• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Randomized tests for eBPF longest-prefix-match maps
3  *
4  * This program runs randomized tests against the lpm-bpf-map. It implements a
5  * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
6  * lists. The implementation should be pretty straightforward.
7  *
8  * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
9  * the trie-based bpf-map implementation behaves the same way as tlpm.
10  */
11 
12 #include <assert.h>
13 #include <errno.h>
14 #include <inttypes.h>
15 #include <linux/bpf.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <time.h>
20 #include <unistd.h>
21 #include <arpa/inet.h>
22 #include <sys/time.h>
23 #include <sys/resource.h>
24 
25 #include <bpf/bpf.h>
26 #include "bpf_util.h"
27 
28 struct tlpm_node {
29 	struct tlpm_node *next;
30 	size_t n_bits;
31 	uint8_t key[];
32 };
33 
tlpm_add(struct tlpm_node * list,const uint8_t * key,size_t n_bits)34 static struct tlpm_node *tlpm_add(struct tlpm_node *list,
35 				  const uint8_t *key,
36 				  size_t n_bits)
37 {
38 	struct tlpm_node *node;
39 	size_t n;
40 
41 	/* add new entry with @key/@n_bits to @list and return new head */
42 
43 	n = (n_bits + 7) / 8;
44 	node = malloc(sizeof(*node) + n);
45 	assert(node);
46 
47 	node->next = list;
48 	node->n_bits = n_bits;
49 	memcpy(node->key, key, n);
50 
51 	return node;
52 }
53 
tlpm_clear(struct tlpm_node * list)54 static void tlpm_clear(struct tlpm_node *list)
55 {
56 	struct tlpm_node *node;
57 
58 	/* free all entries in @list */
59 
60 	while ((node = list)) {
61 		list = list->next;
62 		free(node);
63 	}
64 }
65 
tlpm_match(struct tlpm_node * list,const uint8_t * key,size_t n_bits)66 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
67 				    const uint8_t *key,
68 				    size_t n_bits)
69 {
70 	struct tlpm_node *best = NULL;
71 	size_t i;
72 
73 	/* Perform longest prefix-match on @key/@n_bits. That is, iterate all
74 	 * entries and match each prefix against @key. Remember the "best"
75 	 * entry we find (i.e., the longest prefix that matches) and return it
76 	 * to the caller when done.
77 	 */
78 
79 	for ( ; list; list = list->next) {
80 		for (i = 0; i < n_bits && i < list->n_bits; ++i) {
81 			if ((key[i / 8] & (1 << (7 - i % 8))) !=
82 			    (list->key[i / 8] & (1 << (7 - i % 8))))
83 				break;
84 		}
85 
86 		if (i >= list->n_bits) {
87 			if (!best || i > best->n_bits)
88 				best = list;
89 		}
90 	}
91 
92 	return best;
93 }
94 
test_lpm_basic(void)95 static void test_lpm_basic(void)
96 {
97 	struct tlpm_node *list = NULL, *t1, *t2;
98 
99 	/* very basic, static tests to verify tlpm works as expected */
100 
101 	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
102 
103 	t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
104 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
105 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
106 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
107 	assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
108 	assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
109 	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));
110 
111 	t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
112 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
113 	assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
114 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
115 	assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));
116 
117 	tlpm_clear(list);
118 }
119 
test_lpm_order(void)120 static void test_lpm_order(void)
121 {
122 	struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
123 	size_t i, j;
124 
125 	/* Verify the tlpm implementation works correctly regardless of the
126 	 * order of entries. Insert a random set of entries into @l1, and copy
127 	 * the same data in reverse order into @l2. Then verify a lookup of
128 	 * random keys will yield the same result in both sets.
129 	 */
130 
131 	for (i = 0; i < (1 << 12); ++i)
132 		l1 = tlpm_add(l1, (uint8_t[]){
133 					rand() % 0xff,
134 					rand() % 0xff,
135 				}, rand() % 16 + 1);
136 
137 	for (t1 = l1; t1; t1 = t1->next)
138 		l2 = tlpm_add(l2, t1->key, t1->n_bits);
139 
140 	for (i = 0; i < (1 << 8); ++i) {
141 		uint8_t key[] = { rand() % 0xff, rand() % 0xff };
142 
143 		t1 = tlpm_match(l1, key, 16);
144 		t2 = tlpm_match(l2, key, 16);
145 
146 		assert(!t1 == !t2);
147 		if (t1) {
148 			assert(t1->n_bits == t2->n_bits);
149 			for (j = 0; j < t1->n_bits; ++j)
150 				assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
151 				       (t2->key[j / 8] & (1 << (7 - j % 8))));
152 		}
153 	}
154 
155 	tlpm_clear(l1);
156 	tlpm_clear(l2);
157 }
158 
test_lpm_map(int keysize)159 static void test_lpm_map(int keysize)
160 {
161 	size_t i, j, n_matches, n_nodes, n_lookups;
162 	struct tlpm_node *t, *list = NULL;
163 	struct bpf_lpm_trie_key *key;
164 	uint8_t *data, *value;
165 	int r, map;
166 
167 	/* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
168 	 * prefixes and insert it into both tlpm and bpf-lpm. Then run some
169 	 * randomized lookups and verify both maps return the same result.
