1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inline cost analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/InlineCost.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/ProfileSummaryInfo.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "inline-cost"
40
41 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
42
43 // Threshold to use when optsize is specified (and there is no
44 // -inline-threshold).
45 const int OptSizeThreshold = 75;
46
47 // Threshold to use when -Oz is specified (and there is no -inline-threshold).
48 const int OptMinSizeThreshold = 25;
49
50 // Threshold to use when -O[34] is specified (and there is no
51 // -inline-threshold).
52 const int OptAggressiveThreshold = 275;
53
54 static cl::opt<int> DefaultInlineThreshold(
55 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
56 cl::desc("Control the amount of inlining to perform (default = 225)"));
57
58 static cl::opt<int> HintThreshold(
59 "inlinehint-threshold", cl::Hidden, cl::init(325),
60 cl::desc("Threshold for inlining functions with inline hint"));
61
62 // We introduce this threshold to help performance of instrumentation based
63 // PGO before we actually hook up inliner with analysis passes such as BPI and
64 // BFI.
65 static cl::opt<int> ColdThreshold(
66 "inlinecold-threshold", cl::Hidden, cl::init(225),
67 cl::desc("Threshold for inlining functions with cold attribute"));
68
69 namespace {
70
71 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
72 typedef InstVisitor<CallAnalyzer, bool> Base;
73 friend class InstVisitor<CallAnalyzer, bool>;
74
75 /// The TargetTransformInfo available for this compilation.
76 const TargetTransformInfo &TTI;
77
78 /// The cache of @llvm.assume intrinsics.
79 AssumptionCacheTracker *ACT;
80
81 /// Profile summary information.
82 ProfileSummaryInfo *PSI;
83
84 // The called function.
85 Function &F;
86
87 // The candidate callsite being analyzed. Please do not use this to do
88 // analysis in the caller function; we want the inline cost query to be
89 // easily cacheable. Instead, use the cover function paramHasAttr.
90 CallSite CandidateCS;
91
92 int Threshold;
93 int Cost;
94
95 bool IsCallerRecursive;
96 bool IsRecursiveCall;
97 bool ExposesReturnsTwice;
98 bool HasDynamicAlloca;
99 bool ContainsNoDuplicateCall;
100 bool HasReturn;
101 bool HasIndirectBr;
102 bool HasFrameEscape;
103
104 /// Number of bytes allocated statically by the callee.
105 uint64_t AllocatedSize;
106 unsigned NumInstructions, NumVectorInstructions;
107 int FiftyPercentVectorBonus, TenPercentVectorBonus;
108 int VectorBonus;
109
110 // While we walk the potentially-inlined instructions, we build up and
111 // maintain a mapping of simplified values specific to this callsite. The
112 // idea is to propagate any special information we have about arguments to
113 // this call through the inlinable section of the function, and account for
114 // likely simplifications post-inlining. The most important aspect we track
115 // is CFG altering simplifications -- when we prove a basic block dead, that
116 // can cause dramatic shifts in the cost of inlining a function.
117 DenseMap<Value *, Constant *> SimplifiedValues;
118
119 // Keep track of the values which map back (through function arguments) to
120 // allocas on the caller stack which could be simplified through SROA.
121 DenseMap<Value *, Value *> SROAArgValues;
122
123 // The mapping of caller Alloca values to their accumulated cost savings. If
124 // we have to disable SROA for one of the allocas, this tells us how much
125 // cost must be added.
126 DenseMap<Value *, int> SROAArgCosts;
127
128 // Keep track of values which map to a pointer base and constant offset.
129 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
130
131 // Custom simplification helper routines.
132 bool isAllocaDerivedArg(Value *V);
133 bool lookupSROAArgAndCost(Value *V, Value *&Arg,
134 DenseMap<Value *, int>::iterator &CostIt);
135 void disableSROA(DenseMap<Value *, int>::iterator CostIt);
136 void disableSROA(Value *V);
137 void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
138 int InstructionCost);
139 bool isGEPOffsetConstant(GetElementPtrInst &GEP);
140 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
141 bool simplifyCallSite(Function *F, CallSite CS);
142 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
143
144 /// Return true if the given argument to the function being considered for
145 /// inlining has the given attribute set either at the call site or the
146 /// function declaration. Primarily used to inspect call site specific
147 /// attributes since these can be more precise than the ones on the callee
148 /// itself.
149 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
150
151 /// Return true if the given value is known non null within the callee if
152 /// inlined through this particular callsite.
153 bool isKnownNonNullInCallee(Value *V);
154
155 /// Update Threshold based on callsite properties such as callee
156 /// attributes and callee hotness for PGO builds. The Callee is explicitly
157 /// passed to support analyzing indirect calls whose target is inferred by
158 /// analysis.
159 void updateThreshold(CallSite CS, Function &Callee);
160
161 /// Return true if size growth is allowed when inlining the callee at CS.
162 bool allowSizeGrowth(CallSite CS);
163
164 // Custom analysis routines.
165 bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl<const Value *> &EphValues);
166
167 // Disable several entry points to the visitor so we don't accidentally use
168 // them by declaring but not defining them here.
169 void visit(Module *);
170 void visit(Module &);
171 void visit(Function *);
172 void visit(Function &);
173 void visit(BasicBlock *);
174 void visit(BasicBlock &);
175
176 // Provide base case for our instruction visit.
177 bool visitInstruction(Instruction &I);
178
179 // Our visit overrides.
180 bool visitAlloca(AllocaInst &I);
181 bool visitPHI(PHINode &I);
182 bool visitGetElementPtr(GetElementPtrInst &I);
183 bool visitBitCast(BitCastInst &I);
184 bool visitPtrToInt(PtrToIntInst &I);
185 bool visitIntToPtr(IntToPtrInst &I);
186 bool visitCastInst(CastInst &I);
187 bool visitUnaryInstruction(UnaryInstruction &I);
188 bool visitCmpInst(CmpInst &I);
189 bool visitSub(BinaryOperator &I);
190 bool visitBinaryOperator(BinaryOperator &I);
191 bool visitLoad(LoadInst &I);
192 bool visitStore(StoreInst &I);
193 bool visitExtractValue(ExtractValueInst &I);
194 bool visitInsertValue(InsertValueInst &I);
195 bool visitCallSite(CallSite CS);
196 bool visitReturnInst(ReturnInst &RI);
197 bool visitBranchInst(BranchInst &BI);
198 bool visitSwitchInst(SwitchInst &SI);
199 bool visitIndirectBrInst(IndirectBrInst &IBI);
200 bool visitResumeInst(ResumeInst &RI);
201 bool visitCleanupReturnInst(CleanupReturnInst &RI);
202 bool visitCatchReturnInst(CatchReturnInst &RI);
203 bool visitUnreachableInst(UnreachableInst &I);
204
205 public:
CallAnalyzer(const TargetTransformInfo & TTI,AssumptionCacheTracker * ACT,ProfileSummaryInfo * PSI,Function & Callee,int Threshold,CallSite CSArg)206 CallAnalyzer(const TargetTransformInfo &TTI, AssumptionCacheTracker *ACT,
207 ProfileSummaryInfo *PSI, Function &Callee, int Threshold,
208 CallSite CSArg)
209 : TTI(TTI), ACT(ACT), PSI(PSI), F(Callee), CandidateCS(CSArg),
210 Threshold(Threshold), Cost(0), IsCallerRecursive(false),
211 IsRecursiveCall(false), ExposesReturnsTwice(false),
212 HasDynamicAlloca(false), ContainsNoDuplicateCall(false),
213 HasReturn(false), HasIndirectBr(false), HasFrameEscape(false),
214 AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0),
215 FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0),
216 NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
217 NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
218 NumInstructionsSimplified(0), SROACostSavings(0),
219 SROACostSavingsLost(0) {}
220
221 bool analyzeCall(CallSite CS);
222
getThreshold()223 int getThreshold() { return Threshold; }
getCost()224 int getCost() { return Cost; }
225
226 // Keep a bunch of stats about the cost savings found so we can print them
227 // out when debugging.
