• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ScalarEvolutionNormalization.cpp - See below -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements utilities for working with "normalized" expressions.
11 // See the comments at the top of ScalarEvolutionNormalization.h for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
19 using namespace llvm;
20 
21 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
22 /// and now we need to decide whether the user should use the preinc or post-inc
23 /// value.  If this user should use the post-inc version of the IV, return true.
24 ///
25 /// Choosing wrong here can break dominance properties (if we choose to use the
26 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
27 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
28 /// should use the post-inc value).
IVUseShouldUsePostIncValue(Instruction * User,Value * Operand,const Loop * L,DominatorTree * DT)29 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
30                                        const Loop *L, DominatorTree *DT) {
31   // If the user is in the loop, use the preinc value.
32   if (L->contains(User)) return false;
33 
34   BasicBlock *LatchBlock = L->getLoopLatch();
35   if (!LatchBlock)
36     return false;
37 
38   // Ok, the user is outside of the loop.  If it is dominated by the latch
39   // block, use the post-inc value.
40   if (DT->dominates(LatchBlock, User->getParent()))
41     return true;
42 
43   // There is one case we have to be careful of: PHI nodes.  These little guys
44   // can live in blocks that are not dominated by the latch block, but (since
45   // their uses occur in the predecessor block, not the block the PHI lives in)
46   // should still use the post-inc value.  Check for this case now.
47   PHINode *PN = dyn_cast<PHINode>(User);
48   if (!PN || !Operand) return false; // not a phi, not dominated by latch block.
49 
50   // Look at all of the uses of Operand by the PHI node.  If any use corresponds
51   // to a block that is not dominated by the latch block, give up and use the
52   // preincremented value.
53   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
54     if (PN->getIncomingValue(i) == Operand &&
55         !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
56       return false;
57 
58   // Okay, all uses of Operand by PN are in predecessor blocks that really are
59   // dominated by the latch block.  Use the post-incremented value.
60   return true;
61 }
62 
63 namespace {
64 
65 /// Hold the state used during post-inc expression transformation, including a
66 /// map of transformed expressions.
67 class PostIncTransform {
68   TransformKind Kind;
69   PostIncLoopSet &Loops;
70   ScalarEvolution &SE;
71   DominatorTree &DT;
72 
73   DenseMap<const SCEV*, const SCEV*> Transformed;
74 
75 public:
PostIncTransform(TransformKind kind,PostIncLoopSet & loops,ScalarEvolution & se,DominatorTree & dt)76   PostIncTransform(TransformKind kind, PostIncLoopSet &loops,
77                    ScalarEvolution &se, DominatorTree &dt):
78     Kind(kind), Loops(loops), SE(se), DT(dt) {}
79 
80   const SCEV *TransformSubExpr(const SCEV *S, Instruction *User,
81                                Value *OperandValToReplace);
82 
83 protected:
84   const SCEV *TransformImpl(const SCEV *S, Instruction *User,
85                             Value *OperandValToReplace);
86 };
87 
88 } // namespace
89 
90 /// Implement post-inc transformation for all valid expression types.
91 const SCEV *PostIncTransform::
TransformImpl(const SCEV * S,Instruction * User,Value * OperandValToReplace)92 TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
93 
94   if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
95     const SCEV *O = X->getOperand();
96     const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
97     if (O != N)
98       switch (S->getSCEVType()) {
99       case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
100       case scSignExtend: return SE.getSignExtendExpr(N, S->getType());
101       case scTruncate: return SE.getTruncateExpr(N, S->getType());
102       default: llvm_unreachable("Unexpected SCEVCastExpr kind!");
103       }
104     return S;
105   }
106 
107   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
108     // An addrec. This is the interesting part.
109     SmallVector<const SCEV *, 8> Operands;
110     const Loop *L = AR->getLoop();
111     // The addrec conceptually uses its operands at loop entry.
112     Instruction *LUser = &L->getHeader()->front();
113     // Transform each operand.
114     for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
115          I != E; ++I) {
116       Operands.push_back(TransformSubExpr(*I, LUser, nullptr));
117     }
118     // Conservatively use AnyWrap until/unless we need FlagNW.
119     const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
120     switch (Kind) {
121     case NormalizeAutodetect:
122       // Normalize this SCEV by subtracting the expression for the final step.
123       // We only allow affine AddRecs to be normalized, otherwise we would not
124       // be able to correctly denormalize.
