1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion on machine instructions. We
11 // attempt to remove as much code from the body of a loop as possible.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/TargetSchedule.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 using namespace llvm;
40
41 #define DEBUG_TYPE "machine-licm"
42
43 static cl::opt<bool>
44 AvoidSpeculation("avoid-speculation",
45 cl::desc("MachineLICM should avoid speculation"),
46 cl::init(true), cl::Hidden);
47
48 static cl::opt<bool>
49 HoistCheapInsts("hoist-cheap-insts",
50 cl::desc("MachineLICM should hoist even cheap instructions"),
51 cl::init(false), cl::Hidden);
52
53 static cl::opt<bool>
54 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
55 cl::desc("MachineLICM should sink instructions into "
56 "loops to avoid register spills"),
57 cl::init(false), cl::Hidden);
58
59 STATISTIC(NumHoisted,
60 "Number of machine instructions hoisted out of loops");
61 STATISTIC(NumLowRP,
62 "Number of instructions hoisted in low reg pressure situation");
63 STATISTIC(NumHighLatency,
64 "Number of high latency instructions hoisted");
65 STATISTIC(NumCSEed,
66 "Number of hoisted machine instructions CSEed");
67 STATISTIC(NumPostRAHoisted,
68 "Number of machine instructions hoisted out of loops post regalloc");
69
70 namespace {
71 class MachineLICM : public MachineFunctionPass {
72 const TargetInstrInfo *TII;
73 const TargetLoweringBase *TLI;
74 const TargetRegisterInfo *TRI;
75 const MachineFrameInfo *MFI;
76 MachineRegisterInfo *MRI;
77 TargetSchedModel SchedModel;
78 bool PreRegAlloc;
79
80 // Various analyses that we use...
81 AliasAnalysis *AA; // Alias analysis info.
82 MachineLoopInfo *MLI; // Current MachineLoopInfo
83 MachineDominatorTree *DT; // Machine dominator tree for the cur loop
84
85 // State that is updated as we process loops
86 bool Changed; // True if a loop is changed.
87 bool FirstInLoop; // True if it's the first LICM in the loop.
88 MachineLoop *CurLoop; // The current loop we are working on.
89 MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
90
91 // Exit blocks for CurLoop.
92 SmallVector<MachineBasicBlock*, 8> ExitBlocks;
93
isExitBlock(const MachineBasicBlock * MBB) const94 bool isExitBlock(const MachineBasicBlock *MBB) const {
95 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
96 ExitBlocks.end();
97 }
98
99 // Track 'estimated' register pressure.
100 SmallSet<unsigned, 32> RegSeen;
101 SmallVector<unsigned, 8> RegPressure;
102
103 // Register pressure "limit" per register pressure set. If the pressure
104 // is higher than the limit, then it's considered high.
105 SmallVector<unsigned, 8> RegLimit;
106
107 // Register pressure on path leading from loop preheader to current BB.
108 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
109
110 // For each opcode, keep a list of potential CSE instructions.
111 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
112
113 enum {
114 SpeculateFalse = 0,
115 SpeculateTrue = 1,
116 SpeculateUnknown = 2
117 };
118
119 // If a MBB does not dominate loop exiting blocks then it may not safe
120 // to hoist loads from this block.
121 // Tri-state: 0 - false, 1 - true, 2 - unknown
122 unsigned SpeculationState;
123
124 public:
125 static char ID; // Pass identification, replacement for typeid
MachineLICM()126 MachineLICM() :
127 MachineFunctionPass(ID), PreRegAlloc(true) {
128 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
129 }
130
MachineLICM(bool PreRA)131 explicit MachineLICM(bool PreRA) :
132 MachineFunctionPass(ID), PreRegAlloc(PreRA) {
133 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
134 }
135
136 bool runOnMachineFunction(MachineFunction &MF) override;
137
getAnalysisUsage(AnalysisUsage & AU) const138 void getAnalysisUsage(AnalysisUsage &AU) const override {
139 AU.addRequired<MachineLoopInfo>();
140 AU.addRequired<MachineDominatorTree>();
141 AU.addRequired<AAResultsWrapperPass>();
142 AU.addPreserved<MachineLoopInfo>();
143 AU.addPreserved<MachineDominatorTree>();
144 MachineFunctionPass::getAnalysisUsage(AU);
145 }
146
releaseMemory()147 void releaseMemory() override {
148 RegSeen.clear();
149 RegPressure.clear();
150 RegLimit.clear();
151 BackTrace.clear();
152 CSEMap.clear();
153 }
154
155 private:
156 /// Keep track of information about hoisting candidates.
157 struct CandidateInfo {
158 MachineInstr *MI;
159 unsigned Def;
160 int FI;
CandidateInfo__anon2d7e0c2f0111::MachineLICM::CandidateInfo161 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
162 : MI(mi), Def(def), FI(fi) {}
163 };
164
165 void HoistRegionPostRA();
166
167 void HoistPostRA(MachineInstr *MI, unsigned Def);
168
169 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
170 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
171 SmallVectorImpl<CandidateInfo> &Candidates);
172
173 void AddToLiveIns(unsigned Reg);
174
175 bool IsLICMCandidate(MachineInstr &I);
176
177 bool IsLoopInvariantInst(MachineInstr &I);
178
179 bool HasLoopPHIUse(const MachineInstr *MI) const;
180
181 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
182 unsigned Reg) const;
183
184 bool IsCheapInstruction(MachineInstr &MI) const;
185
186 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
187 bool Cheap);
188
189 void UpdateBackTraceRegPressure(const MachineInstr *MI);
190
191 bool IsProfitableToHoist(MachineInstr &MI);
192
193 bool IsGuaranteedToExecute(MachineBasicBlock *BB);
194
195 void EnterScope(MachineBasicBlock *MBB);
196
197 void ExitScope(MachineBasicBlock *MBB);
198
199 void ExitScopeIfDone(
200 MachineDomTreeNode *Node,
201 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
202 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
203
204 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
205
206 void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
207
208 void SinkIntoLoop();
209
210 void InitRegPressure(MachineBasicBlock *BB);
211
212 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
213 bool ConsiderSeen,
214 bool ConsiderUnseenAsDef);
215
216 void UpdateRegPressure(const MachineInstr *MI,
217 bool ConsiderUnseenAsDef = false);
218
219 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
220
221 const MachineInstr *
222 LookForDuplicate(const MachineInstr *MI,
223 std::vector<const MachineInstr *> &PrevMIs);
224
225 bool EliminateCSE(
226 MachineInstr *MI,
227 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
228
229 bool MayCSE(MachineInstr *MI);
230
231 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
232
233 void InitCSEMap(MachineBasicBlock *BB);
234
235 MachineBasicBlock *getCurPreheader();
236 };
237 } // end anonymous namespace
238
239 char MachineLICM::ID = 0;
240 char &llvm::MachineLICMID = MachineLICM::ID;
241 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
242 "Machine Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)243 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
244 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
245 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
246 INITIALIZE_PASS_END(MachineLICM, "machinelicm",
247 "Machine Loop Invariant Code Motion", false, false)
248
249 /// Test if the given loop is the outer-most loop that has a unique predecessor.
