1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/LiveRangeEdit.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/CalcSpillWeights.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23
24 using namespace llvm;
25
26 #define DEBUG_TYPE "regalloc"
27
28 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
31
anchor()32 void LiveRangeEdit::Delegate::anchor() { }
33
createEmptyIntervalFrom(unsigned OldReg)34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
35 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36 if (VRM) {
37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
38 }
39 LiveInterval &LI = LIS.createEmptyInterval(VReg);
40 return LI;
41 }
42
createFrom(unsigned OldReg)43 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
44 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
45 if (VRM) {
46 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
47 }
48 return VReg;
49 }
50
checkRematerializable(VNInfo * VNI,const MachineInstr * DefMI,AliasAnalysis * aa)51 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
52 const MachineInstr *DefMI,
53 AliasAnalysis *aa) {
54 assert(DefMI && "Missing instruction");
55 ScannedRemattable = true;
56 if (!TII.isTriviallyReMaterializable(*DefMI, aa))
57 return false;
58 Remattable.insert(VNI);
59 return true;
60 }
61
scanRemattable(AliasAnalysis * aa)62 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
63 for (VNInfo *VNI : getParent().valnos) {
64 if (VNI->isUnused())
65 continue;
66 unsigned Original = VRM->getOriginal(getReg());
67 LiveInterval &OrigLI = LIS.getInterval(Original);
68 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
69 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
70 if (!DefMI)
71 continue;
72 checkRematerializable(OrigVNI, DefMI, aa);
73 }
74 ScannedRemattable = true;
75 }
76
anyRematerializable(AliasAnalysis * aa)77 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
78 if (!ScannedRemattable)
79 scanRemattable(aa);
80 return !Remattable.empty();
81 }
82
83 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
84 /// OrigIdx are also available with the same value at UseIdx.
allUsesAvailableAt(const MachineInstr * OrigMI,SlotIndex OrigIdx,SlotIndex UseIdx) const85 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
86 SlotIndex OrigIdx,
87 SlotIndex UseIdx) const {
88 OrigIdx = OrigIdx.getRegSlot(true);
89 UseIdx = UseIdx.getRegSlot(true);
90 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
91 const MachineOperand &MO = OrigMI->getOperand(i);
92 if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
93 continue;
94
95 // We can't remat physreg uses, unless it is a constant.
96 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
97 if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
98 continue;
99 return false;
100 }
101
102 LiveInterval &li = LIS.getInterval(MO.getReg());
103 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
104 if (!OVNI)
105 continue;
106
107 // Don't allow rematerialization immediately after the original def.
108 // It would be incorrect if OrigMI redefines the register.
109 // See PR14098.
110 if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
111 return false;
112
113 if (OVNI != li.getVNInfoAt(UseIdx))
114 return false;
115 }
116 return true;
117 }
118
canRematerializeAt(Remat & RM,VNInfo * OrigVNI,SlotIndex UseIdx,bool cheapAsAMove)119 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
120 SlotIndex UseIdx, bool cheapAsAMove) {
121 assert(ScannedRemattable && "Call anyRematerializable first");
122
123 // Use scanRemattable info.
124 if (!Remattable.count(OrigVNI))
125 return false;
126
127 // No defining instruction provided.
128 SlotIndex DefIdx;
129 assert(RM.OrigMI && "No defining instruction for remattable value");
130 DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
131
132 // If only cheap remats were requested, bail out early.
133 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
134 return false;
135
136 // Verify that all used registers are available with the same values.
137 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
138 return false;
139
140 return true;
141 }
142
rematerializeAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,const Remat & RM,const TargetRegisterInfo & tri,bool Late)143 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
144 MachineBasicBlock::iterator MI,
145 unsigned DestReg,
146 const Remat &RM,
147 const TargetRegisterInfo &tri,
148 bool Late) {
149 assert(RM.OrigMI && "Invalid remat");
150 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
151 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
152 // to false anyway in case the isDead flag of RM.OrigMI's dest register
153 // is true.
154 (*--MI).getOperand(0).setIsDead(false);
155 Rematted.insert(RM.ParentVNI);
156 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
157 }
158
eraseVirtReg(unsigned Reg)159 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
160 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
161 LIS.removeInterval(Reg);
162 }
163
foldAsLoad(LiveInterval * LI,SmallVectorImpl<MachineInstr * > & Dead)164 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
165 SmallVectorImpl<MachineInstr*> &Dead) {
166 MachineInstr *DefMI = nullptr, *UseMI = nullptr;
167
168 // Check that there is a single def and a single use.
