1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Metadata.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "memory-builtins"
33
34 enum AllocType : uint8_t {
35 OpNewLike = 1<<0, // allocates; never returns null
36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null
37 CallocLike = 1<<2, // allocates + bzero
38 ReallocLike = 1<<3, // reallocates
39 StrDupLike = 1<<4,
40 AllocLike = MallocLike | CallocLike | StrDupLike,
41 AnyAlloc = AllocLike | ReallocLike
42 };
43
44 struct AllocFnsTy {
45 AllocType AllocTy;
46 unsigned NumParams;
47 // First and Second size parameters (or -1 if unused)
48 int FstParam, SndParam;
49 };
50
51 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
52 // know which functions are nounwind, noalias, nocapture parameters, etc.
53 static const std::pair<LibFunc::Func, AllocFnsTy> AllocationFnData[] = {
54 {LibFunc::malloc, {MallocLike, 1, 0, -1}},
55 {LibFunc::valloc, {MallocLike, 1, 0, -1}},
56 {LibFunc::Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
57 {LibFunc::ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
58 {LibFunc::Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long)
59 {LibFunc::ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow)
60 {LibFunc::Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
61 {LibFunc::ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
62 {LibFunc::Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long)
63 {LibFunc::ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow)
64 {LibFunc::msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
65 {LibFunc::msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
66 {LibFunc::msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long)
67 {LibFunc::msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow)
68 {LibFunc::msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
69 {LibFunc::msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
70 {LibFunc::msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long)
71 {LibFunc::msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow)
72 {LibFunc::calloc, {CallocLike, 2, 0, 1}},
73 {LibFunc::realloc, {ReallocLike, 2, 1, -1}},
74 {LibFunc::reallocf, {ReallocLike, 2, 1, -1}},
75 {LibFunc::strdup, {StrDupLike, 1, -1, -1}},
76 {LibFunc::strndup, {StrDupLike, 2, 1, -1}}
77 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
78 };
79
80
getCalledFunction(const Value * V,bool LookThroughBitCast)81 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
82 if (LookThroughBitCast)
83 V = V->stripPointerCasts();
84
85 CallSite CS(const_cast<Value*>(V));
86 if (!CS.getInstruction())
87 return nullptr;
88
89 if (CS.isNoBuiltin())
90 return nullptr;
91
92 Function *Callee = CS.getCalledFunction();
93 if (!Callee || !Callee->isDeclaration())
94 return nullptr;
95 return Callee;
96 }
97
98 /// Returns the allocation data for the given value if it's either a call to a
99 /// known allocation function, or a call to a function with the allocsize
100 /// attribute.
getAllocationData(const Value * V,AllocType AllocTy,const TargetLibraryInfo * TLI,bool LookThroughBitCast=false)101 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
102 const TargetLibraryInfo *TLI,
103 bool LookThroughBitCast = false) {
104 // Skip intrinsics
105 if (isa<IntrinsicInst>(V))
106 return None;
107
108 const Function *Callee = getCalledFunction(V, LookThroughBitCast);
109 if (!Callee)
110 return None;
111
112 // If it has allocsize, we can skip checking if it's a known function.
113 //
114 // MallocLike is chosen here because allocsize makes no guarantees about the
115 // nullness of the result of the function, nor does it deal with strings, nor
116 // does it require that the memory returned is zeroed out.
117 LLVM_CONSTEXPR auto AllocSizeAllocTy = MallocLike;
118 if ((AllocTy & AllocSizeAllocTy) == AllocSizeAllocTy &&
119 Callee->hasFnAttribute(Attribute::AllocSize)) {
120 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
121 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
122
123 AllocFnsTy Result;
124 Result.AllocTy = AllocSizeAllocTy;
125 Result.NumParams = Callee->getNumOperands();
126 Result.FstParam = Args.first;
127 Result.SndParam = Args.second.getValueOr(-1);
128 return Result;
129 }
130
131 // Make sure that the function is available.