250 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
251 // Check whether this loop even has a unique predecessor.
252 if (!CurLoop->getLoopPredecessor())
253 return false;
254 // Ok, now check to see if any of its outer loops do.
255 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
256 if (L->getLoopPredecessor())
257 return false;
258 // None of them did, so this is the outermost with a unique predecessor.
259 return true;
260 }
261
runOnMachineFunction(MachineFunction & MF)262 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
263 if (skipFunction(*MF.getFunction()))
264 return false;
265
266 Changed = FirstInLoop = false;
267 const TargetSubtargetInfo &ST = MF.getSubtarget();
268 TII = ST.getInstrInfo();
269 TLI = ST.getTargetLowering();
270 TRI = ST.getRegisterInfo();
271 MFI = MF.getFrameInfo();
272 MRI = &MF.getRegInfo();
273 SchedModel.init(ST.getSchedModel(), &ST, TII);
274
275 PreRegAlloc = MRI->isSSA();
276
277 if (PreRegAlloc)
278 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
279 else
280 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
281 DEBUG(dbgs() << MF.getName() << " ********\n");
282
283 if (PreRegAlloc) {
284 // Estimate register pressure during pre-regalloc pass.
285 unsigned NumRPS = TRI->getNumRegPressureSets();
286 RegPressure.resize(NumRPS);
287 std::fill(RegPressure.begin(), RegPressure.end(), 0);
288 RegLimit.resize(NumRPS);
289 for (unsigned i = 0, e = NumRPS; i != e; ++i)
290 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
291 }
292
293 // Get our Loop information...
294 MLI = &getAnalysis<MachineLoopInfo>();
295 DT = &getAnalysis<MachineDominatorTree>();
296 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
297
298 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
299 while (!Worklist.empty()) {
300 CurLoop = Worklist.pop_back_val();
301 CurPreheader = nullptr;
302 ExitBlocks.clear();
303
304 // If this is done before regalloc, only visit outer-most preheader-sporting
305 // loops.
306 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
307 Worklist.append(CurLoop->begin(), CurLoop->end());
308 continue;
309 }
310
311 CurLoop->getExitBlocks(ExitBlocks);
312
313 if (!PreRegAlloc)
314 HoistRegionPostRA();
315 else {
316 // CSEMap is initialized for loop header when the first instruction is
317 // being hoisted.
318 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
319 FirstInLoop = true;
320 HoistOutOfLoop(N);
321 CSEMap.clear();
322
323 if (SinkInstsToAvoidSpills)
324 SinkIntoLoop();
325 }
326 }
327
328 return Changed;
329 }
330
331 /// Return true if instruction stores to the specified frame.
InstructionStoresToFI(const MachineInstr * MI,int FI)332 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
333 // If we lost memory operands, conservatively assume that the instruction
334 // writes to all slots.
335 if (MI->memoperands_empty())
336 return true;
337 for (const MachineMemOperand *MemOp : MI->memoperands()) {
338 if (!MemOp->isStore() || !MemOp->getPseudoValue())
339 continue;
340 if (const FixedStackPseudoSourceValue *Value =
341 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
342 if (Value->getFrameIndex() == FI)
343 return true;
344 }
345 }
346 return false;
347 }
348
349 /// Examine the instruction for potentai LICM candidate. Also
350 /// gather register def and frame object update information.
ProcessMI(MachineInstr * MI,BitVector & PhysRegDefs,BitVector & PhysRegClobbers,SmallSet<int,32> & StoredFIs,SmallVectorImpl<CandidateInfo> & Candidates)351 void MachineLICM::ProcessMI(MachineInstr *MI,
352 BitVector &PhysRegDefs,
353 BitVector &PhysRegClobbers,
354 SmallSet<int, 32> &StoredFIs,
355 SmallVectorImpl<CandidateInfo> &Candidates) {
356 bool RuledOut = false;
357 bool HasNonInvariantUse = false;
358 unsigned Def = 0;
359 for (const MachineOperand &MO : MI->operands()) {
360 if (MO.isFI()) {
361 // Remember if the instruction stores to the frame index.
362 int FI = MO.getIndex();
363 if (!StoredFIs.count(FI) &&
364 MFI->isSpillSlotObjectIndex(FI) &&
365 InstructionStoresToFI(MI, FI))
366 StoredFIs.insert(FI);
367 HasNonInvariantUse = true;
368 continue;
369 }
370
371 // We can't hoist an instruction defining a physreg that is clobbered in
372 // the loop.
