1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/LiveVariables.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52
53 namespace {
54 struct MachineVerifier {
55
MachineVerifier__anonf70363060111::MachineVerifier56 MachineVerifier(Pass *pass, const char *b) :
57 PASS(pass),
58 Banner(b)
59 {}
60
61 unsigned verify(MachineFunction &MF);
62
63 Pass *const PASS;
64 const char *Banner;
65 const MachineFunction *MF;
66 const TargetMachine *TM;
67 const TargetInstrInfo *TII;
68 const TargetRegisterInfo *TRI;
69 const MachineRegisterInfo *MRI;
70
71 unsigned foundErrors;
72
73 typedef SmallVector<unsigned, 16> RegVector;
74 typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75 typedef DenseSet<unsigned> RegSet;
76 typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78
79 const MachineInstr *FirstTerminator;
80 BlockSet FunctionBlocks;
81
82 BitVector regsReserved;
83 RegSet regsLive;
84 RegVector regsDefined, regsDead, regsKilled;
85 RegMaskVector regMasks;
86 RegSet regsLiveInButUnused;
87
88 SlotIndex lastIndex;
89
90 // Add Reg and any sub-registers to RV
addRegWithSubRegs__anonf70363060111::MachineVerifier91 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92 RV.push_back(Reg);
93 if (TargetRegisterInfo::isPhysicalRegister(Reg))
94 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95 RV.push_back(*SubRegs);
96 }
97
98 struct BBInfo {
99 // Is this MBB reachable from the MF entry point?
100 bool reachable;
101
102 // Vregs that must be live in because they are used without being
103 // defined. Map value is the user.
104 RegMap vregsLiveIn;
105
106 // Regs killed in MBB. They may be defined again, and will then be in both
107 // regsKilled and regsLiveOut.
108 RegSet regsKilled;
109
110 // Regs defined in MBB and live out. Note that vregs passing through may
111 // be live out without being mentioned here.
112 RegSet regsLiveOut;
113
114 // Vregs that pass through MBB untouched. This set is disjoint from
115 // regsKilled and regsLiveOut.
116 RegSet vregsPassed;
117
118 // Vregs that must pass through MBB because they are needed by a successor
119 // block. This set is disjoint from regsLiveOut.
120 RegSet vregsRequired;
121
122 // Set versions of block's predecessor and successor lists.
123 BlockSet Preds, Succs;
124
BBInfo__anonf70363060111::MachineVerifier::BBInfo125 BBInfo() : reachable(false) {}
126
127 // Add register to vregsPassed if it belongs there. Return true if
128 // anything changed.
addPassed__anonf70363060111::MachineVerifier::BBInfo129 bool addPassed(unsigned Reg) {
130 if (!TargetRegisterInfo::isVirtualRegister(Reg))
131 return false;
132 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133 return false;
134 return vregsPassed.insert(Reg).second;
135 }
136
137 // Same for a full set.
addPassed__anonf70363060111::MachineVerifier::BBInfo138 bool addPassed(const RegSet &RS) {
139 bool changed = false;
140 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141 if (addPassed(*I))
142 changed = true;
143 return changed;
144 }
145
146 // Add register to vregsRequired if it belongs there. Return true if
147 // anything changed.
addRequired__anonf70363060111::MachineVerifier::BBInfo148 bool addRequired(unsigned Reg) {
149 if (!TargetRegisterInfo::isVirtualRegister(Reg))
150 return false;
151 if (regsLiveOut.count(Reg))
152 return false;
153 return vregsRequired.insert(Reg).second;
154 }
155
156 // Same for a full set.
addRequired__anonf70363060111::MachineVerifier::BBInfo157 bool addRequired(const RegSet &RS) {
158 bool changed = false;
159 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160 if (addRequired(*I))
161 changed = true;
162 return changed;
163 }
164
165 // Same for a full map.
addRequired__anonf70363060111::MachineVerifier::BBInfo166 bool addRequired(const RegMap &RM) {
167 bool changed = false;
168 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169 if (addRequired(I->first))
170 changed = true;
171 return changed;
172 }
173
174 // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anonf70363060111::MachineVerifier::BBInfo175 bool isLiveOut(unsigned Reg) const {
176 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177 }
178 };
179
180 // Extra register info per MBB.
181 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182
isReserved__anonf70363060111::MachineVerifier183 bool isReserved(unsigned Reg) {
184 return Reg < regsReserved.size() && regsReserved.test(Reg);
185 }
186
isAllocatable__anonf70363060111::MachineVerifier187 bool isAllocatable(unsigned Reg) {
188 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189 }
190
191 // Analysis information if available
192 LiveVariables *LiveVars;
193 LiveIntervals *LiveInts;
194 LiveStacks *LiveStks;
195 SlotIndexes *Indexes;
196
197 void visitMachineFunctionBefore();
198 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199 void visitMachineBundleBefore(const MachineInstr *MI);
200 void visitMachineInstrBefore(const MachineInstr *MI);
201 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202 void visitMachineInstrAfter(const MachineInstr *MI);
203 void visitMachineBundleAfter(const MachineInstr *MI);
204 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205 void visitMachineFunctionAfter();
206
report__anonf70363060111::MachineVerifier207 template <typename T> void report(const char *msg, ilist_iterator<T> I) {
208 report(msg, &*I);
209 }
210 void report(const char *msg, const MachineFunction *MF);
211 void report(const char *msg, const MachineBasicBlock *MBB);
212 void report(const char *msg, const MachineInstr *MI);
213 void report(const char *msg, const MachineOperand *MO, unsigned MONum);
214
215 void report_context(const LiveInterval &LI) const;
216 void report_context(const LiveRange &LR, unsigned Reg,
217 LaneBitmask LaneMask) const;
218 void report_context(const LiveRange::Segment &S) const;
219 void report_context(const VNInfo &VNI) const;
220 void report_context(SlotIndex Pos) const;
221 void report_context_liverange(const LiveRange &LR) const;
222 void report_context_lanemask(LaneBitmask LaneMask) const;
223 void report_context_vreg(unsigned VReg) const;
224 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const;
225
226 void verifyInlineAsm(const MachineInstr *MI);
227
228 void checkLiveness(const MachineOperand *MO, unsigned MONum);
229 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
230 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
231 LaneBitmask LaneMask = 0);
232 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
233 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
234 LaneBitmask LaneMask = 0);
235
236 void markReachable(const MachineBasicBlock *MBB);
237 void calcRegsPassed();
238 void checkPHIOps(const MachineBasicBlock *MBB);
239
240 void calcRegsRequired();
241 void verifyLiveVariables();
242 void verifyLiveIntervals();
243 void verifyLiveInterval(const LiveInterval&);
244 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
245 unsigned);
246 void verifyLiveRangeSegment(const LiveRange&,
247 const LiveRange::const_iterator I, unsigned,
248 unsigned);
249 void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
250
251 void verifyStackFrame();
252
253 void verifySlotIndexes() const;
254 void verifyProperties(const MachineFunction &MF);
255 };
256
257 struct MachineVerifierPass : public MachineFunctionPass {
258 static char ID; // Pass ID, replacement for typeid
259 const std::string Banner;
260
MachineVerifierPass__anonf70363060111::MachineVerifierPass261 MachineVerifierPass(const std::string &banner = nullptr)
262 : MachineFunctionPass(ID), Banner(banner) {
263 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
264 }
265
getAnalysisUsage__anonf70363060111::MachineVerifierPass266 void getAnalysisUsage(AnalysisUsage &AU) const override {
267 AU.setPreservesAll();
268 MachineFunctionPass::getAnalysisUsage(AU);
269 }
270
runOnMachineFunction__anonf70363060111::MachineVerifierPass271 bool runOnMachineFunction(MachineFunction &MF) override {
272 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
273 if (FoundErrors)
274 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
275 return false;
276 }
277 };
278
279 }
280
281 char MachineVerifierPass::ID = 0;
282 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
283 "Verify generated machine code", false, false)
284
createMachineVerifierPass(const std::string & Banner)285 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
286 return new MachineVerifierPass(Banner);
287 }
288
verify(Pass * p,const char * Banner,bool AbortOnErrors) const289 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
290 const {
291 MachineFunction &MF = const_cast<MachineFunction&>(*this);
292 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
293 if (AbortOnErrors && FoundErrors)
294 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
295 return FoundErrors == 0;
296 }
297
verifySlotIndexes() const298 void MachineVerifier::verifySlotIndexes() const {
299 if (Indexes == nullptr)
300 return;
301
302 // Ensure the IdxMBB list is sorted by slot indexes.