228 unsigned NumConstantArgs;
229 unsigned NumConstantOffsetPtrArgs;
230 unsigned NumAllocaArgs;
231 unsigned NumConstantPtrCmps;
232 unsigned NumConstantPtrDiffs;
233 unsigned NumInstructionsSimplified;
234 unsigned SROACostSavings;
235 unsigned SROACostSavingsLost;
236
237 void dump();
238 };
239
240 } // namespace
241
242 /// \brief Test whether the given value is an Alloca-derived function argument.
isAllocaDerivedArg(Value * V)243 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
244 return SROAArgValues.count(V);
245 }
246
247 /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
248 /// Returns false if V does not map to a SROA-candidate.
lookupSROAArgAndCost(Value * V,Value * & Arg,DenseMap<Value *,int>::iterator & CostIt)249 bool CallAnalyzer::lookupSROAArgAndCost(
250 Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
251 if (SROAArgValues.empty() || SROAArgCosts.empty())
252 return false;
253
254 DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
255 if (ArgIt == SROAArgValues.end())
256 return false;
257
258 Arg = ArgIt->second;
259 CostIt = SROAArgCosts.find(Arg);
260 return CostIt != SROAArgCosts.end();
261 }
262
263 /// \brief Disable SROA for the candidate marked by this cost iterator.
264 ///
265 /// This marks the candidate as no longer viable for SROA, and adds the cost
266 /// savings associated with it back into the inline cost measurement.
disableSROA(DenseMap<Value *,int>::iterator CostIt)267 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
268 // If we're no longer able to perform SROA we need to undo its cost savings
269 // and prevent subsequent analysis.
270 Cost += CostIt->second;
271 SROACostSavings -= CostIt->second;
272 SROACostSavingsLost += CostIt->second;
273 SROAArgCosts.erase(CostIt);
274 }
275
276 /// \brief If 'V' maps to a SROA candidate, disable SROA for it.
disableSROA(Value * V)277 void CallAnalyzer::disableSROA(Value *V) {
278 Value *SROAArg;
279 DenseMap<Value *, int>::iterator CostIt;
280 if (lookupSROAArgAndCost(V, SROAArg, CostIt))
281 disableSROA(CostIt);
282 }
283
284 /// \brief Accumulate the given cost for a particular SROA candidate.
accumulateSROACost(DenseMap<Value *,int>::iterator CostIt,int InstructionCost)285 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
286 int InstructionCost) {
287 CostIt->second += InstructionCost;
288 SROACostSavings += InstructionCost;
289 }
290
291 /// \brief Check whether a GEP's indices are all constant.
292 ///
293 /// Respects any simplified values known during the analysis of this callsite.
isGEPOffsetConstant(GetElementPtrInst & GEP)294 bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
295 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
296 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
297 return false;
298
299 return true;
300 }
301
302 /// \brief Accumulate a constant GEP offset into an APInt if possible.
303 ///
304 /// Returns false if unable to compute the offset for any reason. Respects any
305 /// simplified values known during the analysis of this callsite.
accumulateGEPOffset(GEPOperator & GEP,APInt & Offset)306 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
307 const DataLayout &DL = F.getParent()->getDataLayout();
308 unsigned IntPtrWidth = DL.getPointerSizeInBits();
309 assert(IntPtrWidth == Offset.getBitWidth());
310
311 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
312 GTI != GTE; ++GTI) {
313 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
314 if (!OpC)
315 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
316 OpC = dyn_cast<ConstantInt>(SimpleOp);
317 if (!OpC)
318 return false;
319 if (OpC->isZero())
320 continue;
321
322 // Handle a struct index, which adds its field offset to the pointer.
323 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
324 unsigned ElementIdx = OpC->getZExtValue();
325 const StructLayout *SL = DL.getStructLayout(STy);
326 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
327 continue;
328 }
329
330 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
331 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
332 }
333 return true;
334 }
335
visitAlloca(AllocaInst & I)336 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
337 // Check whether inlining will turn a dynamic alloca into a static
338 // alloca and handle that case.
339 if (I.isArrayAllocation()) {
340 Constant *Size = SimplifiedValues.lookup(I.getArraySize());
341 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
342 const DataLayout &DL = F.getParent()->getDataLayout();
343 Type *Ty = I.getAllocatedType();
344 AllocatedSize = SaturatingMultiplyAdd(
345 AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize);
346 return Base::visitAlloca(I);
347 }
348 }
349
350 // Accumulate the allocated size.
351 if (I.isStaticAlloca()) {
352 const DataLayout &DL = F.getParent()->getDataLayout();
353 Type *Ty = I.getAllocatedType();
354 AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize);
355 }
356
357 // We will happily inline static alloca instructions.
358 if (I.isStaticAlloca())
359 return Base::visitAlloca(I);
360
361 // FIXME: This is overly conservative. Dynamic allocas are inefficient for
362 // a variety of reasons, and so we would like to not inline them into
363 // functions which don't currently have a dynamic alloca. This simply
364 // disables inlining altogether in the presence of a dynamic alloca.
365 HasDynamicAlloca = true;
366 return false;
367 }
368
visitPHI(PHINode & I)369 bool CallAnalyzer::visitPHI(PHINode &I) {
370 // FIXME: We should potentially be tracking values through phi nodes,
371 // especially when they collapse to a single value due to deleted CFG edges
372 // during inlining.
373
374 // FIXME: We need to propagate SROA *disabling* through phi nodes, even
375 // though we don't want to propagate it's bonuses. The idea is to disable
376 // SROA if it *might* be used in an inappropriate manner.
377
378 // Phi nodes are always zero-cost.
379 return true;
380 }
381
visitGetElementPtr(GetElementPtrInst & I)382 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
383 Value *SROAArg;
384 DenseMap<Value *, int>::iterator CostIt;
385 bool SROACandidate =
386 lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);
387
388 // Try to fold GEPs of constant-offset call site argument pointers. This
389 // requires target data and inbounds GEPs.
390 if (I.isInBounds()) {
391 // Check if we have a base + offset for the pointer.
392 Value *Ptr = I.getPointerOperand();
393 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
394 if (BaseAndOffset.first) {
395 // Check if the offset of this GEP is constant, and if so accumulate it
396 // into Offset.
397 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
398 // Non-constant GEPs aren't folded, and disable SROA.
399 if (SROACandidate)
400 disableSROA(CostIt);
401 return false;
402 }
403
404 // Add the result as a new mapping to Base + Offset.