373 if (MO.isRegMask()) {
374 PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
375 continue;
376 }
377
378 if (!MO.isReg())
379 continue;
380 unsigned Reg = MO.getReg();
381 if (!Reg)
382 continue;
383 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
384 "Not expecting virtual register!");
385
386 if (!MO.isDef()) {
387 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
388 // If it's using a non-loop-invariant register, then it's obviously not
389 // safe to hoist.
390 HasNonInvariantUse = true;
391 continue;
392 }
393
394 if (MO.isImplicit()) {
395 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
396 PhysRegClobbers.set(*AI);
397 if (!MO.isDead())
398 // Non-dead implicit def? This cannot be hoisted.
399 RuledOut = true;
400 // No need to check if a dead implicit def is also defined by
401 // another instruction.
402 continue;
403 }
404
405 // FIXME: For now, avoid instructions with multiple defs, unless
406 // it's a dead implicit def.
407 if (Def)
408 RuledOut = true;
409 else
410 Def = Reg;
411
412 // If we have already seen another instruction that defines the same
413 // register, then this is not safe. Two defs is indicated by setting a
414 // PhysRegClobbers bit.
415 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
416 if (PhysRegDefs.test(*AS))
417 PhysRegClobbers.set(*AS);
418 PhysRegDefs.set(*AS);
419 }
420 if (PhysRegClobbers.test(Reg))
421 // MI defined register is seen defined by another instruction in
422 // the loop, it cannot be a LICM candidate.
423 RuledOut = true;
424 }
425
426 // Only consider reloads for now and remats which do not have register
427 // operands. FIXME: Consider unfold load folding instructions.
428 if (Def && !RuledOut) {
429 int FI = INT_MIN;
430 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
431 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
432 Candidates.push_back(CandidateInfo(MI, Def, FI));
433 }
434 }
435
436 /// Walk the specified region of the CFG and hoist loop invariants out to the
437 /// preheader.
HoistRegionPostRA()438 void MachineLICM::HoistRegionPostRA() {
439 MachineBasicBlock *Preheader = getCurPreheader();
440 if (!Preheader)
441 return;
442
443 unsigned NumRegs = TRI->getNumRegs();
444 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
445 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
446
447 SmallVector<CandidateInfo, 32> Candidates;
448 SmallSet<int, 32> StoredFIs;
449
450 // Walk the entire region, count number of defs for each register, and
451 // collect potential LICM candidates.
452 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
453 for (MachineBasicBlock *BB : Blocks) {
454 // If the header of the loop containing this basic block is a landing pad,
455 // then don't try to hoist instructions out of this loop.
456 const MachineLoop *ML = MLI->getLoopFor(BB);
457 if (ML && ML->getHeader()->isEHPad()) continue;
458
459 // Conservatively treat live-in's as an external def.
460 // FIXME: That means a reload that're reused in successor block(s) will not
461 // be LICM'ed.
462 for (const auto &LI : BB->liveins()) {
463 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
464 PhysRegDefs.set(*AI);
465 }
466
467 SpeculationState = SpeculateUnknown;
468 for (MachineInstr &MI : *BB)
469 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
470 }
471
472 // Gather the registers read / clobbered by the terminator.
473 BitVector TermRegs(NumRegs);
474 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
475 if (TI != Preheader->end()) {
476 for (const MachineOperand &MO : TI->operands()) {
477 if (!MO.isReg())
478 continue;
479 unsigned Reg = MO.getReg();
480 if (!Reg)
481 continue;
482 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
483 TermRegs.set(*AI);
484 }
485 }
486
487 // Now evaluate whether the potential candidates qualify.
488 // 1. Check if the candidate defined register is defined by another
489 // instruction in the loop.
490 // 2. If the candidate is a load from stack slot (always true for now),
491 // check if the slot is stored anywhere in the loop.
492 // 3. Make sure candidate def should not clobber
493 // registers read by the terminator. Similarly its def should not be
494 // clobbered by the terminator.
495 for (CandidateInfo &Candidate : Candidates) {
496 if (Candidate.FI != INT_MIN &&
497 StoredFIs.count(Candidate.FI))
498 continue;
499
500 unsigned Def = Candidate.Def;
501 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
502 bool Safe = true;
503 MachineInstr *MI = Candidate.MI;
504 for (const MachineOperand &MO : MI->operands()) {
505 if (!MO.isReg() || MO.isDef() || !MO.getReg())
506 continue;
507 unsigned Reg = MO.getReg();
508 if (PhysRegDefs.test(Reg) ||
509 PhysRegClobbers.test(Reg)) {
510 // If it's using a non-loop-invariant register, then it's obviously
511 // not safe to hoist.
512 Safe = false;
513 break;
514 }
515 }
516 if (Safe)
517 HoistPostRA(MI, Candidate.Def);
518 }
519 }
520 }
521
522 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
523 /// sure it is not killed by any instructions in the loop.
AddToLiveIns(unsigned Reg)524 void MachineLICM::AddToLiveIns(unsigned Reg) {
525 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
526 for (MachineBasicBlock *BB : Blocks) {
527 if (!BB->isLiveIn(Reg))
528 BB->addLiveIn(Reg);
529 for (MachineInstr &MI : *BB) {
530 for (MachineOperand &MO : MI.operands()) {
531 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
532 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
533 MO.setIsKill(false);
534 }
535 }
536 }
537 }
538
539 /// When an instruction is found to only use loop invariant operands that is
540 /// safe to hoist, this instruction is called to do the dirty work.
HoistPostRA(MachineInstr * MI,unsigned Def)541 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
542 MachineBasicBlock *Preheader = getCurPreheader();
543
544 // Now move the instructions to the predecessor, inserting it before any
545 // terminator instructions.
546 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
547 << MI->getParent()->getNumber() << ": " << *MI);
548
549 // Splice the instruction to the preheader.
550 MachineBasicBlock *MBB = MI->getParent();
551 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
552
553 // Add register to livein list to all the BBs in the current loop since a
554 // loop invariant must be kept live throughout the whole loop. This is
555 // important to ensure later passes do not scavenge the def register.
