1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/SparsePropagation.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
22
23 #define DEBUG_TYPE "sparseprop"
24
25 //===----------------------------------------------------------------------===//
26 // AbstractLatticeFunction Implementation
27 //===----------------------------------------------------------------------===//
28
~AbstractLatticeFunction()29 AbstractLatticeFunction::~AbstractLatticeFunction() {}
30
31 /// PrintValue - Render the specified lattice value to the specified stream.
PrintValue(LatticeVal V,raw_ostream & OS)32 void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) {
33 if (V == UndefVal)
34 OS << "undefined";
35 else if (V == OverdefinedVal)
36 OS << "overdefined";
37 else if (V == UntrackedVal)
38 OS << "untracked";
39 else
40 OS << "unknown lattice value";
41 }
42
43 //===----------------------------------------------------------------------===//
44 // SparseSolver Implementation
45 //===----------------------------------------------------------------------===//
46
47 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
48 /// value, initializing the value's state if it hasn't been entered into the
49 /// map yet. This function is necessary because not all values should start
50 /// out in the underdefined state... Arguments should be overdefined, and
51 /// constants should be marked as constants.
52 ///
getOrInitValueState(Value * V)53 SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
54 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
55 if (I != ValueState.end()) return I->second; // Common case, in the map
56
57 LatticeVal LV;
58 if (LatticeFunc->IsUntrackedValue(V))
59 return LatticeFunc->getUntrackedVal();
60 else if (Constant *C = dyn_cast<Constant>(V))
61 LV = LatticeFunc->ComputeConstant(C);
62 else if (Argument *A = dyn_cast<Argument>(V))
63 LV = LatticeFunc->ComputeArgument(A);
64 else if (!isa<Instruction>(V))
65 // All other non-instructions are overdefined.
66 LV = LatticeFunc->getOverdefinedVal();
67 else
68 // All instructions are underdefined by default.
69 LV = LatticeFunc->getUndefVal();
70
71 // If this value is untracked, don't add it to the map.
72 if (LV == LatticeFunc->getUntrackedVal())
73 return LV;
74 return ValueState[V] = LV;
75 }
76
77 /// UpdateState - When the state for some instruction is potentially updated,
78 /// this function notices and adds I to the worklist if needed.
UpdateState(Instruction & Inst,LatticeVal V)79 void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
80 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
81 if (I != ValueState.end() && I->second == V)
82 return; // No change.
83
84 // An update. Visit uses of I.
85 ValueState[&Inst] = V;
86 InstWorkList.push_back(&Inst);
87 }
88
89 /// MarkBlockExecutable - This method can be used by clients to mark all of
90 /// the blocks that are known to be intrinsically live in the processed unit.
MarkBlockExecutable(BasicBlock * BB)91 void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
92 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
93 BBExecutable.insert(BB); // Basic block is executable!
94 BBWorkList.push_back(BB); // Add the block to the work list!
95 }
96
97 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
98 /// work list if it is not already executable...
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)99 void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
100 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
101 return; // This edge is already known to be executable!
102
103 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
104 << " -> " << Dest->getName() << "\n");
105
106 if (BBExecutable.count(Dest)) {
107 // The destination is already executable, but we just made an edge
108 // feasible that wasn't before. Revisit the PHI nodes in the block
109 // because they have potentially new operands.
110 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
111 visitPHINode(*cast<PHINode>(I));
112
113 } else {
114 MarkBlockExecutable(Dest);
115 }
116 }
117
118
119 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
120 /// successors are reachable from a given terminator instruction.
getFeasibleSuccessors(TerminatorInst & TI,SmallVectorImpl<bool> & Succs,bool AggressiveUndef)121 void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
122 SmallVectorImpl<bool> &Succs,
123 bool AggressiveUndef) {
124 Succs.resize(TI.getNumSuccessors());
125 if (TI.getNumSuccessors() == 0) return;
126
127 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
128 if (BI->isUnconditional()) {
129 Succs[0] = true;
130 return;
131 }
132
133 LatticeVal BCValue;
134 if (AggressiveUndef)
135 BCValue = getOrInitValueState(BI->getCondition());
136 else
137 BCValue = getLatticeState(BI->getCondition());
138
139 if (BCValue == LatticeFunc->getOverdefinedVal() ||
140 BCValue == LatticeFunc->getUntrackedVal()) {
141 // Overdefined condition variables can branch either way.
142 Succs[0] = Succs[1] = true;
143 return;
144 }
145
146 // If undefined, neither is feasible yet.
147 if (BCValue == LatticeFunc->getUndefVal())
148 return;
149
150 Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
151 if (!C || !isa<ConstantInt>(C)) {
152 // Non-constant values can go either way.
153 Succs[0] = Succs[1] = true;
154 return;
155 }
156
157 // Constant condition variables mean the branch can only go a single way
158 Succs[C->isNullValue()] = true;
159 return;
160 }
161
162 if (isa<InvokeInst>(TI)) {
163 // Invoke instructions successors are always executable.
164 // TODO: Could ask the lattice function if the value can throw.
165 Succs[0] = Succs[1] = true;
166 return;
167 }
168
169 if (isa<IndirectBrInst>(TI)) {
170 Succs.assign(Succs.size(), true);
171 return;
172 }
173
174 SwitchInst &SI = cast<SwitchInst>(TI);
175 LatticeVal SCValue;
176 if (AggressiveUndef)
177 SCValue = getOrInitValueState(SI.getCondition());
178 else
179 SCValue = getLatticeState(SI.getCondition());
180
181 if (SCValue == LatticeFunc->getOverdefinedVal() ||
182 SCValue == LatticeFunc->getUntrackedVal()) {
183 // All destinations are executable!