405 ConstantOffsetPtrs[&I] = BaseAndOffset;
406
407 // Also handle SROA candidates here, we already know that the GEP is
408 // all-constant indexed.
409 if (SROACandidate)
410 SROAArgValues[&I] = SROAArg;
411
412 return true;
413 }
414 }
415
416 if (isGEPOffsetConstant(I)) {
417 if (SROACandidate)
418 SROAArgValues[&I] = SROAArg;
419
420 // Constant GEPs are modeled as free.
421 return true;
422 }
423
424 // Variable GEPs will require math and will disable SROA.
425 if (SROACandidate)
426 disableSROA(CostIt);
427 return false;
428 }
429
visitBitCast(BitCastInst & I)430 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
431 // Propagate constants through bitcasts.
432 Constant *COp = dyn_cast<Constant>(I.getOperand(0));
433 if (!COp)
434 COp = SimplifiedValues.lookup(I.getOperand(0));
435 if (COp)
436 if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
437 SimplifiedValues[&I] = C;
438 return true;
439 }
440
441 // Track base/offsets through casts
442 std::pair<Value *, APInt> BaseAndOffset =
443 ConstantOffsetPtrs.lookup(I.getOperand(0));
444 // Casts don't change the offset, just wrap it up.
445 if (BaseAndOffset.first)
446 ConstantOffsetPtrs[&I] = BaseAndOffset;
447
448 // Also look for SROA candidates here.
449 Value *SROAArg;
450 DenseMap<Value *, int>::iterator CostIt;
451 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
452 SROAArgValues[&I] = SROAArg;
453
454 // Bitcasts are always zero cost.
455 return true;
456 }
457
visitPtrToInt(PtrToIntInst & I)458 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
459 // Propagate constants through ptrtoint.
460 Constant *COp = dyn_cast<Constant>(I.getOperand(0));
461 if (!COp)
462 COp = SimplifiedValues.lookup(I.getOperand(0));
463 if (COp)
464 if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
465 SimplifiedValues[&I] = C;
466 return true;
467 }
468
469 // Track base/offset pairs when converted to a plain integer provided the
470 // integer is large enough to represent the pointer.
471 unsigned IntegerSize = I.getType()->getScalarSizeInBits();
472 const DataLayout &DL = F.getParent()->getDataLayout();
473 if (IntegerSize >= DL.getPointerSizeInBits()) {
474 std::pair<Value *, APInt> BaseAndOffset =
475 ConstantOffsetPtrs.lookup(I.getOperand(0));
476 if (BaseAndOffset.first)
477 ConstantOffsetPtrs[&I] = BaseAndOffset;
478 }
479
480 // This is really weird. Technically, ptrtoint will disable SROA. However,
481 // unless that ptrtoint is *used* somewhere in the live basic blocks after
482 // inlining, it will be nuked, and SROA should proceed. All of the uses which
483 // would block SROA would also block SROA if applied directly to a pointer,
484 // and so we can just add the integer in here. The only places where SROA is
485 // preserved either cannot fire on an integer, or won't in-and-of themselves
486 // disable SROA (ext) w/o some later use that we would see and disable.
487 Value *SROAArg;
488 DenseMap<Value *, int>::iterator CostIt;
489 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
490 SROAArgValues[&I] = SROAArg;
491
492 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
493 }
494
visitIntToPtr(IntToPtrInst & I)495 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
496 // Propagate constants through ptrtoint.
497 Constant *COp = dyn_cast<Constant>(I.getOperand(0));
498 if (!COp)
499 COp = SimplifiedValues.lookup(I.getOperand(0));
500 if (COp)
501 if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
502 SimplifiedValues[&I] = C;
503 return true;
504 }
505
506 // Track base/offset pairs when round-tripped through a pointer without
507 // modifications provided the integer is not too large.
508 Value *Op = I.getOperand(0);
509 unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
510 const DataLayout &DL = F.getParent()->getDataLayout();
511 if (IntegerSize <= DL.getPointerSizeInBits()) {
512 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
513 if (BaseAndOffset.first)
514 ConstantOffsetPtrs[&I] = BaseAndOffset;
515 }
516
517 // "Propagate" SROA here in the same manner as we do for ptrtoint above.
518 Value *SROAArg;
519 DenseMap<Value *, int>::iterator CostIt;
520 if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
521 SROAArgValues[&I] = SROAArg;
522
523 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
524 }
525
visitCastInst(CastInst & I)526 bool CallAnalyzer::visitCastInst(CastInst &I) {
527 // Propagate constants through ptrtoint.
528 Constant *COp = dyn_cast<Constant>(I.getOperand(0));
529 if (!COp)
530 COp = SimplifiedValues.lookup(I.getOperand(0));
531 if (COp)
532 if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
533 SimplifiedValues[&I] = C;
534 return true;
535 }
536
537 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
538 disableSROA(I.getOperand(0));
539
540 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
541 }
542
visitUnaryInstruction(UnaryInstruction & I)543 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
544 Value *Operand = I.getOperand(0);
545 Constant *COp = dyn_cast<Constant>(Operand);
546 if (!COp)
547 COp = SimplifiedValues.lookup(Operand);
548 if (COp) {
549 const DataLayout &DL = F.getParent()->getDataLayout();
550 if (Constant *C = ConstantFoldInstOperands(&I, COp, DL)) {
551 SimplifiedValues[&I] = C;
552 return true;
553 }
554 }
555
556 // Disable any SROA on the argument to arbitrary unary operators.
557 disableSROA(Operand);
558
559 return false;
560 }
561
paramHasAttr(Argument * A,Attribute::AttrKind Attr)562 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
563 unsigned ArgNo = A->getArgNo();
564 return CandidateCS.paramHasAttr(ArgNo + 1, Attr);
565 }
566
isKnownNonNullInCallee(Value * V)567 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
568 // Does the *call site* have the NonNull attribute set on an argument? We
569 // use the attribute on the call site to memoize any analysis done in the
570 // caller. This will also trip if the callee function has a non-null
571 // parameter attribute, but that's a less interesting case because hopefully
572 // the callee would already have been simplified based on that.
573 if (Argument *A = dyn_cast<Argument>(V))
574 if (paramHasAttr(A, Attribute::NonNull))
575 return true;
576
577 // Is this an alloca in the caller? This is distinct from the attribute case
578 // above because attributes aren't updated within the inliner itself and we
579 // always want to catch the alloca derived case.
580 if (isAllocaDerivedArg(V))
581 // We can actually predict the result of comparisons between an
582 // alloca-derived value and null. Note that this fires regardless of
583 // SROA firing.
584 return true;
585
586 return false;
587 }
588
allowSizeGrowth(CallSite CS)589 bool CallAnalyzer::allowSizeGrowth(CallSite CS) {
590 // If the normal destination of the invoke or the parent block of the call
591 // site is unreachable-terminated, there is little point in inlining this
592 // unless there is literally zero cost.
593 // FIXME: Note that it is possible that an unreachable-terminated block has a
594 // hot entry. For example, in below scenario inlining hot_call_X() may be
595 // beneficial :
596 // main() {
597 // hot_call_1();
598 // ...