556 AddToLiveIns(Def);
557
558 ++NumPostRAHoisted;
559 Changed = true;
560 }
561
562 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
563 /// may not be safe to hoist.
IsGuaranteedToExecute(MachineBasicBlock * BB)564 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
565 if (SpeculationState != SpeculateUnknown)
566 return SpeculationState == SpeculateFalse;
567
568 if (BB != CurLoop->getHeader()) {
569 // Check loop exiting blocks.
570 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
571 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
572 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
573 if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
574 SpeculationState = SpeculateTrue;
575 return false;
576 }
577 }
578
579 SpeculationState = SpeculateFalse;
580 return true;
581 }
582
EnterScope(MachineBasicBlock * MBB)583 void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
584 DEBUG(dbgs() << "Entering BB#" << MBB->getNumber() << '\n');
585
586 // Remember livein register pressure.
587 BackTrace.push_back(RegPressure);
588 }
589
ExitScope(MachineBasicBlock * MBB)590 void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
591 DEBUG(dbgs() << "Exiting BB#" << MBB->getNumber() << '\n');
592 BackTrace.pop_back();
593 }
594
595 /// Destroy scope for the MBB that corresponds to the given dominator tree node
596 /// if its a leaf or all of its children are done. Walk up the dominator tree to
597 /// destroy ancestors which are now done.
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren,DenseMap<MachineDomTreeNode *,MachineDomTreeNode * > & ParentMap)598 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
599 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
600 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
601 if (OpenChildren[Node])
602 return;
603
604 // Pop scope.
605 ExitScope(Node->getBlock());
606
607 // Now traverse upwards to pop ancestors whose offsprings are all done.
608 while (MachineDomTreeNode *Parent = ParentMap[Node]) {
609 unsigned Left = --OpenChildren[Parent];
610 if (Left != 0)
611 break;
612 ExitScope(Parent->getBlock());
613 Node = Parent;
614 }
615 }
616
617 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
618 /// specified header block, and that are in the current loop) in depth first
619 /// order w.r.t the DominatorTree. This allows us to visit definitions before
620 /// uses, allowing us to hoist a loop body in one pass without iteration.
621 ///
HoistOutOfLoop(MachineDomTreeNode * HeaderN)622 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
623 MachineBasicBlock *Preheader = getCurPreheader();
624 if (!Preheader)
625 return;
626
627 SmallVector<MachineDomTreeNode*, 32> Scopes;
628 SmallVector<MachineDomTreeNode*, 8> WorkList;
629 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
630 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
631
632 // Perform a DFS walk to determine the order of visit.
633 WorkList.push_back(HeaderN);
634 while (!WorkList.empty()) {
635 MachineDomTreeNode *Node = WorkList.pop_back_val();
636 assert(Node && "Null dominator tree node?");
637 MachineBasicBlock *BB = Node->getBlock();
638
639 // If the header of the loop containing this basic block is a landing pad,
640 // then don't try to hoist instructions out of this loop.
641 const MachineLoop *ML = MLI->getLoopFor(BB);
642 if (ML && ML->getHeader()->isEHPad())
643 continue;
644
645 // If this subregion is not in the top level loop at all, exit.
646 if (!CurLoop->contains(BB))
647 continue;
648
649 Scopes.push_back(Node);
650 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
651 unsigned NumChildren = Children.size();
652
653 // Don't hoist things out of a large switch statement. This often causes
654 // code to be hoisted that wasn't going to be executed, and increases
655 // register pressure in a situation where it's likely to matter.
656 if (BB->succ_size() >= 25)
657 NumChildren = 0;
658
659 OpenChildren[Node] = NumChildren;
660 // Add children in reverse order as then the next popped worklist node is
661 // the first child of this node. This means we ultimately traverse the
662 // DOM tree in exactly the same order as if we'd recursed.
663 for (int i = (int)NumChildren-1; i >= 0; --i) {
664 MachineDomTreeNode *Child = Children[i];
665 ParentMap[Child] = Node;
666 WorkList.push_back(Child);
667 }
668 }
669
670 if (Scopes.size() == 0)
671 return;
672
673 // Compute registers which are livein into the loop headers.
674 RegSeen.clear();
675 BackTrace.clear();
676 InitRegPressure(Preheader);
677
678 // Now perform LICM.
679 for (MachineDomTreeNode *Node : Scopes) {
680 MachineBasicBlock *MBB = Node->getBlock();
681
682 EnterScope(MBB);
683
684 // Process the block
685 SpeculationState = SpeculateUnknown;
686 for (MachineBasicBlock::iterator
687 MII = MBB->begin(), E = MBB->end(); MII != E; ) {
688 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
689 MachineInstr *MI = &*MII;
690 if (!Hoist(MI, Preheader))
691 UpdateRegPressure(MI);
692 MII = NextMII;
693 }
694
695 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
696 ExitScopeIfDone(Node, OpenChildren, ParentMap);
697 }
698 }
699
700 /// Sink instructions into loops if profitable. This especially tries to prevent
701 /// register spills caused by register pressure if there is little to no
702 /// overhead moving instructions into loops.
SinkIntoLoop()703 void MachineLICM::SinkIntoLoop() {
704 MachineBasicBlock *Preheader = getCurPreheader();
705 if (!Preheader)
706 return;
707
708 SmallVector<MachineInstr *, 8> Candidates;
709 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
710 I != Preheader->instr_end(); ++I) {
711 // We need to ensure that we can safely move this instruction into the loop.
712 // As such, it must not have side-effects, e.g. such as a call has.
713 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
714 Candidates.push_back(&*I);
715 }
716
717 for (MachineInstr *I : Candidates) {
718 const MachineOperand &MO = I->getOperand(0);
719 if (!MO.isDef() || !MO.isReg() || !MO.getReg())
720 continue;
721 if (!MRI->hasOneDef(MO.getReg()))
722 continue;
723 bool CanSink = true;
724 MachineBasicBlock *B = nullptr;
725 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
726 // FIXME: Come up with a proper cost model that estimates whether sinking
727 // the instruction (and thus possibly executing it on every loop
728 // iteration) is more expensive than a register.