303 SlotIndex Last;
304 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
305 E = Indexes->MBBIndexEnd(); I != E; ++I) {
306 assert(!Last.isValid() || I->first > Last);
307 Last = I->first;
308 }
309 }
310
verifyProperties(const MachineFunction & MF)311 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
312 // If a pass has introduced virtual registers without clearing the
313 // AllVRegsAllocated property (or set it without allocating the vregs)
314 // then report an error.
315 if (MF.getProperties().hasProperty(
316 MachineFunctionProperties::Property::AllVRegsAllocated) &&
317 MRI->getNumVirtRegs()) {
318 report(
319 "Function has AllVRegsAllocated property but there are VReg operands",
320 &MF);
321 }
322 }
323
verify(MachineFunction & MF)324 unsigned MachineVerifier::verify(MachineFunction &MF) {
325 foundErrors = 0;
326
327 this->MF = &MF;
328 TM = &MF.getTarget();
329 TII = MF.getSubtarget().getInstrInfo();
330 TRI = MF.getSubtarget().getRegisterInfo();
331 MRI = &MF.getRegInfo();
332
333 LiveVars = nullptr;
334 LiveInts = nullptr;
335 LiveStks = nullptr;
336 Indexes = nullptr;
337 if (PASS) {
338 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
339 // We don't want to verify LiveVariables if LiveIntervals is available.
340 if (!LiveInts)
341 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
342 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
343 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
344 }
345
346 verifySlotIndexes();
347
348 verifyProperties(MF);
349
350 visitMachineFunctionBefore();
351 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
352 MFI!=MFE; ++MFI) {
353 visitMachineBasicBlockBefore(&*MFI);
354 // Keep track of the current bundle header.
355 const MachineInstr *CurBundle = nullptr;
356 // Do we expect the next instruction to be part of the same bundle?
357 bool InBundle = false;
358
359 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
360 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
361 if (MBBI->getParent() != &*MFI) {
362 report("Bad instruction parent pointer", MFI);
363 errs() << "Instruction: " << *MBBI;
364 continue;
365 }
366
367 // Check for consistent bundle flags.
368 if (InBundle && !MBBI->isBundledWithPred())
369 report("Missing BundledPred flag, "
370 "BundledSucc was set on predecessor",
371 &*MBBI);
372 if (!InBundle && MBBI->isBundledWithPred())
373 report("BundledPred flag is set, "
374 "but BundledSucc not set on predecessor",
375 &*MBBI);
376
377 // Is this a bundle header?
378 if (!MBBI->isInsideBundle()) {
379 if (CurBundle)
380 visitMachineBundleAfter(CurBundle);
381 CurBundle = &*MBBI;
382 visitMachineBundleBefore(CurBundle);
383 } else if (!CurBundle)
384 report("No bundle header", MBBI);
385 visitMachineInstrBefore(&*MBBI);
386 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
387 const MachineInstr &MI = *MBBI;
388 const MachineOperand &Op = MI.getOperand(I);
389 if (Op.getParent() != &MI) {
390 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
391 // functions when replacing operands of a MachineInstr.
392 report("Instruction has operand with wrong parent set", &MI);
393 }
394
395 visitMachineOperand(&Op, I);
396 }
397
398 visitMachineInstrAfter(&*MBBI);
399
400 // Was this the last bundled instruction?
401 InBundle = MBBI->isBundledWithSucc();
402 }
403 if (CurBundle)
404 visitMachineBundleAfter(CurBundle);
405 if (InBundle)
406 report("BundledSucc flag set on last instruction in block", &MFI->back());
407 visitMachineBasicBlockAfter(&*MFI);
408 }
409 visitMachineFunctionAfter();
410
411 // Clean up.
412 regsLive.clear();
413 regsDefined.clear();
414 regsDead.clear();
415 regsKilled.clear();
416 regMasks.clear();
417 regsLiveInButUnused.clear();
418 MBBInfoMap.clear();
419
420 return foundErrors;
421 }
422
report(const char * msg,const MachineFunction * MF)423 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
424 assert(MF);
425 errs() << '\n';
426 if (!foundErrors++) {
427 if (Banner)
428 errs() << "# " << Banner << '\n';
429 if (LiveInts != nullptr)
430 LiveInts->print(errs());
431 else
432 MF->print(errs(), Indexes);
433 }
434 errs() << "*** Bad machine code: " << msg << " ***\n"
435 << "- function: " << MF->getName() << "\n";
436 }
437
report(const char * msg,const MachineBasicBlock * MBB)438 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
439 assert(MBB);
440 report(msg, MBB->getParent());
441 errs() << "- basic block: BB#" << MBB->getNumber()
442 << ' ' << MBB->getName()
443 << " (" << (const void*)MBB << ')';
444 if (Indexes)
445 errs() << " [" << Indexes->getMBBStartIdx(MBB)
446 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
447 errs() << '\n';
448 }
449
report(const char * msg,const MachineInstr * MI)450 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
451 assert(MI);
452 report(msg, MI->getParent());
453 errs() << "- instruction: ";
454 if (Indexes && Indexes->hasIndex(*MI))
455 errs() << Indexes->getInstructionIndex(*MI) << '\t';
456 MI->print(errs(), /*SkipOpers=*/true);
457 errs() << '\n';
458 }
459
report(const char * msg,const MachineOperand * MO,unsigned MONum)460 void MachineVerifier::report(const char *msg,
461 const MachineOperand *MO, unsigned MONum) {
462 assert(MO);
463 report(msg, MO->getParent());
464 errs() << "- operand " << MONum << ": ";
465 MO->print(errs(), TRI);
466 errs() << "\n";
467 }
468
report_context(SlotIndex Pos) const469 void MachineVerifier::report_context(SlotIndex Pos) const {
470 errs() << "- at: " << Pos << '\n';
471 }
472
report_context(const LiveInterval & LI) const473 void MachineVerifier::report_context(const LiveInterval &LI) const {
474 errs() << "- interval: " << LI << '\n';
475 }
476
report_context(const LiveRange & LR,unsigned Reg,LaneBitmask LaneMask) const477 void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg,
478 LaneBitmask LaneMask) const {
479 report_context_liverange(LR);
480 errs() << "- register: " << PrintReg(Reg, TRI) << '\n';
481 if (LaneMask != 0)
482 report_context_lanemask(LaneMask);
483 }
484
report_context(const LiveRange::Segment & S) const485 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
486 errs() << "- segment: " << S << '\n';
487 }
488
report_context(const VNInfo & VNI) const489 void MachineVerifier::report_context(const VNInfo &VNI) const {
490 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
491 }
492
report_context_liverange(const LiveRange & LR) const493 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
494 errs() << "- liverange: " << LR << '\n';
495 }
496
report_context_vreg(unsigned VReg) const497 void MachineVerifier::report_context_vreg(unsigned VReg) const {
498 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n';
499 }
500
report_context_vreg_regunit(unsigned VRegOrUnit) const501 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
502 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
503 report_context_vreg(VRegOrUnit);
504 } else {
505 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n';
506 }
507 }
508
report_context_lanemask(LaneBitmask LaneMask) const509 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
510 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
511 }
512
markReachable(const MachineBasicBlock * MBB)513 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
514 BBInfo &MInfo = MBBInfoMap[MBB];
515 if (!MInfo.reachable) {
516 MInfo.reachable = true;
517 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
518 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
519 markReachable(*SuI);
520 }
521 }
522
visitMachineFunctionBefore()523 void MachineVerifier::visitMachineFunctionBefore() {
524 lastIndex = SlotIndex();
525 regsReserved = MRI->getReservedRegs();
526
527 // A sub-register of a reserved register is also reserved
528 for (int Reg = regsReserved.find_first(); Reg>=0;
529 Reg = regsReserved.find_next(Reg)) {
530 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
531 // FIXME: This should probably be:
532 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
533 regsReserved.set(*SubRegs);
534 }
535 }
536
537 markReachable(&MF->front());
538
539 // Build a set of the basic blocks in the function.
540 FunctionBlocks.clear();
541 for (const auto &MBB : *MF) {
542 FunctionBlocks.insert(&MBB);
543 BBInfo &MInfo = MBBInfoMap[&MBB];
544
545 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
546 if (MInfo.Preds.size() != MBB.pred_size())
547 report("MBB has duplicate entries in its predecessor list.", &MBB);
548
549 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
550 if (MInfo.Succs.size() != MBB.succ_size())
551 report("MBB has duplicate entries in its successor list.", &MBB);
552 }
553
554 // Check that the register use lists are sane.