599 // hot_call_N()
600 // exit(0);
601 // }
602 // For now, we are not handling this corner case here as it is rare in real
603 // code. In future, we should elaborate this based on BPI and BFI in more
604 // general threshold adjusting heuristics in updateThreshold().
605 Instruction *Instr = CS.getInstruction();
606 if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
607 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
608 return false;
609 } else if (isa<UnreachableInst>(Instr->getParent()->getTerminator()))
610 return false;
611
612 return true;
613 }
614
updateThreshold(CallSite CS,Function & Callee)615 void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) {
616 // If no size growth is allowed for this inlining, set Threshold to 0.
617 if (!allowSizeGrowth(CS)) {
618 Threshold = 0;
619 return;
620 }
621
622 Function *Caller = CS.getCaller();
623 if (DefaultInlineThreshold.getNumOccurrences() > 0) {
624 // Explicitly specified -inline-threhold overrides the threshold passed to
625 // CallAnalyzer's constructor.
626 Threshold = DefaultInlineThreshold;
627 } else {
628 // If -inline-threshold is not given, listen to the optsize and minsize
629 // attributes when they would decrease the threshold.
630 if (Caller->optForMinSize() && OptMinSizeThreshold < Threshold)
631 Threshold = OptMinSizeThreshold;
632 else if (Caller->optForSize() && OptSizeThreshold < Threshold)
633 Threshold = OptSizeThreshold;
634 }
635
636 bool HotCallsite = false;
637 uint64_t TotalWeight;
638 if (CS.getInstruction()->extractProfTotalWeight(TotalWeight) &&
639 PSI->isHotCount(TotalWeight))
640 HotCallsite = true;
641
642 // Listen to the inlinehint attribute or profile based hotness information
643 // when it would increase the threshold and the caller does not need to
644 // minimize its size.
645 bool InlineHint = Callee.hasFnAttribute(Attribute::InlineHint) ||
646 PSI->isHotFunction(&Callee) ||
647 HotCallsite;
648 if (InlineHint && HintThreshold > Threshold && !Caller->optForMinSize())
649 Threshold = HintThreshold;
650
651 bool ColdCallee = PSI->isColdFunction(&Callee);
652 // Command line argument for DefaultInlineThreshold will override the default
653 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold,
654 // do not use the default cold threshold even if it is smaller.
655 if ((DefaultInlineThreshold.getNumOccurrences() == 0 ||
656 ColdThreshold.getNumOccurrences() > 0) &&
657 ColdCallee && ColdThreshold < Threshold)
658 Threshold = ColdThreshold;
659
660 // Finally, take the target-specific inlining threshold multiplier into
661 // account.
662 Threshold *= TTI.getInliningThresholdMultiplier();
663 }
664
visitCmpInst(CmpInst & I)665 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
666 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
667 // First try to handle simplified comparisons.
668 if (!isa<Constant>(LHS))
669 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
670 LHS = SimpleLHS;
671 if (!isa<Constant>(RHS))
672 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
673 RHS = SimpleRHS;
674 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
675 if (Constant *CRHS = dyn_cast<Constant>(RHS))
676 if (Constant *C =
677 ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
678 SimplifiedValues[&I] = C;
679 return true;
680 }
681 }
682
683 if (I.getOpcode() == Instruction::FCmp)
684 return false;
685
686 // Otherwise look for a comparison between constant offset pointers with
687 // a common base.
688 Value *LHSBase, *RHSBase;
689 APInt LHSOffset, RHSOffset;
690 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
691 if (LHSBase) {
692 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
693 if (RHSBase && LHSBase == RHSBase) {
694 // We have common bases, fold the icmp to a constant based on the
695 // offsets.
696 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
697 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
698 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
699 SimplifiedValues[&I] = C;
700 ++NumConstantPtrCmps;
701 return true;
702 }
703 }
704 }
705
706 // If the comparison is an equality comparison with null, we can simplify it
707 // if we know the value (argument) can't be null
708 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
709 isKnownNonNullInCallee(I.getOperand(0))) {
710 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
711 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
712 : ConstantInt::getFalse(I.getType());
713 return true;
714 }
715 // Finally check for SROA candidates in comparisons.
716 Value *SROAArg;
717 DenseMap<Value *, int>::iterator CostIt;
718 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
719 if (isa<ConstantPointerNull>(I.getOperand(1))) {
720 accumulateSROACost(CostIt, InlineConstants::InstrCost);
721 return true;
722 }
723
724 disableSROA(CostIt);
725 }
726
727 return false;
728 }
729
visitSub(BinaryOperator & I)730 bool CallAnalyzer::visitSub(BinaryOperator &I) {
731 // Try to handle a special case: we can fold computing the difference of two
732 // constant-related pointers.
733 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
734 Value *LHSBase, *RHSBase;
735 APInt LHSOffset, RHSOffset;
736 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
737 if (LHSBase) {
738 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
739 if (RHSBase && LHSBase == RHSBase) {
740 // We have common bases, fold the subtract to a constant based on the
741 // offsets.
742 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
743 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
744 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
745 SimplifiedValues[&I] = C;
746 ++NumConstantPtrDiffs;
747 return true;
748 }
749 }
750 }
751
752 // Otherwise, fall back to the generic logic for simplifying and handling
753 // instructions.
754 return Base::visitSub(I);
755 }
756
visitBinaryOperator(BinaryOperator & I)757 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
758 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
759 const DataLayout &DL = F.getParent()->getDataLayout();
760 if (!isa<Constant>(LHS))
761 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
762 LHS = SimpleLHS;
763 if (!isa<Constant>(RHS))
764 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
765 RHS = SimpleRHS;
766 Value *SimpleV = nullptr;
767 if (auto FI = dyn_cast<FPMathOperator>(&I))
768 SimpleV =
769 SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
770 else
771 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
772
773 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
774 SimplifiedValues[&I] = C;
775 return true;
776 }
777
778 // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
779 disableSROA(LHS);
780 disableSROA(RHS);
781
782 return false;
783 }
784
visitLoad(LoadInst & I)785 bool CallAnalyzer::visitLoad(LoadInst &I) {
786 Value *SROAArg;
787 DenseMap<Value *, int>::iterator CostIt;
788 if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
789 if (I.isSimple()) {
790 accumulateSROACost(CostIt, InlineConstants::InstrCost);
791 return true;
792 }
793
794 disableSROA(CostIt);
795 }
796
797 return false;
798 }
799
visitStore(StoreInst & I)800 bool CallAnalyzer::visitStore(StoreInst &I) {
801 Value *SROAArg;
802 DenseMap<Value *, int>::iterator CostIt;
803 if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
804 if (I.isSimple()) {
805 accumulateSROACost(CostIt, InlineConstants::InstrCost);
806 return true;
807 }
808
809 disableSROA(CostIt);
810 }
811
812 return false;
813 }
814
visitExtractValue(ExtractValueInst & I)815 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
816 // Constant folding for extract value is trivial.
817 Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
818 if (!C)
819 C = SimplifiedValues.lookup(I.getAggregateOperand());
820 if (C) {
821 SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
822 return true;
823 }
824
825 // SROA can look through these but give them a cost.
826 return false;
827 }
828
visitInsertValue(InsertValueInst & I)829 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
830 // Constant folding for insert value is trivial.