729 // For now assumes that copies are cheap and thus almost always worth it.
730 if (!MI.isCopy()) {
731 CanSink = false;
732 break;
733 }
734 if (!B) {
735 B = MI.getParent();
736 continue;
737 }
738 B = DT->findNearestCommonDominator(B, MI.getParent());
739 if (!B) {
740 CanSink = false;
741 break;
742 }
743 }
744 if (!CanSink || !B || B == Preheader)
745 continue;
746 B->splice(B->getFirstNonPHI(), Preheader, I);
747 }
748 }
749
isOperandKill(const MachineOperand & MO,MachineRegisterInfo * MRI)750 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
751 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
752 }
753
754 /// Find all virtual register references that are liveout of the preheader to
755 /// initialize the starting "register pressure". Note this does not count live
756 /// through (livein but not used) registers.
InitRegPressure(MachineBasicBlock * BB)757 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
758 std::fill(RegPressure.begin(), RegPressure.end(), 0);
759
760 // If the preheader has only a single predecessor and it ends with a
761 // fallthrough or an unconditional branch, then scan its predecessor for live
762 // defs as well. This happens whenever the preheader is created by splitting
763 // the critical edge from the loop predecessor to the loop header.
764 if (BB->pred_size() == 1) {
765 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
766 SmallVector<MachineOperand, 4> Cond;
767 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
768 InitRegPressure(*BB->pred_begin());
769 }
770
771 for (const MachineInstr &MI : *BB)
772 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
773 }
774
775 /// Update estimate of register pressure after the specified instruction.
UpdateRegPressure(const MachineInstr * MI,bool ConsiderUnseenAsDef)776 void MachineLICM::UpdateRegPressure(const MachineInstr *MI,
777 bool ConsiderUnseenAsDef) {
778 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
779 for (const auto &RPIdAndCost : Cost) {
780 unsigned Class = RPIdAndCost.first;
781 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
782 RegPressure[Class] = 0;
783 else
784 RegPressure[Class] += RPIdAndCost.second;
785 }
786 }
787
788 /// Calculate the additional register pressure that the registers used in MI
789 /// cause.
790 ///
791 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
792 /// figure out which usages are live-ins.
793 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
794 DenseMap<unsigned, int>
calcRegisterCost(const MachineInstr * MI,bool ConsiderSeen,bool ConsiderUnseenAsDef)795 MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
796 bool ConsiderUnseenAsDef) {
797 DenseMap<unsigned, int> Cost;
798 if (MI->isImplicitDef())
799 return Cost;
800 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
801 const MachineOperand &MO = MI->getOperand(i);
802 if (!MO.isReg() || MO.isImplicit())
803 continue;
804 unsigned Reg = MO.getReg();
805 if (!TargetRegisterInfo::isVirtualRegister(Reg))
806 continue;
807
808 // FIXME: It seems bad to use RegSeen only for some of these calculations.
809 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
810 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
811
812 RegClassWeight W = TRI->getRegClassWeight(RC);
813 int RCCost = 0;
814 if (MO.isDef())
815 RCCost = W.RegWeight;
816 else {
817 bool isKill = isOperandKill(MO, MRI);
818 if (isNew && !isKill && ConsiderUnseenAsDef)
819 // Haven't seen this, it must be a livein.
820 RCCost = W.RegWeight;
821 else if (!isNew && isKill)
822 RCCost = -W.RegWeight;
823 }
824 if (RCCost == 0)
825 continue;
826 const int *PS = TRI->getRegClassPressureSets(RC);
827 for (; *PS != -1; ++PS) {
828 if (Cost.find(*PS) == Cost.end())
829 Cost[*PS] = RCCost;
830 else
831 Cost[*PS] += RCCost;
832 }
833 }
834 return Cost;
835 }
836
837 /// Return true if this machine instruction loads from global offset table or
838 /// constant pool.
mayLoadFromGOTOrConstantPool(MachineInstr & MI)839 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
840 assert (MI.mayLoad() && "Expected MI that loads!");
841
842 // If we lost memory operands, conservatively assume that the instruction
843 // reads from everything..
844 if (MI.memoperands_empty())
845 return true;
846
847 for (MachineMemOperand *MemOp : MI.memoperands())
848 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
849 if (PSV->isGOT() || PSV->isConstantPool())
850 return true;
851
852 return false;
853 }
854
855 /// Returns true if the instruction may be a suitable candidate for LICM.
856 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
IsLICMCandidate(MachineInstr & I)857 bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
858 // Check if it's safe to move the instruction.
859 bool DontMoveAcrossStore = true;
860 if (!I.isSafeToMove(AA, DontMoveAcrossStore))
861 return false;
862
863 // If it is load then check if it is guaranteed to execute by making sure that
864 // it dominates all exiting blocks. If it doesn't, then there is a path out of
865 // the loop which does not execute this load, so we can't hoist it. Loads
866 // from constant memory are not safe to speculate all the time, for example
867 // indexed load from a jump table.
868 // Stores and side effects are already checked by isSafeToMove.
869 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
870 !IsGuaranteedToExecute(I.getParent()))
871 return false;
872
873 return true;
874 }
875
876 /// Returns true if the instruction is loop invariant.
877 /// I.e., all virtual register operands are defined outside of the loop,
878 /// physical registers aren't accessed explicitly, and there are no side
879 /// effects that aren't captured by the operands or other flags.
880 ///
IsLoopInvariantInst(MachineInstr & I)881 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
882 if (!IsLICMCandidate(I))
883 return false;
884
885 // The instruction is loop invariant if all of its operands are.