555 MRI->verifyUseLists();
556
557 verifyStackFrame();
558 }
559
560 // Does iterator point to a and b as the first two elements?
matchPair(MachineBasicBlock::const_succ_iterator i,const MachineBasicBlock * a,const MachineBasicBlock * b)561 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
562 const MachineBasicBlock *a, const MachineBasicBlock *b) {
563 if (*i == a)
564 return *++i == b;
565 if (*i == b)
566 return *++i == a;
567 return false;
568 }
569
570 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)571 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
572 FirstTerminator = nullptr;
573
574 if (MRI->isSSA()) {
575 // If this block has allocatable physical registers live-in, check that
576 // it is an entry block or landing pad.
577 for (const auto &LI : MBB->liveins()) {
578 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
579 MBB->getIterator() != MBB->getParent()->begin()) {
580 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
581 }
582 }
583 }
584
585 // Count the number of landing pad successors.
586 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
587 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
588 E = MBB->succ_end(); I != E; ++I) {
589 if ((*I)->isEHPad())
590 LandingPadSuccs.insert(*I);
591 if (!FunctionBlocks.count(*I))
592 report("MBB has successor that isn't part of the function.", MBB);
593 if (!MBBInfoMap[*I].Preds.count(MBB)) {
594 report("Inconsistent CFG", MBB);
595 errs() << "MBB is not in the predecessor list of the successor BB#"
596 << (*I)->getNumber() << ".\n";
597 }
598 }
599
600 // Check the predecessor list.
601 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
602 E = MBB->pred_end(); I != E; ++I) {
603 if (!FunctionBlocks.count(*I))
604 report("MBB has predecessor that isn't part of the function.", MBB);
605 if (!MBBInfoMap[*I].Succs.count(MBB)) {
606 report("Inconsistent CFG", MBB);
607 errs() << "MBB is not in the successor list of the predecessor BB#"
608 << (*I)->getNumber() << ".\n";
609 }
610 }
611
612 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
613 const BasicBlock *BB = MBB->getBasicBlock();
614 const Function *Fn = MF->getFunction();
615 if (LandingPadSuccs.size() > 1 &&
616 !(AsmInfo &&
617 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
618 BB && isa<SwitchInst>(BB->getTerminator())) &&
619 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn())))
620 report("MBB has more than one landing pad successor", MBB);
621
622 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
623 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
624 SmallVector<MachineOperand, 4> Cond;
625 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
626 Cond)) {
627 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
628 // check whether its answers match up with reality.
629 if (!TBB && !FBB) {
630 // Block falls through to its successor.
631 MachineFunction::const_iterator MBBI = MBB->getIterator();
632 ++MBBI;
633 if (MBBI == MF->end()) {
634 // It's possible that the block legitimately ends with a noreturn
635 // call or an unreachable, in which case it won't actually fall
636 // out the bottom of the function.
637 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
638 // It's possible that the block legitimately ends with a noreturn
639 // call or an unreachable, in which case it won't actuall fall
640 // out of the block.
641 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
642 report("MBB exits via unconditional fall-through but doesn't have "
643 "exactly one CFG successor!", MBB);
644 } else if (!MBB->isSuccessor(&*MBBI)) {
645 report("MBB exits via unconditional fall-through but its successor "
646 "differs from its CFG successor!", MBB);
647 }
648 if (!MBB->empty() && MBB->back().isBarrier() &&
649 !TII->isPredicated(MBB->back())) {
650 report("MBB exits via unconditional fall-through but ends with a "
651 "barrier instruction!", MBB);
652 }
653 if (!Cond.empty()) {
654 report("MBB exits via unconditional fall-through but has a condition!",
655 MBB);
656 }
657 } else if (TBB && !FBB && Cond.empty()) {
658 // Block unconditionally branches somewhere.
659 // If the block has exactly one successor, that happens to be a
660 // landingpad, accept it as valid control flow.
661 if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
662 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
663 *MBB->succ_begin() != *LandingPadSuccs.begin())) {
664 report("MBB exits via unconditional branch but doesn't have "
665 "exactly one CFG successor!", MBB);
666 } else if (!MBB->isSuccessor(TBB)) {
667 report("MBB exits via unconditional branch but the CFG "
668 "successor doesn't match the actual successor!", MBB);
669 }
670 if (MBB->empty()) {
671 report("MBB exits via unconditional branch but doesn't contain "
672 "any instructions!", MBB);
673 } else if (!MBB->back().isBarrier()) {
674 report("MBB exits via unconditional branch but doesn't end with a "
675 "barrier instruction!", MBB);
676 } else if (!MBB->back().isTerminator()) {
677 report("MBB exits via unconditional branch but the branch isn't a "
678 "terminator instruction!", MBB);
679 }
680 } else if (TBB && !FBB && !Cond.empty()) {
681 // Block conditionally branches somewhere, otherwise falls through.
682 MachineFunction::const_iterator MBBI = MBB->getIterator();
683 ++MBBI;
684 if (MBBI == MF->end()) {
685 report("MBB conditionally falls through out of function!", MBB);
686 } else if (MBB->succ_size() == 1) {
687 // A conditional branch with only one successor is weird, but allowed.
688 if (&*MBBI != TBB)
689 report("MBB exits via conditional branch/fall-through but only has "
690 "one CFG successor!", MBB);
691 else if (TBB != *MBB->succ_begin())
692 report("MBB exits via conditional branch/fall-through but the CFG "
693 "successor don't match the actual successor!", MBB);
694 } else if (MBB->succ_size() != 2) {
695 report("MBB exits via conditional branch/fall-through but doesn't have "
696 "exactly two CFG successors!", MBB);
697 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
698 report("MBB exits via conditional branch/fall-through but the CFG "
699 "successors don't match the actual successors!", MBB);
700 }
701 if (MBB->empty()) {
702 report("MBB exits via conditional branch/fall-through but doesn't "
703 "contain any instructions!", MBB);
704 } else if (MBB->back().isBarrier()) {
705 report("MBB exits via conditional branch/fall-through but ends with a "
706 "barrier instruction!", MBB);
707 } else if (!MBB->back().isTerminator()) {
708 report("MBB exits via conditional branch/fall-through but the branch "
709 "isn't a terminator instruction!", MBB);
710 }
711 } else if (TBB && FBB) {
712 // Block conditionally branches somewhere, otherwise branches
713 // somewhere else.
714 if (MBB->succ_size() == 1) {
715 // A conditional branch with only one successor is weird, but allowed.
716 if (FBB != TBB)
717 report("MBB exits via conditional branch/branch through but only has "
718 "one CFG successor!", MBB);
719 else if (TBB != *MBB->succ_begin())
720 report("MBB exits via conditional branch/branch through but the CFG "
721 "successor don't match the actual successor!", MBB);
722 } else if (MBB->succ_size() != 2) {
723 report("MBB exits via conditional branch/branch but doesn't have "
724 "exactly two CFG successors!", MBB);
725 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
726 report("MBB exits via conditional branch/branch but the CFG "
727 "successors don't match the actual successors!", MBB);
728 }
729 if (MBB->empty()) {
730 report("MBB exits via conditional branch/branch but doesn't "
731 "contain any instructions!", MBB);
732 } else if (!MBB->back().isBarrier()) {
733 report("MBB exits via conditional branch/branch but doesn't end with a "
734 "barrier instruction!", MBB);
735 } else if (!MBB->back().isTerminator()) {
736 report("MBB exits via conditional branch/branch but the branch "
737 "isn't a terminator instruction!", MBB);
738 }
739 if (Cond.empty()) {
740 report("MBB exits via conditinal branch/branch but there's no "
741 "condition!", MBB);
742 }
743 } else {
744 report("AnalyzeBranch returned invalid data!", MBB);
745 }
746 }
747
748 regsLive.clear();
749 for (const auto &LI : MBB->liveins()) {
750 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
751 report("MBB live-in list contains non-physical register", MBB);
752 continue;
753 }
754 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
755 SubRegs.isValid(); ++SubRegs)
756 regsLive.insert(*SubRegs);
757 }
758 regsLiveInButUnused = regsLive;
759
760 const MachineFrameInfo *MFI = MF->getFrameInfo();
761 assert(MFI && "Function has no frame info");
762 BitVector PR = MFI->getPristineRegs(*MF);
763 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
764 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
765 SubRegs.isValid(); ++SubRegs)
766 regsLive.insert(*SubRegs);
767 }
768
769 regsKilled.clear();
770 regsDefined.clear();
771
772 if (Indexes)
773 lastIndex = Indexes->getMBBStartIdx(MBB);
774 }
775
776 // This function gets called for all bundle headers, including normal
777 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)778 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
779 if (Indexes && Indexes->hasIndex(*MI)) {
780 SlotIndex idx = Indexes->getInstructionIndex(*MI);
781 if (!(idx > lastIndex)) {
782 report("Instruction index out of order", MI);
783 errs() << "Last instruction was at " << lastIndex << '\n';
784 }
785 lastIndex = idx;
786 }
787
788 // Ensure non-terminators don't follow terminators.
