1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugLoc.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 using namespace llvm;
36
37 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
38 template class llvm::LoopBase<BasicBlock, Loop>;
39 template class llvm::LoopInfoBase<BasicBlock, Loop>;
40
41 // Always verify loopinfo if expensive checking is enabled.
42 #ifdef EXPENSIVE_CHECKS
43 static bool VerifyLoopInfo = true;
44 #else
45 static bool VerifyLoopInfo = false;
46 #endif
47 static cl::opt<bool,true>
48 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
49 cl::desc("Verify loop info (time consuming)"));
50
51 //===----------------------------------------------------------------------===//
52 // Loop implementation
53 //
54
isLoopInvariant(const Value * V) const55 bool Loop::isLoopInvariant(const Value *V) const {
56 if (const Instruction *I = dyn_cast<Instruction>(V))
57 return !contains(I);
58 return true; // All non-instructions are loop invariant
59 }
60
hasLoopInvariantOperands(const Instruction * I) const61 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
62 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
63 }
64
makeLoopInvariant(Value * V,bool & Changed,Instruction * InsertPt) const65 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
66 Instruction *InsertPt) const {
67 if (Instruction *I = dyn_cast<Instruction>(V))
68 return makeLoopInvariant(I, Changed, InsertPt);
69 return true; // All non-instructions are loop-invariant.
70 }
71
makeLoopInvariant(Instruction * I,bool & Changed,Instruction * InsertPt) const72 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
73 Instruction *InsertPt) const {
74 // Test if the value is already loop-invariant.
75 if (isLoopInvariant(I))
76 return true;
77 if (!isSafeToSpeculativelyExecute(I))
78 return false;
79 if (I->mayReadFromMemory())
80 return false;
81 // EH block instructions are immobile.
82 if (I->isEHPad())
83 return false;
84 // Determine the insertion point, unless one was given.
85 if (!InsertPt) {
86 BasicBlock *Preheader = getLoopPreheader();
87 // Without a preheader, hoisting is not feasible.
88 if (!Preheader)
89 return false;
90 InsertPt = Preheader->getTerminator();
91 }
92 // Don't hoist instructions with loop-variant operands.
93 for (Value *Operand : I->operands())
94 if (!makeLoopInvariant(Operand, Changed, InsertPt))
95 return false;
96
97 // Hoist.
98 I->moveBefore(InsertPt);
99
100 // There is possibility of hoisting this instruction above some arbitrary
101 // condition. Any metadata defined on it can be control dependent on this
102 // condition. Conservatively strip it here so that we don't give any wrong
103 // information to the optimizer.
104 I->dropUnknownNonDebugMetadata();
105
106 Changed = true;
107 return true;
108 }
109
getCanonicalInductionVariable() const110 PHINode *Loop::getCanonicalInductionVariable() const {
111 BasicBlock *H = getHeader();
112
113 BasicBlock *Incoming = nullptr, *Backedge = nullptr;
114 pred_iterator PI = pred_begin(H);
115 assert(PI != pred_end(H) &&
116 "Loop must have at least one backedge!");
117 Backedge = *PI++;
118 if (PI == pred_end(H)) return nullptr; // dead loop
119 Incoming = *PI++;
120 if (PI != pred_end(H)) return nullptr; // multiple backedges?
121
122 if (contains(Incoming)) {
123 if (contains(Backedge))
124 return nullptr;
125 std::swap(Incoming, Backedge);
126 } else if (!contains(Backedge))
127 return nullptr;
128
129 // Loop over all of the PHI nodes, looking for a canonical indvar.
130 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
131 PHINode *PN = cast<PHINode>(I);
132 if (ConstantInt *CI =
133 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
134 if (CI->isNullValue())
135 if (Instruction *Inc =
136 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
137 if (Inc->getOpcode() == Instruction::Add &&
138 Inc->getOperand(0) == PN)
139 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
140 if (CI->equalsInt(1))
141 return PN;
142 }
143 return nullptr;
144 }
145
isLCSSAForm(DominatorTree & DT) const146 bool Loop::isLCSSAForm(DominatorTree &DT) const {
147 for (BasicBlock *BB : this->blocks()) {
148 for (Instruction &I : *BB) {
149 // Tokens can't be used in PHI nodes and live-out tokens prevent loop
150 // optimizations, so for the purposes of considered LCSSA form, we
151 // can ignore them.