886 for (const MachineOperand &MO : I.operands()) {
887 if (!MO.isReg())
888 continue;
889
890 unsigned Reg = MO.getReg();
891 if (Reg == 0) continue;
892
893 // Don't hoist an instruction that uses or defines a physical register.
894 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
895 if (MO.isUse()) {
896 // If the physreg has no defs anywhere, it's just an ambient register
897 // and we can freely move its uses. Alternatively, if it's allocatable,
898 // it could get allocated to something with a def during allocation.
899 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
900 return false;
901 // Otherwise it's safe to move.
902 continue;
903 } else if (!MO.isDead()) {
904 // A def that isn't dead. We can't move it.
905 return false;
906 } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
907 // If the reg is live into the loop, we can't hoist an instruction
908 // which would clobber it.
909 return false;
910 }
911 }
912
913 if (!MO.isUse())
914 continue;
915
916 assert(MRI->getVRegDef(Reg) &&
917 "Machine instr not mapped for this vreg?!");
918
919 // If the loop contains the definition of an operand, then the instruction
920 // isn't loop invariant.
921 if (CurLoop->contains(MRI->getVRegDef(Reg)))
922 return false;
923 }
924
925 // If we got this far, the instruction is loop invariant!
926 return true;
927 }
928
929
930 /// Return true if the specified instruction is used by a phi node and hoisting
931 /// it could cause a copy to be inserted.
HasLoopPHIUse(const MachineInstr * MI) const932 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
933 SmallVector<const MachineInstr*, 8> Work(1, MI);
934 do {
935 MI = Work.pop_back_val();
936 for (const MachineOperand &MO : MI->operands()) {
937 if (!MO.isReg() || !MO.isDef())
938 continue;
939 unsigned Reg = MO.getReg();
940 if (!TargetRegisterInfo::isVirtualRegister(Reg))
941 continue;
942 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
943 // A PHI may cause a copy to be inserted.
944 if (UseMI.isPHI()) {
945 // A PHI inside the loop causes a copy because the live range of Reg is
946 // extended across the PHI.
947 if (CurLoop->contains(&UseMI))
948 return true;
949 // A PHI in an exit block can cause a copy to be inserted if the PHI
950 // has multiple predecessors in the loop with different values.
951 // For now, approximate by rejecting all exit blocks.
952 if (isExitBlock(UseMI.getParent()))
953 return true;
954 continue;
955 }
956 // Look past copies as well.
957 if (UseMI.isCopy() && CurLoop->contains(&UseMI))
958 Work.push_back(&UseMI);
959 }
960 }
961 } while (!Work.empty());
962 return false;
963 }
964
965 /// Compute operand latency between a def of 'Reg' and an use in the current
966 /// loop, return true if the target considered it high.
HasHighOperandLatency(MachineInstr & MI,unsigned DefIdx,unsigned Reg) const967 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
968 unsigned DefIdx, unsigned Reg) const {
969 if (MRI->use_nodbg_empty(Reg))
970 return false;
971
972 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
973 if (UseMI.isCopyLike())
974 continue;
975 if (!CurLoop->contains(UseMI.getParent()))
976 continue;
977 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
978 const MachineOperand &MO = UseMI.getOperand(i);
979 if (!MO.isReg() || !MO.isUse())
980 continue;
981 unsigned MOReg = MO.getReg();
982 if (MOReg != Reg)
983 continue;
984
985 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
986 return true;
987 }
988
989 // Only look at the first in loop use.
990 break;
991 }
992
993 return false;
994 }
995
996 /// Return true if the instruction is marked "cheap" or the operand latency
997 /// between its def and a use is one or less.
IsCheapInstruction(MachineInstr & MI) const998 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
999 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1000 return true;
1001
1002 bool isCheap = false;
1003 unsigned NumDefs = MI.getDesc().getNumDefs();
1004 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1005 MachineOperand &DefMO = MI.getOperand(i);
1006 if (!DefMO.isReg() || !DefMO.isDef())
1007 continue;
1008 --NumDefs;
1009 unsigned Reg = DefMO.getReg();
1010 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1011 continue;
1012
1013 if (!TII->hasLowDefLatency(SchedModel, MI, i))
1014 return false;
1015 isCheap = true;
1016 }
1017
1018 return isCheap;
1019 }
1020
1021 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1022 /// given cost matrix can cause high register pressure.
CanCauseHighRegPressure(const DenseMap<unsigned,int> & Cost,bool CheapInstr)1023 bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1024 bool CheapInstr) {
1025 for (const auto &RPIdAndCost : Cost) {
1026 if (RPIdAndCost.second <= 0)
1027 continue;
1028
1029 unsigned Class = RPIdAndCost.first;
1030 int Limit = RegLimit[Class];
1031
1032 // Don't hoist cheap instructions if they would increase register pressure,
1033 // even if we're under the limit.
1034 if (CheapInstr && !HoistCheapInsts)
1035 return true;
1036
1037 for (const auto &RP : BackTrace)
1038 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1039 return true;
1040 }
1041
1042 return false;
1043 }
1044
1045 /// Traverse the back trace from header to the current block and update their
1046 /// register pressures to reflect the effect of hoisting MI from the current
1047 /// block to the preheader.
UpdateBackTraceRegPressure(const MachineInstr * MI)1048 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1049 // First compute the 'cost' of the instruction, i.e. its contribution
1050 // to register pressure.
1051 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1052 /*ConsiderUnseenAsDef=*/false);
1053
1054 // Update register pressure of blocks from loop header to current block.
1055 for (auto &RP : BackTrace)
1056 for (const auto &RPIdAndCost : Cost)
1057 RP[RPIdAndCost.first] += RPIdAndCost.second;
1058 }
1059
1060 /// Return true if it is potentially profitable to hoist the given loop
1061 /// invariant.
IsProfitableToHoist(MachineInstr & MI)1062 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1063 if (MI.isImplicitDef())
1064 return true;
1065
1066 // Besides removing computation from the loop, hoisting an instruction has
1067 // these effects:
1068 //
1069 // - The value defined by the instruction becomes live across the entire
1070 // loop. This increases register pressure in the loop.