132 StringRef FnName = Callee->getName();
133 LibFunc::Func TLIFn;
134 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
135 return None;
136
137 const auto *Iter =
138 std::find_if(std::begin(AllocationFnData), std::end(AllocationFnData),
139 [TLIFn](const std::pair<LibFunc::Func, AllocFnsTy> &P) {
140 return P.first == TLIFn;
141 });
142
143 if (Iter == std::end(AllocationFnData))
144 return None;
145
146 const AllocFnsTy *FnData = &Iter->second;
147 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
148 return None;
149
150 // Check function prototype.
151 int FstParam = FnData->FstParam;
152 int SndParam = FnData->SndParam;
153 FunctionType *FTy = Callee->getFunctionType();
154
155 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
156 FTy->getNumParams() == FnData->NumParams &&
157 (FstParam < 0 ||
158 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
159 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
160 (SndParam < 0 ||
161 FTy->getParamType(SndParam)->isIntegerTy(32) ||
162 FTy->getParamType(SndParam)->isIntegerTy(64)))
163 return *FnData;
164 return None;
165 }
166
hasNoAliasAttr(const Value * V,bool LookThroughBitCast)167 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
168 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
169 return CS && CS.paramHasAttr(AttributeSet::ReturnIndex, Attribute::NoAlias);
170 }
171
172
173 /// \brief Tests if a value is a call or invoke to a library function that
174 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
175 /// like).
isAllocationFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)176 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
177 bool LookThroughBitCast) {
178 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
179 }
180
181 /// \brief Tests if a value is a call or invoke to a function that returns a
182 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
isNoAliasFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)183 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
184 bool LookThroughBitCast) {
185 // it's safe to consider realloc as noalias since accessing the original
186 // pointer is undefined behavior
187 return isAllocationFn(V, TLI, LookThroughBitCast) ||
188 hasNoAliasAttr(V, LookThroughBitCast);
189 }
190
191 /// \brief Tests if a value is a call or invoke to a library function that
192 /// allocates uninitialized memory (such as malloc).
isMallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)193 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
194 bool LookThroughBitCast) {
195 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
196 }
197
198 /// \brief Tests if a value is a call or invoke to a library function that
199 /// allocates zero-filled memory (such as calloc).
isCallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)200 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
201 bool LookThroughBitCast) {
202 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
203 }
204
205 /// \brief Tests if a value is a call or invoke to a library function that
206 /// allocates memory (either malloc, calloc, or strdup like).
isAllocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)207 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
208 bool LookThroughBitCast) {
209 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
210 }
211
212 /// extractMallocCall - Returns the corresponding CallInst if the instruction
213 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
214 /// ignore InvokeInst here.
extractMallocCall(const Value * I,const TargetLibraryInfo * TLI)215 const CallInst *llvm::extractMallocCall(const Value *I,
216 const TargetLibraryInfo *TLI) {
217 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
218 }
219
computeArraySize(const CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt=false)220 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
221 const TargetLibraryInfo *TLI,
222 bool LookThroughSExt = false) {
223 if (!CI)
224 return nullptr;
225
226 // The size of the malloc's result type must be known to determine array size.
227 Type *T = getMallocAllocatedType(CI, TLI);
228 if (!T || !T->isSized())
229 return nullptr;
230
231 unsigned ElementSize = DL.getTypeAllocSize(T);
232 if (StructType *ST = dyn_cast<StructType>(T))
233 ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
234
235 // If malloc call's arg can be determined to be a multiple of ElementSize,
236 // return the multiple. Otherwise, return NULL.
237 Value *MallocArg = CI->getArgOperand(0);
238 Value *Multiple = nullptr;
239 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
240 return Multiple;
241
242 return nullptr;
243 }
244
245 /// getMallocType - Returns the PointerType resulting from the malloc call.
246 /// The PointerType depends on the number of bitcast uses of the malloc call:
247 /// 0: PointerType is the calls' return type.
248 /// 1: PointerType is the bitcast's result type.