152 if (I.getType()->isTokenTy())
153 continue;
154
155 for (Use &U : I.uses()) {
156 Instruction *UI = cast<Instruction>(U.getUser());
157 BasicBlock *UserBB = UI->getParent();
158 if (PHINode *P = dyn_cast<PHINode>(UI))
159 UserBB = P->getIncomingBlock(U);
160
161 // Check the current block, as a fast-path, before checking whether
162 // the use is anywhere in the loop. Most values are used in the same
163 // block they are defined in. Also, blocks not reachable from the
164 // entry are special; uses in them don't need to go through PHIs.
165 if (UserBB != BB &&
166 !contains(UserBB) &&
167 DT.isReachableFromEntry(UserBB))
168 return false;
169 }
170 }
171 }
172
173 return true;
174 }
175
isRecursivelyLCSSAForm(DominatorTree & DT) const176 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
177 if (!isLCSSAForm(DT))
178 return false;
179
180 return std::all_of(begin(), end(), [&](const Loop *L) {
181 return L->isRecursivelyLCSSAForm(DT);
182 });
183 }
184
isLoopSimplifyForm() const185 bool Loop::isLoopSimplifyForm() const {
186 // Normal-form loops have a preheader, a single backedge, and all of their
187 // exits have all their predecessors inside the loop.
188 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
189 }
190
191 // Routines that reform the loop CFG and split edges often fail on indirectbr.
isSafeToClone() const192 bool Loop::isSafeToClone() const {
193 // Return false if any loop blocks contain indirectbrs, or there are any calls
194 // to noduplicate functions.
195 for (BasicBlock *BB : this->blocks()) {
196 if (isa<IndirectBrInst>(BB->getTerminator()))
197 return false;
198
199 for (Instruction &I : *BB)
200 if (auto CS = CallSite(&I))
201 if (CS.cannotDuplicate())
202 return false;
203 }
204 return true;
205 }
206
getLoopID() const207 MDNode *Loop::getLoopID() const {
208 MDNode *LoopID = nullptr;
209 if (isLoopSimplifyForm()) {
210 LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop);
211 } else {
212 // Go through each predecessor of the loop header and check the
213 // terminator for the metadata.
214 BasicBlock *H = getHeader();
215 for (BasicBlock *BB : this->blocks()) {
216 TerminatorInst *TI = BB->getTerminator();
217 MDNode *MD = nullptr;
218
219 // Check if this terminator branches to the loop header.
220 for (BasicBlock *Successor : TI->successors()) {
221 if (Successor == H) {
222 MD = TI->getMetadata(LLVMContext::MD_loop);
223 break;
224 }
225 }
226 if (!MD)
227 return nullptr;
228
229 if (!LoopID)
230 LoopID = MD;
231 else if (MD != LoopID)
232 return nullptr;
233 }
234 }
235 if (!LoopID || LoopID->getNumOperands() == 0 ||
236 LoopID->getOperand(0) != LoopID)
237 return nullptr;
238 return LoopID;
239 }
240
setLoopID(MDNode * LoopID) const241 void Loop::setLoopID(MDNode *LoopID) const {
242 assert(LoopID && "Loop ID should not be null");
243 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
244 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
245
246 if (isLoopSimplifyForm()) {
247 getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
248 return;
249 }
250
251 BasicBlock *H = getHeader();
252 for (BasicBlock *BB : this->blocks()) {
253 TerminatorInst *TI = BB->getTerminator();
254 for (BasicBlock *Successor : TI->successors()) {
255 if (Successor == H)
256 TI->setMetadata(LLVMContext::MD_loop, LoopID);
257 }
258 }
259 }
260
isAnnotatedParallel() const261 bool Loop::isAnnotatedParallel() const {
262 MDNode *DesiredLoopIdMetadata = getLoopID();
263
264 if (!DesiredLoopIdMetadata)
265 return false;
266
267 // The loop branch contains the parallel loop metadata. In order to ensure
268 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
269 // dependencies (thus converted the loop back to a sequential loop), check
270 // that all the memory instructions in the loop contain parallelism metadata
271 // that point to the same unique "loop id metadata" the loop branch does.