184 Succs.assign(TI.getNumSuccessors(), true);
185 return;
186 }
187
188 // If undefined, neither is feasible yet.
189 if (SCValue == LatticeFunc->getUndefVal())
190 return;
191
192 Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
193 if (!C || !isa<ConstantInt>(C)) {
194 // All destinations are executable!
195 Succs.assign(TI.getNumSuccessors(), true);
196 return;
197 }
198 SwitchInst::CaseIt Case = SI.findCaseValue(cast<ConstantInt>(C));
199 Succs[Case.getSuccessorIndex()] = true;
200 }
201
202
203 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
204 /// basic block to the 'To' basic block is currently feasible...
isEdgeFeasible(BasicBlock * From,BasicBlock * To,bool AggressiveUndef)205 bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
206 bool AggressiveUndef) {
207 SmallVector<bool, 16> SuccFeasible;
208 TerminatorInst *TI = From->getTerminator();
209 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
210
211 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
212 if (TI->getSuccessor(i) == To && SuccFeasible[i])
213 return true;
214
215 return false;
216 }
217
visitTerminatorInst(TerminatorInst & TI)218 void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
219 SmallVector<bool, 16> SuccFeasible;
220 getFeasibleSuccessors(TI, SuccFeasible, true);
221
222 BasicBlock *BB = TI.getParent();
223
224 // Mark all feasible successors executable...
225 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
226 if (SuccFeasible[i])
227 markEdgeExecutable(BB, TI.getSuccessor(i));
228 }
229
visitPHINode(PHINode & PN)230 void SparseSolver::visitPHINode(PHINode &PN) {
231 // The lattice function may store more information on a PHINode than could be
232 // computed from its incoming values. For example, SSI form stores its sigma
233 // functions as PHINodes with a single incoming value.
234 if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
235 LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
236 if (IV != LatticeFunc->getUntrackedVal())
237 UpdateState(PN, IV);
238 return;
239 }
240
241 LatticeVal PNIV = getOrInitValueState(&PN);
242 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
243
244 // If this value is already overdefined (common) just return.
245 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
246 return; // Quick exit
247
248 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
249 // and slow us down a lot. Just mark them overdefined.
250 if (PN.getNumIncomingValues() > 64) {
251 UpdateState(PN, Overdefined);
252 return;
253 }
254
255 // Look at all of the executable operands of the PHI node. If any of them
256 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
257 // transfer function to give us the merge of the incoming values.
258 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
259 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
260 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
261 continue;
262
263 // Merge in this value.
264 LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
265 if (OpVal != PNIV)
266 PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
267
268 if (PNIV == Overdefined)
269 break; // Rest of input values don't matter.
270 }
271
272 // Update the PHI with the compute value, which is the merge of the inputs.
273 UpdateState(PN, PNIV);
274 }
275
276
visitInst(Instruction & I)277 void SparseSolver::visitInst(Instruction &I) {
278 // PHIs are handled by the propagation logic, they are never passed into the
279 // transfer functions.
280 if (PHINode *PN = dyn_cast<PHINode>(&I))
281 return visitPHINode(*PN);
282
283 // Otherwise, ask the transfer function what the result is. If this is
284 // something that we care about, remember it.
285 LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
286 if (IV != LatticeFunc->getUntrackedVal())
287 UpdateState(I, IV);
288
289 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
290 visitTerminatorInst(*TI);
291 }
292
Solve(Function & F)293 void SparseSolver::Solve(Function &F) {
294 MarkBlockExecutable(&F.getEntryBlock());
295
296 // Process the work lists until they are empty!
297 while (!BBWorkList.empty() || !InstWorkList.empty()) {
298 // Process the instruction work list.
299 while (!InstWorkList.empty()) {
300 Instruction *I = InstWorkList.back();
301 InstWorkList.pop_back();
302
303 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n");
304
305 // "I" got into the work list because it made a transition. See if any
306 // users are both live and in need of updating.
307 for (User *U : I->users()) {
308 Instruction *UI = cast<Instruction>(U);
309 if (BBExecutable.count(UI->getParent())) // Inst is executable?
310 visitInst(*UI);
311 }
312 }
313
314 // Process the basic block work list.
315 while (!BBWorkList.empty()) {
316 BasicBlock *BB = BBWorkList.back();
317 BBWorkList.pop_back();
318
319 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
320
321 // Notify all instructions in this basic block that they are newly
322 // executable.
323 for (Instruction &I : *BB)
324 visitInst(I);
325 }
326 }
327 }
328
Print(Function & F,raw_ostream & OS) const329 void SparseSolver::Print(Function &F, raw_ostream &OS) const {
330 OS << "\nFUNCTION: " << F.getName() << "\n";
331 for (auto &BB : F) {
332 if (!BBExecutable.count(&BB))
333 OS << "INFEASIBLE: ";
334 OS << "\t";
335 if (BB.hasName())
336 OS << BB.getName() << ":\n";
337 else
338 OS << "; anon bb\n";
339 for (auto &I : BB) {
340 LatticeFunc->PrintValue(getLatticeState(&I), OS);
341 OS << I << "\n";
342 }
343
344 OS << "\n";
345 }
346 }
347
348