249 /// >1: Unique PointerType cannot be determined, return NULL.
getMallocType(const CallInst * CI,const TargetLibraryInfo * TLI)250 PointerType *llvm::getMallocType(const CallInst *CI,
251 const TargetLibraryInfo *TLI) {
252 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
253
254 PointerType *MallocType = nullptr;
255 unsigned NumOfBitCastUses = 0;
256
257 // Determine if CallInst has a bitcast use.
258 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
259 UI != E;)
260 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
261 MallocType = cast<PointerType>(BCI->getDestTy());
262 NumOfBitCastUses++;
263 }
264
265 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
266 if (NumOfBitCastUses == 1)
267 return MallocType;
268
269 // Malloc call was not bitcast, so type is the malloc function's return type.
270 if (NumOfBitCastUses == 0)
271 return cast<PointerType>(CI->getType());
272
273 // Type could not be determined.
274 return nullptr;
275 }
276
277 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
278 /// The Type depends on the number of bitcast uses of the malloc call:
279 /// 0: PointerType is the malloc calls' return type.
280 /// 1: PointerType is the bitcast's result type.
281 /// >1: Unique PointerType cannot be determined, return NULL.
getMallocAllocatedType(const CallInst * CI,const TargetLibraryInfo * TLI)282 Type *llvm::getMallocAllocatedType(const CallInst *CI,
283 const TargetLibraryInfo *TLI) {
284 PointerType *PT = getMallocType(CI, TLI);
285 return PT ? PT->getElementType() : nullptr;
286 }
287
288 /// getMallocArraySize - Returns the array size of a malloc call. If the
289 /// argument passed to malloc is a multiple of the size of the malloced type,
290 /// then return that multiple. For non-array mallocs, the multiple is
291 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
292 /// determined.
getMallocArraySize(CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt)293 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
294 const TargetLibraryInfo *TLI,
295 bool LookThroughSExt) {
296 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
297 return computeArraySize(CI, DL, TLI, LookThroughSExt);
298 }
299
300
301 /// extractCallocCall - Returns the corresponding CallInst if the instruction
302 /// is a calloc call.
extractCallocCall(const Value * I,const TargetLibraryInfo * TLI)303 const CallInst *llvm::extractCallocCall(const Value *I,
304 const TargetLibraryInfo *TLI) {
305 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
306 }
307
308
309 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
isFreeCall(const Value * I,const TargetLibraryInfo * TLI)310 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
311 const CallInst *CI = dyn_cast<CallInst>(I);
312 if (!CI || isa<IntrinsicInst>(CI))
313 return nullptr;
314 Function *Callee = CI->getCalledFunction();
315 if (Callee == nullptr)
316 return nullptr;
317
318 StringRef FnName = Callee->getName();
319 LibFunc::Func TLIFn;
320 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
321 return nullptr;
322
323 unsigned ExpectedNumParams;
324 if (TLIFn == LibFunc::free ||
325 TLIFn == LibFunc::ZdlPv || // operator delete(void*)
326 TLIFn == LibFunc::ZdaPv || // operator delete[](void*)
327 TLIFn == LibFunc::msvc_delete_ptr32 || // operator delete(void*)
328 TLIFn == LibFunc::msvc_delete_ptr64 || // operator delete(void*)
329 TLIFn == LibFunc::msvc_delete_array_ptr32 || // operator delete[](void*)
330 TLIFn == LibFunc::msvc_delete_array_ptr64) // operator delete[](void*)
331 ExpectedNumParams = 1;
332 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint)
333 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong)
334 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
335 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint)
336 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong)
337 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
338 TLIFn == LibFunc::msvc_delete_ptr32_int || // delete(void*, uint)
339 TLIFn == LibFunc::msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
340 TLIFn == LibFunc::msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
341 TLIFn == LibFunc::msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
342 TLIFn == LibFunc::msvc_delete_array_ptr32_int || // delete[](void*, uint)
343 TLIFn == LibFunc::msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
344 TLIFn == LibFunc::msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
345 TLIFn == LibFunc::msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow)
346 ExpectedNumParams = 2;
347 else
348 return nullptr;
349
350 // Check free prototype.