272 for (BasicBlock *BB : this->blocks()) {
273 for (Instruction &I : *BB) {
274 if (!I.mayReadOrWriteMemory())
275 continue;
276
277 // The memory instruction can refer to the loop identifier metadata
278 // directly or indirectly through another list metadata (in case of
279 // nested parallel loops). The loop identifier metadata refers to
280 // itself so we can check both cases with the same routine.
281 MDNode *LoopIdMD =
282 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
283
284 if (!LoopIdMD)
285 return false;
286
287 bool LoopIdMDFound = false;
288 for (const MDOperand &MDOp : LoopIdMD->operands()) {
289 if (MDOp == DesiredLoopIdMetadata) {
290 LoopIdMDFound = true;
291 break;
292 }
293 }
294
295 if (!LoopIdMDFound)
296 return false;
297 }
298 }
299 return true;
300 }
301
getStartLoc() const302 DebugLoc Loop::getStartLoc() const {
303 // If we have a debug location in the loop ID, then use it.
304 if (MDNode *LoopID = getLoopID())
305 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
306 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i)))
307 return DebugLoc(L);
308
309 // Try the pre-header first.
310 if (BasicBlock *PHeadBB = getLoopPreheader())
311 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
312 return DL;
313
314 // If we have no pre-header or there are no instructions with debug
315 // info in it, try the header.
316 if (BasicBlock *HeadBB = getHeader())
317 return HeadBB->getTerminator()->getDebugLoc();
318
319 return DebugLoc();
320 }
321
hasDedicatedExits() const322 bool Loop::hasDedicatedExits() const {
323 // Each predecessor of each exit block of a normal loop is contained
324 // within the loop.
325 SmallVector<BasicBlock *, 4> ExitBlocks;
326 getExitBlocks(ExitBlocks);
327 for (BasicBlock *BB : ExitBlocks)
328 for (BasicBlock *Predecessor : predecessors(BB))
329 if (!contains(Predecessor))
330 return false;
331 // All the requirements are met.
332 return true;
333 }
334
335 void
getUniqueExitBlocks(SmallVectorImpl<BasicBlock * > & ExitBlocks) const336 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
337 assert(hasDedicatedExits() &&
338 "getUniqueExitBlocks assumes the loop has canonical form exits!");
339
340 SmallVector<BasicBlock *, 32> SwitchExitBlocks;
341 for (BasicBlock *BB : this->blocks()) {
342 SwitchExitBlocks.clear();
343 for (BasicBlock *Successor : successors(BB)) {
344 // If block is inside the loop then it is not an exit block.
345 if (contains(Successor))
346 continue;
347
348 pred_iterator PI = pred_begin(Successor);
349 BasicBlock *FirstPred = *PI;
350
351 // If current basic block is this exit block's first predecessor
352 // then only insert exit block in to the output ExitBlocks vector.
353 // This ensures that same exit block is not inserted twice into
354 // ExitBlocks vector.
355 if (BB != FirstPred)
356 continue;
357
358 // If a terminator has more then two successors, for example SwitchInst,
359 // then it is possible that there are multiple edges from current block
360 // to one exit block.
361 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
362 ExitBlocks.push_back(Successor);
363 continue;
364 }
365
366 // In case of multiple edges from current block to exit block, collect
367 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
368 // duplicate edges.
