL || isMarked(ic, block))
2307 return;
2308 Mark(ic, block);
2309
2310 if (JT(block)) {
2311 fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2312 block->id, JT(block)->id);
2313 fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2314 block->id, JF(block)->id);
2315 }
2316 dot_dump_edge(ic, JT(block), out);
2317 dot_dump_edge(ic, JF(block), out);
2318 }
2319
2320 /* Output the block CFG using graphviz/DOT language
2321 * In the CFG, block's code, value index for each registers at EXIT,
2322 * and the jump relationship is show.
2323 *
2324 * example DOT for BPF `ip src host 1.1.1.1' is:
2325 digraph BPF {
2326 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2327 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2328 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2329 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2330 "block0":se -> "block1":n [label="T"];
2331 "block0":sw -> "block3":n [label="F"];
2332 "block1":se -> "block2":n [label="T"];
2333 "block1":sw -> "block3":n [label="F"];
2334 }
2335 *
2336 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2337 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2338 */
2339 static void
dot_dump(compiler_state_t * cstate,struct icode * ic)2340 dot_dump(compiler_state_t *cstate, struct icode *ic)
2341 {
2342 struct bpf_program f;
2343 FILE *out = stdout;
2344
2345 memset(bids, 0, sizeof bids);
2346 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);
2347
2348 fprintf(out, "digraph BPF {\n");
2349 ic->cur_mark = 0;
2350 unMarkAll(ic);
2351 dot_dump_node(ic, ic->root, &f, out);
2352 ic->cur_mark = 0;
2353 unMarkAll(ic);
2354 dot_dump_edge(ic, ic->root, out);
2355 fprintf(out, "}\n");
2356
2357 free((char *)f.bf_insns);
2358 }
2359
2360 static void
plain_dump(compiler_state_t * cstate,struct icode * ic)2361 plain_dump(compiler_state_t *cstate, struct icode *ic)
2362 {
2363 struct bpf_program f;
2364
2365 memset(bids, 0, sizeof bids);
2366 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);
2367 bpf_dump(&f, 1);
2368 putchar('\n');
2369 free((char *)f.bf_insns);
2370 }
2371
2372 static void
opt_dump(compiler_state_t * cstate,struct icode * ic)2373 opt_dump(compiler_state_t *cstate, struct icode *ic)
2374 {
2375 /* if optimizer debugging is enabled, output DOT graph
2376 * `pcap_optimizer_debug=4' is equivalent to -dddd to follow -d/-dd/-ddd
2377 * convention in tcpdump command line
2378 */
2379 if (pcap_optimizer_debug > 3)
2380 dot_dump(cstate, ic);
2381 else
2382 plain_dump(cstate, ic);
2383 }
2384 #endif
2385