351 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
352 // attribute will exist.
353 FunctionType *FTy = Callee->getFunctionType();
354 if (!FTy->getReturnType()->isVoidTy())
355 return nullptr;
356 if (FTy->getNumParams() != ExpectedNumParams)
357 return nullptr;
358 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
359 return nullptr;
360
361 return CI;
362 }
363
364
365
366 //===----------------------------------------------------------------------===//
367 // Utility functions to compute size of objects.
368 //
getSizeWithOverflow(const SizeOffsetType & Data)369 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
370 if (Data.second.isNegative() || Data.first.ult(Data.second))
371 return APInt(Data.first.getBitWidth(), 0);
372 return Data.first - Data.second;
373 }
374
375 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
376 /// object size in Size if successful, and false otherwise.
377 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
378 /// byval arguments, and global variables.
getObjectSize(const Value * Ptr,uint64_t & Size,const DataLayout & DL,const TargetLibraryInfo * TLI,bool RoundToAlign,llvm::ObjSizeMode Mode)379 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
380 const TargetLibraryInfo *TLI, bool RoundToAlign,
381 llvm::ObjSizeMode Mode) {
382 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(),
383 RoundToAlign, Mode);
384 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
385 if (!Visitor.bothKnown(Data))
386 return false;
387
388 Size = getSizeWithOverflow(Data).getZExtValue();
389 return true;
390 }
391
392 STATISTIC(ObjectVisitorArgument,
393 "Number of arguments with unsolved size and offset");
394 STATISTIC(ObjectVisitorLoad,
395 "Number of load instructions with unsolved size and offset");
396
397
align(APInt Size,uint64_t Align)398 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
399 if (RoundToAlign && Align)
400 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
401 return Size;
402 }
403
ObjectSizeOffsetVisitor(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,bool RoundToAlign,ObjSizeMode Mode)404 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
405 const TargetLibraryInfo *TLI,
406 LLVMContext &Context,
407 bool RoundToAlign,
408 ObjSizeMode Mode)
409 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign), Mode(Mode) {
410 // Pointer size must be rechecked for each object visited since it could have
411 // a different address space.
412 }
413
compute(Value * V)414 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
415 IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
416 Zero = APInt::getNullValue(IntTyBits);
417
418 V = V->stripPointerCasts();
419 if (Instruction *I = dyn_cast<Instruction>(V)) {
420 // If we have already seen this instruction, bail out. Cycles can happen in
421 // unreachable code after constant propagation.
422 if (!SeenInsts.insert(I).second)
423 return unknown();
424
425 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
426 return visitGEPOperator(*GEP);
427 return visit(*I);
428 }
429 if (Argument *A = dyn_cast<Argument>(V))
430 return visitArgument(*A);
431 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
432 return visitConstantPointerNull(*P);
433 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
434 return visitGlobalAlias(*GA);
435 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
436 return visitGlobalVariable(*GV);
437 if (UndefValue *UV = dyn_cast<UndefValue>(V))
438 return visitUndefValue(*UV);
439 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
440 if (CE->getOpcode() == Instruction::IntToPtr)
441 return unknown(); // clueless
442 if (CE->getOpcode() == Instruction::GetElementPtr)
443 return visitGEPOperator(cast<GEPOperator>(*CE));
444 }
445
446 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
447 << '\n');
448 return unknown();
449 }
450
visitAllocaInst(AllocaInst & I)451 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
452 if (!I.getAllocatedType()->isSized())
453 return unknown();
454
455 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
456 if (!I.isArrayAllocation())
457 return std::make_pair(align(Size, I.getAlignment()), Zero);
458
459 Value *ArraySize = I.getArraySize();
460 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
461 Size *= C->getValue().zextOrSelf(IntTyBits);
462 return std::make_pair(align(Size, I.getAlignment()), Zero);
463 }
464 return unknown();
465 }
466
visitArgument(Argument & A)467 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
468 // No interprocedural analysis is done at the moment.