789 // Ignore predicated terminators formed by if conversion.
790 // FIXME: If conversion shouldn't need to violate this rule.
791 if (MI->isTerminator() && !TII->isPredicated(*MI)) {
792 if (!FirstTerminator)
793 FirstTerminator = MI;
794 } else if (FirstTerminator) {
795 report("Non-terminator instruction after the first terminator", MI);
796 errs() << "First terminator was:\t" << *FirstTerminator;
797 }
798 }
799
800 // The operands on an INLINEASM instruction must follow a template.
801 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)802 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
803 // The first two operands on INLINEASM are the asm string and global flags.
804 if (MI->getNumOperands() < 2) {
805 report("Too few operands on inline asm", MI);
806 return;
807 }
808 if (!MI->getOperand(0).isSymbol())
809 report("Asm string must be an external symbol", MI);
810 if (!MI->getOperand(1).isImm())
811 report("Asm flags must be an immediate", MI);
812 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
813 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
814 // and Extra_IsConvergent = 32.
815 if (!isUInt<6>(MI->getOperand(1).getImm()))
816 report("Unknown asm flags", &MI->getOperand(1), 1);
817
818 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
819
820 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
821 unsigned NumOps;
822 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
823 const MachineOperand &MO = MI->getOperand(OpNo);
824 // There may be implicit ops after the fixed operands.
825 if (!MO.isImm())
826 break;
827 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
828 }
829
830 if (OpNo > MI->getNumOperands())
831 report("Missing operands in last group", MI);
832
833 // An optional MDNode follows the groups.
834 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
835 ++OpNo;
836
837 // All trailing operands must be implicit registers.
838 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
839 const MachineOperand &MO = MI->getOperand(OpNo);
840 if (!MO.isReg() || !MO.isImplicit())
841 report("Expected implicit register after groups", &MO, OpNo);
842 }
843 }
844
visitMachineInstrBefore(const MachineInstr * MI)845 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
846 const MCInstrDesc &MCID = MI->getDesc();
847 if (MI->getNumOperands() < MCID.getNumOperands()) {
848 report("Too few operands", MI);
849 errs() << MCID.getNumOperands() << " operands expected, but "
850 << MI->getNumOperands() << " given.\n";
851 }
852
853 // Check the tied operands.
854 if (MI->isInlineAsm())
855 verifyInlineAsm(MI);
856
857 // Check the MachineMemOperands for basic consistency.
858 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
859 E = MI->memoperands_end(); I != E; ++I) {
860 if ((*I)->isLoad() && !MI->mayLoad())
861 report("Missing mayLoad flag", MI);
862 if ((*I)->isStore() && !MI->mayStore())
863 report("Missing mayStore flag", MI);
864 }
865
866 // Debug values must not have a slot index.
867 // Other instructions must have one, unless they are inside a bundle.
868 if (LiveInts) {
869 bool mapped = !LiveInts->isNotInMIMap(*MI);
870 if (MI->isDebugValue()) {
871 if (mapped)
872 report("Debug instruction has a slot index", MI);
873 } else if (MI->isInsideBundle()) {
874 if (mapped)
875 report("Instruction inside bundle has a slot index", MI);
876 } else {
877 if (!mapped)
878 report("Missing slot index", MI);
879 }
880 }
881
882 StringRef ErrorInfo;
883 if (!TII->verifyInstruction(*MI, ErrorInfo))
884 report(ErrorInfo.data(), MI);
885 }
886
887 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)888 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
889 const MachineInstr *MI = MO->getParent();
890 const MCInstrDesc &MCID = MI->getDesc();
891 unsigned NumDefs = MCID.getNumDefs();
892 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
893 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
894
895 // The first MCID.NumDefs operands must be explicit register defines
896 if (MONum < NumDefs) {
897 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
898 if (!MO->isReg())
899 report("Explicit definition must be a register", MO, MONum);
900 else if (!MO->isDef() && !MCOI.isOptionalDef())
901 report("Explicit definition marked as use", MO, MONum);
902 else if (MO->isImplicit())
903 report("Explicit definition marked as implicit", MO, MONum);
904 } else if (MONum < MCID.getNumOperands()) {
905 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
906 // Don't check if it's the last operand in a variadic instruction. See,
907 // e.g., LDM_RET in the arm back end.
908 if (MO->isReg() &&
909 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
910 if (MO->isDef() && !MCOI.isOptionalDef())
911 report("Explicit operand marked as def", MO, MONum);
912 if (MO->isImplicit())
913 report("Explicit operand marked as implicit", MO, MONum);
914 }
915
916 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
917 if (TiedTo != -1) {
918 if (!MO->isReg())
919 report("Tied use must be a register", MO, MONum);
920 else if (!MO->isTied())
921 report("Operand should be tied", MO, MONum);
922 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
923 report("Tied def doesn't match MCInstrDesc", MO, MONum);
924 } else if (MO->isReg() && MO->isTied())
925 report("Explicit operand should not be tied", MO, MONum);
926 } else {
927 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
928 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
929 report("Extra explicit operand on non-variadic instruction", MO, MONum);
930 }
931
932 switch (MO->getType()) {
933 case MachineOperand::MO_Register: {
934 const unsigned Reg = MO->getReg();
935 if (!Reg)
936 return;
937 if (MRI->tracksLiveness() && !MI->isDebugValue())
938 checkLiveness(MO, MONum);
939
940 // Verify the consistency of tied operands.
941 if (MO->isTied()) {
942 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
943 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
944 if (!OtherMO.isReg())
945 report("Must be tied to a register", MO, MONum);
946 if (!OtherMO.isTied())
947 report("Missing tie flags on tied operand", MO, MONum);
948 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
949 report("Inconsistent tie links", MO, MONum);
950 if (MONum < MCID.getNumDefs()) {
951 if (OtherIdx < MCID.getNumOperands()) {
952 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
953 report("Explicit def tied to explicit use without tie constraint",
954 MO, MONum);
955 } else {
956 if (!OtherMO.isImplicit())
957 report("Explicit def should be tied to implicit use", MO, MONum);
958 }
959 }
960 }
961
962 // Verify two-address constraints after leaving SSA form.
963 unsigned DefIdx;
964 if (!MRI->isSSA() && MO->isUse() &&
965 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
966 Reg != MI->getOperand(DefIdx).getReg())
967 report("Two-address instruction operands must be identical", MO, MONum);
968
969 // Check register classes.
970 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
971 unsigned SubIdx = MO->getSubReg();
972
973 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
974 if (SubIdx) {
975 report("Illegal subregister index for physical register", MO, MONum);
976 return;
977 }
978 if (const TargetRegisterClass *DRC =
979 TII->getRegClass(MCID, MONum, TRI, *MF)) {
980 if (!DRC->contains(Reg)) {
981 report("Illegal physical register for instruction", MO, MONum);
982 errs() << TRI->getName(Reg) << " is not a "
983 << TRI->getRegClassName(DRC) << " register.\n";
984 }
985 }
986 } else {
987 // Virtual register.
988 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
989 if (!RC) {
990 // This is a generic virtual register.
991 // It must have a size and it must not have a SubIdx.
992 unsigned Size = MRI->getSize(Reg);
993 if (!Size) {
994 report("Generic virtual register must have a size", MO, MONum);
995 return;
996 }
997 // Make sure the register fits into its register bank if any.