1071 //
1072 // - If the value is used by a PHI in the loop, a copy will be required for
1073 // lowering the PHI after extending the live range.
1074 //
1075 // - When hoisting the last use of a value in the loop, that value no longer
1076 // needs to be live in the loop. This lowers register pressure in the loop.
1077
1078 bool CheapInstr = IsCheapInstruction(MI);
1079 bool CreatesCopy = HasLoopPHIUse(&MI);
1080
1081 // Don't hoist a cheap instruction if it would create a copy in the loop.
1082 if (CheapInstr && CreatesCopy) {
1083 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1084 return false;
1085 }
1086
1087 // Rematerializable instructions should always be hoisted since the register
1088 // allocator can just pull them down again when needed.
1089 if (TII->isTriviallyReMaterializable(MI, AA))
1090 return true;
1091
1092 // FIXME: If there are long latency loop-invariant instructions inside the
1093 // loop at this point, why didn't the optimizer's LICM hoist them?
1094 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1095 const MachineOperand &MO = MI.getOperand(i);
1096 if (!MO.isReg() || MO.isImplicit())
1097 continue;
1098 unsigned Reg = MO.getReg();
1099 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1100 continue;
1101 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1102 DEBUG(dbgs() << "Hoist High Latency: " << MI);
1103 ++NumHighLatency;
1104 return true;
1105 }
1106 }
1107
1108 // Estimate register pressure to determine whether to LICM the instruction.
1109 // In low register pressure situation, we can be more aggressive about
1110 // hoisting. Also, favors hoisting long latency instructions even in
1111 // moderately high pressure situation.
1112 // Cheap instructions will only be hoisted if they don't increase register
1113 // pressure at all.
1114 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1115 /*ConsiderUnseenAsDef=*/false);
1116
1117 // Visit BBs from header to current BB, if hoisting this doesn't cause
1118 // high register pressure, then it's safe to proceed.
1119 if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1120 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1121 ++NumLowRP;
1122 return true;
1123 }
1124
1125 // Don't risk increasing register pressure if it would create copies.
1126 if (CreatesCopy) {
1127 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1128 return false;
1129 }
1130
1131 // Do not "speculate" in high register pressure situation. If an
1132 // instruction is not guaranteed to be executed in the loop, it's best to be
1133 // conservative.
1134 if (AvoidSpeculation &&
1135 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1136 DEBUG(dbgs() << "Won't speculate: " << MI);
1137 return false;
1138 }
1139
1140 // High register pressure situation, only hoist if the instruction is going
1141 // to be remat'ed.
1142 if (!TII->isTriviallyReMaterializable(MI, AA) && !MI.isInvariantLoad(AA)) {
1143 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1144 return false;
1145 }
1146
1147 return true;
1148 }
1149
1150 /// Unfold a load from the given machineinstr if the load itself could be
1151 /// hoisted. Return the unfolded and hoistable load, or null if the load
1152 /// couldn't be unfolded or if it wouldn't be hoistable.
ExtractHoistableLoad(MachineInstr * MI)1153 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1154 // Don't unfold simple loads.
1155 if (MI->canFoldAsLoad())
1156 return nullptr;
1157
1158 // If not, we may be able to unfold a load and hoist that.
1159 // First test whether the instruction is loading from an amenable
1160 // memory location.
1161 if (!MI->isInvariantLoad(AA))
1162 return nullptr;
1163
1164 // Next determine the register class for a temporary register.
1165 unsigned LoadRegIndex;
1166 unsigned NewOpc =
1167 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1168 /*UnfoldLoad=*/true,
1169 /*UnfoldStore=*/false,
1170 &LoadRegIndex);
1171 if (NewOpc == 0) return nullptr;
1172 const MCInstrDesc &MID = TII->get(NewOpc);
1173 MachineFunction &MF = *MI->getParent()->getParent();
1174 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1175 // Ok, we're unfolding. Create a temporary register and do the unfold.
1176 unsigned Reg = MRI->createVirtualRegister(RC);
1177
1178 SmallVector<MachineInstr *, 2> NewMIs;
1179 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1180 /*UnfoldLoad=*/true,
1181 /*UnfoldStore=*/false, NewMIs);
1182 (void)Success;
1183 assert(Success &&
1184 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1185 "succeeded!");
1186 assert(NewMIs.size() == 2 &&
1187 "Unfolded a load into multiple instructions!");
1188 MachineBasicBlock *MBB = MI->getParent();
1189 MachineBasicBlock::iterator Pos = MI;
1190 MBB->insert(Pos, NewMIs[0]);
1191 MBB->insert(Pos, NewMIs[1]);
1192 // If unfolding produced a load that wasn't loop-invariant or profitable to
1193 // hoist, discard the new instructions and bail.
1194 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1195 NewMIs[0]->eraseFromParent();
1196 NewMIs[1]->eraseFromParent();
1197 return nullptr;
1198 }
1199
1200 // Update register pressure for the unfolded instruction.
1201 UpdateRegPressure(NewMIs[1]);
1202
1203 // Otherwise we successfully unfolded a load that we can hoist.
1204 MI->eraseFromParent();
1205 return NewMIs[0];
1206 }
1207
1208 /// Initialize the CSE map with instructions that are in the current loop
1209 /// preheader that may become duplicates of instructions that are hoisted
1210 /// out of the loop.
InitCSEMap(MachineBasicBlock * BB)1211 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1212 for (MachineInstr &MI : *BB)
1213 CSEMap[MI.getOpcode()].push_back(&MI);
1214 }
1215
1216 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1217 /// Return this instruction if it's found.