469 if (!A.hasByValOrInAllocaAttr()) {
470 ++ObjectVisitorArgument;
471 return unknown();
472 }
473 PointerType *PT = cast<PointerType>(A.getType());
474 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
475 return std::make_pair(align(Size, A.getParamAlignment()), Zero);
476 }
477
visitCallSite(CallSite CS)478 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
479 Optional<AllocFnsTy> FnData =
480 getAllocationData(CS.getInstruction(), AnyAlloc, TLI);
481 if (!FnData)
482 return unknown();
483
484 // Handle strdup-like functions separately.
485 if (FnData->AllocTy == StrDupLike) {
486 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
487 if (!Size)
488 return unknown();
489
490 // Strndup limits strlen.
491 if (FnData->FstParam > 0) {
492 ConstantInt *Arg =
493 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
494 if (!Arg)
495 return unknown();
496
497 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
498 if (Size.ugt(MaxSize))
499 Size = MaxSize + 1;
500 }
501 return std::make_pair(Size, Zero);
502 }
503
504 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
505 if (!Arg)
506 return unknown();
507
508 // When we're compiling N-bit code, and the user uses parameters that are
509 // greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
510 // trouble with APInt size issues. This function handles resizing + overflow
511 // checks for us.
512 auto CheckedZextOrTrunc = [&](APInt &I) {
513 // More bits than we can handle. Checking the bit width isn't necessary, but
514 // it's faster than checking active bits, and should give `false` in the
515 // vast majority of cases.
516 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
517 return false;
518 if (I.getBitWidth() != IntTyBits)
519 I = I.zextOrTrunc(IntTyBits);
520 return true;
521 };
522
523 APInt Size = Arg->getValue();
524 if (!CheckedZextOrTrunc(Size))
525 return unknown();
526
527 // Size is determined by just 1 parameter.
528 if (FnData->SndParam < 0)
529 return std::make_pair(Size, Zero);
530
531 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
532 if (!Arg)
533 return unknown();
534
535 APInt NumElems = Arg->getValue();
536 if (!CheckedZextOrTrunc(NumElems))
537 return unknown();
538
539 bool Overflow;
540 Size = Size.umul_ov(NumElems, Overflow);
541 return Overflow ? unknown() : std::make_pair(Size, Zero);
542
543 // TODO: handle more standard functions (+ wchar cousins):
544 // - strdup / strndup
545 // - strcpy / strncpy
546 // - strcat / strncat
547 // - memcpy / memmove
548 // - strcat / strncat
549 // - memset
550 }
551
552 SizeOffsetType
visitConstantPointerNull(ConstantPointerNull &)553 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
554 return std::make_pair(Zero, Zero);
555 }
556
557 SizeOffsetType
visitExtractElementInst(ExtractElementInst &)558 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
559 return unknown();
560 }
561
562 SizeOffsetType
visitExtractValueInst(ExtractValueInst &)563 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
564 // Easy cases were already folded by previous passes.
565 return unknown();
566 }
567
visitGEPOperator(GEPOperator & GEP)568 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
569 SizeOffsetType PtrData = compute(GEP.getPointerOperand());
570 APInt Offset(IntTyBits, 0);
571 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
572 return unknown();
573
574 return std::make_pair(PtrData.first, PtrData.second + Offset);
575 }
576
visitGlobalAlias(GlobalAlias & GA)577 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
578 if (GA.isInterposable())
579 return unknown();
580 return compute(GA.getAliasee());
581 }
582
visitGlobalVariable(GlobalVariable & GV)583 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
584 if (!GV.hasDefinitiveInitializer())
585 return unknown();
586
587 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
588 return std::make_pair(align(Size, GV.getAlignment()), Zero);
589 }
590
visitIntToPtrInst(IntToPtrInst &)591 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
592 // clueless
593 return unknown();
594 }
595
visitLoadInst(LoadInst &)596 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
597 ++ObjectVisitorLoad;
598 return unknown();
599 }
600
visitPHINode(PHINode &)601 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
602 // too complex to analyze statically.