998 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
999 if (RegBank && RegBank->getSize() < Size) {
1000 report("Register bank is too small for virtual register", MO,
1001 MONum);
1002 errs() << "Register bank " << RegBank->getName() << " too small("
1003 << RegBank->getSize() << ") to fit " << Size << "-bits\n";
1004 return;
1005 }
1006 if (SubIdx) {
1007 report("Generic virtual register does not subregister index", MO, MONum);
1008 return;
1009 }
1010 break;
1011 }
1012 if (SubIdx) {
1013 const TargetRegisterClass *SRC =
1014 TRI->getSubClassWithSubReg(RC, SubIdx);
1015 if (!SRC) {
1016 report("Invalid subregister index for virtual register", MO, MONum);
1017 errs() << "Register class " << TRI->getRegClassName(RC)
1018 << " does not support subreg index " << SubIdx << "\n";
1019 return;
1020 }
1021 if (RC != SRC) {
1022 report("Invalid register class for subregister index", MO, MONum);
1023 errs() << "Register class " << TRI->getRegClassName(RC)
1024 << " does not fully support subreg index " << SubIdx << "\n";
1025 return;
1026 }
1027 }
1028 if (const TargetRegisterClass *DRC =
1029 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1030 if (SubIdx) {
1031 const TargetRegisterClass *SuperRC =
1032 TRI->getLargestLegalSuperClass(RC, *MF);
1033 if (!SuperRC) {
1034 report("No largest legal super class exists.", MO, MONum);
1035 return;
1036 }
1037 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1038 if (!DRC) {
1039 report("No matching super-reg register class.", MO, MONum);
1040 return;
1041 }
1042 }
1043 if (!RC->hasSuperClassEq(DRC)) {
1044 report("Illegal virtual register for instruction", MO, MONum);
1045 errs() << "Expected a " << TRI->getRegClassName(DRC)
1046 << " register, but got a " << TRI->getRegClassName(RC)
1047 << " register\n";
1048 }
1049 }
1050 }
1051 }
1052 break;
1053 }
1054
1055 case MachineOperand::MO_RegisterMask:
1056 regMasks.push_back(MO->getRegMask());
1057 break;
1058
1059 case MachineOperand::MO_MachineBasicBlock:
1060 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1061 report("PHI operand is not in the CFG", MO, MONum);
1062 break;
1063
1064 case MachineOperand::MO_FrameIndex:
1065 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1066 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1067 int FI = MO->getIndex();
1068 LiveInterval &LI = LiveStks->getInterval(FI);
1069 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1070
1071 bool stores = MI->mayStore();
1072 bool loads = MI->mayLoad();
1073 // For a memory-to-memory move, we need to check if the frame
1074 // index is used for storing or loading, by inspecting the
1075 // memory operands.
1076 if (stores && loads) {
1077 for (auto *MMO : MI->memoperands()) {
1078 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1079 if (PSV == nullptr) continue;
1080 const FixedStackPseudoSourceValue *Value =
1081 dyn_cast<FixedStackPseudoSourceValue>(PSV);
1082 if (Value == nullptr) continue;
1083 if (Value->getFrameIndex() != FI) continue;
1084
1085 if (MMO->isStore())
1086 loads = false;
1087 else
1088 stores = false;
1089 break;
1090 }
1091 if (loads == stores)
1092 report("Missing fixed stack memoperand.", MI);
1093 }
1094 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1095 report("Instruction loads from dead spill slot", MO, MONum);
1096 errs() << "Live stack: " << LI << '\n';
1097 }
1098 if (stores && !LI.liveAt(Idx.getRegSlot())) {
1099 report("Instruction stores to dead spill slot", MO, MONum);
1100 errs() << "Live stack: " << LI << '\n';
1101 }
1102 }
1103 break;
1104
1105 default:
1106 break;
1107 }
1108 }
1109
checkLivenessAtUse(const MachineOperand * MO,unsigned MONum,SlotIndex UseIdx,const LiveRange & LR,unsigned VRegOrUnit,LaneBitmask LaneMask)1110 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1111 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1112 LaneBitmask LaneMask) {
1113 LiveQueryResult LRQ = LR.Query(UseIdx);
1114 // Check if we have a segment at the use, note however that we only need one
1115 // live subregister range, the others may be dead.
1116 if (!LRQ.valueIn() && LaneMask == 0) {
1117 report("No live segment at use", MO, MONum);
1118 report_context_liverange(LR);
1119 report_context_vreg_regunit(VRegOrUnit);
1120 report_context(UseIdx);
1121 }
1122 if (MO->isKill() && !LRQ.isKill()) {
1123 report("Live range continues after kill flag", MO, MONum);
1124 report_context_liverange(LR);
1125 report_context_vreg_regunit(VRegOrUnit);
1126 if (LaneMask != 0)
1127 report_context_lanemask(LaneMask);
1128 report_context(UseIdx);
1129 }
1130 }
1131
checkLivenessAtDef(const MachineOperand * MO,unsigned MONum,SlotIndex DefIdx,const LiveRange & LR,unsigned VRegOrUnit,LaneBitmask LaneMask)1132 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1133 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1134 LaneBitmask LaneMask) {
1135 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1136 assert(VNI && "NULL valno is not allowed");
1137 if (VNI->def != DefIdx) {
1138 report("Inconsistent valno->def", MO, MONum);
1139 report_context_liverange(LR);
1140 report_context_vreg_regunit(VRegOrUnit);
1141 if (LaneMask != 0)
1142 report_context_lanemask(LaneMask);
1143 report_context(*VNI);
1144 report_context(DefIdx);
1145 }
1146 } else {
1147 report("No live segment at def", MO, MONum);
1148 report_context_liverange(LR);
1149 report_context_vreg_regunit(VRegOrUnit);
1150 if (LaneMask != 0)
1151 report_context_lanemask(LaneMask);
1152 report_context(DefIdx);
1153 }
1154 // Check that, if the dead def flag is present, LiveInts agree.
1155 if (MO->isDead()) {
1156 LiveQueryResult LRQ = LR.Query(DefIdx);
1157 if (!LRQ.isDeadDef()) {
1158 // In case of physregs we can have a non-dead definition on another
1159 // operand.
1160 bool otherDef = false;
1161 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
1162 const MachineInstr &MI = *MO->getParent();
1163 for (const MachineOperand &MO : MI.operands()) {
1164 if (!MO.isReg() || !MO.isDef() || MO.isDead())
1165 continue;
1166 unsigned Reg = MO.getReg();
1167 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1168 if (*Units == VRegOrUnit) {
1169 otherDef = true;
1170 break;
1171 }
1172 }
1173 }
1174 }
1175
1176 if (!otherDef) {
1177 report("Live range continues after dead def flag", MO, MONum);
1178 report_context_liverange(LR);
1179 report_context_vreg_regunit(VRegOrUnit);
1180 if (LaneMask != 0)
1181 report_context_lanemask(LaneMask);
1182 }
1183 }
1184 }
1185 }
1186
checkLiveness(const MachineOperand * MO,unsigned MONum)1187 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1188 const MachineInstr *MI = MO->getParent();
1189 const unsigned Reg = MO->getReg();
1190
1191 // Both use and def operands can read a register.
1192 if (MO->readsReg()) {
1193 regsLiveInButUnused.erase(Reg);
1194
1195 if (MO->isKill())
1196 addRegWithSubRegs(regsKilled, Reg);
1197
1198 // Check that LiveVars knows this kill.
1199 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1200 MO->isKill()) {
1201 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1202 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1203 report("Kill missing from LiveVariables", MO, MONum);
1204 }
1205
1206 // Check LiveInts liveness and kill.
1207 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1208 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1209 // Check the cached regunit intervals.
1210 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1211 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1212 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1213 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1214 }
1215 }
1216
1217 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1218 if (LiveInts->hasInterval(Reg)) {
1219 // This is a virtual register interval.
1220 const LiveInterval &LI = LiveInts->getInterval(Reg);
1221 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1222
1223 if (LI.hasSubRanges() && !MO->isDef()) {
1224 unsigned SubRegIdx = MO->getSubReg();
1225 LaneBitmask MOMask = SubRegIdx != 0
1226 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1227 : MRI->getMaxLaneMaskForVReg(Reg);
1228 LaneBitmask LiveInMask = 0;
1229 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1230 if ((MOMask & SR.LaneMask) == 0)
1231 continue;
1232 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1233 LiveQueryResult LRQ = SR.Query(UseIdx);
1234 if (LRQ.valueIn())
1235 LiveInMask |= SR.LaneMask;
1236 }
1237 // At least parts of the register has to be live at the use.
1238 if ((LiveInMask & MOMask) == 0) {
1239 report("No live subrange at use", MO, MONum);
1240 report_context(LI);
1241 report_context(UseIdx);
1242 }
1243 }
1244 } else {
1245 report("Virtual register has no live interval", MO, MONum);
1246 }
1247 }
1248 }
1249
1250 // Use of a dead register.
1251 if (!regsLive.count(Reg)) {
1252 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1253 // Reserved registers may be used even when 'dead'.
1254 bool Bad = !isReserved(Reg);
1255 // We are fine if just any subregister has a defined value.
1256 if (Bad) {
1257 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1258 ++SubRegs) {
1259 if (regsLive.count(*SubRegs)) {
1260 Bad = false;
1261 break;
1262 }
1263 }
1264 }
1265 // If there is an additional implicit-use of a super register we stop
1266 // here. By definition we are fine if the super register is not
1267 // (completely) dead, if the complete super register is dead we will
1268 // get a report for its operand.