169 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
170 MachineInstr *MI = MO.getParent();
171 if (MO.isDef()) {
172 if (DefMI && DefMI != MI)
173 return false;
174 if (!MI->canFoldAsLoad())
175 return false;
176 DefMI = MI;
177 } else if (!MO.isUndef()) {
178 if (UseMI && UseMI != MI)
179 return false;
180 // FIXME: Targets don't know how to fold subreg uses.
181 if (MO.getSubReg())
182 return false;
183 UseMI = MI;
184 }
185 }
186 if (!DefMI || !UseMI)
187 return false;
188
189 // Since we're moving the DefMI load, make sure we're not extending any live
190 // ranges.
191 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
192 LIS.getInstructionIndex(*UseMI)))
193 return false;
194
195 // We also need to make sure it is safe to move the load.
196 // Assume there are stores between DefMI and UseMI.
197 bool SawStore = true;
198 if (!DefMI->isSafeToMove(nullptr, SawStore))
199 return false;
200
201 DEBUG(dbgs() << "Try to fold single def: " << *DefMI
202 << " into single use: " << *UseMI);
203
204 SmallVector<unsigned, 8> Ops;
205 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
206 return false;
207
208 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
209 if (!FoldMI)
210 return false;
211 DEBUG(dbgs() << " folded: " << *FoldMI);
212 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
213 UseMI->eraseFromParent();
214 DefMI->addRegisterDead(LI->reg, nullptr);
215 Dead.push_back(DefMI);
216 ++NumDCEFoldedLoads;
217 return true;
218 }
219
useIsKill(const LiveInterval & LI,const MachineOperand & MO) const220 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
221 const MachineOperand &MO) const {
222 const MachineInstr &MI = *MO.getParent();
223 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
224 if (LI.Query(Idx).isKill())
225 return true;
226 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
227 unsigned SubReg = MO.getSubReg();
228 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
229 for (const LiveInterval::SubRange &S : LI.subranges()) {
230 if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill())
231 return true;
232 }
233 return false;
234 }
235
236 /// Find all live intervals that need to shrink, then remove the instruction.
eliminateDeadDef(MachineInstr * MI,ToShrinkSet & ToShrink,AliasAnalysis * AA)237 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
238 AliasAnalysis *AA) {
239 assert(MI->allDefsAreDead() && "Def isn't really dead");
240 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
241
242 // Never delete a bundled instruction.
243 if (MI->isBundled()) {
244 return;
245 }
246 // Never delete inline asm.
247 if (MI->isInlineAsm()) {
248 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
249 return;
250 }
251
252 // Use the same criteria as DeadMachineInstructionElim.
253 bool SawStore = false;
254 if (!MI->isSafeToMove(nullptr, SawStore)) {
255 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
256 return;
257 }
258
259 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
260
261 // Collect virtual registers to be erased after MI is gone.
262 SmallVector<unsigned, 8> RegsToErase;
263 bool ReadsPhysRegs = false;
264 bool isOrigDef = false;
265 unsigned Dest;
266 if (VRM && MI->getOperand(0).isReg()) {
267 Dest = MI->getOperand(0).getReg();
268 unsigned Original = VRM->getOriginal(Dest);
269 LiveInterval &OrigLI = LIS.getInterval(Original);
270 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
271 // The original live-range may have been shrunk to
272 // an empty live-range. It happens when it is dead, but
273 // we still keep it around to be able to rematerialize
274 // other values that depend on it.
275 if (OrigVNI)
276 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
277 }
278
279 // Check for live intervals that may shrink
280 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
281 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
282 if (!MOI->isReg())
283 continue;
284 unsigned Reg = MOI->getReg();
285 if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
286 // Check if MI reads any unreserved physregs.
287 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
288 ReadsPhysRegs = true;
289 else if (MOI->isDef())
290 LIS.removePhysRegDefAt(Reg, Idx);
291 continue;
292 }
293 LiveInterval &LI = LIS.getInterval(Reg);
294
295 // Shrink read registers, unless it is likely to be expensive and
296 // unlikely to change anything. We typically don't want to shrink the
297 // PIC base register that has lots of uses everywhere.
298 // Always shrink COPY uses that probably come from live range splitting.
299 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
300 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
301 ToShrink.insert(&LI);
302
303 // Remove defined value.
304 if (MOI->isDef()) {
305 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
306 TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
307 LIS.removeVRegDefAt(LI, Idx);
308 if (LI.empty())
309 RegsToErase.push_back(Reg);
310 }
311 }
312
313 // Currently, we don't support DCE of physreg live ranges. If MI reads
314 // any unreserved physregs, don't erase the instruction, but turn it into
315 // a KILL instead. This way, the physreg live ranges don't end up
316 // dangling.
317 // FIXME: It would be better to have something like shrinkToUses() for
318 // physregs. That could potentially enable more DCE and it would free up
319 // the physreg. It would not happen often, though.