603 return unknown();
604 }
605
visitSelectInst(SelectInst & I)606 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
607 SizeOffsetType TrueSide = compute(I.getTrueValue());
608 SizeOffsetType FalseSide = compute(I.getFalseValue());
609 if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
610 if (TrueSide == FalseSide) {
611 return TrueSide;
612 }
613
614 APInt TrueResult = getSizeWithOverflow(TrueSide);
615 APInt FalseResult = getSizeWithOverflow(FalseSide);
616
617 if (TrueResult == FalseResult) {
618 return TrueSide;
619 }
620 if (Mode == ObjSizeMode::Min) {
621 if (TrueResult.slt(FalseResult))
622 return TrueSide;
623 return FalseSide;
624 }
625 if (Mode == ObjSizeMode::Max) {
626 if (TrueResult.sgt(FalseResult))
627 return TrueSide;
628 return FalseSide;
629 }
630 }
631 return unknown();
632 }
633
visitUndefValue(UndefValue &)634 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
635 return std::make_pair(Zero, Zero);
636 }
637
visitInstruction(Instruction & I)638 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
639 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
640 return unknown();
641 }
642
ObjectSizeOffsetEvaluator(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,bool RoundToAlign)643 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
644 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
645 bool RoundToAlign)
646 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
647 RoundToAlign(RoundToAlign) {
648 // IntTy and Zero must be set for each compute() since the address space may
649 // be different for later objects.
650 }
651
compute(Value * V)652 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
653 // XXX - Are vectors of pointers possible here?
654 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
655 Zero = ConstantInt::get(IntTy, 0);
656
657 SizeOffsetEvalType Result = compute_(V);
658
659 if (!bothKnown(Result)) {
660 // Erase everything that was computed in this iteration from the cache, so
661 // that no dangling references are left behind. We could be a bit smarter if
662 // we kept a dependency graph. It's probably not worth the complexity.
663 for (const Value *SeenVal : SeenVals) {
664 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
665 // non-computable results can be safely cached
666 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
667 CacheMap.erase(CacheIt);
668 }
669 }
670
671 SeenVals.clear();
672 return Result;
673 }
674
compute_(Value * V)675 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
676 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign);
677 SizeOffsetType Const = Visitor.compute(V);
678 if (Visitor.bothKnown(Const))
679 return std::make_pair(ConstantInt::get(Context, Const.first),
680 ConstantInt::get(Context, Const.second));
681
682 V = V->stripPointerCasts();
683
684 // Check cache.
685 CacheMapTy::iterator CacheIt = CacheMap.find(V);
686 if (CacheIt != CacheMap.end())
687 return CacheIt->second;
688
689 // Always generate code immediately before the instruction being
690 // processed, so that the generated code dominates the same BBs.
691 BuilderTy::InsertPointGuard Guard(Builder);
692 if (Instruction *I = dyn_cast<Instruction>(V))
693 Builder.SetInsertPoint(I);
694
695 // Now compute the size and offset.
696 SizeOffsetEvalType Result;
697
698 // Record the pointers that were handled in this run, so that they can be
699 // cleaned later if something fails. We also use this set to break cycles that
700 // can occur in dead code.
701 if (!SeenVals.insert(V).second) {
702 Result = unknown();
703 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
704 Result = visitGEPOperator(*GEP);
705 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
706 Result = visit(*I);
707 } else if (isa<Argument>(V) ||
708 (isa<ConstantExpr>(V) &&
709 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
710 isa<GlobalAlias>(V) ||
711 isa<GlobalVariable>(V)) {
712 // Ignore values where we cannot do more than ObjectSizeVisitor.
713 Result = unknown();
714 } else {
715 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
716 << *V << '\n');
717 Result = unknown();
718 }
719
720 // Don't reuse CacheIt since it may be invalid at this point.