1218 const MachineInstr*
LookForDuplicate(const MachineInstr * MI,std::vector<const MachineInstr * > & PrevMIs)1219 MachineLICM::LookForDuplicate(const MachineInstr *MI,
1220 std::vector<const MachineInstr*> &PrevMIs) {
1221 for (const MachineInstr *PrevMI : PrevMIs)
1222 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1223 return PrevMI;
1224
1225 return nullptr;
1226 }
1227
1228 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1229 /// computes the same value. If it's found, do a RAU on with the definition of
1230 /// the existing instruction rather than hoisting the instruction to the
1231 /// preheader.
EliminateCSE(MachineInstr * MI,DenseMap<unsigned,std::vector<const MachineInstr * >>::iterator & CI)1232 bool MachineLICM::EliminateCSE(MachineInstr *MI,
1233 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1234 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1235 // the undef property onto uses.
1236 if (CI == CSEMap.end() || MI->isImplicitDef())
1237 return false;
1238
1239 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1240 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1241
1242 // Replace virtual registers defined by MI by their counterparts defined
1243 // by Dup.
1244 SmallVector<unsigned, 2> Defs;
1245 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1246 const MachineOperand &MO = MI->getOperand(i);
1247
1248 // Physical registers may not differ here.
1249 assert((!MO.isReg() || MO.getReg() == 0 ||
1250 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1251 MO.getReg() == Dup->getOperand(i).getReg()) &&
1252 "Instructions with different phys regs are not identical!");
1253
1254 if (MO.isReg() && MO.isDef() &&
1255 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1256 Defs.push_back(i);
1257 }
1258
1259 SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1260 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1261 unsigned Idx = Defs[i];
1262 unsigned Reg = MI->getOperand(Idx).getReg();
1263 unsigned DupReg = Dup->getOperand(Idx).getReg();
1264 OrigRCs.push_back(MRI->getRegClass(DupReg));
1265
1266 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1267 // Restore old RCs if more than one defs.
1268 for (unsigned j = 0; j != i; ++j)
1269 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1270 return false;
1271 }
1272 }
1273
1274 for (unsigned Idx : Defs) {
1275 unsigned Reg = MI->getOperand(Idx).getReg();
1276 unsigned DupReg = Dup->getOperand(Idx).getReg();
1277 MRI->replaceRegWith(Reg, DupReg);
1278 MRI->clearKillFlags(DupReg);
1279 }
1280
1281 MI->eraseFromParent();
1282 ++NumCSEed;
1283 return true;
1284 }
1285 return false;
1286 }
1287
1288 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1289 /// the loop.
MayCSE(MachineInstr * MI)1290 bool MachineLICM::MayCSE(MachineInstr *MI) {
1291 unsigned Opcode = MI->getOpcode();
1292 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1293 CI = CSEMap.find(Opcode);
1294 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1295 // the undef property onto uses.
1296 if (CI == CSEMap.end() || MI->isImplicitDef())
1297 return false;
1298
1299 return LookForDuplicate(MI, CI->second) != nullptr;
1300 }
1301
1302 /// When an instruction is found to use only loop invariant operands
1303 /// that are safe to hoist, this instruction is called to do the dirty work.
1304 /// It returns true if the instruction is hoisted.
Hoist(MachineInstr * MI,MachineBasicBlock * Preheader)1305 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1306 // First check whether we should hoist this instruction.
1307 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1308 // If not, try unfolding a hoistable load.
1309 MI = ExtractHoistableLoad(MI);
1310 if (!MI) return false;
1311 }
1312
1313 // Now move the instructions to the predecessor, inserting it before any
1314 // terminator instructions.
1315 DEBUG({
1316 dbgs() << "Hoisting " << *MI;
1317 if (MI->getParent()->getBasicBlock())
1318 dbgs() << " from BB#" << MI->getParent()->getNumber();
1319 if (Preheader->getBasicBlock())
1320 dbgs() << " to BB#" << Preheader->getNumber();
1321 dbgs() << "\n";
1322 });
1323
1324 // If this is the first instruction being hoisted to the preheader,
1325 // initialize the CSE map with potential common expressions.
1326 if (FirstInLoop) {
1327 InitCSEMap(Preheader);
1328 FirstInLoop = false;
1329 }
1330
1331 // Look for opportunity to CSE the hoisted instruction.
1332 unsigned Opcode = MI->getOpcode();
1333 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1334 CI = CSEMap.find(Opcode);
1335 if (!EliminateCSE(MI, CI)) {
1336 // Otherwise, splice the instruction to the preheader.
1337 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1338
1339 // Update register pressure for BBs from header to this block.
1340 UpdateBackTraceRegPressure(MI);
1341
1342 // Clear the kill flags of any register this instruction defines,
1343 // since they may need to be live throughout the entire loop
1344 // rather than just live for part of it.
1345 for (MachineOperand &MO : MI->operands())
1346 if (MO.isReg() && MO.isDef() && !MO.isDead())
1347 MRI->clearKillFlags(MO.getReg());
1348
1349 // Add to the CSE map.
1350 if (CI != CSEMap.end())
1351 CI->second.push_back(MI);
1352 else
1353 CSEMap[Opcode].push_back(MI);
1354 }
1355
1356 ++NumHoisted;
1357 Changed = true;
1358
1359 return true;
1360 }
1361
1362 /// Get the preheader for the current loop, splitting a critical edge if needed.
getCurPreheader()1363 MachineBasicBlock *MachineLICM::getCurPreheader() {
1364 // Determine the block to which to hoist instructions. If we can't find a
1365 // suitable loop predecessor, we can't do any hoisting.
1366
1367 // If we've tried to get a preheader and failed, don't try again.
1368 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1369 return nullptr;
1370
1371 if (!CurPreheader) {
1372 CurPreheader = CurLoop->getLoopPreheader();
1373 if (!CurPreheader) {
1374 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1375 if (!Pred) {
1376 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1377 return nullptr;
1378 }
1379
1380 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1381 if (!CurPreheader) {
1382 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1383 return nullptr;
1384 }
1385 }
1386 }
1387 return CurPreheader;
1388 }
1389