831 Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
832 if (!AggC)
833 AggC = SimplifiedValues.lookup(I.getAggregateOperand());
834 Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
835 if (!InsertedC)
836 InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
837 if (AggC && InsertedC) {
838 SimplifiedValues[&I] =
839 ConstantExpr::getInsertValue(AggC, InsertedC, I.getIndices());
840 return true;
841 }
842
843 // SROA can look through these but give them a cost.
844 return false;
845 }
846
847 /// \brief Try to simplify a call site.
848 ///
849 /// Takes a concrete function and callsite and tries to actually simplify it by
850 /// analyzing the arguments and call itself with instsimplify. Returns true if
851 /// it has simplified the callsite to some other entity (a constant), making it
852 /// free.
simplifyCallSite(Function * F,CallSite CS)853 bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
854 // FIXME: Using the instsimplify logic directly for this is inefficient
855 // because we have to continually rebuild the argument list even when no
856 // simplifications can be performed. Until that is fixed with remapping
857 // inside of instsimplify, directly constant fold calls here.
858 if (!canConstantFoldCallTo(F))
859 return false;
860
861 // Try to re-map the arguments to constants.
862 SmallVector<Constant *, 4> ConstantArgs;
863 ConstantArgs.reserve(CS.arg_size());
864 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
865 ++I) {
866 Constant *C = dyn_cast<Constant>(*I);
867 if (!C)
868 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
869 if (!C)
870 return false; // This argument doesn't map to a constant.
871
872 ConstantArgs.push_back(C);
873 }
874 if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
875 SimplifiedValues[CS.getInstruction()] = C;
876 return true;
877 }
878
879 return false;
880 }
881
visitCallSite(CallSite CS)882 bool CallAnalyzer::visitCallSite(CallSite CS) {
883 if (CS.hasFnAttr(Attribute::ReturnsTwice) &&
884 !F.hasFnAttribute(Attribute::ReturnsTwice)) {
885 // This aborts the entire analysis.
886 ExposesReturnsTwice = true;
887 return false;
888 }
889 if (CS.isCall() && cast<CallInst>(CS.getInstruction())->cannotDuplicate())
890 ContainsNoDuplicateCall = true;
891
892 if (Function *F = CS.getCalledFunction()) {
893 // When we have a concrete function, first try to simplify it directly.
894 if (simplifyCallSite(F, CS))
895 return true;
896
897 // Next check if it is an intrinsic we know about.
898 // FIXME: Lift this into part of the InstVisitor.
899 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
900 switch (II->getIntrinsicID()) {
901 default:
902 return Base::visitCallSite(CS);
903
904 case Intrinsic::load_relative:
905 // This is normally lowered to 4 LLVM instructions.
906 Cost += 3 * InlineConstants::InstrCost;
907 return false;
908
909 case Intrinsic::memset:
910 case Intrinsic::memcpy:
911 case Intrinsic::memmove:
912 // SROA can usually chew through these intrinsics, but they aren't free.
913 return false;
914 case Intrinsic::localescape:
915 HasFrameEscape = true;
916 return false;
917 }
918 }
919
920 if (F == CS.getInstruction()->getParent()->getParent()) {
921 // This flag will fully abort the analysis, so don't bother with anything
922 // else.
923 IsRecursiveCall = true;
924 return false;
925 }
926
927 if (TTI.isLoweredToCall(F)) {
928 // We account for the average 1 instruction per call argument setup
929 // here.
930 Cost += CS.arg_size() * InlineConstants::InstrCost;
931
932 // Everything other than inline ASM will also have a significant cost
933 // merely from making the call.
934 if (!isa<InlineAsm>(CS.getCalledValue()))
935 Cost += InlineConstants::CallPenalty;
936 }
937
938 return Base::visitCallSite(CS);
939 }
940
941 // Otherwise we're in a very special case -- an indirect function call. See
942 // if we can be particularly clever about this.
943 Value *Callee = CS.getCalledValue();
944
945 // First, pay the price of the argument setup. We account for the average
946 // 1 instruction per call argument setup here.
947 Cost += CS.arg_size() * InlineConstants::InstrCost;
948
949 // Next, check if this happens to be an indirect function call to a known
950 // function in this inline context. If not, we've done all we can.
951 Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
952 if (!F)
953 return Base::visitCallSite(CS);
954
955 // If we have a constant that we are calling as a function, we can peer
956 // through it and see the function target. This happens not infrequently
957 // during devirtualization and so we want to give it a hefty bonus for
958 // inlining, but cap that bonus in the event that inlining wouldn't pan
959 // out. Pretend to inline the function, with a custom threshold.
960 CallAnalyzer CA(TTI, ACT, PSI, *F, InlineConstants::IndirectCallThreshold,
961 CS);
962 if (CA.analyzeCall(CS)) {
963 // We were able to inline the indirect call! Subtract the cost from the
964 // threshold to get the bonus we want to apply, but don't go below zero.
965 Cost -= std::max(0, CA.getThreshold() - CA.getCost());
966 }
967
968 return Base::visitCallSite(CS);
969 }
970
visitReturnInst(ReturnInst & RI)971 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
972 // At least one return instruction will be free after inlining.
973 bool Free = !HasReturn;
974 HasReturn = true;
975 return Free;
976 }
977
visitBranchInst(BranchInst & BI)978 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
979 // We model unconditional branches as essentially free -- they really
980 // shouldn't exist at all, but handling them makes the behavior of the
981 // inliner more regular and predictable. Interestingly, conditional branches
982 // which will fold away are also free.
983 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
984 dyn_cast_or_null<ConstantInt>(
985 SimplifiedValues.lookup(BI.getCondition()));
986 }
987
visitSwitchInst(SwitchInst & SI)988 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
989 // We model unconditional switches as free, see the comments on handling
990 // branches.
991 if (isa<ConstantInt>(SI.getCondition()))
992 return true;
993 if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
994 if (isa<ConstantInt>(V))
995 return true;
996
997 // Otherwise, we need to accumulate a cost proportional to the number of
998 // distinct successor blocks. This fan-out in the CFG cannot be represented
999 // for free even if we can represent the core switch as a jumptable that
1000 // takes a single instruction.
1001 //
1002 // NB: We convert large switches which are just used to initialize large phi
1003 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
1004 // inlining those. It will prevent inlining in cases where the optimization
1005 // does not (yet) fire.
1006 SmallPtrSet<BasicBlock *, 8> SuccessorBlocks;
1007 SuccessorBlocks.insert(SI.getDefaultDest());
1008 for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I)
1009 SuccessorBlocks.insert(I.getCaseSuccessor());
1010 // Add cost corresponding to the number of distinct destinations. The first
1011 // we model as free because of fallthrough.
1012 Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost;
1013 return false;
1014 }
1015
visitIndirectBrInst(IndirectBrInst & IBI)1016 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
1017 // We never want to inline functions that contain an indirectbr. This is
1018 // incorrect because all the blockaddress's (in static global initializers
1019 // for example) would be referring to the original function, and this
1020 // indirect jump would jump from the inlined copy of the function into the
1021 // original function which is extremely undefined behavior.
1022 // FIXME: This logic isn't really right; we can safely inline functions with
1023 // indirectbr's as long as no other function or global references the
1024 // blockaddress of a block within the current function.