369 if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor)
370 == SwitchExitBlocks.end()) {
371 SwitchExitBlocks.push_back(Successor);
372 ExitBlocks.push_back(Successor);
373 }
374 }
375 }
376 }
377
getUniqueExitBlock() const378 BasicBlock *Loop::getUniqueExitBlock() const {
379 SmallVector<BasicBlock *, 8> UniqueExitBlocks;
380 getUniqueExitBlocks(UniqueExitBlocks);
381 if (UniqueExitBlocks.size() == 1)
382 return UniqueExitBlocks[0];
383 return nullptr;
384 }
385
386 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const387 LLVM_DUMP_METHOD void Loop::dump() const {
388 print(dbgs());
389 }
390 #endif
391
392 //===----------------------------------------------------------------------===//
393 // UnloopUpdater implementation
394 //
395
396 namespace {
397 /// Find the new parent loop for all blocks within the "unloop" whose last
398 /// backedges has just been removed.
399 class UnloopUpdater {
400 Loop &Unloop;
401 LoopInfo *LI;
402
403 LoopBlocksDFS DFS;
404
405 // Map unloop's immediate subloops to their nearest reachable parents. Nested
406 // loops within these subloops will not change parents. However, an immediate
407 // subloop's new parent will be the nearest loop reachable from either its own
408 // exits *or* any of its nested loop's exits.
409 DenseMap<Loop*, Loop*> SubloopParents;
410
411 // Flag the presence of an irreducible backedge whose destination is a block
412 // directly contained by the original unloop.
413 bool FoundIB;
414
415 public:
UnloopUpdater(Loop * UL,LoopInfo * LInfo)416 UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
417 Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
418
419 void updateBlockParents();
420
421 void removeBlocksFromAncestors();
422
423 void updateSubloopParents();
424
425 protected:
426 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
427 };
428 } // end anonymous namespace
429
430 /// Update the parent loop for all blocks that are directly contained within the
431 /// original "unloop".
updateBlockParents()432 void UnloopUpdater::updateBlockParents() {
433 if (Unloop.getNumBlocks()) {
434 // Perform a post order CFG traversal of all blocks within this loop,
435 // propagating the nearest loop from sucessors to predecessors.
436 LoopBlocksTraversal Traversal(DFS, LI);
437 for (BasicBlock *POI : Traversal) {
438
439 Loop *L = LI->getLoopFor(POI);
440 Loop *NL = getNearestLoop(POI, L);
441
442 if (NL != L) {
443 // For reducible loops, NL is now an ancestor of Unloop.
444 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
445 "uninitialized successor");
446 LI->changeLoopFor(POI, NL);
447 }
448 else {
449 // Or the current block is part of a subloop, in which case its parent
450 // is unchanged.
451 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
452 }
453 }
454 }
455 // Each irreducible loop within the unloop induces a round of iteration using
456 // the DFS result cached by Traversal.
457 bool Changed = FoundIB;
458 for (unsigned NIters = 0; Changed; ++NIters) {
459 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
460
461 // Iterate over the postorder list of blocks, propagating the nearest loop
462 // from successors to predecessors as before.
463 Changed = false;
464 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
465 POE = DFS.endPostorder(); POI != POE; ++POI) {
466
467 Loop *L = LI->getLoopFor(*POI);
468 Loop *NL = getNearestLoop(*POI, L);
469 if (NL != L) {
470 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
471 "uninitialized successor");
472 LI->changeLoopFor(*POI, NL);
473 Changed = true;
474 }
475 }
476 }
477 }
478
479 /// Remove unloop's blocks from all ancestors below their new parents.
removeBlocksFromAncestors()480 void UnloopUpdater::removeBlocksFromAncestors() {
481 // Remove all unloop's blocks (including those in nested subloops) from
482 // ancestors below the new parent loop.
483 for (Loop::block_iterator BI = Unloop.block_begin(),
484 BE = Unloop.block_end(); BI != BE; ++BI) {
485 Loop *OuterParent = LI->getLoopFor(*BI);
486 if (Unloop.contains(OuterParent)) {
487 while (OuterParent->getParentLoop() != &Unloop)
488 OuterParent = OuterParent->getParentLoop();
489 OuterParent = SubloopParents[OuterParent];
490 }
491 // Remove blocks from former Ancestors except Unloop itself which will be
492 // deleted.