1269 if (Bad) {
1270 for (const MachineOperand &MOP : MI->uses()) {
1271 if (!MOP.isReg())
1272 continue;
1273 if (!MOP.isImplicit())
1274 continue;
1275 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1276 ++SubRegs) {
1277 if (*SubRegs == Reg) {
1278 Bad = false;
1279 break;
1280 }
1281 }
1282 }
1283 }
1284 if (Bad)
1285 report("Using an undefined physical register", MO, MONum);
1286 } else if (MRI->def_empty(Reg)) {
1287 report("Reading virtual register without a def", MO, MONum);
1288 } else {
1289 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1290 // We don't know which virtual registers are live in, so only complain
1291 // if vreg was killed in this MBB. Otherwise keep track of vregs that
1292 // must be live in. PHI instructions are handled separately.
1293 if (MInfo.regsKilled.count(Reg))
1294 report("Using a killed virtual register", MO, MONum);
1295 else if (!MI->isPHI())
1296 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1297 }
1298 }
1299 }
1300
1301 if (MO->isDef()) {
1302 // Register defined.
1303 // TODO: verify that earlyclobber ops are not used.
1304 if (MO->isDead())
1305 addRegWithSubRegs(regsDead, Reg);
1306 else
1307 addRegWithSubRegs(regsDefined, Reg);
1308
1309 // Verify SSA form.
1310 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1311 std::next(MRI->def_begin(Reg)) != MRI->def_end())
1312 report("Multiple virtual register defs in SSA form", MO, MONum);
1313
1314 // Check LiveInts for a live segment, but only for virtual registers.
1315 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1316 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1317 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1318
1319 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1320 if (LiveInts->hasInterval(Reg)) {
1321 const LiveInterval &LI = LiveInts->getInterval(Reg);
1322 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1323
1324 if (LI.hasSubRanges()) {
1325 unsigned SubRegIdx = MO->getSubReg();
1326 LaneBitmask MOMask = SubRegIdx != 0
1327 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1328 : MRI->getMaxLaneMaskForVReg(Reg);
1329 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1330 if ((SR.LaneMask & MOMask) == 0)
1331 continue;
1332 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
1333 }
1334 }
1335 } else {
1336 report("Virtual register has no Live interval", MO, MONum);
1337 }
1338 }
1339 }
1340 }
1341 }
1342
visitMachineInstrAfter(const MachineInstr * MI)1343 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1344 }
1345
1346 // This function gets called after visiting all instructions in a bundle. The
1347 // argument points to the bundle header.
1348 // Normal stand-alone instructions are also considered 'bundles', and this
1349 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)1350 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1351 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1352 set_union(MInfo.regsKilled, regsKilled);
1353 set_subtract(regsLive, regsKilled); regsKilled.clear();
1354 // Kill any masked registers.
1355 while (!regMasks.empty()) {
1356 const uint32_t *Mask = regMasks.pop_back_val();
1357 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1358 if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1359 MachineOperand::clobbersPhysReg(Mask, *I))
1360 regsDead.push_back(*I);
1361 }
1362 set_subtract(regsLive, regsDead); regsDead.clear();
1363 set_union(regsLive, regsDefined); regsDefined.clear();
1364 }
1365
1366 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)1367 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1368 MBBInfoMap[MBB].regsLiveOut = regsLive;
1369 regsLive.clear();
1370
1371 if (Indexes) {
1372 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1373 if (!(stop > lastIndex)) {
1374 report("Block ends before last instruction index", MBB);
1375 errs() << "Block ends at " << stop
1376 << " last instruction was at " << lastIndex << '\n';
1377 }
1378 lastIndex = stop;
1379 }
1380 }
1381
1382 // Calculate the largest possible vregsPassed sets. These are the registers that
1383 // can pass through an MBB live, but may not be live every time. It is assumed
1384 // that all vregsPassed sets are empty before the call.
calcRegsPassed()1385 void MachineVerifier::calcRegsPassed() {
1386 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1387 // have any vregsPassed.
1388 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1389 for (const auto &MBB : *MF) {
1390 BBInfo &MInfo = MBBInfoMap[&MBB];
1391 if (!MInfo.reachable)
1392 continue;
1393 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1394 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1395 BBInfo &SInfo = MBBInfoMap[*SuI];
1396 if (SInfo.addPassed(MInfo.regsLiveOut))
1397 todo.insert(*SuI);
1398 }
1399 }
1400
1401 // Iteratively push vregsPassed to successors. This will converge to the same
1402 // final state regardless of DenseSet iteration order.
1403 while (!todo.empty()) {
1404 const MachineBasicBlock *MBB = *todo.begin();
1405 todo.erase(MBB);
1406 BBInfo &MInfo = MBBInfoMap[MBB];
1407 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1408 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1409 if (*SuI == MBB)
1410 continue;
1411 BBInfo &SInfo = MBBInfoMap[*SuI];
1412 if (SInfo.addPassed(MInfo.vregsPassed))
1413 todo.insert(*SuI);
1414 }
1415 }
1416 }
1417
1418 // Calculate the set of virtual registers that must be passed through each basic
1419 // block in order to satisfy the requirements of successor blocks. This is very
1420 // similar to calcRegsPassed, only backwards.
calcRegsRequired()1421 void MachineVerifier::calcRegsRequired() {
1422 // First push live-in regs to predecessors' vregsRequired.
1423 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1424 for (const auto &MBB : *MF) {
1425 BBInfo &MInfo = MBBInfoMap[&MBB];
1426 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1427 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1428 BBInfo &PInfo = MBBInfoMap[*PrI];
1429 if (PInfo.addRequired(MInfo.vregsLiveIn))
1430 todo.insert(*PrI);
1431 }
1432 }
1433
1434 // Iteratively push vregsRequired to predecessors. This will converge to the
1435 // same final state regardless of DenseSet iteration order.
1436 while (!todo.empty()) {
1437 const MachineBasicBlock *MBB = *todo.begin();
1438 todo.erase(MBB);
1439 BBInfo &MInfo = MBBInfoMap[MBB];
1440 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1441 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1442 if (*PrI == MBB)
1443 continue;
1444 BBInfo &SInfo = MBBInfoMap[*PrI];
1445 if (SInfo.addRequired(MInfo.vregsRequired))
1446 todo.insert(*PrI);
1447 }
1448 }
1449 }
1450
1451 // Check PHI instructions at the beginning of MBB. It is assumed that
1452 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock * MBB)1453 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1454 SmallPtrSet<const MachineBasicBlock*, 8> seen;
1455 for (const auto &BBI : *MBB) {
1456 if (!BBI.isPHI())
1457 break;
1458 seen.clear();
1459
1460 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1461 unsigned Reg = BBI.getOperand(i).getReg();
1462 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1463 if (!Pre->isSuccessor(MBB))
1464 continue;
1465 seen.insert(Pre);
1466 BBInfo &PrInfo = MBBInfoMap[Pre];
1467 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1468 report("PHI operand is not live-out from predecessor",
1469 &BBI.getOperand(i), i);
1470 }
1471
1472 // Did we see all predecessors?
1473 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1474 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1475 if (!seen.count(*PrI)) {
1476 report("Missing PHI operand", &BBI);
1477 errs() << "BB#" << (*PrI)->getNumber()
1478 << " is a predecessor according to the CFG.\n";
1479 }
1480 }
1481 }
1482 }
1483
visitMachineFunctionAfter()1484 void MachineVerifier::visitMachineFunctionAfter() {
1485 calcRegsPassed();
1486
1487 for (const auto &MBB : *MF) {
1488 BBInfo &MInfo = MBBInfoMap[&MBB];
1489
1490 // Skip unreachable MBBs.
1491 if (!MInfo.reachable)
1492 continue;
1493
1494 checkPHIOps(&MBB);
1495 }
1496
1497 // Now check liveness info if available
1498 calcRegsRequired();
1499
1500 // Check for killed virtual registers that should be live out.
1501 for (const auto &MBB : *MF) {
1502 BBInfo &MInfo = MBBInfoMap[&MBB];
1503 for (RegSet::iterator
1504 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1505 ++I)
1506 if (MInfo.regsKilled.count(*I)) {
1507 report("Virtual register killed in block, but needed live out.", &MBB);
1508 errs() << "Virtual register " << PrintReg(*I)
1509 << " is used after the block.\n";
1510 }
1511 }
1512
1513 if (!MF->empty()) {
1514 BBInfo &MInfo = MBBInfoMap[&MF->front()];
1515 for (RegSet::iterator
1516 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1517 ++I) {
1518 report("Virtual register defs don't dominate all uses.", MF);
1519 report_context_vreg(*I);
1520 }
1521 }
1522
1523 if (LiveVars)
1524 verifyLiveVariables();
1525 if (LiveInts)
1526 verifyLiveIntervals();
1527 }
1528
verifyLiveVariables()1529 void MachineVerifier::verifyLiveVariables() {
1530 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1531 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1532 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1533 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1534 for (const auto &MBB : *MF) {
1535 BBInfo &MInfo = MBBInfoMap[&MBB];
1536
1537 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1538 if (MInfo.vregsRequired.count(Reg)) {
1539 if (!VI.AliveBlocks.test(MBB.getNumber())) {
1540 report("LiveVariables: Block missing from AliveBlocks", &MBB);
1541 errs() << "Virtual register " << PrintReg(Reg)
1542 << " must be live through the block.\n";
1543 }
1544 } else {
1545 if (VI.AliveBlocks.test(MBB.getNumber())) {
1546 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1547 errs() << "Virtual register " << PrintReg(Reg)
1548 << " is not needed live through the block.\n";
1549 }
1550 }
1551 }
1552 }
1553 }
1554
verifyLiveIntervals()1555 void MachineVerifier::verifyLiveIntervals() {
1556 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1557 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1558 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1559
1560 // Spilling and splitting may leave unused registers around. Skip them.