1025 HasIndirectBr = true;
1026 return false;
1027 }
1028
visitResumeInst(ResumeInst & RI)1029 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
1030 // FIXME: It's not clear that a single instruction is an accurate model for
1031 // the inline cost of a resume instruction.
1032 return false;
1033 }
1034
visitCleanupReturnInst(CleanupReturnInst & CRI)1035 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
1036 // FIXME: It's not clear that a single instruction is an accurate model for
1037 // the inline cost of a cleanupret instruction.
1038 return false;
1039 }
1040
visitCatchReturnInst(CatchReturnInst & CRI)1041 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
1042 // FIXME: It's not clear that a single instruction is an accurate model for
1043 // the inline cost of a catchret instruction.
1044 return false;
1045 }
1046
visitUnreachableInst(UnreachableInst & I)1047 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
1048 // FIXME: It might be reasonably to discount the cost of instructions leading
1049 // to unreachable as they have the lowest possible impact on both runtime and
1050 // code size.
1051 return true; // No actual code is needed for unreachable.
1052 }
1053
visitInstruction(Instruction & I)1054 bool CallAnalyzer::visitInstruction(Instruction &I) {
1055 // Some instructions are free. All of the free intrinsics can also be
1056 // handled by SROA, etc.
1057 if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
1058 return true;
1059
1060 // We found something we don't understand or can't handle. Mark any SROA-able
1061 // values in the operand list as no longer viable.
1062 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
1063 disableSROA(*OI);
1064
1065 return false;
1066 }
1067
1068 /// \brief Analyze a basic block for its contribution to the inline cost.
1069 ///
1070 /// This method walks the analyzer over every instruction in the given basic
1071 /// block and accounts for their cost during inlining at this callsite. It
1072 /// aborts early if the threshold has been exceeded or an impossible to inline
1073 /// construct has been detected. It returns false if inlining is no longer
1074 /// viable, and true if inlining remains viable.
analyzeBlock(BasicBlock * BB,SmallPtrSetImpl<const Value * > & EphValues)1075 bool CallAnalyzer::analyzeBlock(BasicBlock *BB,
1076 SmallPtrSetImpl<const Value *> &EphValues) {
1077 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1078 // FIXME: Currently, the number of instructions in a function regardless of
1079 // our ability to simplify them during inline to constants or dead code,
1080 // are actually used by the vector bonus heuristic. As long as that's true,
1081 // we have to special case debug intrinsics here to prevent differences in
1082 // inlining due to debug symbols. Eventually, the number of unsimplified
1083 // instructions shouldn't factor into the cost computation, but until then,
1084 // hack around it here.
1085 if (isa<DbgInfoIntrinsic>(I))
1086 continue;
1087
1088 // Skip ephemeral values.
1089 if (EphValues.count(&*I))
1090 continue;
1091
1092 ++NumInstructions;
1093 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
1094 ++NumVectorInstructions;
1095
1096 // If the instruction is floating point, and the target says this operation
1097 // is expensive or the function has the "use-soft-float" attribute, this may
1098 // eventually become a library call. Treat the cost as such.
1099 if (I->getType()->isFloatingPointTy()) {
1100 bool hasSoftFloatAttr = false;
1101
1102 // If the function has the "use-soft-float" attribute, mark it as
1103 // expensive.
1104 if (F.hasFnAttribute("use-soft-float")) {
1105 Attribute Attr = F.getFnAttribute("use-soft-float");
1106 StringRef Val = Attr.getValueAsString();
1107 if (Val == "true")
1108 hasSoftFloatAttr = true;
1109 }
1110
1111 if (TTI.getFPOpCost(I->getType()) == TargetTransformInfo::TCC_Expensive ||
1112 hasSoftFloatAttr)
1113 Cost += InlineConstants::CallPenalty;
1114 }
1115
1116 // If the instruction simplified to a constant, there is no cost to this
1117 // instruction. Visit the instructions using our InstVisitor to account for
1118 // all of the per-instruction logic. The visit tree returns true if we
1119 // consumed the instruction in any way, and false if the instruction's base
1120 // cost should count against inlining.
1121 if (Base::visit(&*I))
1122 ++NumInstructionsSimplified;
1123 else
1124 Cost += InlineConstants::InstrCost;
1125
1126 // If the visit this instruction detected an uninlinable pattern, abort.
1127 if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
1128 HasIndirectBr || HasFrameEscape)
1129 return false;
1130
1131 // If the caller is a recursive function then we don't want to inline
1132 // functions which allocate a lot of stack space because it would increase
1133 // the caller stack usage dramatically.
1134 if (IsCallerRecursive &&
1135 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
1136 return false;
1137
1138 // Check if we've past the maximum possible threshold so we don't spin in
1139 // huge basic blocks that will never inline.
1140 if (Cost > Threshold)
1141 return false;
1142 }
1143
1144 return true;
1145 }
1146
1147 /// \brief Compute the base pointer and cumulative constant offsets for V.
1148 ///
1149 /// This strips all constant offsets off of V, leaving it the base pointer, and
1150 /// accumulates the total constant offset applied in the returned constant. It
1151 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
1152 /// no constant offsets applied.
stripAndComputeInBoundsConstantOffsets(Value * & V)1153 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
1154 if (!V->getType()->isPointerTy())
1155 return nullptr;
1156
1157 const DataLayout &DL = F.getParent()->getDataLayout();
1158 unsigned IntPtrWidth = DL.getPointerSizeInBits();
1159 APInt Offset = APInt::getNullValue(IntPtrWidth);
1160
1161 // Even though we don't look through PHI nodes, we could be called on an
1162 // instruction in an unreachable block, which may be on a cycle.
1163 SmallPtrSet<Value *, 4> Visited;
1164 Visited.insert(V);
1165 do {
1166 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1167 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
1168 return nullptr;
1169 V = GEP->getPointerOperand();
1170 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1171 V = cast<Operator>(V)->getOperand(0);
1172 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1173 if (GA->isInterposable())
1174 break;
1175 V = GA->getAliasee();
1176 } else {
1177 break;
1178 }
1179 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1180 } while (Visited.insert(V).second);
1181
1182 Type *IntPtrTy = DL.getIntPtrType(V->getContext());
1183 return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
1184 }
1185
1186 /// \brief Analyze a call site for potential inlining.
1187 ///
1188 /// Returns true if inlining this call is viable, and false if it is not
1189 /// viable. It computes the cost and adjusts the threshold based on numerous
1190 /// factors and heuristics. If this method returns false but the computed cost
1191 /// is below the computed threshold, then inlining was forcibly disabled by
1192 /// some artifact of the routine.
analyzeCall(CallSite CS)1193 bool CallAnalyzer::analyzeCall(CallSite CS) {
1194 ++NumCallsAnalyzed;
1195
1196 // Perform some tweaks to the cost and threshold based on the direct
1197 // callsite information.
1198
1199 // We want to more aggressively inline vector-dense kernels, so up the
1200 // threshold, and we'll lower it if the % of vector instructions gets too
1201 // low. Note that these bonuses are some what arbitrary and evolved over time
1202 // by accident as much as because they are principled bonuses.
1203 //
1204 // FIXME: It would be nice to remove all such bonuses. At least it would be
1205 // nice to base the bonus values on something more scientific.