320 if (ReadsPhysRegs) {
321 MI->setDesc(TII.get(TargetOpcode::KILL));
322 // Remove all operands that aren't physregs.
323 for (unsigned i = MI->getNumOperands(); i; --i) {
324 const MachineOperand &MO = MI->getOperand(i-1);
325 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
326 continue;
327 MI->RemoveOperand(i-1);
328 }
329 DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
330 } else {
331 // If the dest of MI is an original reg and MI is reMaterializable,
332 // don't delete the inst. Replace the dest with a new reg, and keep
333 // the inst for remat of other siblings. The inst is saved in
334 // LiveRangeEdit::DeadRemats and will be deleted after all the
335 // allocations of the func are done.
336 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
337 LiveInterval &NewLI = createEmptyIntervalFrom(Dest);
338 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
339 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
340 pop_back();
341 markDeadRemat(MI);
342 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
343 MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
344 MI->getOperand(0).setIsDead(true);
345 } else {
346 if (TheDelegate)
347 TheDelegate->LRE_WillEraseInstruction(MI);
348 LIS.RemoveMachineInstrFromMaps(*MI);
349 MI->eraseFromParent();
350 ++NumDCEDeleted;
351 }
352 }
353
354 // Erase any virtregs that are now empty and unused. There may be <undef>
355 // uses around. Keep the empty live range in that case.
356 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
357 unsigned Reg = RegsToErase[i];
358 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
359 ToShrink.remove(&LIS.getInterval(Reg));
360 eraseVirtReg(Reg);
361 }
362 }
363 }
364
eliminateDeadDefs(SmallVectorImpl<MachineInstr * > & Dead,ArrayRef<unsigned> RegsBeingSpilled,AliasAnalysis * AA)365 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
366 ArrayRef<unsigned> RegsBeingSpilled,
367 AliasAnalysis *AA) {
368 ToShrinkSet ToShrink;
369
370 for (;;) {
371 // Erase all dead defs.
372 while (!Dead.empty())
373 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
374
375 if (ToShrink.empty())
376 break;
377
378 // Shrink just one live interval. Then delete new dead defs.
379 LiveInterval *LI = ToShrink.back();
380 ToShrink.pop_back();
381 if (foldAsLoad(LI, Dead))
382 continue;
383 unsigned VReg = LI->reg;
384 if (TheDelegate)
385 TheDelegate->LRE_WillShrinkVirtReg(VReg);
386 if (!LIS.shrinkToUses(LI, &Dead))
387 continue;
388
389 // Don't create new intervals for a register being spilled.
390 // The new intervals would have to be spilled anyway so its not worth it.
391 // Also they currently aren't spilled so creating them and not spilling
392 // them results in incorrect code.
393 bool BeingSpilled = false;
394 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
395 if (VReg == RegsBeingSpilled[i]) {
396 BeingSpilled = true;
397 break;
398 }
399 }
400
401 if (BeingSpilled) continue;
402
403 // LI may have been separated, create new intervals.
404 LI->RenumberValues();
405 SmallVector<LiveInterval*, 8> SplitLIs;
406 LIS.splitSeparateComponents(*LI, SplitLIs);
407 if (!SplitLIs.empty())
408 ++NumFracRanges;
409
410 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
411 for (const LiveInterval *SplitLI : SplitLIs) {
412 // If LI is an original interval that hasn't been split yet, make the new
413 // intervals their own originals instead of referring to LI. The original
414 // interval must contain all the split products, and LI doesn't.
415 if (Original != VReg && Original != 0)
416 VRM->setIsSplitFromReg(SplitLI->reg, Original);
417 if (TheDelegate)
418 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
419 }
420 }
421 }
422
423 // Keep track of new virtual registers created via
424 // MachineRegisterInfo::createVirtualRegister.
425 void
MRI_NoteNewVirtualRegister(unsigned VReg)426 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
427 {
428 if (VRM)
429 VRM->grow();
430
431 NewRegs.push_back(VReg);
432 }
433
434 void
calculateRegClassAndHint(MachineFunction & MF,const MachineLoopInfo & Loops,const MachineBlockFrequencyInfo & MBFI)435 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
436 const MachineLoopInfo &Loops,
437 const MachineBlockFrequencyInfo &MBFI) {
438 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
439 for (unsigned I = 0, Size = size(); I < Size; ++I) {
440 LiveInterval &LI = LIS.getInterval(get(I));
441 if (MRI.recomputeRegClass(LI.reg))
442 DEBUG({
443 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
444 dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
445 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
446 });
447 VRAI.calculateSpillWeightAndHint(LI);
448 }
449 }
450