170 	 */
171 
172 	n_matches = 0;
173 	n_nodes = 1 << 8;
174 	n_lookups = 1 << 16;
175 
176 	data = alloca(keysize);
177 	memset(data, 0, keysize);
178 
179 	value = alloca(keysize + 1);
180 	memset(value, 0, keysize + 1);
181 
182 	key = alloca(sizeof(*key) + keysize);
183 	memset(key, 0, sizeof(*key) + keysize);
184 
185 	map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
186 			     sizeof(*key) + keysize,
187 			     keysize + 1,
188 			     4096,
189 			     BPF_F_NO_PREALLOC);
190 	assert(map >= 0);
191 
192 	for (i = 0; i < n_nodes; ++i) {
193 		for (j = 0; j < keysize; ++j)
194 			value[j] = rand() & 0xff;
195 		value[keysize] = rand() % (8 * keysize + 1);
196 
197 		list = tlpm_add(list, value, value[keysize]);
198 
199 		key->prefixlen = value[keysize];
200 		memcpy(key->data, value, keysize);
201 		r = bpf_map_update_elem(map, key, value, 0);
202 		assert(!r);
203 	}
204 
205 	for (i = 0; i < n_lookups; ++i) {
206 		for (j = 0; j < keysize; ++j)
207 			data[j] = rand() & 0xff;
208 
209 		t = tlpm_match(list, data, 8 * keysize);
210 
211 		key->prefixlen = 8 * keysize;
212 		memcpy(key->data, data, keysize);
213 		r = bpf_map_lookup_elem(map, key, value);
214 		assert(!r || errno == ENOENT);
215 		assert(!t == !!r);
216 
217 		if (t) {
218 			++n_matches;
219 			assert(t->n_bits == value[keysize]);
220 			for (j = 0; j < t->n_bits; ++j)
221 				assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
222 				       (value[j / 8] & (1 << (7 - j % 8))));
223 		}
224 	}
225 
226 	close(map);
227 	tlpm_clear(list);
228 
229 	/* With 255 random nodes in the map, we are pretty likely to match
230 	 * something on every lookup. For statistics, use this:
231 	 *
232 	 *     printf("  nodes: %zu\n"
233 	 *            "lookups: %zu\n"
234 	 *            "matches: %zu\n", n_nodes, n_lookups, n_matches);
235 	 */
236 }
237 
238 /* Test the implementation with some 'real world' examples */
239 
test_lpm_ipaddr(void)240 static void test_lpm_ipaddr(void)
241 {
242 	struct bpf_lpm_trie_key *key_ipv4;
243 	struct bpf_lpm_trie_key *key_ipv6;
244 	size_t key_size_ipv4;
245 	size_t key_size_ipv6;
246 	int map_fd_ipv4;
247 	int map_fd_ipv6;
248 	__u64 value;
249 
250 	key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
251 	key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
252 	key_ipv4 = alloca(key_size_ipv4);
253 	key_ipv6 = alloca(key_size_ipv6);
254 
255 	map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
256 				     key_size_ipv4, sizeof(value),
257 				     100, BPF_F_NO_PREALLOC);
258 	assert(map_fd_ipv4 >= 0);
259 
260 	map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
261 				     key_size_ipv6, sizeof(value),
262 				     100, BPF_F_NO_PREALLOC);
263 	assert(map_fd_ipv6 >= 0);
264 
265 	/* Fill data some IPv4 and IPv6 address ranges */
266 	value = 1;
267 	key_ipv4->prefixlen = 16;
268 	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
269 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
270 
271 	value = 2;
272 	key_ipv4->prefixlen = 24;
273 	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
274 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
275 
276 	value = 3;
277 	key_ipv4->prefixlen = 24;
278 	inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
279 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
280 
281 	value = 5;
282 	key_ipv4->prefixlen = 24;
283 	inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
284 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
285 
286 	value = 4;
287 	key_ipv4->prefixlen = 23;
288 	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
289 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
290 
291 	value = 0xdeadbeef;
292 	key_ipv6->prefixlen = 64;
293 	inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
294 	assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);
295 
296 	/* Set tprefixlen to maximum for lookups */
297 	key_ipv4->prefixlen = 32;
298 	key_ipv6->prefixlen = 128;
299 
300 	/* Test some lookups that should come back with a value */
301 	inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
302 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
303 	assert(value == 3);
304 
305 	inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
306 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
307 	assert(value == 2);
308 
309 	inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
310 	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
311 	assert(value == 0xdeadbeef);
312 
313 	inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
314 	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
315 	assert(value == 0xdeadbeef);
316 
317 	/* Test some lookups that should not match any entry */
318 	inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
319 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
320 	       errno == ENOENT);
321 
322 	inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
323 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
324 	       errno == ENOENT);
325 
326 	inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
327 	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 &&
328 	       errno == ENOENT);
329 
330 	close(map_fd_ipv4);
331 	close(map_fd_ipv6);
332 }
333 
main(void)334 int main(void)
335 {
336 	struct rlimit limit  = { RLIM_INFINITY, RLIM_INFINITY };
337 	int i, ret;
338 
339 	/* we want predictable, pseudo random tests */
340 	srand(0xf00ba1);
341 
342 	/* allow unlimited locked memory */
343 	ret = setrlimit(RLIMIT_MEMLOCK, &limit);
344 	if (ret < 0)
345 		perror("Unable to lift memlock rlimit");
346 
347 	test_lpm_basic();
348 	test_lpm_order();
349 
350 	/* Test with 8, 16, 24, 32, ... 128 bit prefix length */
351 	for (i = 1; i <= 16; ++i)
352 		test_lpm_map(i);
353 
354 	test_lpm_ipaddr();
355 
356 	printf("test_lpm: OK\n");
357 	return 0;
358 }
359