493 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
494 OldParent = OldParent->getParentLoop()) {
495 assert(OldParent && "new loop is not an ancestor of the original");
496 OldParent->removeBlockFromLoop(*BI);
497 }
498 }
499 }
500
501 /// Update the parent loop for all subloops directly nested within unloop.
updateSubloopParents()502 void UnloopUpdater::updateSubloopParents() {
503 while (!Unloop.empty()) {
504 Loop *Subloop = *std::prev(Unloop.end());
505 Unloop.removeChildLoop(std::prev(Unloop.end()));
506
507 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
508 if (Loop *Parent = SubloopParents[Subloop])
509 Parent->addChildLoop(Subloop);
510 else
511 LI->addTopLevelLoop(Subloop);
512 }
513 }
514
515 /// Return the nearest parent loop among this block's successors. If a successor
516 /// is a subloop header, consider its parent to be the nearest parent of the
517 /// subloop's exits.
518 ///
519 /// For subloop blocks, simply update SubloopParents and return NULL.
getNearestLoop(BasicBlock * BB,Loop * BBLoop)520 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
521
522 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
523 // is considered uninitialized.
524 Loop *NearLoop = BBLoop;
525
526 Loop *Subloop = nullptr;
527 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
528 Subloop = NearLoop;
529 // Find the subloop ancestor that is directly contained within Unloop.
530 while (Subloop->getParentLoop() != &Unloop) {
531 Subloop = Subloop->getParentLoop();
532 assert(Subloop && "subloop is not an ancestor of the original loop");
533 }
534 // Get the current nearest parent of the Subloop exits, initially Unloop.
535 NearLoop =
536 SubloopParents.insert(std::make_pair(Subloop, &Unloop)).first->second;
537 }
538
539 succ_iterator I = succ_begin(BB), E = succ_end(BB);
540 if (I == E) {
541 assert(!Subloop && "subloop blocks must have a successor");
542 NearLoop = nullptr; // unloop blocks may now exit the function.
543 }
544 for (; I != E; ++I) {
545 if (*I == BB)
546 continue; // self loops are uninteresting
547
548 Loop *L = LI->getLoopFor(*I);
549 if (L == &Unloop) {
550 // This successor has not been processed. This path must lead to an
551 // irreducible backedge.
552 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
553 FoundIB = true;
554 }
555 if (L != &Unloop && Unloop.contains(L)) {
556 // Successor is in a subloop.
557 if (Subloop)
558 continue; // Branching within subloops. Ignore it.
559
560 // BB branches from the original into a subloop header.
561 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
562
563 // Get the current nearest parent of the Subloop's exits.
564 L = SubloopParents[L];
565 // L could be Unloop if the only exit was an irreducible backedge.
566 }
567 if (L == &Unloop) {
568 continue;
569 }
570 // Handle critical edges from Unloop into a sibling loop.
571 if (L && !L->contains(&Unloop)) {
572 L = L->getParentLoop();
573 }
574 // Remember the nearest parent loop among successors or subloop exits.
575 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
576 NearLoop = L;
577 }
578 if (Subloop) {
579 SubloopParents[Subloop] = NearLoop;
580 return BBLoop;
581 }
582 return NearLoop;
583 }
584
LoopInfo(const DominatorTreeBase<BasicBlock> & DomTree)585 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
586 analyze(DomTree);
587 }
588
markAsRemoved(Loop * Unloop)589 void LoopInfo::markAsRemoved(Loop *Unloop) {
590 assert(!Unloop->isInvalid() && "Loop has already been removed");
591 Unloop->invalidate();
592 RemovedLoops.push_back(Unloop);
593
594 // First handle the special case of no parent loop to simplify the algorithm.
595 if (!Unloop->getParentLoop()) {
596 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
597 for (Loop::block_iterator I = Unloop->block_begin(),
598 E = Unloop->block_end();
599 I != E; ++I) {
600
601 // Don't reparent blocks in subloops.
602 if (getLoopFor(*I) != Unloop)
603 continue;
604
605 // Blocks no longer have a parent but are still referenced by Unloop until
606 // the Unloop object is deleted.
607 changeLoopFor(*I, nullptr);
608 }
609
610 // Remove the loop from the top-level LoopInfo object.