721 CacheMap[V] = Result;
722 return Result;
723 }
724
visitAllocaInst(AllocaInst & I)725 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
726 if (!I.getAllocatedType()->isSized())
727 return unknown();
728
729 // must be a VLA
730 assert(I.isArrayAllocation());
731 Value *ArraySize = I.getArraySize();
732 Value *Size = ConstantInt::get(ArraySize->getType(),
733 DL.getTypeAllocSize(I.getAllocatedType()));
734 Size = Builder.CreateMul(Size, ArraySize);
735 return std::make_pair(Size, Zero);
736 }
737
visitCallSite(CallSite CS)738 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
739 Optional<AllocFnsTy> FnData =
740 getAllocationData(CS.getInstruction(), AnyAlloc, TLI);
741 if (!FnData)
742 return unknown();
743
744 // Handle strdup-like functions separately.
745 if (FnData->AllocTy == StrDupLike) {
746 // TODO
747 return unknown();
748 }
749
750 Value *FirstArg = CS.getArgument(FnData->FstParam);
751 FirstArg = Builder.CreateZExt(FirstArg, IntTy);
752 if (FnData->SndParam < 0)
753 return std::make_pair(FirstArg, Zero);
754
755 Value *SecondArg = CS.getArgument(FnData->SndParam);
756 SecondArg = Builder.CreateZExt(SecondArg, IntTy);
757 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
758 return std::make_pair(Size, Zero);
759
760 // TODO: handle more standard functions (+ wchar cousins):
761 // - strdup / strndup
762 // - strcpy / strncpy
763 // - strcat / strncat
764 // - memcpy / memmove
765 // - strcat / strncat
766 // - memset
767 }
768
769 SizeOffsetEvalType
visitExtractElementInst(ExtractElementInst &)770 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
771 return unknown();
772 }
773
774 SizeOffsetEvalType
visitExtractValueInst(ExtractValueInst &)775 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
776 return unknown();
777 }
778
779 SizeOffsetEvalType
visitGEPOperator(GEPOperator & GEP)780 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
781 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
782 if (!bothKnown(PtrData))
783 return unknown();
784
785 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
786 Offset = Builder.CreateAdd(PtrData.second, Offset);
787 return std::make_pair(PtrData.first, Offset);
788 }
789
visitIntToPtrInst(IntToPtrInst &)790 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
791 // clueless
792 return unknown();
793 }
794
visitLoadInst(LoadInst &)795 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
796 return unknown();
797 }
798
visitPHINode(PHINode & PHI)799 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
800 // Create 2 PHIs: one for size and another for offset.
801 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
802 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
803
804 // Insert right away in the cache to handle recursive PHIs.
805 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
806
807 // Compute offset/size for each PHI incoming pointer.
808 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
809 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
810 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
811
812 if (!bothKnown(EdgeData)) {
813 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
814 OffsetPHI->eraseFromParent();
815 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
816 SizePHI->eraseFromParent();
817 return unknown();
818 }
819 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
820 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
821 }
822
823 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
824 if ((Tmp = SizePHI->hasConstantValue())) {
825 Size = Tmp;
826 SizePHI->replaceAllUsesWith(Size);
827 SizePHI->eraseFromParent();
828 }
829 if ((Tmp = OffsetPHI->hasConstantValue())) {
830 Offset = Tmp;
831 OffsetPHI->replaceAllUsesWith(Offset);
832 OffsetPHI->eraseFromParent();
833 }
834 return std::make_pair(Size, Offset);
835 }
836
visitSelectInst(SelectInst & I)837 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
838 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
839 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
840
841 if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
842 return unknown();
843 if (TrueSide == FalseSide)
844 return TrueSide;
845
846 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
847 FalseSide.first);
848 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
849 FalseSide.second);
850 return std::make_pair(Size, Offset);
851 }
852
visitInstruction(Instruction & I)853 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
854 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
855 return unknown();
856 }
857