125       // e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2}
126       // Normalized form:   {-2,+,1,+,2}
127       // Denormalized form: {1,+,3,+,2}
128       //
129       // However, denormalization would use a different step expression than
130       // normalization (see getPostIncExpr), generating the wrong final
131       // expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
132       if (AR->isAffine() &&
133           IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
134         const SCEV *TransformedStep =
135           TransformSubExpr(AR->getStepRecurrence(SE),
136                            User, OperandValToReplace);
137         Result = SE.getMinusSCEV(Result, TransformedStep);
138         Loops.insert(L);
139       }
140 #if 0
141       // This assert is conceptually correct, but ScalarEvolution currently
142       // sometimes fails to canonicalize two equal SCEVs to exactly the same
143       // form. It's possibly a pessimization when this happens, but it isn't a
144       // correctness problem, so disable this assert for now.
145       assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
146              "SCEV normalization is not invertible!");
147 #endif
148       break;
149     case Normalize:
150       // We want to normalize step expression, because otherwise we might not be
151       // able to denormalize to the original expression.
152       //
153       // Here is an example what will happen if we don't normalize step:
154       //  ORIGINAL ISE:
155       //    {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25>
156       //  NORMALIZED ISE:
157       //    {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+,
158       //     (100 /u {0,+,1}<%bb16>)}<%bb25>
159       //  DENORMALIZED BACK ISE:
160       //    {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+,
161       //     (100 /u {1,+,1}<%bb16>)}<%bb25>
162       //  Note that the initial value changes after normalization +
163       //  denormalization, which isn't correct.
164       if (Loops.count(L)) {
165         const SCEV *TransformedStep =
166           TransformSubExpr(AR->getStepRecurrence(SE),
167                            User, OperandValToReplace);
168         Result = SE.getMinusSCEV(Result, TransformedStep);
169       }
170 #if 0
171       // See the comment on the assert above.
172       assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
173              "SCEV normalization is not invertible!");
174 #endif
175       break;
176     case Denormalize:
177       // Here we want to normalize step expressions for the same reasons, as
178       // stated above.
179       if (Loops.count(L)) {
180         const SCEV *TransformedStep =
181           TransformSubExpr(AR->getStepRecurrence(SE),
182                            User, OperandValToReplace);
183         Result = SE.getAddExpr(Result, TransformedStep);
184       }
185       break;
186     }
187     return Result;
188   }
189 
190   if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) {
191     SmallVector<const SCEV *, 8> Operands;
192     bool Changed = false;
193     // Transform each operand.
194     for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
195          I != E; ++I) {
196       const SCEV *O = *I;
197       const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
198       Changed |= N != O;
199       Operands.push_back(N);
200     }
201     // If any operand actually changed, return a transformed result.
202     if (Changed)
203       switch (S->getSCEVType()) {
204       case scAddExpr: return SE.getAddExpr(Operands);
205       case scMulExpr: return SE.getMulExpr(Operands);
206       case scSMaxExpr: return SE.getSMaxExpr(Operands);
207       case scUMaxExpr: return SE.getUMaxExpr(Operands);
208       default: llvm_unreachable("Unexpected SCEVNAryExpr kind!");
209       }
210     return S;
211   }
212 
213   if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
214     const SCEV *LO = X->getLHS();
215     const SCEV *RO = X->getRHS();
216     const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace);
217     const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace);
218     if (LO != LN || RO != RN)
219       return SE.getUDivExpr(LN, RN);
220     return S;
221   }
222 
223   llvm_unreachable("Unexpected SCEV kind!");
224 }
225 
226 /// Manage recursive transformation across an expression DAG. Revisiting
227 /// expressions would lead to exponential recursion.
228 const SCEV *PostIncTransform::
TransformSubExpr(const SCEV * S,Instruction * User,Value * OperandValToReplace)229 TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
230 
231   if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
232     return S;
233 
234   const SCEV *Result = Transformed.lookup(S);
235   if (Result)
236     return Result;
237 
238   Result = TransformImpl(S, User, OperandValToReplace);
239   Transformed[S] = Result;
240   return Result;
241 }
242 
243 /// Top level driver for transforming an expression DAG into its requested
244 /// post-inc form (either "Normalized" or "Denormalized").
TransformForPostIncUse(TransformKind Kind,const SCEV * S,Instruction * User,Value * OperandValToReplace,PostIncLoopSet & Loops,ScalarEvolution & SE,DominatorTree & DT)245 const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
246                                          const SCEV *S,
247                                          Instruction *User,
248                                          Value *OperandValToReplace,
249                                          PostIncLoopSet &Loops,
250                                          ScalarEvolution &SE,
251                                          DominatorTree &DT) {
252   PostIncTransform Transform(Kind, Loops, SE, DT);
253   return Transform.TransformSubExpr(S, User, OperandValToReplace);
254 }
255