1561 if (MRI->reg_nodbg_empty(Reg))
1562 continue;
1563
1564 if (!LiveInts->hasInterval(Reg)) {
1565 report("Missing live interval for virtual register", MF);
1566 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1567 continue;
1568 }
1569
1570 const LiveInterval &LI = LiveInts->getInterval(Reg);
1571 assert(Reg == LI.reg && "Invalid reg to interval mapping");
1572 verifyLiveInterval(LI);
1573 }
1574
1575 // Verify all the cached regunit intervals.
1576 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1577 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1578 verifyLiveRange(*LR, i);
1579 }
1580
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,unsigned Reg,LaneBitmask LaneMask)1581 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1582 const VNInfo *VNI, unsigned Reg,
1583 LaneBitmask LaneMask) {
1584 if (VNI->isUnused())
1585 return;
1586
1587 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1588
1589 if (!DefVNI) {
1590 report("Value not live at VNInfo def and not marked unused", MF);
1591 report_context(LR, Reg, LaneMask);
1592 report_context(*VNI);
1593 return;
1594 }
1595
1596 if (DefVNI != VNI) {
1597 report("Live segment at def has different VNInfo", MF);
1598 report_context(LR, Reg, LaneMask);
1599 report_context(*VNI);
1600 return;
1601 }
1602
1603 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1604 if (!MBB) {
1605 report("Invalid VNInfo definition index", MF);
1606 report_context(LR, Reg, LaneMask);
1607 report_context(*VNI);
1608 return;
1609 }
1610
1611 if (VNI->isPHIDef()) {
1612 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1613 report("PHIDef VNInfo is not defined at MBB start", MBB);
1614 report_context(LR, Reg, LaneMask);
1615 report_context(*VNI);
1616 }
1617 return;
1618 }
1619
1620 // Non-PHI def.
1621 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1622 if (!MI) {
1623 report("No instruction at VNInfo def index", MBB);
1624 report_context(LR, Reg, LaneMask);
1625 report_context(*VNI);
1626 return;
1627 }
1628
1629 if (Reg != 0) {
1630 bool hasDef = false;
1631 bool isEarlyClobber = false;
1632 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1633 if (!MOI->isReg() || !MOI->isDef())
1634 continue;
1635 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1636 if (MOI->getReg() != Reg)
1637 continue;
1638 } else {
1639 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1640 !TRI->hasRegUnit(MOI->getReg(), Reg))
1641 continue;
1642 }
1643 if (LaneMask != 0 &&
1644 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1645 continue;
1646 hasDef = true;
1647 if (MOI->isEarlyClobber())
1648 isEarlyClobber = true;
1649 }
1650
1651 if (!hasDef) {
1652 report("Defining instruction does not modify register", MI);
1653 report_context(LR, Reg, LaneMask);
1654 report_context(*VNI);
1655 }
1656
1657 // Early clobber defs begin at USE slots, but other defs must begin at
1658 // DEF slots.
1659 if (isEarlyClobber) {
1660 if (!VNI->def.isEarlyClobber()) {
1661 report("Early clobber def must be at an early-clobber slot", MBB);
1662 report_context(LR, Reg, LaneMask);
1663 report_context(*VNI);
1664 }
1665 } else if (!VNI->def.isRegister()) {
1666 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1667 report_context(LR, Reg, LaneMask);
1668 report_context(*VNI);
1669 }
1670 }
1671 }
1672
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,unsigned Reg,LaneBitmask LaneMask)1673 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1674 const LiveRange::const_iterator I,
1675 unsigned Reg, LaneBitmask LaneMask)
1676 {
1677 const LiveRange::Segment &S = *I;
1678 const VNInfo *VNI = S.valno;
1679 assert(VNI && "Live segment has no valno");
1680
1681 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1682 report("Foreign valno in live segment", MF);
1683 report_context(LR, Reg, LaneMask);
1684 report_context(S);
1685 report_context(*VNI);
1686 }
1687
1688 if (VNI->isUnused()) {
1689 report("Live segment valno is marked unused", MF);
1690 report_context(LR, Reg, LaneMask);
1691 report_context(S);
1692 }
1693
1694 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1695 if (!MBB) {
1696 report("Bad start of live segment, no basic block", MF);
1697 report_context(LR, Reg, LaneMask);
1698 report_context(S);
1699 return;
1700 }
1701 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1702 if (S.start != MBBStartIdx && S.start != VNI->def) {
1703 report("Live segment must begin at MBB entry or valno def", MBB);
1704 report_context(LR, Reg, LaneMask);
1705 report_context(S);
1706 }
1707
1708 const MachineBasicBlock *EndMBB =
1709 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1710 if (!EndMBB) {
1711 report("Bad end of live segment, no basic block", MF);
1712 report_context(LR, Reg, LaneMask);
1713 report_context(S);
1714 return;
1715 }
1716
1717 // No more checks for live-out segments.
1718 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1719 return;
1720
1721 // RegUnit intervals are allowed dead phis.
1722 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1723 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1724 return;
1725
1726 // The live segment is ending inside EndMBB
1727 const MachineInstr *MI =
1728 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1729 if (!MI) {
1730 report("Live segment doesn't end at a valid instruction", EndMBB);
1731 report_context(LR, Reg, LaneMask);
1732 report_context(S);
1733 return;
1734 }
1735
1736 // The block slot must refer to a basic block boundary.
1737 if (S.end.isBlock()) {
1738 report("Live segment ends at B slot of an instruction", EndMBB);
1739 report_context(LR, Reg, LaneMask);
1740 report_context(S);
1741 }
1742
1743 if (S.end.isDead()) {
1744 // Segment ends on the dead slot.
1745 // That means there must be a dead def.
1746 if (!SlotIndex::isSameInstr(S.start, S.end)) {
1747 report("Live segment ending at dead slot spans instructions", EndMBB);
1748 report_context(LR, Reg, LaneMask);
1749 report_context(S);
1750 }
1751 }
1752
1753 // A live segment can only end at an early-clobber slot if it is being
1754 // redefined by an early-clobber def.
1755 if (S.end.isEarlyClobber()) {
1756 if (I+1 == LR.end() || (I+1)->start != S.end) {
1757 report("Live segment ending at early clobber slot must be "
1758 "redefined by an EC def in the same instruction", EndMBB);
1759 report_context(LR, Reg, LaneMask);
1760 report_context(S);
1761 }
1762 }
1763
1764 // The following checks only apply to virtual registers. Physreg liveness
1765 // is too weird to check.
1766 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1767 // A live segment can end with either a redefinition, a kill flag on a
1768 // use, or a dead flag on a def.
1769 bool hasRead = false;
1770 bool hasSubRegDef = false;
1771 bool hasDeadDef = false;
1772 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1773 if (!MOI->isReg() || MOI->getReg() != Reg)
1774 continue;
1775 if (LaneMask != 0 &&
1776 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
1777 continue;
1778 if (MOI->isDef()) {
1779 if (MOI->getSubReg() != 0)
1780 hasSubRegDef = true;
1781 if (MOI->isDead())
1782 hasDeadDef = true;
1783 }
1784 if (MOI->readsReg())
1785 hasRead = true;
1786 }
1787 if (S.end.isDead()) {
1788 // Make sure that the corresponding machine operand for a "dead" live
1789 // range has the dead flag. We cannot perform this check for subregister
1790 // liveranges as partially dead values are allowed.
1791 if (LaneMask == 0 && !hasDeadDef) {
1792 report("Instruction ending live segment on dead slot has no dead flag",
1793 MI);
1794 report_context(LR, Reg, LaneMask);
1795 report_context(S);
1796 }
1797 } else {
1798 if (!hasRead) {
1799 // When tracking subregister liveness, the main range must start new
1800 // values on partial register writes, even if there is no read.