1206 assert(NumInstructions == 0);
1207 assert(NumVectorInstructions == 0);
1208
1209 // Update the threshold based on callsite properties
1210 updateThreshold(CS, F);
1211
1212 FiftyPercentVectorBonus = 3 * Threshold / 2;
1213 TenPercentVectorBonus = 3 * Threshold / 4;
1214 const DataLayout &DL = F.getParent()->getDataLayout();
1215
1216 // Track whether the post-inlining function would have more than one basic
1217 // block. A single basic block is often intended for inlining. Balloon the
1218 // threshold by 50% until we pass the single-BB phase.
1219 bool SingleBB = true;
1220 int SingleBBBonus = Threshold / 2;
1221
1222 // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1223 // this Threshold any time, and cost cannot decrease, we can stop processing
1224 // the rest of the function body.
1225 Threshold += (SingleBBBonus + FiftyPercentVectorBonus);
1226
1227 // Give out bonuses per argument, as the instructions setting them up will
1228 // be gone after inlining.
1229 for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
1230 if (CS.isByValArgument(I)) {
1231 // We approximate the number of loads and stores needed by dividing the
1232 // size of the byval type by the target's pointer size.
1233 PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
1234 unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
1235 unsigned PointerSize = DL.getPointerSizeInBits();
1236 // Ceiling division.
1237 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
1238
1239 // If it generates more than 8 stores it is likely to be expanded as an
1240 // inline memcpy so we take that as an upper bound. Otherwise we assume
1241 // one load and one store per word copied.
1242 // FIXME: The maxStoresPerMemcpy setting from the target should be used
1243 // here instead of a magic number of 8, but it's not available via
1244 // DataLayout.
1245 NumStores = std::min(NumStores, 8U);
1246
1247 Cost -= 2 * NumStores * InlineConstants::InstrCost;
1248 } else {
1249 // For non-byval arguments subtract off one instruction per call
1250 // argument.
1251 Cost -= InlineConstants::InstrCost;
1252 }
1253 }
1254
1255 // If there is only one call of the function, and it has internal linkage,
1256 // the cost of inlining it drops dramatically.
1257 bool OnlyOneCallAndLocalLinkage =
1258 F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction();
1259 if (OnlyOneCallAndLocalLinkage)
1260 Cost += InlineConstants::LastCallToStaticBonus;
1261
1262 // If this function uses the coldcc calling convention, prefer not to inline
1263 // it.
1264 if (F.getCallingConv() == CallingConv::Cold)
1265 Cost += InlineConstants::ColdccPenalty;
1266
1267 // Check if we're done. This can happen due to bonuses and penalties.
1268 if (Cost > Threshold)
1269 return false;
1270
1271 if (F.empty())
1272 return true;
1273
1274 Function *Caller = CS.getInstruction()->getParent()->getParent();
1275 // Check if the caller function is recursive itself.
1276 for (User *U : Caller->users()) {
1277 CallSite Site(U);
1278 if (!Site)
1279 continue;
1280 Instruction *I = Site.getInstruction();
1281 if (I->getParent()->getParent() == Caller) {
1282 IsCallerRecursive = true;
1283 break;
1284 }
1285 }
1286
1287 // Populate our simplified values by mapping from function arguments to call
1288 // arguments with known important simplifications.
1289 CallSite::arg_iterator CAI = CS.arg_begin();
1290 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1291 FAI != FAE; ++FAI, ++CAI) {
1292 assert(CAI != CS.arg_end());
1293 if (Constant *C = dyn_cast<Constant>(CAI))
1294 SimplifiedValues[&*FAI] = C;
1295
1296 Value *PtrArg = *CAI;
1297 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1298 ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
1299
1300 // We can SROA any pointer arguments derived from alloca instructions.
1301 if (isa<AllocaInst>(PtrArg)) {
1302 SROAArgValues[&*FAI] = PtrArg;
1303 SROAArgCosts[PtrArg] = 0;
1304 }
1305 }
1306 }
1307 NumConstantArgs = SimplifiedValues.size();
1308 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1309 NumAllocaArgs = SROAArgValues.size();
1310
1311 // FIXME: If a caller has multiple calls to a callee, we end up recomputing
1312 // the ephemeral values multiple times (and they're completely determined by
1313 // the callee, so this is purely duplicate work).
1314 SmallPtrSet<const Value *, 32> EphValues;
1315 CodeMetrics::collectEphemeralValues(&F, &ACT->getAssumptionCache(F),
1316 EphValues);
1317
1318 // The worklist of live basic blocks in the callee *after* inlining. We avoid
1319 // adding basic blocks of the callee which can be proven to be dead for this
1320 // particular call site in order to get more accurate cost estimates. This
1321 // requires a somewhat heavyweight iteration pattern: we need to walk the
1322 // basic blocks in a breadth-first order as we insert live successors. To
1323 // accomplish this, prioritizing for small iterations because we exit after
1324 // crossing our threshold, we use a small-size optimized SetVector.
1325 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1326 SmallPtrSet<BasicBlock *, 16>>
1327 BBSetVector;
1328 BBSetVector BBWorklist;
1329 BBWorklist.insert(&F.getEntryBlock());
1330 // Note that we *must not* cache the size, this loop grows the worklist.
1331 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1332 // Bail out the moment we cross the threshold. This means we'll under-count
1333 // the cost, but only when undercounting doesn't matter.
1334 if (Cost > Threshold)
1335 break;
1336
1337 BasicBlock *BB = BBWorklist[Idx];
1338 if (BB->empty())
1339 continue;
1340
1341 // Disallow inlining a blockaddress. A blockaddress only has defined
1342 // behavior for an indirect branch in the same function, and we do not
1343 // currently support inlining indirect branches. But, the inliner may not
1344 // see an indirect branch that ends up being dead code at a particular call
1345 // site. If the blockaddress escapes the function, e.g., via a global
1346 // variable, inlining may lead to an invalid cross-function reference.
1347 if (BB->hasAddressTaken())
1348 return false;
1349
1350 // Analyze the cost of this block. If we blow through the threshold, this
1351 // returns false, and we can bail on out.
1352 if (!analyzeBlock(BB, EphValues))
1353 return false;
1354
1355 TerminatorInst *TI = BB->getTerminator();
1356
1357 // Add in the live successors by first checking whether we have terminator
1358 // that may be simplified based on the values simplified by this call.
1359 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1360 if (BI->isConditional()) {
1361 Value *Cond = BI->getCondition();
1362 if (ConstantInt *SimpleCond =
1363 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1364 BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
1365 continue;
1366 }
1367 }
1368 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1369 Value *Cond = SI->getCondition();
1370 if (ConstantInt *SimpleCond =
1371 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1372 BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
1373 continue;
1374 }
1375 }
1376
1377 // If we're unable to select a particular successor, just count all of
1378 // them.
1379 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1380 ++TIdx)
1381 BBWorklist.insert(TI->getSuccessor(TIdx));
1382
1383 // If we had any successors at this point, than post-inlining is likely to
1384 // have them as well. Note that we assume any basic blocks which existed
1385 // due to branches or switches which folded above will also fold after
1386 // inlining.
1387 if (SingleBB && TI->getNumSuccessors() > 1) {
1388 // Take off the bonus we applied to the threshold.