611 for (iterator I = begin();; ++I) {
612 assert(I != end() && "Couldn't find loop");
613 if (*I == Unloop) {
614 removeLoop(I);
615 break;
616 }
617 }
618
619 // Move all of the subloops to the top-level.
620 while (!Unloop->empty())
621 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
622
623 return;
624 }
625
626 // Update the parent loop for all blocks within the loop. Blocks within
627 // subloops will not change parents.
628 UnloopUpdater Updater(Unloop, this);
629 Updater.updateBlockParents();
630
631 // Remove blocks from former ancestor loops.
632 Updater.removeBlocksFromAncestors();
633
634 // Add direct subloops as children in their new parent loop.
635 Updater.updateSubloopParents();
636
637 // Remove unloop from its parent loop.
638 Loop *ParentLoop = Unloop->getParentLoop();
639 for (Loop::iterator I = ParentLoop->begin();; ++I) {
640 assert(I != ParentLoop->end() && "Couldn't find loop");
641 if (*I == Unloop) {
642 ParentLoop->removeChildLoop(I);
643 break;
644 }
645 }
646 }
647
648 char LoopAnalysis::PassID;
649
run(Function & F,AnalysisManager<Function> & AM)650 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
651 // FIXME: Currently we create a LoopInfo from scratch for every function.
652 // This may prove to be too wasteful due to deallocating and re-allocating
653 // memory each time for the underlying map and vector datastructures. At some
654 // point it may prove worthwhile to use a freelist and recycle LoopInfo
655 // objects. I don't want to add that kind of complexity until the scope of
656 // the problem is better understood.
657 LoopInfo LI;
658 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
659 return LI;
660 }
661
run(Function & F,AnalysisManager<Function> & AM)662 PreservedAnalyses LoopPrinterPass::run(Function &F,
663 AnalysisManager<Function> &AM) {
664 AM.getResult<LoopAnalysis>(F).print(OS);
665 return PreservedAnalyses::all();
666 }
667
PrintLoopPass()668 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
PrintLoopPass(raw_ostream & OS,const std::string & Banner)669 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
670 : OS(OS), Banner(Banner) {}
671
run(Loop & L,AnalysisManager<Loop> &)672 PreservedAnalyses PrintLoopPass::run(Loop &L, AnalysisManager<Loop> &) {
673 OS << Banner;
674 for (auto *Block : L.blocks())
675 if (Block)
676 Block->print(OS);
677 else
678 OS << "Printing <null> block";
679 return PreservedAnalyses::all();
680 }
681
682 //===----------------------------------------------------------------------===//
683 // LoopInfo implementation
684 //
685
686 char LoopInfoWrapperPass::ID = 0;
687 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
688 true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)689 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
690 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
691 true, true)
692
693 bool LoopInfoWrapperPass::runOnFunction(Function &) {
694 releaseMemory();
695 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
696 return false;
697 }
698
verifyAnalysis() const699 void LoopInfoWrapperPass::verifyAnalysis() const {
700 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
701 // function each time verifyAnalysis is called is very expensive. The
702 // -verify-loop-info option can enable this. In order to perform some
703 // checking by default, LoopPass has been taught to call verifyLoop manually
704 // during loop pass sequences.
705 if (VerifyLoopInfo)
706 LI.verify();
707 }
708
getAnalysisUsage(AnalysisUsage & AU) const709 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
710 AU.setPreservesAll();
711 AU.addRequired<DominatorTreeWrapperPass>();
712 }
713
print(raw_ostream & OS,const Module *) const714 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
715 LI.print(OS);
716 }
717
718 //===----------------------------------------------------------------------===//
719 // LoopBlocksDFS implementation
720 //
721
722 /// Traverse the loop blocks and store the DFS result.
723 /// Useful for clients that just want the final DFS result and don't need to
724 /// visit blocks during the initial traversal.
perform(LoopInfo * LI)725 void LoopBlocksDFS::perform(LoopInfo *LI) {
726 LoopBlocksTraversal Traversal(*this, LI);
727 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
728 POE = Traversal.end(); POI != POE; ++POI) ;
729 }
730