1801 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1802 !hasSubRegDef) {
1803 report("Instruction ending live segment doesn't read the register",
1804 MI);
1805 report_context(LR, Reg, LaneMask);
1806 report_context(S);
1807 }
1808 }
1809 }
1810 }
1811
1812 // Now check all the basic blocks in this live segment.
1813 MachineFunction::const_iterator MFI = MBB->getIterator();
1814 // Is this live segment the beginning of a non-PHIDef VN?
1815 if (S.start == VNI->def && !VNI->isPHIDef()) {
1816 // Not live-in to any blocks.
1817 if (MBB == EndMBB)
1818 return;
1819 // Skip this block.
1820 ++MFI;
1821 }
1822 for (;;) {
1823 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
1824 // We don't know how to track physregs into a landing pad.
1825 if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1826 MFI->isEHPad()) {
1827 if (&*MFI == EndMBB)
1828 break;
1829 ++MFI;
1830 continue;
1831 }
1832
1833 // Is VNI a PHI-def in the current block?
1834 bool IsPHI = VNI->isPHIDef() &&
1835 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
1836
1837 // Check that VNI is live-out of all predecessors.
1838 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1839 PE = MFI->pred_end(); PI != PE; ++PI) {
1840 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1841 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1842
1843 // All predecessors must have a live-out value if this is not a
1844 // subregister liverange.
1845 if (!PVNI && LaneMask == 0) {
1846 report("Register not marked live out of predecessor", *PI);
1847 report_context(LR, Reg, LaneMask);
1848 report_context(*VNI);
1849 errs() << " live into BB#" << MFI->getNumber()
1850 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
1851 << PEnd << '\n';
1852 continue;
1853 }
1854
1855 // Only PHI-defs can take different predecessor values.
1856 if (!IsPHI && PVNI != VNI) {
1857 report("Different value live out of predecessor", *PI);
1858 report_context(LR, Reg, LaneMask);
1859 errs() << "Valno #" << PVNI->id << " live out of BB#"
1860 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id
1861 << " live into BB#" << MFI->getNumber() << '@'
1862 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
1863 }
1864 }
1865 if (&*MFI == EndMBB)
1866 break;
1867 ++MFI;
1868 }
1869 }
1870
verifyLiveRange(const LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)1871 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1872 LaneBitmask LaneMask) {
1873 for (const VNInfo *VNI : LR.valnos)
1874 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1875
1876 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1877 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1878 }
1879
verifyLiveInterval(const LiveInterval & LI)1880 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1881 unsigned Reg = LI.reg;
1882 assert(TargetRegisterInfo::isVirtualRegister(Reg));
1883 verifyLiveRange(LI, Reg);
1884
1885 LaneBitmask Mask = 0;
1886 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1887 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1888 if ((Mask & SR.LaneMask) != 0) {
1889 report("Lane masks of sub ranges overlap in live interval", MF);
1890 report_context(LI);
1891 }
1892 if ((SR.LaneMask & ~MaxMask) != 0) {
1893 report("Subrange lanemask is invalid", MF);
1894 report_context(LI);
1895 }
1896 if (SR.empty()) {
1897 report("Subrange must not be empty", MF);
1898 report_context(SR, LI.reg, SR.LaneMask);
1899 }
1900 Mask |= SR.LaneMask;
1901 verifyLiveRange(SR, LI.reg, SR.LaneMask);
1902 if (!LI.covers(SR)) {
1903 report("A Subrange is not covered by the main range", MF);
1904 report_context(LI);
1905 }
1906 }
1907
1908 // Check the LI only has one connected component.
1909 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1910 unsigned NumComp = ConEQ.Classify(LI);
1911 if (NumComp > 1) {
1912 report("Multiple connected components in live interval", MF);
1913 report_context(LI);
1914 for (unsigned comp = 0; comp != NumComp; ++comp) {
1915 errs() << comp << ": valnos";
1916 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1917 E = LI.vni_end(); I!=E; ++I)
1918 if (comp == ConEQ.getEqClass(*I))
1919 errs() << ' ' << (*I)->id;
1920 errs() << '\n';
1921 }
1922 }
1923 }
1924
1925 namespace {
1926 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1927 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1928 // value is zero.
1929 // We use a bool plus an integer to capture the stack state.
1930 struct StackStateOfBB {
StackStateOfBB__anonf70363060211::StackStateOfBB1931 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1932 ExitIsSetup(false) { }
StackStateOfBB__anonf70363060211::StackStateOfBB1933 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1934 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1935 ExitIsSetup(ExitSetup) { }
1936 // Can be negative, which means we are setting up a frame.
1937 int EntryValue;
1938 int ExitValue;
1939 bool EntryIsSetup;
1940 bool ExitIsSetup;
1941 };
1942 }
1943
1944 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1945 /// by a FrameDestroy <n>, stack adjustments are identical on all
1946 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()1947 void MachineVerifier::verifyStackFrame() {
1948 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
1949 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1950
1951 SmallVector<StackStateOfBB, 8> SPState;
1952 SPState.resize(MF->getNumBlockIDs());
1953 SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1954
1955 // Visit the MBBs in DFS order.
1956 for (df_ext_iterator<const MachineFunction*,
1957 SmallPtrSet<const MachineBasicBlock*, 8> >
1958 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1959 DFI != DFE; ++DFI) {
1960 const MachineBasicBlock *MBB = *DFI;
1961
1962 StackStateOfBB BBState;
1963 // Check the exit state of the DFS stack predecessor.
1964 if (DFI.getPathLength() >= 2) {
1965 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1966 assert(Reachable.count(StackPred) &&
1967 "DFS stack predecessor is already visited.\n");
1968 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1969 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1970 BBState.ExitValue = BBState.EntryValue;
1971 BBState.ExitIsSetup = BBState.EntryIsSetup;
1972 }
1973
1974 // Update stack state by checking contents of MBB.
1975 for (const auto &I : *MBB) {
1976 if (I.getOpcode() == FrameSetupOpcode) {
1977 // The first operand of a FrameOpcode should be i32.
1978 int Size = I.getOperand(0).getImm();
1979 assert(Size >= 0 &&
1980 "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1981
1982 if (BBState.ExitIsSetup)
1983 report("FrameSetup is after another FrameSetup", &I);
1984 BBState.ExitValue -= Size;
1985 BBState.ExitIsSetup = true;
1986 }
1987
1988 if (I.getOpcode() == FrameDestroyOpcode) {
1989 // The first operand of a FrameOpcode should be i32.
1990 int Size = I.getOperand(0).getImm();
1991 assert(Size >= 0 &&
1992 "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1993
1994 if (!BBState.ExitIsSetup)
1995 report("FrameDestroy is not after a FrameSetup", &I);
1996 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1997 BBState.ExitValue;
1998 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1999 report("FrameDestroy <n> is after FrameSetup <m>", &I);
2000 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2001 << AbsSPAdj << ">.\n";
2002 }
2003 BBState.ExitValue += Size;
2004 BBState.ExitIsSetup = false;
2005 }
2006 }
2007 SPState[MBB->getNumber()] = BBState;
2008
2009 // Make sure the exit state of any predecessor is consistent with the entry
2010 // state.
2011 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2012 E = MBB->pred_end(); I != E; ++I) {
2013 if (Reachable.count(*I) &&
2014 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2015 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2016 report("The exit stack state of a predecessor is inconsistent.", MBB);
2017 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
2018 << SPState[(*I)->getNumber()].ExitValue << ", "
2019 << SPState[(*I)->getNumber()].ExitIsSetup
2020 << "), while BB#" << MBB->getNumber() << " has entry state ("
2021 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2022 }
2023 }
2024
2025 // Make sure the entry state of any successor is consistent with the exit
2026 // state.
2027 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2028 E = MBB->succ_end(); I != E; ++I) {
2029 if (Reachable.count(*I) &&
2030 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2031 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2032 report("The entry stack state of a successor is inconsistent.", MBB);
2033 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
2034 << SPState[(*I)->getNumber()].EntryValue << ", "
2035 << SPState[(*I)->getNumber()].EntryIsSetup
2036 << "), while BB#" << MBB->getNumber() << " has exit state ("
2037 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2038 }
2039 }
2040
2041 // Make sure a basic block with return ends with zero stack adjustment.
2042 if (!MBB->empty() && MBB->back().isReturn()) {
2043 if (BBState.ExitIsSetup)
2044 report("A return block ends with a FrameSetup.", MBB);
2045 if (BBState.ExitValue)
2046 report("A return block ends with a nonzero stack adjustment.", MBB);
2047 }
2048 }
2049 }
2050