1389 Threshold -= SingleBBBonus;
1390 SingleBB = false;
1391 }
1392 }
1393
1394 // If this is a noduplicate call, we can still inline as long as
1395 // inlining this would cause the removal of the caller (so the instruction
1396 // is not actually duplicated, just moved).
1397 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1398 return false;
1399
1400 // We applied the maximum possible vector bonus at the beginning. Now,
1401 // subtract the excess bonus, if any, from the Threshold before
1402 // comparing against Cost.
1403 if (NumVectorInstructions <= NumInstructions / 10)
1404 Threshold -= FiftyPercentVectorBonus;
1405 else if (NumVectorInstructions <= NumInstructions / 2)
1406 Threshold -= (FiftyPercentVectorBonus - TenPercentVectorBonus);
1407
1408 return Cost < std::max(1, Threshold);
1409 }
1410
1411 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1412 /// \brief Dump stats about this call's analysis.
dump()1413 LLVM_DUMP_METHOD void CallAnalyzer::dump() {
1414 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n"
1415 DEBUG_PRINT_STAT(NumConstantArgs);
1416 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1417 DEBUG_PRINT_STAT(NumAllocaArgs);
1418 DEBUG_PRINT_STAT(NumConstantPtrCmps);
1419 DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1420 DEBUG_PRINT_STAT(NumInstructionsSimplified);
1421 DEBUG_PRINT_STAT(NumInstructions);
1422 DEBUG_PRINT_STAT(SROACostSavings);
1423 DEBUG_PRINT_STAT(SROACostSavingsLost);
1424 DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1425 DEBUG_PRINT_STAT(Cost);
1426 DEBUG_PRINT_STAT(Threshold);
1427 #undef DEBUG_PRINT_STAT
1428 }
1429 #endif
1430
1431 /// \brief Test that two functions either have or have not the given attribute
1432 /// at the same time.
1433 template <typename AttrKind>
attributeMatches(Function * F1,Function * F2,AttrKind Attr)1434 static bool attributeMatches(Function *F1, Function *F2, AttrKind Attr) {
1435 return F1->getFnAttribute(Attr) == F2->getFnAttribute(Attr);
1436 }
1437
1438 /// \brief Test that there are no attribute conflicts between Caller and Callee
1439 /// that prevent inlining.
functionsHaveCompatibleAttributes(Function * Caller,Function * Callee,TargetTransformInfo & TTI)1440 static bool functionsHaveCompatibleAttributes(Function *Caller,
1441 Function *Callee,
1442 TargetTransformInfo &TTI) {
1443 return TTI.areInlineCompatible(Caller, Callee) &&
1444 AttributeFuncs::areInlineCompatible(*Caller, *Callee);
1445 }
1446
getInlineCost(CallSite CS,int DefaultThreshold,TargetTransformInfo & CalleeTTI,AssumptionCacheTracker * ACT,ProfileSummaryInfo * PSI)1447 InlineCost llvm::getInlineCost(CallSite CS, int DefaultThreshold,
1448 TargetTransformInfo &CalleeTTI,
1449 AssumptionCacheTracker *ACT,
1450 ProfileSummaryInfo *PSI) {
1451 return getInlineCost(CS, CS.getCalledFunction(), DefaultThreshold, CalleeTTI,
1452 ACT, PSI);
1453 }
1454
computeThresholdFromOptLevels(unsigned OptLevel,unsigned SizeOptLevel)1455 int llvm::computeThresholdFromOptLevels(unsigned OptLevel,
1456 unsigned SizeOptLevel) {
1457 if (OptLevel > 2)
1458 return OptAggressiveThreshold;
1459 if (SizeOptLevel == 1) // -Os
1460 return OptSizeThreshold;
1461 if (SizeOptLevel == 2) // -Oz
1462 return OptMinSizeThreshold;
1463 return DefaultInlineThreshold;
1464 }
1465
getDefaultInlineThreshold()1466 int llvm::getDefaultInlineThreshold() { return DefaultInlineThreshold; }
1467
getInlineCost(CallSite CS,Function * Callee,int DefaultThreshold,TargetTransformInfo & CalleeTTI,AssumptionCacheTracker * ACT,ProfileSummaryInfo * PSI)1468 InlineCost llvm::getInlineCost(CallSite CS, Function *Callee,
1469 int DefaultThreshold,
1470 TargetTransformInfo &CalleeTTI,
1471 AssumptionCacheTracker *ACT,
1472 ProfileSummaryInfo *PSI) {
1473
1474 // Cannot inline indirect calls.
1475 if (!Callee)
1476 return llvm::InlineCost::getNever();
1477
1478 // Calls to functions with always-inline attributes should be inlined
1479 // whenever possible.
1480 if (CS.hasFnAttr(Attribute::AlwaysInline)) {
1481 if (isInlineViable(*Callee))
1482 return llvm::InlineCost::getAlways();
1483 return llvm::InlineCost::getNever();
1484 }
1485
1486 // Never inline functions with conflicting attributes (unless callee has
1487 // always-inline attribute).
1488 if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee, CalleeTTI))
1489 return llvm::InlineCost::getNever();
1490
1491 // Don't inline this call if the caller has the optnone attribute.
1492 if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone))
1493 return llvm::InlineCost::getNever();
1494
1495 // Don't inline functions which can be interposed at link-time. Don't inline
1496 // functions marked noinline or call sites marked noinline.
1497 // Note: inlining non-exact non-interposable fucntions is fine, since we know
1498 // we have *a* correct implementation of the source level function.
1499 if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
1500 CS.isNoInline())
1501 return llvm::InlineCost::getNever();
1502
1503 DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
1504 << "...\n");
1505
1506 CallAnalyzer CA(CalleeTTI, ACT, PSI, *Callee, DefaultThreshold, CS);
1507 bool ShouldInline = CA.analyzeCall(CS);
1508
1509 DEBUG(CA.dump());
1510
1511 // Check if there was a reason to force inlining or no inlining.
1512 if (!ShouldInline && CA.getCost() < CA.getThreshold())
1513 return InlineCost::getNever();
1514 if (ShouldInline && CA.getCost() >= CA.getThreshold())
1515 return InlineCost::getAlways();
1516
1517 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
1518 }
1519
isInlineViable(Function & F)1520 bool llvm::isInlineViable(Function &F) {
1521 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
1522 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1523 // Disallow inlining of functions which contain indirect branches or
1524 // blockaddresses.
1525 if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken())
1526 return false;
1527
1528 for (auto &II : *BI) {
1529 CallSite CS(&II);
1530 if (!CS)
1531 continue;
1532
1533 // Disallow recursive calls.
1534 if (&F == CS.getCalledFunction())
1535 return false;
1536
1537 // Disallow calls which expose returns-twice to a function not previously
1538 // attributed as such.
1539 if (!ReturnsTwice && CS.isCall() &&
1540 cast<CallInst>(CS.getInstruction())->canReturnTwice())
1541 return false;
1542
1543 // Disallow inlining functions that call @llvm.localescape. Doing this
1544 // correctly would require major changes to the inliner.
1545 if (CS.getCalledFunction() &&
1546 CS.getCalledFunction()->getIntrinsicID() ==
1547 llvm::Intrinsic::localescape)
1548 return false;
1549 }
1550 }
1551
1552 return true;
1553 }
1554